
A Study of Sort Algorithms for Multiprocessor Database Machines

Jai Menon

IBM Almaden Research Center
San Jose, California 95 120-6099

Abstract
This paper presents and analyzes algorithms for parallel execution
of sort operations in a general multiprocessor architecture. We
consider both internal and external sorting algorithms. For the
latter, we study the performance of sorting algorithms that are
derived from sorting algorithms that only do comparison and ex-
change by replacing each comparison-exchange with a B-way merge.
In particular, we propose a new algorithm called the modified block
bitonic sort. We then present the results of analyzing the perfor-
mance of these different parallel external sorting algorithms. We
show that the modified block bitonic sort is the fastest of the
algorithms over a wide range of values of interest to us.

Introduction

Several multiprocessor database machines [GARDAIII] [BABBE79]
[DEWIT79]. have been or are currently being developed. Two of
the most demanding operations that must be performed by such
multiprocessor database machines are sorting and join. This paper
presents a study of various algorithms for performing the first of
these two operations on a general model of a multiprocessor data-
base machine.

We will begin by considering ways to use parallel processors to
sort files stored in random access memory (parole/ interm/ sorting).
In particular, we will show how to use the bitonic merge in order
to do parallel internal sorting ([HSIAOIO], [BITf’084]). We have
presented the bitonic merge principle before, but the particular al-
gorithm described here, and its analysis are presented for the first
time.

Due to memory limitations, sorting of large files cannot be done
in memory, and ertemd sorting dgorithm need to be used. The
study of the external sorting algorithms is the main focus of this
paper.

For external sorting algorithms, we study the performance of sorting
algorithms that are derived from sorting networks that only do
comparison and exchange by replacing each comparison-exchange
with a B-way merge. We are interested in this class of algorithms
because of the result of [BIIT083] where a sorting algorithm that
is derived by replacing each comparison-exchange with a 2-way
merge was presented and shown to be superior to all other algo-

Permission to copy withouf fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage! the VLDB copyright notice and the
title of the publication and tts date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires o fee
and/or special permission from the Endowment.

rithms presented in that paper. In this study, we are interested in
the use of B-way merges, where B is significantly larger than 2.
This is important because of the continuing drop in the costs of
semiconductor memory, making it feasible to build multiprocessors
with large amounts of semiconductor memory. For this class of
external sorting algorithms, we investigate the impact of larger
amounts of memory. While [BRATS841 analyzed the impact of
large amounts of main memory on uniprocessor sorting algorithms,
we believe our work is the first such investigation for multiprocessors.

For the class of external sorting algorithms that are derived as
described above, we also consider several general techniques for
further improving their performance. We feel that there are three
techniques that have general applicability. We give examples of use
of two of these three techniques to improve the performance of
algorithms in the class of interest to us. The two techniques we
consider are the use of pipe/bring and the use of prnrM internal
sorting. The application of these techniques leads us to the discovery
of an algorithm we call the modijkf bkk bitonic sort.

We then present the results of analyzing the performance of these
different parallel external sorting algorithms. We show that the
modified block bitonic sort is the fastest of the algorithms over a
wide range of values of interest to us and that it makes the best
use of additional main memory buffer space.

The Architectural Model

In this paper, we are concerned with the parallel execution of
sorting algorithms on multiprocessor database machines that do not
have any special-purpose hardware for execution of the sorting
operation [BIlT083] [VALDU84]. Such machines will have several
general-purpose processors linked through a contention-free inter-
connection network of some sort. Each processor will have its own
local memory, and all the processors also share some amount of
global memory. The processors exchange data via this shared global
memory which may be accessed simultaneously by several processors.

The database machines also use conventional disk drives for sec-
ondary storage. Relations (files) to be sorted are stored on these
disk drives as fixed-size pages. The shared global memory is as-
sumed to be the cache for accesses to secondary store. Then, any
page stored in secondary store may be transferred and stored in
any page frame in the cache. The local memory of the processors
is also assumed to be page-oriented.

In general, our algorithms assume that each processor has B pages
of memory associated with it. We may think of this as B pages of
local memory, making a total of BP pages of local memory spread
across the P processors, or we may think of it as B pages of global
memory, making a total of BP pages of global memory shared by
the P processors.

Proceedings of the Twelfth International
Conference on Very Large Data Bases Kyoto, August, 1986

-197-

The general organization of our multiprocessor database machine
is shown in Figure 1. The local memories of each processor are
not shown in the figure.

Parallel Internal Sorting Algorithms
Using Bitonic Merge

Most of the work on sorting using parallel processors [VALIA75]
[PREPA78] [MULLE75] [HIRSC78] [THOMP77] [NASSI78] as-
Qume that P processors will be used to sort I’ records. We are more
interested in considering methods which can use P processors to
sort MP records, where M, which is very large, is the number of
records that will fit in the local memory of each one of the P
processors (alternatively, the space for MP records may be in the
shared global memory).

