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ABSTRACT 

Most database systems fallaciously assume that attributes are 
independent. This assumption leads such systems to 
systematically overestimate’the costs of queries and thus to 
select execution strategies that substantially increase the 
que.ries’ prooessing time. In this paper we show how the 
concepts of Schur concavity and majorizahon can be used to 
elficiently estimate.the cost of a query when the queried attribute 
is correlated with the clustering attribute. We will also examine 
how a block access distribution can be constructed when 
attributes are correlated in this manner. 

1. lNTk6DUCTlON 

Most database systems assume that .attributes are 
independent. In fact, functional; multivalued, and Implicit 
dependencies generate a great deal of dependence and 
correlation between attributes. This dependence has the effect 
of reducing the number of blocks that must be accessed to 
process a query. Thus many database systems overestimate the 
block cost of a query, causing them to select access strategies 
that could dramatically increase the cost of executing a query. 
Several recent studies have produced, both theoretical and 
empirical results that confirm the pessimism of the independence 
assumption [Christodoulakis 1981 and 1984b; Montgomery et al. 
19841. 

,Despite these shortcomings, most designers incorporate an 
independence assumption~into their database models. By doing 
so they obtain simple expressions that rapklly estimate the costs 
of alternative query execution strategies. This simplicity is 
advantageous since the selection of a strategy is part of the 
overhead associated with a query. If the query optimizer cannot 
rapidly estimate the costs of alternative processing strategies, tt 
might be able to execute the query more rapidly by randomly 
choosing an access strategy. 

Unfortunately, realistically modeling the database’ 
environment leads to cost formulas that cannot be efficiently 
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evaluated. Each block k ‘.t; a c::*: :.‘- ~Y*;I?.::‘:; of T;:crrr) a record 
that is requested by a r:rrr/*j ;A :!,:!A+! ;:::l:;i::.;r! d!!+ ii.i! normally 
modeled by empiriial block access distributions. More precisely, 
the block access distribution of a.query is normally represented as 
a vector p = <pt ,...,pm> where pl denotes the probability that the 
query accesses the rth block and m denotes the number of 
Mocks in the file. The time required to estimate fh&cost of a 
processing strategy is proportbnal to the number of distinct 
elements in this vector. Normally this number ts approximately m. 
For example, Zahorjan ,and his assoolates f1983] employed a 
technique ‘derived from the study of queuing networks to 
develop an O(km) time afgorfthm that computed the expected 
number of blocks accessed by,a query (k = number’of records 
requested and m = number of blocks In the fife). Chrlstodoulakis 
[1984a] .look ,a somewhat bioader view of’ the problem, 
attempting to both construot the vector p. and then to dertte a 
cost estimate based on this vector. tre derived the block access 
distribution by treating the locatian of a record in secondary 
storage as an additional attribute value and then using a 
multivariate parametric distribution to describe the distribution of 
tuples in this “extended” relation. By integrating the probability 
density function over the appropriate ranges of attribute values, 
he was able to derive the block access distribution for a given 
query. He then developed an O(m) expression that computed 
the expected number of blocks accessed by a query. Several 
other estimation approaches that have been considered include 
simulation [Sjler 19761 and analytical modeling [Demolombe 
1980; Luk 1983; Christodoulakis 1983a]. 

The O(m) time that these studies require to estimate the cost 
of a query may preclude their use in query optimization or physical 
design settings that involve very large databases (since-m is very 
large in this case). Thus some method must be found that 
reduces the number of distinct. elements in the p vector. In 
addition, ,many of these studies do not address the problem of 
constructing the query’s Mock access distribution when the 
queried. and clustering attributes are. correlated. Only 
Christodoulakis (1984a] discussed at any length the impact that 
this factor has on block access distributions and on the number of 
block accesses required. to execute a query. However, he 
focused on situations where tractable parametric distributions, 
such as normal or Pearson distributions, apply. In many situations 
the underlying distribution is not known and nanparametric 
techniques must be brought to bear. The problem, then, is to 
construct an empirical distribution that 1) contains relatively few 
distinct elements and 2) accurately estimates the number of block 
accesses required by a query when correlated attributes are 
present. 

We approach this problem in two steps. First, we use an 
occupancy model to derive an expression that calculates the 
expected number of blocks accessed by a query [Feller 1968: 
Kotz and Johnson 19771. We then proceed to develop robust, 
accurate approximations for these formulas based on the dual 
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Figure 2.1 --, Comparison between the number of block accesses’ 
predicted when attributes are assumed independent and the actual 
‘number of block accesses.reqtiired to process a query that retrieves 
300 records. It is assumed that the correletion between the clustering 
attribute and,the queried attribute varies between 0 and 1. 

