
ESTIMATING BLOCK ACCESSES WHEN ATTRIBUTES ARE

CORRELATED

Brad T. Vander Zanden, Howard M. Taylor and Dina Etitton
.’

Cornell University

Ithaca. NY 14856

ABSTRACT

Most database systems fallaciously assume that attributes are
independent. This assumption leads such systems to
systematically overestimate’the costs of queries and thus to
select execution strategies that substantially increase the
que.ries’ prooessing time. In this paper we show how the
concepts of Schur concavity and majorizahon can be used to
elficiently estimate.the cost of a query when the queried attribute
is correlated with the clustering attribute. We will also examine
how a block access distribution can be constructed when
attributes are correlated in this manner.

1. lNTk6DUCTlON

Most database systems assume that .attributes are
independent. In fact, functional; multivalued, and Implicit
dependencies generate a great deal of dependence and
correlation between attributes. This dependence has the effect
of reducing the number of blocks that must be accessed to
process a query. Thus many database systems overestimate the
block cost of a query, causing them to select access strategies
that could dramatically increase the cost of executing a query.
Several recent studies have produced, both theoretical and
empirical results that confirm the pessimism of the independence
assumption [Christodoulakis 1981 and 1984b; Montgomery et al.
19841.

,Despite these shortcomings, most designers incorporate an
independence assumption~into their database models. By doing
so they obtain simple expressions that rapklly estimate the costs
of alternative query execution strategies. This simplicity is
advantageous since the selection of a strategy is part of the
overhead associated with a query. If the query optimizer cannot
rapidly estimate the costs of alternative processing strategies, tt
might be able to execute the query more rapidly by randomly
choosing an access strategy.

Unfortunately, realistically modeling the database’
environment leads to cost formulas that cannot be efficiently

Permission to copy without fee all or part of this material is
granted provided thaf the copies are not made or distributed for
direct commercial advantage, the VLQB copyright notice and the
title of the publication and its date appear, arid notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or fo republish, requires a fee
andlor special permission from the Endowment.

evaluated. Each block k ‘.t; a c::*: :.‘- ~Y*;I?.::‘:; of T;:crrr) a record
that is requested by a r:rrr/*j ;A :!,:!A+! ;:::l:;i::.;r! d!!+ ii.i! normally
modeled by empiriial block access distributions. More precisely,
the block access distribution of a.query is normally represented as
a vector p = <pt ,...,pm> where pl denotes the probability that the
query accesses the rth block and m denotes the number of
Mocks in the file. The time required to estimate fh&cost of a
processing strategy is proportbnal to the number of distinct
elements in this vector. Normally this number ts approximately m.
For example, Zahorjan ,and his assoolates f1983] employed a
technique ‘derived from the study of queuing networks to
develop an O(km) time afgorfthm that computed the expected
number of blocks accessed by,a query (k = number’of records
requested and m = number of blocks In the fife). Chrlstodoulakis
[1984a] .look ,a somewhat bioader view of’ the problem,
attempting to both construot the vector p. and then to dertte a
cost estimate based on this vector. tre derived the block access
distribution by treating the locatian of a record in secondary
storage as an additional attribute value and then using a
multivariate parametric distribution to describe the distribution of
tuples in this “extended” relation. By integrating the probability
density function over the appropriate ranges of attribute values,
he was able to derive the block access distribution for a given
query. He then developed an O(m) expression that computed
the expected number of blocks accessed by a query. Several
other estimation approaches that have been considered include
simulation [Sjler 19761 and analytical modeling [Demolombe
1980; Luk 1983; Christodoulakis 1983a].

The O(m) time that these studies require to estimate the cost
of a query may preclude their use in query optimization or physical
design settings that involve very large databases (since-m is very
large in this case). Thus some method must be found that
reduces the number of distinct. elements in the p vector. In
addition, ,many of these studies do not address the problem of
constructing the query’s Mock access distribution when the
queried. and clustering attributes are. correlated. Only
Christodoulakis (1984a] discussed at any length the impact that
this factor has on block access distributions and on the number of
block accesses required. to execute a query. However, he
focused on situations where tractable parametric distributions,
such as normal or Pearson distributions, apply. In many situations
the underlying distribution is not known and nanparametric
techniques must be brought to bear. The problem, then, is to
construct an empirical distribution that 1) contains relatively few
distinct elements and 2) accurately estimates the number of block
accesses required by a query when correlated attributes are
present.