[BAUDE78] was the first paper to consider this problem and
present algorithms for sorting MP records using P processors. The
class of algorithms presented in their paper was obtained by re-
placing every comparison-exchange step (in a sorting algorithm
consisting of comparison-exchange steps) by a two-way merge.
The merged sequence is split two ways, with the “lower” half sent
to one destination processor, and the “upper” half sent to another
destination processor.

The problem with the approach taken by [BAUDE78], is that their
algorithms require each processor to have 4M memory. Thus, in
order to sort MP records using P processors, they use 4MP memory.
We present, below, a class of algorithms that can sort MP records
using P processors, with (M+I)P memory [HSIAOIO].

Our class of algorithms is also obtained from sorting algorithms
that do comparison-exchanges. However, rather than replace each
comparison-exchange with a two-way merge, we propose that we
replace each comparison-exchange with a bironic merge. We have
presentecl tbe bitonic merge principle before [BlTT084], but the
particular algorithm described *here, and its analysis are presented
here for the first time.

An exa?ple of a bitonic merge is shown in Figure 2, where we
show 2 processors, each with enough local memory to hold five
records. The smallest record in PI is compared with the largest
record in P2, the smaller of the two is placed in PI”s memory, the
larger of the two is placed in P2’s memory. Next, the second
smallest record in Pl’s memory is compared with the second largest
record in P2’s memory. Once again, the smaller record is placed
in PI’s memory, and the larger record is placed in P2’s memory.
The process continues until no more exchanging is needed. At the
end of these exchanges, the smallest 5 records are in Pl and the
largest 5 records are in P2. The bitonic merge is complete, if PI
does a local sort of its memory and P2 does a local sort of its
memory in parallel. The fact that the smallest records will be in
PI was proved by Alekseyev [KNUTH73]. He also showed that
at the end of the exchanging, the M smallest records in PI and
the M largest records in P2 each form a bitonic sequence (a bitonic
sequence is the concatenation of two sorted sequences, one sorted
in ascending order, and one sorted in descending order). Clearly,
such a bitonic sequence may be sorted by merging the two sorted
subsequences from opposite ends.

Several reascms make the bitonic merge superior to the two-way
merge of [BAUDE78]. First, we only require that each processor
have enough memory to hold M+l records, whereas the two-way
merge requires each processor to have enough memory to hold 4M
records. Second, the bitonic merge is more suitable for implemen-
tation on parallel computers that require a high degree of synchro-

PROCESSORS mslcs
SHUtED YEMORWK!HE

Figure I: General Organimtion of a Multiprocessor Database
Machine

nization between their processors. Third, the two-way merge re-
quires an entire block of data to be transferred to a processor’s
memory before the merge operation is initiated, whereas the bitonic
merge only requires the fist record to be transferred before the
merge operation is initiated.

Parallel Internal Shuffle Sort

A fast parallel internal sort can be derived from Stone’s algorithm
[STONE’II] to sort P elements using P processors in IogzP steps,
where P must be a power of two. To describe the algorithm, we
use the following notation. Let EXCHANGE(i,j) represent the
procedure adopted to exchange records between processor i and
processor j, so that the smallest M records are in processor i’s
memory and the largest M records are in processor j’s memory.
Also, let us give each processor a binary index - with four proces-
sors, processor 0 is ‘00’, processor 1 is ‘Ol’, . . . , processor three
is ‘1 I’. Then, we define the slruffle..p- r for processor k as
processor I, if I is k left-circularly shifted. Finally, we say that
during a perfazt shuffle, each processor sends the records in its
memory to the memory of its shuffle processor.

The parallel internal shuffle sort is described below for the case of
P=4. In general, the algorithm consists of log2P stages, and each
stage has IogzP steps.

. STAGE I
I. Perform the perfect shuffle.
2. Perform the perfect shuffle.

EXCHANGE(O,l),EXCHANGE(3,2) in parallel.
l STAGE II

I. Perform the perfect shuffle.
EXCHANGE(O,l),EXCHANGE(2,3) in parallel.

2. Perform the perfect shuffle.
EXCHANGE(O,l),EXCHANGE(3,2) in parallel.

. FINAL STEP - Do localized sorts.

Analysis of Parallel Internal Shuffle Sort

Let us use the following notation for the analysis.

P Number of processors
M Number of records per processor

-198-

Fignre 2: An Example of the Bitonic Merge

B Number of pages per processor local memory
k Number of records per page, M=Bk
C Time to do a compare of two keys
V Time to move a record in memory (or time f0r.a complex

move)

We note that the algorithm consists of one exchange step in the
first stage, two exchange steps in the second stage, etc., and log
P exchange steps in the final stage. Thus, there are a total of
(L)(logP)(l + IogP) exchange steps. We also note that there is
oie final localized sort step.