Figure 2.2 -- Comparison between the number of block accesses 
predicted when attributes are assumed independent and the actual 
number of block accesses required to process a query that retrieves a 
varying number of records. It is assumed that the correlation between 
the Queried attribute a?d clustering attribute is 3. 

concepts of Schur concavity and majorization (see section 3). 
More specifically, the rest of the paper is organized 8s follows. In 
section 2 we present the results of a simulation that demonstrates 
the effect of correlation on the cost of a query and that pinpoints 
the shortcomings of the independence assumption. In section 3 ! 
we demonstrate how a compact block access distribution can be 
constructed that, allows query optimizers to efficiently and 
accurately ,estimate the number of blocks that must be accessed 
to execute a query that retrieves.k records. We assume that the 
queried and clustering attributes are. correlated. In section 4 we 
examine the problem of constructing an empirical block access 
distribution and in sect& 5 we evaluate the performance of the 
estimates,developed in sections 3 and 4 in the context of the 
simulation described in section 2. Finally in section 6 we 
summarize our results. 

inferred from the formula since small values of c force the B value 
to be clustered near the’ A value whereas ‘larger values of c allow 
B to vary more widely. Our experiments showed that the 
correlation had an approximately negative, inverse relationship 
with c -- as c increased from 0 to 1.8, the correlation declined 
from 1 to 0. Negative correlation was not tested in ‘our 
experiments since the results would mirror the results for positive 
correlation. 

In our experiments we tested the query “Retrieve all tuples 
from relation R where R.B = constant” where the constant was 
chosen from the domain of attribute B. For each such value we 
recorded the number of blocks that contained the value and 
compared this number with the number predicted by the formula 

2. EXAMPLES 

In this section we will analyze the results of several 
experiments that demonstrate the impact that correlated 
attributes have on the number of blocks accessed by’a query. 
These experiments will also help us pinpoint situations in which 
the independence assumption generates block estimates that 
differ significantly from the actual number of blocks accessed by a 
wv. 

2.1. Experimental Design 
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In our experiments we built a 25,000 tuple relation R with two 
attributes A and B. The relation was divided into 500 blocks of 50 
tuples each. Further, the.attributes A and B were related by the 
multivalued dependency A -a-5 B. The attribute domains of A 
and B both consisted of the ‘integers (0,1,2,...,49.50) and the 
relation was clustered on attribute A. The elements for attrlbute A 
were normally distributed with mean 25 and standard deviation 
10. That is, 68% of the tuples in relation R contained values for 
attribute A which were between 15 and 35, and 95% of the tuples 
contained values which were between 5 and 45. To simulate the 
multivalued dependency A ->-> B, we employed the formula t[B] 
= t[A] + 51c(U - 112). in this formula, t[A] and t[B] denote the 
values associated with attniutes A and B in an arbitrary tuple of R, 
c varied between 0 and 1.8. and U was a uniformly distributed 
random variable on the interval [O,l]. If the value of B generated 
by the formula fell outside B’s domain, the value was rejected and 
another value generated. This process was repeated until an 
acceptable value was obtained. The parameter c controlled the 
correlation between the attributes A and B with smaller values of c 
corresponding to greater correlation. This can be intuitively 

E[xk] = m [l - (1 - l/m)k] (2.1) 

This formula represents the estimated number of blocks 
accessed by a query that retrieves k tuples [Cardenas 19751. It 
assumes that attributes are Independent and that tuples are 
randomly placed in secondary memory. The formula is derived by 
noting that l/m represents the probability that a block contains 
one of the requested tuples, 1 - l/m represents the probability 
that a block does not contain one of the requested tuples, (1 - 
l/m)k represents the probability that a block do!s not contain any 
of the k requested tuples, and 1 - (1 - l/m) represents the 
probability that a block contains at least one of the k requested 
tuples. By summing this expression over all m blocks, we obtain 
expression (2.1). 

2.2. Results 

In figures 2.1 and 2.2 we have plotted some representative 
results from our experiments. Figure.2.1 illustrates how the 
number of block accesses required to retrieve 300 records 
declines as the correlation between attributes A and B increases 
from 0 to 1. It also demonstrates that as long as the correlation is 
less than 0.4, expression (2.1) provides a fairly reliable estimate 
for the actual number of blocks accessed. While the relative error 
of its estimates increases to approximately 30% for a correlation of 
0.4, the estimates it provides would probably not lead a query 
optimizer to make a bad decision--the appropriate strategy seems 
to be one of scanning the entire relation and the optimizer will 
probably make this choice. As the correlation between attributes 
A and B increases beyond 0.4, the performance of expression 
(2.1) degrades badly. Its estimates deviate by more than 70% 
from the actual number of block accesses when the correlation is 
0.6 and the error rapidly increases to more than 3000% as the 
correlation approaches 1. In addition, if the query optimizer could 
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accurately estimate the number of blocks accesses that are 
required when the correlation is 0.6 (approximately 135 blocks 
must be accessed), it would prdbably choose an index scan. 
However, the estimate generated by expression (2.1) would 
probably lead the optimizer to choose a strategy that scans the 
entire relation, a strategy that could substantially increase the 
query’s processing time. 

Figure 2.2 compares the actual number of block accesses 
required to retrieve a varying number of records with the number 
predicted by expression (2.1). It provides further evidence that 
the independence approximation produces unduly pessimistic 
estimates when the correlation between attributes A and B is 
somewhat high. The difference between the actual number of 
block accesses and the number estimated by expression (2.1) 
varies between 50% for 800 or more records retrieved to almost 
400% for less than 100 records retrieved. The deviation 
between the actual number of block accesses and the estimates 
generated by expression (2.1) when relatively few records are 
retrieved is especially serious since the query optimizer will 
probably choose a relation scan rather than the cheaper index 
scan. For example, if a query retrieves 200 records, the index 
scan strategy could be as much as three limes faster than the 
relation scan strategy (186 blocks (60 for the actual data + 120 
index blocks) for an index scan versus 500 blocks for a relation 
scan). 