We approach this problem in two steps. First, we use an
occupancy model to derive an expression that calculates the
expected number of blocks accessed by a query [Feller 1968:
Kotz and Johnson 19771. We then proceed to develop robust,
accurate approximations for these formulas based on the dual

Proceedings of the Twelfth International
Conference on Very Large Data Bases -119- KY~o. August, 1986

Blocks 250’
Retrieved

200-

150-

estimate

0'
1

0 .2 .4 .6 .6 1
Correlation

Figure 2.1 --, Comparison between the number of block accesses’
predicted when attributes are assumed independent and the actual
‘number of block accesses.reqtiired to process a query that retrieves
300 records. It is assumed that the correletion between the clustering
attribute and,the queried attribute varies between 0 and 1.

Figure 2.2 -- Comparison between the number of block accesses
predicted when attributes are assumed independent and the actual
number of block accesses required to process a query that retrieves a
varying number of records. It is assumed that the correlation between
the Queried attribute a?d clustering attribute is 3.

concepts of Schur concavity and majorization (see section 3).
More specifically, the rest of the paper is organized 8s follows. In
section 2 we present the results of a simulation that demonstrates
the effect of correlation on the cost of a query and that pinpoints
the shortcomings of the independence assumption. In section 3 !
we demonstrate how a compact block access distribution can be
constructed that, allows query optimizers to efficiently and
accurately ,estimate the number of blocks that must be accessed
to execute a query that retrieves.k records. We assume that the
queried and clustering attributes are. correlated. In section 4 we
examine the problem of constructing an empirical block access
distribution and in sect& 5 we evaluate the performance of the
estimates,developed in sections 3 and 4 in the context of the
simulation described in section 2. Finally in section 6 we
summarize our results.

inferred from the formula since small values of c force the B value
to be clustered near the’ A value whereas ‘larger values of c allow
B to vary more widely. Our experiments showed that the
correlation had an approximately negative, inverse relationship
with c -- as c increased from 0 to 1.8, the correlation declined
from 1 to 0. Negative correlation was not tested in ‘our
experiments since the results would mirror the results for positive
correlation.

In our experiments we tested the query “Retrieve all tuples
from relation R where R.B = constant” where the constant was
chosen from the domain of attribute B. For each such value we
recorded the number of blocks that contained the value and
compared this number with the number predicted by the formula

2. EXAMPLES

In this section we will analyze the results of several
experiments that demonstrate the impact that correlated
attributes have on the number of blocks accessed by’a query.
These experiments will also help us pinpoint situations in which
the independence assumption generates block estimates that
differ significantly from the actual number of blocks accessed by a
wv.

2.1. Experimental Design

-120-

In our experiments we built a 25,000 tuple relation R with two
attributes A and B. The relation was divided into 500 blocks of 50
tuples each. Further, the.attributes A and B were related by the
multivalued dependency A -a-5 B. The attribute domains of A
and B both consisted of the ‘integers (0,1,2,...,49.50) and the
relation was clustered on attribute A. The elements for attrlbute A
were normally distributed with mean 25 and standard deviation
10. That is, 68% of the tuples in relation R contained values for
attribute A which were between 15 and 35, and 95% of the tuples
contained values which were between 5 and 45. To simulate the
multivalued dependency A ->-> B, we employed the formula t[B]
= t[A] + 51c(U - 112). in this formula, t[A] and t[B] denote the
values associated with attniutes A and B in an arbitrary tuple of R,
c varied between 0 and 1.8. and U was a uniformly distributed
random variable on the interval [O,l]. If the value of B generated
by the formula fell outside B’s domain, the value was rejected and
another value generated. This process was repeated until an
acceptable value was obtained. The parameter c controlled the
correlation between the attributes A and B with smaller values of c
corresponding to greater correlation. This can be intuitively

E[xk] = m [l - (1 - l/m)k] (2.1)

This formula represents the estimated number of blocks
accessed by a query that retrieves k tuples [Cardenas 19751. It
assumes that attributes are Independent and that tuples are
randomly placed in secondary memory. The formula is derived by
noting that l/m represents the probability that a block contains
one of the requested tuples, 1 - l/m represents the probability
that a block does not contain one of the requested tuples, (1 -
l/m)k represents the probability that a block do!s not contain any
of the k requested tuples, and 1 - (1 - l/m) represents the
probability that a block contains at least one of the k requested
tuples. By summing this expression over all m blocks, we obtain
expression (2.1).