For our analysis, we will assume that the k tuples inside a page
are in sorted order to begin with. Then, for the first exchange,
each local processor may sort the Bk records into sorted order by
performing a B-way merge of the B sorted pages. The time for
the B-way merge is BkY+ Ek(logzB)C. In order to complete the
first exchange, processors must compare and move Bk corresponding
records requiring Bk(C+V) time. Therefore, the total time for the
first exchange is BkV+ Bk(log#)C + Ek(C + v). For each of the
remaining

log2P log@
(2+-y-- 1)

exchanges, the sort step is simpler, since the sequence to be sorted
is bitonic and may be sorted by merging from the two ends. The
time for each of these exchanges is ZBk(C+V). The time for the
final sort step is also Bk(C+V). So, the total time for the execution
of the algorithm is

Bk(C+ l’-)[log2P + log;P] + EkV+ Bk(log2fl)C

Parallel External Sorting Algorithms

Let us now turn our attention to parallel external sorting algorithms.
These are algorithms which use P processors, each with B pages
of memory (and an additional page for holding output tuples), to
sort N pages, where N is much greater than B (not necessarily
much greater than BP). Just as parallel internal sorting algorithms
can be derived from sorting algorithms that only do compare and
exchange, so also can parallel external algorithms. This fact was
pointed out in [BITT083]. In that paper, a parallel external sorting
algorithm called a block bironicsoti is derived from Batcher’s bitonic

sort [BATCH681 by replacing each comparison-exchange with a

two-way external merge of two runs of size $,

Using this same idea for generating parallel external algorithms, we
first present an external sorting algorithm based on the odd-even
transposition sort [KNUTH73]. For the odd-even external sort, we
will show how to use pipelining to arrive at a pipe/id u&-even
et-ternd serf which is superior in performance to the odd-even
external sort. We will then examine the block bitonic sort

([BITTO83]). Using the technique of pipelining on the block
bitonic sort, we will derive a pipelimi block bitonic sort which,
unfortunately, has inferior performance to the block bitonic sort.
From that, we will draw some conclusions about the efficacy of
pipelining as a general technique for performance enhancement.

In order to improve the performance of the block bitonic sort, we
will the examine the idea of using parallel internal sorts.

The Parallel Odd-Even External Sort

Execution of the odd-even external sort for two processors (P =
2) and eight pages (N = 8) is illustrated in Figure 3. The class
of algorithms suggested in [BITT083] can process at most 2P runs
with P processors. Therefore, a preprocessing stage is necessary
when the number of pages to be sorted exceeds 2P. The function

of this preprocessing stage is to produce 2P sorted runs of size $

each. Since our external odd-even sort is an algorithm in the class

of algorithms suggested in [BITTOSS], it will also have a prepro-
cessing stage. In our example, the preprocessing stage will produce
four sorted runs of two pages each. Following this preprocessing
stage, the odd-even external sort will have 2P more stages (this
follows from the odd-even transposition sort), in each stage of

which, the processors, in parallel, merge two runs of size $.

Analysis of Parallel Odd-Even External Sort

We use the following notation, in addition to those developed for
the analysis of the parallel internal sorting algorithms.

Cr
CW
Cm

6

Time to read an external page
Time to write an external page
Time to merge two pages = Zk(C+V)

Time to read, merge and write two pages. This is equal
to 20 + 2Cw + 2k(C+ V).
Time to read, merge and write B pages. This is equal to
ECr + BCw+ BkV+ B(log2B)kC.

As described and analyzed in [BITTO83], the preprocessing stage
consists of processors, in parallel, successively merging longer and
longer pairs of runs, until the number of runs is twice the number

of processors. It is the job of each processor to produce two runs

of size 5. This will take

(2, log
2P

(N)C2
22P p

Then, each of the 2P steps of the odd-even external sort requires

($)C$ steps. Therefore, the total time for the odd-even external

sort is

C(S) log,($) + A9c;

Parallel B-ary Odd-Even External Sort

We now consider the following refinement. Until now, we had
assumed that each processor had enough memory to hold 3 pages,
where one page was for output, and the other two pages was to
hold the input during a two-way merge. Now, let us assume that

-199-

Figure 3: Illustration of the External Odd-Even Sort

each of the processors has more than 3 pages of buffer. Let each
processor have B+l pages of buffer, so that it may do a B-way
merge, rather than a two-way merge. In other words, we are
proposing a class of external parallel sorting algorithms that are

derived by replacement of each comparison-exchange with a B-way
N external merge of B runs of size -.

BP

N The preprocessing stage must now produce BP runs of size -.
BP

Then, each of the 2P steps of the odd-even external sort requires

(-/$)Cp steps. Therefore, the total time for the odd-even external

sort is

((j-!$log,(-+ + cyx$

Consider the following example.

Example 1. Let N = 4096, P = 16, Cr = 6.4 msccs, Cw = 14.4
msecs, k = 40, C = .Ol msecs, V = .20 msecs. Then, C$ is 58.4
msecs and C$ is 118.4 msecs. With these values, the time for the
two-way odd-even sort is 291.5 seconds and the time for the
four-way odd-even sort is 265.2 seconds. Therefore, it is attractive
to do a four-way odd-even sort.

The values chosen for Cr, Cw. C and V above are those used in
[BlTT083]. In general, increasing B helps to a point. Beyond

that critical point, increasing B will actually hurt the performance
of the odd-even external sort. The faster the CPU, and the slower
the mass storage devices used, the higher the optimal value of B.