What conclusions can be drawn from these experiments? 
They show that when the correlation between a clustering 
attribute and a queried attribute is less than 0.4, the 
independence assumption provides fairly reliable block 
estimates. However, if the correlation is moderately large (i.e., 
greater than 0.4), the independence assumption generates 
block estimates that badly mislead the query optimizer. These 
estimates may cause the optimizer lo choose strategies that 
unnecessarily increase the lime and effort required to process 
the query. Strong correlation between attributes often arises in 
database settings. Functional dependencies represent one 
extreme where clustering on one attribute imposes a good deal 
of order on other attributes. However, even weaker 
dependencies such as multivalued dependencies and implicit 
dependencies (e.g., between salary and position) induce strong 
correlation. Thus if a database designer suspects that two 
attributes may be strongly correlated, he would be well advised to 
drop the assumption of attribute independence and look for 
other ways lo estimate the number of block accesses. In the next 
section, we will develop such a mechanism. 

of placing our work in this context is that we are able to draw upon 
the many results obtained in this area by statisticians. 

To transform our block estimate problem into an occupancy 
problem, we must first formalize it as follows: A query randomly 
retrieves k records from a file that is divided into m blocks and that 
contains n records. Let p = cpl,...,pm> denote the block access 
distribution of this query where pi denotes the probability that the 
query accesses the ith block. We assume a tuple may be 
retrieved more than once (this form of retrieval is termed sampling 
with replacement--although most queries retrieve records no 
more than once, Yao 119771 demonstrated that when the 
blocking factor is ten or greater, the results obtained for sampling 
with replacement are, for practical purposes, fdentical to those 
obtained for sampling without replacement). How many blocks 
must be retrieved? 

An equivalent occupancy problem can be constructed as 
follows. A set of k balls is randomly assigned to a group of m urns 
that can contain a maximum of n balls. On each loss, the fth urn 
has a pi probability of being assigned a ball. How many urns are 
occupied? By associating urns with blocks and balls with tuples 
we establish an equivalence between the block access problem 
and this occupancy problem. 

Normally, a different number of urns will be occupied each 
time the experiment is performed. Thus we must find an 
approximate measure for the number of occupied urns. The 
measure most often used by computer scientists and statisticians 
is the expected number of occupied urns. The expression for 
the mean number of occupied urns is [see, for example, Kotz and 
Johnson 19771 

4$] = :[l - (1 - pi)k] (3.1) 
i=l 

where 

Xk = number of occupied urns when k balls are thrown 

E[Xk] = expected number of occupied urns when k balls are 

thrown 

1 - pi = probability that the ih urn is not assigned a ball on 

each toss 

(1 - pdk = probability that the lh urn is not assigned a ball on 

any of the k losses 
3. BLOCK ESTIMATE EXPRESSIONS 

In this section we will show how rapidly computable yet 
accurate block estimates can be derived when queried and 
clustering attributes are correlated. For concreteness, we will 
consider queries that retrieve k records from a set of blocks 
labelled B1,B2,...,B (we will call this query a type 1 query). Most 
queries can be re 6” uced lo this form by passing them through a 
module that estimates the record selectivity of their various 
operations. The work on estimating record selectivities has 
proceeded more rapidly than the work on estimating block 
selectivities and several excellent papers have been written on 
the subject [Merrett and Otoo 1979; Kerschberg et al. 1982; 
Christodoulakis 1983b; Piatetsky-Shapiro and Connell 1984; 
Kamel and King 19851. 

3.1. Precise Block Estimates 

An analytical estimate for the number of blocks accessed by a 
type 1 query can be derived by considering a related occupancy 
problem [Feller 1968; Kotz and Johnson 19771. The advantage 

1 - (1 - pi)k = probability that the fh urn is assigned at least 

one ball in k tosses 

Christodoufakis independently derived this expression in the 
context of block accesses. When records are randomly assigned 
to blocks (i.e., pt = l/m), expression (3.1) reduces to expression 
(2.1). 

The validity of this measure depends on the variability in the 
number of occupied urns that is observed in repeated 
experiments. The number of occupied urns is governed by a 
probability distribution, often called the occupancy distribution. 
Expression (3.1) represents the mean or expected value of this 
distribution. Statisticians have shown [see for example Kotz and 
Johnson 19771 that in many instances, this distribution is 
asympotically normally distributed. They have also shown that the 
standard deviation of this distribution is quite small relative lo the 
mean. Thus expression (3.1) represents a good estimator of the 
number of blocks retrieved. Indeed. when each block has an 
equal probability of being accessed (i.e., pi = l/m). it can be 

-121- 



shown that asymptotically, both the mean and standard deviatron 
grow linearly with the number of blocks. Thus, as the number of 
blocks in a file grows, expression (3.1) becomes an increasingly 
accurate estimator for the number of occupied urns, or 
equivalently, the number of accessed blocks. 