2.2. Results

In figures 2.1 and 2.2 we have plotted some representative
results from our experiments. Figure.2.1 illustrates how the
number of block accesses required to retrieve 300 records
declines as the correlation between attributes A and B increases
from 0 to 1. It also demonstrates that as long as the correlation is
less than 0.4, expression (2.1) provides a fairly reliable estimate
for the actual number of blocks accessed. While the relative error
of its estimates increases to approximately 30% for a correlation of
0.4, the estimates it provides would probably not lead a query
optimizer to make a bad decision--the appropriate strategy seems
to be one of scanning the entire relation and the optimizer will
probably make this choice. As the correlation between attributes
A and B increases beyond 0.4, the performance of expression
(2.1) degrades badly. Its estimates deviate by more than 70%
from the actual number of block accesses when the correlation is
0.6 and the error rapidly increases to more than 3000% as the
correlation approaches 1. In addition, if the query optimizer could

Blocks 450-

0 200 400 600 800 1000
Records Retrieved

accurately estimate the number of blocks accesses that are
required when the correlation is 0.6 (approximately 135 blocks
must be accessed), it would prdbably choose an index scan.
However, the estimate generated by expression (2.1) would
probably lead the optimizer to choose a strategy that scans the
entire relation, a strategy that could substantially increase the
query’s processing time.

Figure 2.2 compares the actual number of block accesses
required to retrieve a varying number of records with the number
predicted by expression (2.1). It provides further evidence that
the independence approximation produces unduly pessimistic
estimates when the correlation between attributes A and B is
somewhat high. The difference between the actual number of
block accesses and the number estimated by expression (2.1)
varies between 50% for 800 or more records retrieved to almost
400% for less than 100 records retrieved. The deviation
between the actual number of block accesses and the estimates
generated by expression (2.1) when relatively few records are
retrieved is especially serious since the query optimizer will
probably choose a relation scan rather than the cheaper index
scan. For example, if a query retrieves 200 records, the index
scan strategy could be as much as three limes faster than the
relation scan strategy (186 blocks (60 for the actual data + 120
index blocks) for an index scan versus 500 blocks for a relation
scan).

What conclusions can be drawn from these experiments?
They show that when the correlation between a clustering
attribute and a queried attribute is less than 0.4, the
independence assumption provides fairly reliable block
estimates. However, if the correlation is moderately large (i.e.,
greater than 0.4), the independence assumption generates
block estimates that badly mislead the query optimizer. These
estimates may cause the optimizer lo choose strategies that
unnecessarily increase the lime and effort required to process
the query. Strong correlation between attributes often arises in
database settings. Functional dependencies represent one
extreme where clustering on one attribute imposes a good deal
of order on other attributes. However, even weaker
dependencies such as multivalued dependencies and implicit
dependencies (e.g., between salary and position) induce strong
correlation. Thus if a database designer suspects that two
attributes may be strongly correlated, he would be well advised to
drop the assumption of attribute independence and look for
other ways lo estimate the number of block accesses. In the next
section, we will develop such a mechanism.

of placing our work in this context is that we are able to draw upon
the many results obtained in this area by statisticians.

To transform our block estimate problem into an occupancy
problem, we must first formalize it as follows: A query randomly
retrieves k records from a file that is divided into m blocks and that
contains n records. Let p = cpl,...,pm> denote the block access
distribution of this query where pi denotes the probability that the
query accesses the ith block. We assume a tuple may be
retrieved more than once (this form of retrieval is termed sampling
with replacement--although most queries retrieve records no
more than once, Yao 119771 demonstrated that when the
blocking factor is ten or greater, the results obtained for sampling
with replacement are, for practical purposes, fdentical to those
obtained for sampling without replacement). How many blocks
must be retrieved?

An equivalent occupancy problem can be constructed as
follows. A set of k balls is randomly assigned to a group of m urns
that can contain a maximum of n balls. On each loss, the fth urn
has a pi probability of being assigned a ball. How many urns are
occupied? By associating urns with blocks and balls with tuples
we establish an equivalence between the block access problem
and this occupancy problem.