Pipelined B-ary Odd-Even External Sort

We wish to reduce the time taken to execute the 2P merge steps
in the odd-even sort that follow the preprocessing stage. As it
currently stands, the second merge step cannot be executed until
the first step completes, the third step cannot be completed until
the second step completes, and so on. However, if we had several
more processors, then we could assign these extra processors to
execute all the 2P steps in a pipelined fashion. Looking back at
Figure 3, we see that two processors are used in the first step, one
processor is used in the second step, two processors are used in
the third step and one processor is used in the final step. Therefore,
if we had six processors to do the odd-even sort, we could pipe/he
between the stages. As soon as the first pages of all the input runs
to step 2 were available, step 2 would be started. Then, as soon
as the first pages of all the input runs to step 3 were available, it
would be started, and so on. This would speed up the algorithm,
at the cost of additional processors.

Let us illustrate the difference between the odd-even sort and the
pipelined odd-even sort by means of an example. Let P = 6 and
B = 2. In the odd-even sort, we will have a preprocessing stage

in which we will create 2P or I2 runs of size A. Then, we will
I2

execute 2P or I2 merge steps in a non-pipelined fashion. In the

pipelined odd-even sort, we will have a preprocessing stage in

which we will create four runs of size N 7 We wilI.then organize

the six processors in four steps (two in step 1, one in step 2, two
in step 3, one in step 4). Then, we will execute four merge steps
in a pipelined fashion.

Clearly, the pipelined odd-even sort takes longer during the pre-
processing stage, because it needs to create longer runs. However,
it makes up for the longer preprocessing stage by virtue of the fact
that it only needs fewer merge steps and because these fewer merge
steps can be executed in a pipelined fashion.

Analysis of Pipelined Odd-even Sort

We will do the analysis for B = 2. It is easy to show that with
P processors, the pipelined odd-even sort executes the sa

of merge steps as a normal odd-even sort with K = (
Fr 1 + (1+8P))

4
processors. Thus, for example, with P = 6, the pipelined odd-even
sort has the same number of merge steps as a normal odd-even
sort with K = 2 processors.

In the first step of the pipelined odd-even sort, we will need to
N create 2K runs of size -

2K’
using 2K out of the P processors. It

is easy to see that P > 2K as long as P 1 3. So, if we only consider
P to be three or greater, we can do this first step in

Now, we need to wait until ‘the first pages reach the last step
(there are 2K steps) of merging. This takes (2K- l)Cs time units.

Finally, in the last step, all processors will merge two runs of size

N in(N
2K

-$Cj steps.

Consider the following example.

Example 2. Let N = 24, P = 6, K = 2, and Cr, Cw, k, C and
V are as in example 1. Then, the time for the odd-even sort is 26
time units, whereas the time for the pipelined odd-even sort is 3
log 6 + 9, which is 16.75 time units, and hence, better.

External Block Bitonic Sort

Next, let us consider the Block Bitonic Sort which had been de-
scribed in [BITT083]. It is derived from Batcher’s bitonic sorter
in the same manner as we derived the odd-even external sort from
the odd-even transposition sort. The algorithm is illustrated in
Figure 4, for P = 2 and N = 8. The preprocessing step is identical
to that for the odd-even external sort. H wever, instead of 2P

f merge steps, the algorithm only needs (-)(logzZP)(I + log22P)
merge steps, so that its total execution 2time. as analyzed in
[BITT0831 is

logS2P log*2P
log,N+2--

2 1 @)C2
2P p

-2oo-

Figure 4: Illustration of the Block Bitonic Sort (IBITTO83I)
I

We begin by improving the performance of this algorithm using B
buffers, so that the total execution time now is

1 &)CB
BP ’

Consider the following example.

Example 3. Let N = 512, P = 8, Cr, Cw, k, C and V as in
Example 1. Then, the time for the block bitonic sort with B = 2
is 28.8 seconds, whereas the time with B = 8 is 21.12 seconds.

Improving the Performance of the Block
Bitonic Sort

Once again, our first avenue of exploration in the search for a
better sorting algorithm is to consider the idea of pipelining. We

will do the analysis for the case of B=2. The pipelined block

bitonic sort will have a preprocessing stage in which 2K runs of

‘me 2K
L are created. Subsequently, the pipelined block bitonic sort

will do the merge steps in a pipelined fashion, using K processors
at each stage of the pipeline. It is not difficult to see that K can
be calculated by solving the equation

f~~(log,zK)(l + Iog22K) = P

To take an example. consider P=6, K=2. In this example, proces-
sors 3 and 4 will wait a single time unit (C$) before they begin
merging, and processors 5 and 6 will wait two time units before
t ey begin merging. In general, the last processors must wait
1 (T)(logz2K)(1 + log22K) - 1 time units before beginning merging.

To comnlete the analvsis. let us assume that we are interested onlv _
in cases where P, the number of processors, is 6 or greater. Then,
it is easy to see, from the formula for K above, that 2K is less
than or equal to P. In the first step of the pipelined block bitonic

sort, we will need to create 2K runs of size z using 2K out of
2K’

the P processors. This will take

Then, we must wait

((~)(log22f0(1 + log22LK) - 1)c;

time units until the last processors get pages to start merging.