3.2. Majoriration 

Although expression (3.1) provides accurate block estimates, 
the O(m) flops that are required to compute it makes it an 
impractical tool in many query optimization settings. In addition, 
for large files, it will be prohibitively expensive to maintain the 
empirical block access distribution. On the other hand, we have 
already noted that standard approximations such as expression 
(2.1) may produce highly distorted estimates when attributes are 
strongly correlated. Ideally, some sort of “compaction” algorithm 
should be applied to the block access distribution that would 
replace its original p vector with a vector. that contains very few 
distinct values (i.e., a vector with many duplicate values). The 
catch is that the newly constructed vector must capture enough 
information from the original block access distribution to provide 
reliable block estimates. Fortunately, expression (3.1) possesses 
a property known as Schur concavity that aids us in this matter. 

two 
Definition Let y = <yt ,..., y.m> and z = <zl,..., 2,~ denote 
vectors of nonnegative, nonrncreasing (i.e., yl t y2 . . . 2 ymel 

2 ym and z1 2 z2 . >_ zmel B zm) real numbers. We say that 
vector y majoiizes vector z (wntten y > z) if the following set of 
inequalities hold [Marshall and Olkin 19791 

k k 
Cyf > x zifor allk<ml and Fyi ZYZi fork=m 
i=l i=l i=l i=l 

Majorization is a measure of non-uniformity in the sense that if y 
majorizes z, then the distribution represented by y is more 
diffuse (i.e., less uniform) than the distribution represented by z. 

Definition . A real-valued function f(x . . ..x ) defined over 
the set of non-negative real vectors R, “is szd to be Schur 
concave if 

y > z => f(z) 2 f(y) 

In other words, as the diffuseness of a vector of real numbers 
increases, the value of the function f decreases. A more practical 
way of determining whether a function is Schur concave is to 
apply the following test: a function f(x, ,...,xm) of m real variables 
is Schur concave if for every pair i,f, (Xi-X’)(af/aXi - al/ax.) < 0 
[Marshall and Olkin 19791. Christodoulak& [1984b] empftoyed 
this test to show that expression (3.1) is Schur concave. 

In the context of the block estimate problem, the property of 
Schur concavity indicates that as the diffuseness of a distribution 
increases, the expected number of blocks accessed by a query 
decreases. As the correlation between two attributes increases, 
the block access distribution does become increasing diffuse. 
Since the independence assumption employs a vector that is 
majorized by the vector of the true access distribution, we can 
now understand why expression (2.1) often leads to pessimistic 
block estimates (the independence assumption uses the vector 
<l/m,l/m ,..., l/m>). 

The property of Schur concavity also guides us in finding a 
compaction algorithm for the block access distribution (Vander 
Zanden et al. 19851. If we can construct a vector that contains 
very few distinct values but which is majorized by the original p 
vector, then the properties of Schur concavity and majorization 
guarantee that the block estimates it generates will provide an 
upper bound for expression (3.1). 

Block Access I I 
Probability 

Address 
Space 

Histogram approximation for the distribution of a sample p vector 
Figure 3.1 

The first step of the compaction algorithm involves 
permuting the elements of p so that they form a decreasing 
sequence p = cpl’,...,pm’>. Since permutations of the elements 
in a vector do not affect the value of expression (3.1) this step 
does not alter the block estimates. The next step of the algorithm 
involves approximating the permuted block access distribution 
with an unequal interval histogram (see figure 3.1). The height of 
each box in the histogram is equal to the average block access 
probabilities of the elements that comprise it. In essence it is 
making the nonuniform distribution more uniform. Each box of 
the histogram divides the permuted p vector into subvectors. 
The elements within each subvector are replaced with a similar 
number of equal-sized elements whose block access 
probabilities are equal to the average block access probability of 
the original elements. The newly constructed subvectors are 
majorized by the original subvector since any vector of 
non-negative, nonincreasing reals majorizes a vector of 
equal-sized components (provided that the sum of the elements 
in each vector are identical). By concatenating these new 
subvectors, we obtain a vector that is ,majorized by p but which 
contains very few distinct elements. Thus an upper bound for 
expression (3.1) can be quickly computed by plugging in the 
newly constructed vector. The approximation can be written as 
follows 

E[Xk] = ZmUip - (1 - pi’)k] 
i=l 

(3.2) 

where m’ = number of intervals in the histogram, ut = number of 
elements in the ith interval of the histogram, and pf” = average 
block acess probability of the elements in the ith interval of the 
histogram. 

This algorithm has the theoretically satisfying property that 
as the number of intervals is increased, the approximation 
becomes increasingly accurate. Expression (2.1) represents one 
extreme of this algorithm that uses only one interval. Similarly 
expression (3.1) represents the other extreme in that it uses m 
intervals. The algorithms we present strive to hold the number of 
intervals to 2-4. 

So far we have avoided the issue of how the intervals of 
the histogram should be chosen. The selection of these intervals 
is critical since a poor partition can lead to an upper bound that is 
only slightly lower than expression (2.1). Several considerations 
must be taken into account in making this choice: 

1. Homogeneous Values: Elements of the permuted vector 
p that generate nearly identital values when they are plugged 
into the expression 11 - (1 - pi) ] should be grouped together. For 
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example, suppose the block access distribution is given by the 
vector p = <.4,.3,.1 ,.1,.05,.05>. Since the values .4 and .3 are 
likely to produce similar values they should be placed in the same 
interval. Similarly the values .l, .l, .05, and .05 should be 
grouped together. 