Normally, a different number of urns will be occupied each
time the experiment is performed. Thus we must find an
approximate measure for the number of occupied urns. The
measure most often used by computer scientists and statisticians
is the expected number of occupied urns. The expression for
the mean number of occupied urns is [see, for example, Kotz and
Johnson 19771

4$] = :[l - (1 - pi)k] (3.1)
i=l

where

Xk = number of occupied urns when k balls are thrown

E[Xk] = expected number of occupied urns when k balls are

thrown

1 - pi = probability that the ih urn is not assigned a ball on

each toss

(1 - pdk = probability that the lh urn is not assigned a ball on

any of the k losses
3. BLOCK ESTIMATE EXPRESSIONS

In this section we will show how rapidly computable yet
accurate block estimates can be derived when queried and
clustering attributes are correlated. For concreteness, we will
consider queries that retrieve k records from a set of blocks
labelled B1,B2,...,B (we will call this query a type 1 query). Most
queries can be re 6” uced lo this form by passing them through a
module that estimates the record selectivity of their various
operations. The work on estimating record selectivities has
proceeded more rapidly than the work on estimating block
selectivities and several excellent papers have been written on
the subject [Merrett and Otoo 1979; Kerschberg et al. 1982;
Christodoulakis 1983b; Piatetsky-Shapiro and Connell 1984;
Kamel and King 19851.

3.1. Precise Block Estimates

An analytical estimate for the number of blocks accessed by a
type 1 query can be derived by considering a related occupancy
problem [Feller 1968; Kotz and Johnson 19771. The advantage

1 - (1 - pi)k = probability that the fh urn is assigned at least

one ball in k tosses

Christodoufakis independently derived this expression in the
context of block accesses. When records are randomly assigned
to blocks (i.e., pt = l/m), expression (3.1) reduces to expression
(2.1).

The validity of this measure depends on the variability in the
number of occupied urns that is observed in repeated
experiments. The number of occupied urns is governed by a
probability distribution, often called the occupancy distribution.
Expression (3.1) represents the mean or expected value of this
distribution. Statisticians have shown [see for example Kotz and
Johnson 19771 that in many instances, this distribution is
asympotically normally distributed. They have also shown that the
standard deviation of this distribution is quite small relative lo the
mean. Thus expression (3.1) represents a good estimator of the
number of blocks retrieved. Indeed. when each block has an
equal probability of being accessed (i.e., pi = l/m). it can be

-121-

shown that asymptotically, both the mean and standard deviatron
grow linearly with the number of blocks. Thus, as the number of
blocks in a file grows, expression (3.1) becomes an increasingly
accurate estimator for the number of occupied urns, or
equivalently, the number of accessed blocks.

3.2. Majoriration

Although expression (3.1) provides accurate block estimates,
the O(m) flops that are required to compute it makes it an
impractical tool in many query optimization settings. In addition,
for large files, it will be prohibitively expensive to maintain the
empirical block access distribution. On the other hand, we have
already noted that standard approximations such as expression
(2.1) may produce highly distorted estimates when attributes are
strongly correlated. Ideally, some sort of “compaction” algorithm
should be applied to the block access distribution that would
replace its original p vector with a vector. that contains very few
distinct values (i.e., a vector with many duplicate values). The
catch is that the newly constructed vector must capture enough
information from the original block access distribution to provide
reliable block estimates. Fortunately, expression (3.1) possesses
a property known as Schur concavity that aids us in this matter.

two
Definition Let y = <yt ,..., y.m> and z = <zl,..., 2,~ denote
vectors of nonnegative, nonrncreasing (i.e., yl t y2 . . . 2 ymel

2 ym and z1 2 z2 . >_ zmel B zm) real numbers. We say that
vector y majoiizes vector z (wntten y > z) if the following set of
inequalities hold [Marshall and Olkin 19791

k k
Cyf > x zifor allk<ml and Fyi ZYZi fork=m
i=l i=l i=l i=l

Majorization is a measure of non-uniformity in the sense that if y
majorizes z, then the distribution represented by y is more
diffuse (i.e., less uniform) than the distribution represented by z.

Definition . A real-valued function f(xx) defined over
the set of non-negative real vectors R, “is szd to be Schur
concave if

y > z => f(z) 2 f(y)

In other words, as the diffuseness of a vector of real numbers
increases, the value of the function f decreases. A more practical
way of determining whether a function is Schur concave is to
apply the following test: a function f(x, ,...,xm) of m real variables
is Schur concave if for every pair i,f, (Xi-X’)(af/aXi - al/ax.) < 0
[Marshall and Olkin 19791. Christodoulak& [1984b] empftoyed
this test to show that expression (3.1) is Schur concave.

In the context of the block estimate problem, the property of
Schur concavity indicates that as the diffuseness of a distribution
increases, the expected number of blocks accessed by a query
decreases. As the correlation between two attributes increases,
the block access distribution does become increasing diffuse.
Since the independence assumption employs a vector that is
majorized by the vector of the true access distribution, we can
now understand why expression (2.1) often leads to pessimistic
block estimates (the independence assumption uses the vector
<l/m,l/m ,..., l/m>).