Finally, in the last step, all processors will merge two runs of size
N

2K’
in ($)Cs steps.

Consider the following example.

Example 4. Let N = 1920, P = 80, K = 8, and Cr. Cw, K, C
and V as in example 1. Then, the time for the block bitonic sort
is 444 time units, whereas the time for the pipelined block bitonic
sort is 609 time units.

We see that the pipelined block bitonic sort is worse than the block
bitonic sort. Pipelining, as a general technique, is clearly not always
rewarding - it helped the odd-even sort, but not the block bitonic
sort. We have explored the idea of pipelining on other algorithms
and have come to the conclusion that it is only useful when the
number of merge steps in the original algorithm is high.

There are two other possible avenues of attack that may now be
explored in order to improve the performance of the Block bitonic
sort further. We may either improve the performance of the pre-
processing stage without changing the number of merge steps
needed, or we may try to decrease the number of merge steps
needed without hurting the performance of the preprocessing stage.
In the following sections, we wilI discuss the former. Details of the
latter technique may be. found in [MENON86].

Improving the Performance of the Preprocessing
Stage

In order to improve the performance of the preprocessing stage,
we suggest the use of the parallel internal sort that we developed
in the section titled “Parallel Internal Shuffle Sort”. Consider the

case when N is very large and when s is equal to BP. Then, we

may make one pass over the file, bring in BP records at a time,

and sort these BP records using the parallel internal sort developed
previously. After BP such internal sorts, we have completed the

preprocessing stage and created BP runs of size 5.

Consider the following example.

Example 5. Let N = 4096, P = 16, B = 4, k = 40, Cr = 17

msecs, Cw = 17 msecs, C = 0.01 msecs and V = 0.1 msecs. In

this case BP is equal to 2. Using the method of iterated merging,

the preprocessing stage will take 35.33 seconds. Thii consists of
approximately 26.12 seconds of I/O time and 9.21 seconds of
CPU time. On the other hand, if we use the parallel internal sorts,
we can accomplish the preprocessing in 34.3 seconds (25.6 CPU
and 8.7 I/O). In other words, the parallel internal sort can be
used to improve the performance of the preprocessing stage. The
improvement is achieved by trading off CPU time for I/O time.

If the CPU is any faster or the disks are any slower than in the
example, the use of the internal parallel sort for the preprocessing
stage is recommended. On the other hand, if the CPU is any
slower, or the disks are any faster, the method of iterated merging
remains superior.

We conclude that it is possible to improve the performance of the
preprocessing stage by using parallel internal sorts rather than
iterated merging, as long as our processors are fairly powerful. The
example shown above considered the case when the file to be
sorted was larger than BP. We may also consider the case when

-201

the file to be sorted is smaller than BP. In that case, the modified
bitonic sort would simply read the file into local memory, do a
parallel internal sort, and then write the sorted file back to disk.
On the otherlhand, the unmodified block bitonic sort would need
to perform (y)(logz2P)(l + logz2P) merge steps.

Consider the following example.

Example 6. Let N =,64, P = 16. B = 4. k = 40. and Cr, Cw,
k, C and V as in Example 1. In this case, BP is equal to N. Using
the unmodified block bitonic sort, requires 7.6032 seconds for the
execution to complete. Using the modified block bitonic sort, we
would need only .52 seconds. Therefore, the modified block bitonic
sort can be an order of magnitude faster than the unmodified block
bitonic sort. We conclude that there are situations where, even
with a slow CPU and fast disks, the modified bitonic sort is still
the preferred algorithm.

Analyzing the Resultant Mndifiid Block Bitonic Sort

The algorithm consists of a preprocessing stage in which we create

BP runs of size 5. This is followed by the merge steps which we

have analyzed before. We need to analyze the time to execute the
preprocessing ,stage, since we have modified the technique for
preprocessing. We recall that the purpose of the preprocessing stage

is to create BP runs of size $. Let us consider three cases, and

analyze the preprocessing time for each of the three cases.

The first case is when N (the number of elements to be sorted) is
less than BP (the number of elements that can be sorted internally).
Using the formula developed in “Parallel Internal Shuffle Sort”, it
is easy to see that the internal sorting time is:

$)k(C+ P’)[log,P + lo&‘] + ($)kV+ ($)k(log,B)C

In addition, we must add the time, to read and write the N pages

to be sorted (each processor reads and writes -$ pages) which is

(E)(Cr + Cw). So, the total time’ for the preprocessing stage for
tlfi case when N is less than BP is

($)k(C+ P-)[logzP+ lo&] +

,

(+kV+ ($)k(log,B)C+ (f)(Cr+ Cw)

In this case, there is no need for a subsequent merge stage. There-
fore the total time for sorting is as above.