2. Size of K: The best partition of the p vector will often 
depend on the size of k. As k increases, an incretsing number of 
elements, pi, will produce expressions [l - (1 - pf) ] that evaluate 
to 1. In other words, as k increases, an increasing number of 
blocks will be accessed with probability 1. Ideally, as k increases, 
the number of elements in the first interval of the histogram (see 
figure 3.1) should also increase. 

The algorithm we present in section 3.3 for partitioning a 
vector addresses the issue of homogeneous values while in 
section 4.1 we present an algorithm for reconfiguring these 
partitions based on the size of k. 

3.3. Mean Algorithm 

The mean algorithm partitions the block access distribution 
based on one of its characterfstics, the mean. The idea behind 
the scheme is that all elements less thanthe mean of a vector are 
grouped into a subvector and all elements greater than the mean 
of a vector are grouped into a subvector. This splitting can then 
be recursively applied to each of the subvectors. The algorithm is 
made precise in figure 3.2. 

The restriction of the algorithm to intervals that are a power 
of two is not a significant hindrance in practice. Our experiments 
have shown that accurate cost estimates can almost always be 
obtained with four intervals. Further, the amount of work involved 
in splitting a vector into a number of intervals equal to a power of 2 
is at most double the work involved in spliitfng ii into an arbitrary 
number of intervals (since an arbitrary number can be rounded up 
to the next higher power of 2). For a small number of intervals, 
this additional work is negligible. 

The mean partitions the block access distribution more 
effectively than an approach based on percentiles since, 
paradoxically, it is less affected by clustered values. For example, 

mean(numint,x) 

P x = vector to be partittoned into numint intervals l / 

/’ numint must be a power of 2 ‘I 

if sizeof 5 numint 

/‘create sizeof singlet vectors each with one element of x’l 

/‘and (numint-sizeof( vectors whose only element is O’I 

return(cxl>.<x2> ,..., <xsfzeof(x)>,<O> ,..., CO>) 

else if numint = 2 

find the largest subscript i such that xi < mean(x) 

return(<x, ).,.( Xi>,<Xi+l,,,., Xm>) 

else I* even(numint) l / 

find the largest subscript i such that xi < mean(x) 

return(mean(numint/2,cxl....,Xi>), 

mean(numint/2,<xt+l . . . ..x.>)) 

Figure 3.2 -- The mean algorithm for partitioning a vector x into a 

set of subvectors. The sets size must be a power of 2. 

suppose we musf partition the vector <.3,.3,.2,.1..05..05> into 
two intervals. A percentile method would place the partition point 
between the elements .2 and .3 since 60% of the distribution lies 
to the left of this point and 40% lies to the right. Unfortunately, 
this partition does not work well since it breaks up the .3,.3..2 
cluster. In other words, the percentile method is unable to handle 
situations where a large portion of a distribution is clustered 
together. On the other hand, the mean method chooses its 
partition point between .l and .2 since the mean of this vector is 
.17. The cluster .3,.3,.2 pulls the mean up but the cluster 
.1,.05,.05 pulls it down somewhat and thus the partition point 
occurs between the two clusters. Thus both clusters are left 
intact. 

3.4. A Specific Example 

The mean algorithm described in section 3.3 was 
extensively tested using combinations of the following four 
parameters: 

1. Blocking Factor (records per block): 5,10,20,50.100 

2. Distribution: Uniform,Normal,Exponential,Poisson,Zipf 

3. Records Retrieved: 10, 25, 50, 100, .005m. .Olm, 
.05m, .lm, .25m, .5m.m. 2m, 3m, 5m,lOm (mdenotes 
the number of blocks containing the relation) 

4. Blocks: 500, 1000, 10000 

The uniform distribution indicates that the access probabilities 
were randomly drawn from an interval [a,b] and not that each block 
had an equal probability of being accessed. In a Zipf distribution, 
the block access probabilities pf are defined by the formula pf = 
NiZ where h = lE(l/fZ) and z represents a factor of decay. 

Figures 3.3 and 3.4 show representative results for a relation 
with a blocking factor of 50 records per block and 500 blocks (i.e., 
a relation with 25,000 luples). In figure 3.3 we have employed 
expression (3.1) to plot the expected number of block accesses 
that occur as the number of records retrieved by a query 
increases. The query’s block access distribution is Zipf 
distributed. In figure 3.4 we have plotted the percentage 
differences between the estimates produced in figure 3.3 by 
expression (3.1) and the estimates produced by the mean 
algorithm. 

The Zipf distribution was used to illustrate the impact that 
increasingly diffuse block access distributions have on the 
estimates of-the number of blocks retrieved by a type 1 query. 
.Intuitively. the decay parameter z can be thought of as an 
‘indication of the amount of correlation that exists between the 
queried attribute and the clustered attribute. As the correlation 
increases, the z parameter increases and the block access 
distribution becomes increasingly diffuse. The curve plotted in 
figure 3.3 indicates how the number of block accesses decline as 
the correlation between two attributes increases. 