The property of Schur concavity also guides us in finding a
compaction algorithm for the block access distribution (Vander
Zanden et al. 19851. If we can construct a vector that contains
very few distinct values but which is majorized by the original p
vector, then the properties of Schur concavity and majorization
guarantee that the block estimates it generates will provide an
upper bound for expression (3.1).

Block Access I I
Probability

Address
Space

Histogram approximation for the distribution of a sample p vector
Figure 3.1

The first step of the compaction algorithm involves
permuting the elements of p so that they form a decreasing
sequence p = cpl’,...,pm’>. Since permutations of the elements
in a vector do not affect the value of expression (3.1) this step
does not alter the block estimates. The next step of the algorithm
involves approximating the permuted block access distribution
with an unequal interval histogram (see figure 3.1). The height of
each box in the histogram is equal to the average block access
probabilities of the elements that comprise it. In essence it is
making the nonuniform distribution more uniform. Each box of
the histogram divides the permuted p vector into subvectors.
The elements within each subvector are replaced with a similar
number of equal-sized elements whose block access
probabilities are equal to the average block access probability of
the original elements. The newly constructed subvectors are
majorized by the original subvector since any vector of
non-negative, nonincreasing reals majorizes a vector of
equal-sized components (provided that the sum of the elements
in each vector are identical). By concatenating these new
subvectors, we obtain a vector that is ,majorized by p but which
contains very few distinct elements. Thus an upper bound for
expression (3.1) can be quickly computed by plugging in the
newly constructed vector. The approximation can be written as
follows

E[Xk] = ZmUip - (1 - pi’)k]
i=l

(3.2)

where m’ = number of intervals in the histogram, ut = number of
elements in the ith interval of the histogram, and pf” = average
block acess probability of the elements in the ith interval of the
histogram.

This algorithm has the theoretically satisfying property that
as the number of intervals is increased, the approximation
becomes increasingly accurate. Expression (2.1) represents one
extreme of this algorithm that uses only one interval. Similarly
expression (3.1) represents the other extreme in that it uses m
intervals. The algorithms we present strive to hold the number of
intervals to 2-4.

So far we have avoided the issue of how the intervals of
the histogram should be chosen. The selection of these intervals
is critical since a poor partition can lead to an upper bound that is
only slightly lower than expression (2.1). Several considerations
must be taken into account in making this choice:

1. Homogeneous Values: Elements of the permuted vector
p that generate nearly identital values when they are plugged
into the expression 11 - (1 - pi)] should be grouped together. For

122-

example, suppose the block access distribution is given by the
vector p = <.4,.3,.1 ,.1,.05,.05>. Since the values .4 and .3 are
likely to produce similar values they should be placed in the same
interval. Similarly the values .l, .l, .05, and .05 should be
grouped together.

2. Size of K: The best partition of the p vector will often
depend on the size of k. As k increases, an incretsing number of
elements, pi, will produce expressions [l - (1 - pf)] that evaluate
to 1. In other words, as k increases, an increasing number of
blocks will be accessed with probability 1. Ideally, as k increases,
the number of elements in the first interval of the histogram (see
figure 3.1) should also increase.

The algorithm we present in section 3.3 for partitioning a
vector addresses the issue of homogeneous values while in
section 4.1 we present an algorithm for reconfiguring these
partitions based on the size of k.

3.3. Mean Algorithm

The mean algorithm partitions the block access distribution
based on one of its characterfstics, the mean. The idea behind
the scheme is that all elements less thanthe mean of a vector are
grouped into a subvector and all elements greater than the mean
of a vector are grouped into a subvector. This splitting can then
be recursively applied to each of the subvectors. The algorithm is
made precise in figure 3.2.

The restriction of the algorithm to intervals that are a power
of two is not a significant hindrance in practice. Our experiments
have shown that accurate cost estimates can almost always be
obtained with four intervals. Further, the amount of work involved
in splitting a vector into a number of intervals equal to a power of 2
is at most double the work involved in spliitfng ii into an arbitrary
number of intervals (since an arbitrary number can be rounded up
to the next higher power of 2). For a small number of intervals,
this additional work is negligible.