Next, let us consider the case when N is greater than BP, but it
is less than or equal to B2PZ. In this case, the preprocessing stage
will consist of BP passes, and each pass will consist of a parallel

internal sort of & elements. At the end of these BP passes, we

will have the required BP runs of size

equal to B*P*, so 5

&. Since N is less than or

N
is less than or equal to BP. Assume BP IS

equal to XP. Then, the time for each pass is

Xk(C+ V[log,P+ log@] +

XkV+ Xk(log,B)C + X(Cr + Cw)

The total sort has BP passes and must include the time for merging
and is

($)k(C + O[log2P + lo&] +

($)kY+ ($)k(log,B)C+ $)(Cr+ Cw)

+(~)(log22P)(1 + log*2P)C,B

Finally, we consider the case when N is greater than B*P* or L

N Bp is greater than BP. In this case, we will begin by creating - runs

of size BP each. This is done by making 6
BP

internal sorts, each

internal sort creating runs of size BP. Now, each processor can

take runs of size BP and create runs of size B*P, then take runs

of size B*P and create runs of size B3P, and so on until runs of

. N
S’ze BP

are created. It can be shown that the total time, including

merging is

($)k(C + U[log*!’ + log;P] +

(f)kY+ ($)k(log2B)C + (+)(Cr + Cw)

($4
+mB(Bp -,,(++a +(~)(log*2P)U + l0&2&

Comparative Analysis of External Sorting
Algorithms

In this section, we present the results of a comparative analysis of
the different algorithms that we have presented. The numerical
results for the execution times of the different sorting algorithms
are obtained from APL programs that were written to calculate
them based on the equations derived in the previous sections. For
all the results presented in the following sections, we assumed that
Cr and Cw, the times to read and write a page from the disk was
17 msecs, that k the number of tuples (records) per page was 40,
that C, the time to compare two keys was .Ol msecs, and that V,
the time to move a record in memory was .I msecs.

First, we compare the pipelined odd-even sort, the block bitonic
sort, and the modified block bitonic sort. Since the pipelined odd-
even sort was only analyzed with B the number of buffers equal
to two, we only present results for B=2.

Comparing the Pipelined Odd-Even Sort With the
Bitonic Sorts

The results of our comparison are shown in Figures 5, 6, 7, and
8. In these graphs, 1 is the block bitonic sort, 2 is the modified
block bitonic sort and 3 is the pipelined odd-even sort.

From the first two graphs, we see that the sorting time for all three
methods increases with the size of the relation being plotted. These
graphs also tell us that the pipelined odd-even sort is inferior to
the two block bitonic sorts except for very low number of processors
when all the three methods are approximately equivalent in perfor-
mance.

-202-

Variation with Relation Size
P=15: B=2

8 400

I
_ 200

8 100

1
3 40

t
4 20

10
zoo 400 lllO0 2ow 4000

Relatioxi Size, psgee

Figure 5: Execution Time Versus delation Size for Sorting Meth-
ods

Vaiiation with Relation Size
P=t$ B=2

10 i ’ ’ ” ’ ’ ’ ’ I I1llll
200 402 loo0 2000 loo0

Reiation Size, pages

Figure 6: Execution Time Versus Relation Size for Sorting Meth-
OCJS

Looking at the latter two graphs, we see that all the sorting
algorithms improve in performance when they can use more pro-
cessors. Once again, it is clear that the pipelined odd-even sort is
inferior to the other two sorting methods, except for very low
number of processors when it actually outperforms the block bitonic
sort.

Variation with Number of Proceseors
N=256; B=2

I ’ “’
I 1 1

I

tl ll 10 20 4c
Number of Proceeeore

Fiie 7: Execution Time Versus Number of Processors

Variation with Number of Processore
N=2048; B=2

I ’ “I
I I I

I

0 ‘I 10 20 40
Number of Proceeeore

Figure 8: Eliecution Time Versus Number ,of Prucessors

For the chosen values of the parameters, there does not appear to
be much difference in performance between the block bitonic sort
and the modified block bitonic sort. The modified block bitonic
sort is slightly better for small number of processors (less than 20
when the relation size is small (256 pages) and less than 40 when
the relation size is large (2048 pages). It also appears better when
the relation sizes to be sorted are large. The block bitonic sort
appears to be slightly better for large number of processors and
small refation sizes.

Comparing the Odd-Even Sort With the Block
Bitonic Sorts

In this section, we show the odd-even sort, rather than the pipelined
odd-even sort, for a couple of reasons. First, we were able to
analyze the pipelined odd-even sort only for B=2, whereas the
other sorting methods were analyzed for all values of B. Secondly,
we found that while the pipelined odd-even sort was better than
the odd-even sort, when.compared against the performance of the
block bitonic sorts, it looked as bad as the odd-even sort.