Figure 3.4 demonstrates that a four interval distribution 
generates significantly more accurate approximations for 
expression (3.1) than a two interval distribution. For moderately 
correlated attributes (e.g., z = l), the use of only two intervals 
produced relatively accurate estimates, even when the number of 
records retrieved was somewhat small. The percentage 
difference between the estimates produced by expression (3.1) 
and the mean algorithm quickly peaked around 25% and rapidly 
fell under 15% where it remained for the.rest of the experiment. 
The higher percentage errors reflected in figure 3.4 for smaller 
numbers of records retrieved do not translate into large absolute 
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Figure 3.3 -- Expected number of blocks accessed by a type 1 query 
that retrieves k records. The block access distribution of this query is 
Zipf distributed with decay factor Z. 

errors. A typical example might be a block estimate of 25 as 
compared with an estimate of 20 produced by expression (3.1). 
This difference would not affect a query optimizer’s decision. 

As correlation between the clustering and queried attribute 
increased, the accuracy of the two interval estimate quickly 
decreased. The error curves corresponding to a decay factor of 2 
in figure 3.4 illustrate this deterioration in performance. The error 
initially peaks around 50% for 100 retrieved records, decreases 
rapidly to about 15% when 500 records are retrieved, and then 
steadily rises until it reaches 60% for 3000 records retrieved. 
Although the estimates produced by only two intervals seem 
unlikely to mislead the query optimizer, it seems advisable to use 
four intervals in this instance. The maximum error’produced by a 
four interval estimate is about 15% and the extra flops required to 
compute such an estimate are negligible. 

4. CONSTRUCTING A BLOCK ACCESS 
DISTRIBUTION 

In section 3, it was demonstrated that the mean algorithm 
accurately estimates the number of accessed blocks when the 
block access distribution is known. However, in production 
settings, each query will confront an optimizer with a multitude of 
different and unknown block access distributions. Thus the 
best an optimizer can hope to do is to maintain a representative 
block access distribution that can be modified based on the type 
of query it is presented with. In this section we will show how 
such a distribution can be constructed and modified using 
nonparametric techniques. 

Two factors have an impact on a query’s block access 
distribution--the size of the query (expressed in terms of the 
number of tuples retrieved) and the correlation between the 
queried attributes and the clustering attribute. If the correlation 
between these attributes is relatively low, then each block has an 
approximately equal chance of being accessed, regardless of the 
size of the query. In these situations the independence 
assumption produces accurate block approximations since it uses 
a block access distribution in which each block has an equal 
probability of being accessed. However, as the correlation 
between the queried and clustering attributes increases, the 
block access’distribution becomes dependent on the size of the 
query. Small queries tend to have highly diffuse distributions 
since it is likely that only a few blocks wilt be accessed. Thus 
several blocks will be accorded a high access probability while the 
remaining ones will be accorded negligible access probabilities. 
As the size of the query increases, the block access distribution 
tends to become flatter because more blocks are likely to be 
accessed. Since a larger number of blocks have non-negligible 
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Figure 3.4 -- Percentage difference between the block estimates 
produced by the majorization technique with two and four intervals and 
expression (3.1). The block access distribution of this type 1 query is 
Zipf distributed with decay factor z. 

access probabilities, the probability of accessing any individual 
block decreases, thus flattening out the access distribution. 

Ideally, then, the block access distribution should be modified 
based on the size of the query and the correlation between 
queried and clustering attributes. The following approach for 
constructing a query’s block access distribution takes both of, 
these factors into account. First, the block access distributions 
associated with the least frequently, most frequently, and 
average (i.e., equal to the average. duplication rate of the 
attribute) occurring values are empirically tabulated (suppose that 
these frequencies are given by the vector k = <kt,...,k,> where ki 
denotes the number of times the ith attribute value occurs and a 
denotes the number of values in the attribute domain; let kt 
correspond to the most frequently occurring value and k, 
correspond to the least frequently occurring value; let km 
correspond to the average occurring value). Next the mean, 
algorithm is used to partition these distributions into cells. These 
two steps account for correlation between the clustering and 
queried attributes. An interpolation formula then reallocates the 
area enclosed by each of these intervals based on the size of the 
query the optimizer is currently processing. To use this formula, 
the query optimizer first determines the interval in which the 
query’s size falls-- [l ,ka], (ka.km]. (k,,kt], or (kt ,n] (n denotes the 
number of tuples in the relation). It then constructs an 
appropriate block access distribution for the query using the 
distributions associated with the endpoints of this interval (the 
distribution associated with queries of size 1 is <i,O,O,....O> and 
the distribution associated with queries of size n is uniform 
cl/m,l/m,...,l/m>). The algorithm for constructing the query’s 
block access distribution is formalized in fiaure 4.1. 
As shown by the algorithm, the probability of accessing a block 
that is assigned to the ith cell of the query’s block access 
distribution is equal to a weighted average of the probability 
assigned to the cells associated with ka and k . Similarly, the 
number of blocks allocated to this cell IS a werg .ll ted average of 
the number of blocks assigned to the cells associated with k, and 
km. This same procedure can be used if the query’s size falls in 
one of the other intervals listed above. 