The mean partitions the block access distribution more
effectively than an approach based on percentiles since,
paradoxically, it is less affected by clustered values. For example,

mean(numint,x)

P x = vector to be partittoned into numint intervals l /

/’ numint must be a power of 2 ‘I

if sizeof 5 numint

/‘create sizeof singlet vectors each with one element of x’l

/‘and (numint-sizeof(vectors whose only element is O’I

return(cxl>.<x2> ,..., <xsfzeof(x)>,<O> ,..., CO>)

else if numint = 2

find the largest subscript i such that xi < mean(x)

return(<x,).,.(Xi>,<Xi+l,,,., Xm>)

else I* even(numint) l /

find the largest subscript i such that xi < mean(x)

return(mean(numint/2,cxl....,Xi>),

mean(numint/2,<xt+lx.>))

Figure 3.2 -- The mean algorithm for partitioning a vector x into a

set of subvectors. The sets size must be a power of 2.

suppose we musf partition the vector <.3,.3,.2,.1..05..05> into
two intervals. A percentile method would place the partition point
between the elements .2 and .3 since 60% of the distribution lies
to the left of this point and 40% lies to the right. Unfortunately,
this partition does not work well since it breaks up the .3,.3..2
cluster. In other words, the percentile method is unable to handle
situations where a large portion of a distribution is clustered
together. On the other hand, the mean method chooses its
partition point between .l and .2 since the mean of this vector is
.17. The cluster .3,.3,.2 pulls the mean up but the cluster
.1,.05,.05 pulls it down somewhat and thus the partition point
occurs between the two clusters. Thus both clusters are left
intact.

3.4. A Specific Example

The mean algorithm described in section 3.3 was
extensively tested using combinations of the following four
parameters:

1. Blocking Factor (records per block): 5,10,20,50.100

2. Distribution: Uniform,Normal,Exponential,Poisson,Zipf

3. Records Retrieved: 10, 25, 50, 100, .005m. .Olm,
.05m, .lm, .25m, .5m.m. 2m, 3m, 5m,lOm (mdenotes
the number of blocks containing the relation)

4. Blocks: 500, 1000, 10000

The uniform distribution indicates that the access probabilities
were randomly drawn from an interval [a,b] and not that each block
had an equal probability of being accessed. In a Zipf distribution,
the block access probabilities pf are defined by the formula pf =
NiZ where h = lE(l/fZ) and z represents a factor of decay.

Figures 3.3 and 3.4 show representative results for a relation
with a blocking factor of 50 records per block and 500 blocks (i.e.,
a relation with 25,000 luples). In figure 3.3 we have employed
expression (3.1) to plot the expected number of block accesses
that occur as the number of records retrieved by a query
increases. The query’s block access distribution is Zipf
distributed. In figure 3.4 we have plotted the percentage
differences between the estimates produced in figure 3.3 by
expression (3.1) and the estimates produced by the mean
algorithm.

The Zipf distribution was used to illustrate the impact that
increasingly diffuse block access distributions have on the
estimates of-the number of blocks retrieved by a type 1 query.
.Intuitively. the decay parameter z can be thought of as an
‘indication of the amount of correlation that exists between the
queried attribute and the clustered attribute. As the correlation
increases, the z parameter increases and the block access
distribution becomes increasingly diffuse. The curve plotted in
figure 3.3 indicates how the number of block accesses decline as
the correlation between two attributes increases.

Figure 3.4 demonstrates that a four interval distribution
generates significantly more accurate approximations for
expression (3.1) than a two interval distribution. For moderately
correlated attributes (e.g., z = l), the use of only two intervals
produced relatively accurate estimates, even when the number of
records retrieved was somewhat small. The percentage
difference between the estimates produced by expression (3.1)
and the mean algorithm quickly peaked around 25% and rapidly
fell under 15% where it remained for the.rest of the experiment.
The higher percentage errors reflected in figure 3.4 for smaller
numbers of records retrieved do not translate into large absolute

- 123-

Blocks
Retrieved

1000 1500 2000 2500 3000

Records Retrieved

Figure 3.3 -- Expected number of blocks accessed by a type 1 query
that retrieves k records. The block access distribution of this query is
Zipf distributed with decay factor Z.

errors. A typical example might be a block estimate of 25 as
compared with an estimate of 20 produced by expression (3.1).
This difference would not affect a query optimizer’s decision.

As correlation between the clustering and queried attribute
increased, the accuracy of the two interval estimate quickly
decreased. The error curves corresponding to a decay factor of 2
in figure 3.4 illustrate this deterioration in performance. The error
initially peaks around 50% for 100 retrieved records, decreases
rapidly to about 15% when 500 records are retrieved, and then
steadily rises until it reaches 60% for 3000 records retrieved.
Although the estimates produced by only two intervals seem
unlikely to mislead the query optimizer, it seems advisable to use
four intervals in this instance. The maximum error’produced by a
four interval estimate is about 15% and the extra flops required to
compute such an estimate are negligible.