In Figures 9, 10 and 11, we show the variation in execution time
with the size of the relation being sorted. In these graphs, 1 is the
block bitonic sort, 2 is the odd-even sort, and 3 is the modified

-203-

block bitonic sort. The odd-even sort is clearly the most inferior
of the three algorithms. The relative performance of the bitonic
sorts is more interesting. In Figure 9, we see that the modified
block bitonic sort outperforms the block bitonic sort when the size
of the relation to be sorted is less than about 1000 pages, and in
Figure 10, we see that the modified block bitonic sort outperforms
the block bitonic sort when the size of the relation to be sorted is
less than about 8000 pages. For other values of the relation size,
the two methods are approximately equal in performance. In gen-
eral, it is seen that the modified block bitonic sort outperforms the
other methods when the size of the relation to be sorted is smaller
than, equal to, or slightly greater than the product of the number
of processors P and the number of buffers B. For other values of
the various parameters, the performance of the modified block
bitonic sort is almost equal to that of the unmodified block bitonic
sort. In summary, the modified block bitonic sort is superior for
very large values of P anrIB, or very small values of N. From the
previous section, we are also aware that the. modified block bitonic
sort is superior for very large values of N, and very small values
of P.

Vqiatiq wit@, Relation S&e
..PF12& B=4

, 1000 -. , , , , , , , ,

’ .O.l’ I I I Illll
;“’ -

I I 1,lll
zoo 400 1000 woo ‘rooo

_. Relation Size, pagee

Figure .9: Execution Time. Versus Relatfon Size for Sorting Meth-
ods

Variation with Relation Size Variation with Relation Size

1000 1000 1 ‘. 1 ‘.
B=92 B=92 3. 3.

_ _ I I , , 1 1 I I P=lZB; I , P=lZB; I , , ,

5 5 ,, ,, * *
ti ti 100 100 : :

ii ii .H .H
w w

E! E!

10 = 10 =

3 3
I I

d lI d lI

Relation Size, pagee

Figure 10: Execution Time Versus Relation Size for Sorting
Methods

Variation with Relation Size
P=16; B=4

, a 1 I’“,

I ,I,ll-i
zoo 400 I ’ 1000 woo 4wo

Relation Size, pages

Figure 11: Execution Tiwe Versus Relation Size for Sorting
Methods

In Figure 12, we show, the variatiouin execution time with the
number of processors ‘involved in the sorting. Once again, it may
be seen that the modified b&k bitonic sort and the unmodified
block bitonic sort are almost equal in performance until a threshold
number of processors is reached. Beyond this threshold number of
processors. the modified block bitonic sort is the best Performer.
The threshold is, reached when there are enough processors so that
the total size of t&e records to be sorted only slightly exceeds the
total capacity of the ‘combined memories in the multiprocessor
given by B times P. The performance of the modified block bitonic
sdrt is seen to improve even when the number of processors is
increased beyond the threshold number of processors we described
above.

‘,

Variation with Number of Proceesore
N=256; B=4

10 ZO 4tJ 100
Number of Proceeeors

200

Figure 12: Execution Tie Versus Number of Processors

Finally, in Figures 13 and 14, we show the variation in execution
time with the number of buffers available per processor. It is seen
that the odd-even sort and the unmodified block bitonic sorts
exhibit a very mild bowl-shaped behavior - that is, increasing the
number of buffers helps to a point. Increasing the number of
buffers beyond that point actually hurts the performance of these
algorithms.

-204-

Variation with Number of Buffers
N=2048; P=16

101 ’ 1 fi1111’ I ‘1 11,111 I
10 100

Number of Buffere

Figure 13: Execution Time Versus Number of Buffers

Variation with Number of Buffers
N=256; P=l6

I ’ ’ ““”
I I I,,,,,,

I

10
Number of Buffers

100

Figure 14: Execution Time Versus Number of Buffers

three and studied two techniques for improving performance - the
use of pi@ining and the use of plrrnllrl intanrrl sorting. These are
general techniques that may be used to improve the performance
of any of the algorithms in the class of algorithms of interest to us.

For pipelining. we concluded that it may be used to improve the
performance of those algorithms that have a large number of merge
steps, but is less useful for those algorithms where the number of
merge steps is not very large.

We have also shown how to improve the block bitonic sort by
using parallel internal sorting, and called our new algorithm the
modifid block bitonic awt.

We have analyzed and studied the performance of several sorting
algorithms under various conditions. We believe that our work
represents the first attempt to study the variation in performance
of multiprocessor sorting algorithms with changing buffer size. This
study is important given that memory costs are dropping, making
it quite feasible to build multiprocessors with large buffers. We
showed that the odd-even and the unmodified block bitonic sorts
exhibit a very mild bowl-shaped behavior - that is, increasing the
number of buffers helps to a point. Increasing the number of
buffers beyond that point actually hurts the performance of these
algorithms. The modified block bitonic sort, on the other hand,
behaves differently. It initially exhibits the same, mild, bowl-shaped
behavior. However, beyond a certain buffer size, its performance
improves dramatically. This buffer size beyond which the dramatic
performance improvement takes place is when the total size of the
records to be sorted only slightly exceeds the total capacity of the
combined memories in the multiprocessor.

We saw that the modified block bitonic sort is much better than
all the other methods for very large values of P (the number of
processors) and B (the number of buffets per processor minus 1).
or very small values of N (the size of the relation being sorted).
We also saw that the modified block bitonic sort is slightly better
than the other methods for very large values of N. and very small
values of P (less than 20 to 40). For other values of N, B, and
P, the modified block bitonic sort is slightly worse in performance
than the block bitonic sort which is the best sorting algorithm
under those conditions.