5. SIMULATION RESULTS 

In order to analyze the performance of the approximations 
developed in sections 3 and 4 in practical settings, we tested two 
and four interval estimates using the simulation described in 
section 2. Recall that the simulation modeled a multivalued 
dependency A-X-B and that for each value in the domain of 
attribute B, the number of blocks that contained that value was 
recorded. In addition, the correlation between attributes A and B 



without loss of generality, assume k, 5 kq < km 

let Uiq = number of blocks in the ilh cell of the query’s block 

access distribution 

piq = probability of accessing a block in the ith cell of the query’s 

block access distribution 

kq = number of tuples retrieved by the query 

weight = (km - kq) I (km - ka) 

for i = 1 to numint do 

Ufq = Ufa l weight + Ufm l (1 - weight) 

piq = pia l weight + pfm l (1 - weight) 

od 

Figure 4.1. Algorithm for constructing the block access 
distribution of a query that retrieves at least k, tuples but no more 
than km tuples 

was varied from.6 to 1. In this section we will also compare the 
performance of the two and four interval estimates with the 
performance of the independence assumption. Since the 
independence assumption uses a one Interval estimate, this 
section actually evaluates the improvement that results from 
increasing the number of intervals from one to two or four. 

5.1 Results 
I’ 

In fffres 5.1 and 5.2 we have reproduced the results for the 
actual number of, block accesses that were displayed in figures 
2.1 and 2.2. Figure 5.1 compares the actual number of-Mock 
accesses required. to-retrieve 300 records ‘against the number 
estimated by expression (3.2).when two and four intervals block 
access dislributions are used. The figure assumes that the 
correlation .between the clustering attribute and queried attribute 
is varied between 0 and 1. -When the correlation is greater than 
0.5, the four interval .estimate performs better than the two 
interval estimate, providing estimates. that vary from the actual 
number of blockaccesses by no more than 5%. On the other 
hand, the two interval esiirnate .provides belter estimates when. 
the correfation is less than 0.5. When this condition ap#es& 
estimates vary from the actual, number of block accesses by no 
more than 10%. However, comparing figures 2.1 and 5.1, we find 
that even better estimates can be,obtained if the. independence 
assumotion is used when the correlation is less than 0.3. 
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Figure 5.1 -- Comparison between the number of block accesses Figure 5.2 -- Comparison between the number of block accesses 
predicted when attributes are assumed correlated and the actual number predicted when attributes are assumed correlated and the actual number 
of block accesses required to process a query that retrieves 300 of block accesses required to process a query that retrieves a varying 
records. The correlation between the clustering attribute and the number of records. The correlation between the queried attribute and 
queried attribute varies between 0 and 1. clustering attribute is 6. 

Figure 5.2 compares the block estimates of the two and four. 
interval estimates when the number of records retrieved is varied 
between 0 and 1000 and the correlation between the clustering 
and queried attributes is fixed at .8. The four interval estimate is 
consistently more accurate, never overestimating the actual 
number of accessed blocks by more than 10%. By comparing 
figure 5.2 with figure 2.2, we find that the four interval estimate is 
also preferable to the estimate produced by the independence 
assumption. 

While figures 5.1 and 5.2 provide specific examples of how 
the two and four interval estimates compare, figures 5.3 and 5.4 
provide a comprehensive analysis of how these estimates 
compare, both against one another and against the 
independence assumption (labeled as the one interval estimate 
in these figures). In figure 5.3 we have plotted the percentage of 
cases in which each of these three schemes provide the most 
accurate block estimates. This figure was constructed by 
analyzing each of the 51 attribute values in B’s domain and 
determining which of the three estimates came closest to 
predicting the actual number of blocksoccupied by each of these 
values. We can conclude that the independence assumption 
(one interval estimate) is most appropriate when the correlation is 
less than 0.4, the two interval. estimate is preferable when the 
correlation isbetween 0.4 and d-6, and the four interval estimate 
is best when the correlation is greater than 0.6. Since the 
correlation associated with both functional and multivalued 
dependencies is often greater than 0.4. either the two or four 
intenal’estimate will be preferable fn many database settings. 

’ Another, perhaps more reliable, way to compare the one, two, 
and four intervai estimates is to compare the actions an optimizer 
might choose under each of these three schemes. Figure 5.4 
provides one such measure--the percentage of cases in which 
each assumption leads the query optimizer to choose an 
inappropriate strategy. In this case we assumed that the o’ptimizer 
could choose between an index fookup and a relation scan to 
process its queries. The breakeven point between these two 
options .will vary from system to system but ‘for the”sake of 
comparison we.arbitrarily set it at 200 blocks. The breakeven 
point fncfucfei .onfy those blocks that. contain data which satisfy 
the query. It does not include additionafblocks that must be 
accessed such as index blocks in an index fookup . Thus if a 
que,ry optimizer estimates that fewer than 200 blocks contain the 
required data,‘? chooses an index scan; otherwise it chooses a 
relation scan., As figure 5.4. indic~ates, the independence 
assumption causes the ,optimizer to choose fhe wrong strategy in 
more than ‘two-thirds of the cases when the correlation is close. to 
1 and in more,than one-third of the caseswhen the correlation is 
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Figure 5.3 -- Percentage of cases in which three different block estimate 
schemes provide the most accurate block estimates. The one interval 
estimate corresponds to the independence assumption. 

about .8. This figure drops to 20% for correlations around 0.6 
and finally drops to 0 when the correlat’an decreases to less than 
0.2. In contrast the two and four interval estimates mislead the 
optimizer in at most 15% of the cases and only in restricted 
regions--the two interval estimate when the correlation is 
approximately 0.8 and the four interval estimate when the 
correlation is approximately 0.4. In both cases the number of 
cases in which the optimizer is misled drops quickly as the 
correlation moves away from these critical points. Thus by this 
criteria, the independence approximation should only be used 
when the correlation is in the range [0,0.2], the two interval 
estimate should b,e used when the correlation is between 0.2 and 
0.55, and the four interval estimate should be used when the 
correlation exceeds 0.55. 