4. CONSTRUCTING A BLOCK ACCESS
DISTRIBUTION

In section 3, it was demonstrated that the mean algorithm
accurately estimates the number of accessed blocks when the
block access distribution is known. However, in production
settings, each query will confront an optimizer with a multitude of
different and unknown block access distributions. Thus the
best an optimizer can hope to do is to maintain a representative
block access distribution that can be modified based on the type
of query it is presented with. In this section we will show how
such a distribution can be constructed and modified using
nonparametric techniques.

Two factors have an impact on a query’s block access
distribution--the size of the query (expressed in terms of the
number of tuples retrieved) and the correlation between the
queried attributes and the clustering attribute. If the correlation
between these attributes is relatively low, then each block has an
approximately equal chance of being accessed, regardless of the
size of the query. In these situations the independence
assumption produces accurate block approximations since it uses
a block access distribution in which each block has an equal
probability of being accessed. However, as the correlation
between the queried and clustering attributes increases, the
block access’distribution becomes dependent on the size of the
query. Small queries tend to have highly diffuse distributions
since it is likely that only a few blocks wilt be accessed. Thus
several blocks will be accorded a high access probability while the
remaining ones will be accorded negligible access probabilities.
As the size of the query increases, the block access distribution
tends to become flatter because more blocks are likely to be
accessed. Since a larger number of blocks have non-negligible

z = 2. 2 intervals

z - 2. 4 intervals
* = 1. 2 intervals

z - I, 4 intervals
0 loo0 2rm 3om

Records Retrieved

Figure 3.4 -- Percentage difference between the block estimates
produced by the majorization technique with two and four intervals and
expression (3.1). The block access distribution of this type 1 query is
Zipf distributed with decay factor z.

access probabilities, the probability of accessing any individual
block decreases, thus flattening out the access distribution.

Ideally, then, the block access distribution should be modified
based on the size of the query and the correlation between
queried and clustering attributes. The following approach for
constructing a query’s block access distribution takes both of,
these factors into account. First, the block access distributions
associated with the least frequently, most frequently, and
average (i.e., equal to the average. duplication rate of the
attribute) occurring values are empirically tabulated (suppose that
these frequencies are given by the vector k = <kt,...,k,> where ki
denotes the number of times the ith attribute value occurs and a
denotes the number of values in the attribute domain; let kt
correspond to the most frequently occurring value and k,
correspond to the least frequently occurring value; let km
correspond to the average occurring value). Next the mean,
algorithm is used to partition these distributions into cells. These
two steps account for correlation between the clustering and
queried attributes. An interpolation formula then reallocates the
area enclosed by each of these intervals based on the size of the
query the optimizer is currently processing. To use this formula,
the query optimizer first determines the interval in which the
query’s size falls-- [l ,ka], (ka.km]. (k,,kt], or (kt ,n] (n denotes the
number of tuples in the relation). It then constructs an
appropriate block access distribution for the query using the
distributions associated with the endpoints of this interval (the
distribution associated with queries of size 1 is <i,O,O,....O> and
the distribution associated with queries of size n is uniform
cl/m,l/m,...,l/m>). The algorithm for constructing the query’s
block access distribution is formalized in fiaure 4.1.
As shown by the algorithm, the probability of accessing a block
that is assigned to the ith cell of the query’s block access
distribution is equal to a weighted average of the probability
assigned to the cells associated with ka and k . Similarly, the
number of blocks allocated to this cell IS a werg .ll ted average of
the number of blocks assigned to the cells associated with k, and
km. This same procedure can be used if the query’s size falls in
one of the other intervals listed above.

5. SIMULATION RESULTS

In order to analyze the performance of the approximations
developed in sections 3 and 4 in practical settings, we tested two
and four interval estimates using the simulation described in
section 2. Recall that the simulation modeled a multivalued
dependency A-X-B and that for each value in the domain of
attribute B, the number of blocks that contained that value was
recorded. In addition, the correlation between attributes A and B

without loss of generality, assume k, 5 kq < km

let Uiq = number of blocks in the ilh cell of the query’s block

access distribution

piq = probability of accessing a block in the ith cell of the query’s

block access distribution

kq = number of tuples retrieved by the query

weight = (km - kq) I (km - ka)

for i = 1 to numint do

Ufq = Ufa l weight + Ufm l (1 - weight)

piq = pia l weight + pfm l (1 - weight)

od

Figure 4.1. Algorithm for constructing the block access
distribution of a query that retrieves at least k, tuples but no more
than km tuples

was varied from.6 to 1. In this section we will also compare the
performance of the two and four interval estimates with the
performance of the independence assumption. Since the
independence assumption uses a one Interval estimate, this
section actually evaluates the improvement that results from
increasing the number of intervals from one to two or four.