The modified block bitonic sort exhibits a very different kind of
behavior. It begins with the same bowl-shaped behavior. However,
beyond a certain buffer size, its performance improves dramatically.
Once again, this buffer size beyond which the dramatic performance
improvement takes place is when the total size of the records to
be sorted only slightly exceeds the total capacity of the combined
memories in the multiprocessor given by B times P.

Our results show that the modified block bitonic sort is the fastest
or close to the fastest algorithm over a wide range of values among
the class of algorithms of interest to us. Furthermore, of all the
algorithms we considered in this paper, the modified block bitonic
sort made the best use of additional main memory buffers.

Finally, we note that the modified block bitonic sort is the only
algorithm that can make use of buffer sizes in excess of about 8

Bibliography
or I6 pages (for example 64 pages in Figure 13).

Conclusions and Summary

In this paper, we have studied the problem of sorting using multiple
processors. Both internal sorting and external sorting have been
considered. For internal sorting, we presented an algorithm that
uses the idea of bitonic merging.

For external sorting algorithms, we have studied the class of sorting
algorithms that are derived from sorting algorithms that only do
comparison and exchange, by replacing each comparison-exchange
with a B-way merge. For this class of algorithms, we have suggested

[BABBE79] Babb, E., Implementing a Relational Database by
Means of Specialized Hardware, ACM Tranmc-
fionr on Dufabace Sysrems 4, No.1 (March 1979)
pp. l-29.

[BATCH681 Batcher, K. E., Sorting Networks and their Ap-
plications, Proceedings of he 1968 Spring Joint
Compufer Con/erence 32 (Atlantic City, N. J.,
May 1968) pp. 307-314.

[BAUDE78] Baudet, G. and Stevenson, D., Optimal Sorting
Algorithms for Parallel Computers, IEEE-TC
C-27, No.1 (Jan. 1978).

-205-

[BITT083]

[BITT0843

[BRATS841

[DEWIT79]

[GARDA81]

[HlRSC78]

[HSIAOSO]

[KNUTH73]

Bitton. D., Boral, H., Dewitt, D. J., and Wilkinson,
W. K., Parallel Algorithms for the Execution of
Relational Database Operations, ACM Tronsuc-
lions on Database Sysrems 8, No. 3 (Sept 1983).

Bitton, D., Dewitt, D. J., Hsiao, D. K., and
Menon, M. J., A Taxonomy of Parallel Sorting,
Compufing Surveys 16, No.3 (Sep. 1984).

Bratsbergsengen, K., Hashing Methods and Re-
lational Algebra Operations, Proceedings of Tenfh
Infernotional Conference on VLDB (Singapore,
August 1984).

Dewitt, D. J., Query Execution in DIRECT, Pro-
ceedings of ACM SIGMOD Conference (New
York, May 1979).

Gardarin, G., An Introduction to SABRE: a
multimicroprocessor database machine, Sixth
Workshop on Computer Architecfure for Non-
numeric Processing (Hyeres, France, June 1981).

Hirschberg, D. S., Fast Parallel Sorting Algo-
rithms, Communications of the ACM 21, No.8
(Aug. 1978).

Hsiao, D. K., and Menon, M. J., Parallel Record
Sorting Methods for Hardware Realization, Tech-
nical Report, OSU-CISRC-TR-80-7, Computer
and Information Science Department, Ohio State
University, Columbus, Ohio (July 1980).

Knuth, D. E., The Art of Computer Programming,
Addison Wesley (Reading, 1973).

[MENON86]

[MULLE75]

[NASSI78]

[PREPA78]

[STONE7 I]

[THOMP77]

[VALDU84]

[VALIA75]

Menon, M. J., A Study of Sort Algorithms for
Multiprocessor Database Machines, IBM Research
report RJ-5047 (Feb. 1986).

Muller, D. E., and Preparata, F. P., Bounds to
Complexities of Networks for Sorting and for
Switching, Journal of ihe ACM 22, No. 2 (Apr.
1975).

Nassimi, D., and Sahni, S., Bitonic Sort on a
Mesh Connected Parallel Computer, IEEE Trans-
actions on Computers C-27, No. 1 (Jan. 1978).

Preparata, F. P., New Parallel Sorting Schemes,
IEEE Transacfions on Computers C-27, No. 7
(July 1978).

Stone, H. S., Parallel Processing with the Perfect
Shuffle, IEEE Transactions on Computers C-20,2
(Feb. 1971).

Thompson, C. D., and Kung, H. T., Sorting on
a Mesh-Connected Parallel Computer, Communi-
cafions of the ACM 20, 4 (Apr. 1977).

Valduriez, P. and Gardarin, G., Join and Semi-Join
Algorithms for a Multiprocessor Database Ma-
chine, ACM Transactions on Database Systems 9,
No. 1 (March 1984).

Valiant, L. G., Parallelism in Comparison Prob-
lems, SIAM Journal of Computing 3, No. 4 (Sept.
1975).

-206-