5.2 Analysis 

The failure of the two and four interval approximations to 
produce accurate block estimates when the correlation between 
the clustering and the queried attribute is less than 0.4 is 
attributable to our choice of a block access distribution. Since we 
assumed that the underlying distribution was not analytically 
tractible, we tabulated it empirically. However, this decision 
produces distributions that tend to’be more diffuse than the 
actual djstributions. For example, if the actual underlying 
distribution is uniform (i.e., each block has an equal chance of 
being accessed), the tabulatgd distribution will almost surely be 
diffuse with some blocks having no probability of being accessed 
and some blocks having a fairly substantial probability of being 
accessed. Thus the block estimates produced by the correlation 
approximation will tend to underestimate the actual number of 
block accesses. Further, these underestimates should be more 
pronounded when the correlation between the queried and 
clustering attribute is somewhat low. When the cor!elation is 
high, the underlying block access distribution is already highly 
diffuse so an empirical tabulation does not radially increase the 
diffuseness of the distribution. However, when the correlation is 
low, the underlying distribution is fairly uniform and thus the 
empirical tabulation does increase ?he diffuseness somewhat 
significantly. Since our block estimate expressions are Schur 
concave, we would expect this increased diffuseness to lead to 
the underestimates that were empirically observid. 
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Another interesting finding arose when we tried to reconcile 
the performance of the various estimators in figures 5.3 and 5.4. 
We were particularly interestested in explaining why the 
independence approximation seemed feasible when the 
correlation ranged between 0 and 0.4 in one figure and only 
seemed feasible when the correlation ranged between 0 and 0.2 
in the other. This discrepancy can be explained by examining 
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Figure 5.4 -- Percentage of cases in which three block estimate 
schemes lead a query optimizer to choose a bad processing strategy. 
The one interval estimate corresponds to the independence assumption. 

how badly ihe independence and correlation approximations can 
under- or overestimate the number of block accesses required by 
a query. The estimates produced by the correlation: 
approximations are usually no more than 30% higher or lower 
than the actual number of blocks retrieved. Further, errors of thii 
magnitude generally occur when well over half the file is being 
retrieved. In this case, even if the correlation approximation 
underestimates the number of block accesses by 30%. it often 
predicts that more than half the file must be retrieved and the 
optimizer makes the correct decision. In contrast, the 
independence approximation often overestimates the actual 
number of block accesses by several hundred percent. In 
addition, these errors normally occur when less than half of the 
file is retrieved. But since the independence approximation often 
overestimates the actual number of block accesses by several 
hundred percent, the query optimizer often concludes that more 
than half the file must be retrieved. Thus it often selects a relation 
scan when it should have selected an index scan. In summary, ’ 
the independence approximation often produces more accurate 
block access estimates when the correlation is between 0.2 and 
0.4. However, it tends to perform so poorly on small size queries 
that it causes the query optimizer to choose a poor processing 
strategy somewhat often. On the other hand, while the 
correlation approximation fends to underestimate the number of 
block accesses required by large size queries, the 
underestimates are not so serious as to cause the query 
optimizer to choose an inappropriate strategy. Thus the 
correlation approximation misleads the query optimizer less often 
when the correlation is between 0.2 and 0.4. 

6. CONCLUSION 

Most database systems assume that attributes are 
independent. However, as pointed gut in the introduction, 
functional, multivalued, and implicit dependencies generate a 
great deal of dependence and correlation between attributes. In 
this paper we have examined the impact that correlated attributes 
have on the number of block accesses required to process a 
query. We found that the independence assumption produces 
accurate block estimates when the correlation between the 
clustering attribute and the queried attribute is less than 0.4. As 
the correlation increases beyond this point, the independence 
assumption begins to mislead an optimizer or designer in an 
alarming number of cases, causing them to select inappropriate 
query execution strategies that could dramatically increase the 
cost of processing a query. Further even when it produces 
pessimistic overestimates that do not immediately cause bad 
decisions, it could distort strategies selected later in a multi-step 
query operation. Thus when the attribute correlation exceeds 



0.4, it becomes necessary to take this correlation into account 
when generating block estimates. 

We proceeded to show that precise analytical estimates could 
be easily derived when the clustering attribute and queried 
attribute are correlated but that the expressions which generated 
these estimates could not be efficiently evaluated. Thus we 
looked for properties that these expressions satisfied which 
could be exploited to produce simple approximations. The 
property of Schur concavity provided us with the necessary 
insight. Specifically, it allowed us to devise an algorithm that 
constructs compact block access distributions which can be used 
to rapidly compute the block cost of a query. We then 
demonstrated how the original block access distribution could be 
constructed using several pre-tabulated distributions and the size 
of the query as input. Finally, we presented the results of several 
experiments that demonstrated the superiority of our 
approximations when attributes were highly correlated. Thus the 
techniques introduced in this paper provide a powerful 
mechanism for estimating the cost of a query in the presence of 
correlated attributes. 
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