5.1 Results
I’

In fffres 5.1 and 5.2 we have reproduced the results for the
actual number of, block accesses that were displayed in figures
2.1 and 2.2. Figure 5.1 compares the actual number of-Mock
accesses required. to-retrieve 300 records ‘against the number
estimated by expression (3.2).when two and four intervals block
access dislributions are used. The figure assumes that the
correlation .between the clustering attribute and queried attribute
is varied between 0 and 1. -When the correlation is greater than
0.5, the four interval .estimate performs better than the two
interval estimate, providing estimates. that vary from the actual
number of blockaccesses by no more than 5%. On the other
hand, the two interval esiirnate .provides belter estimates when.
the correfation is less than 0.5. When this condition ap#es&
estimates vary from the actual, number of block accesses by no
more than 10%. However, comparing figures 2.1 and 5.1, we find
that even better estimates can be,obtained if the. independence
assumotion is used when the correlation is less than 0.3.

i3locks~ *O
Retrieved

.6

.

.6 1
Correlation Records Retrieved

Figure 5.1 -- Comparison between the number of block accesses Figure 5.2 -- Comparison between the number of block accesses
predicted when attributes are assumed correlated and the actual number predicted when attributes are assumed correlated and the actual number
of block accesses required to process a query that retrieves 300 of block accesses required to process a query that retrieves a varying
records. The correlation between the clustering attribute and the number of records. The correlation between the queried attribute and
queried attribute varies between 0 and 1. clustering attribute is 6.

Figure 5.2 compares the block estimates of the two and four.
interval estimates when the number of records retrieved is varied
between 0 and 1000 and the correlation between the clustering
and queried attributes is fixed at .8. The four interval estimate is
consistently more accurate, never overestimating the actual
number of accessed blocks by more than 10%. By comparing
figure 5.2 with figure 2.2, we find that the four interval estimate is
also preferable to the estimate produced by the independence
assumption.

While figures 5.1 and 5.2 provide specific examples of how
the two and four interval estimates compare, figures 5.3 and 5.4
provide a comprehensive analysis of how these estimates
compare, both against one another and against the
independence assumption (labeled as the one interval estimate
in these figures). In figure 5.3 we have plotted the percentage of
cases in which each of these three schemes provide the most
accurate block estimates. This figure was constructed by
analyzing each of the 51 attribute values in B’s domain and
determining which of the three estimates came closest to
predicting the actual number of blocksoccupied by each of these
values. We can conclude that the independence assumption
(one interval estimate) is most appropriate when the correlation is
less than 0.4, the two interval. estimate is preferable when the
correlation isbetween 0.4 and d-6, and the four interval estimate
is best when the correlation is greater than 0.6. Since the
correlation associated with both functional and multivalued
dependencies is often greater than 0.4. either the two or four
intenal’estimate will be preferable fn many database settings.

’ Another, perhaps more reliable, way to compare the one, two,
and four intervai estimates is to compare the actions an optimizer
might choose under each of these three schemes. Figure 5.4
provides one such measure--the percentage of cases in which
each assumption leads the query optimizer to choose an
inappropriate strategy. In this case we assumed that the o’ptimizer
could choose between an index fookup and a relation scan to
process its queries. The breakeven point between these two
options .will vary from system to system but ‘for the”sake of
comparison we.arbitrarily set it at 200 blocks. The breakeven
point fncfucfei .onfy those blocks that. contain data which satisfy
the query. It does not include additionafblocks that must be
accessed such as index blocks in an index fookup . Thus if a
que,ry optimizer estimates that fewer than 200 blocks contain the
required data,‘? chooses an index scan; otherwise it chooses a
relation scan., As figure 5.4. indic~ates, the independence
assumption causes the ,optimizer to choose fhe wrong strategy in
more than ‘two-thirds of the cases when the correlation is close. to
1 and in more,than one-third of the caseswhen the correlation is

2 tnierval estimate

-125-

0
0 .2 .4 .6 .0 1

Correlation

Figure 5.3 -- Percentage of cases in which three different block estimate
schemes provide the most accurate block estimates. The one interval
estimate corresponds to the independence assumption.

about .8. This figure drops to 20% for correlations around 0.6
and finally drops to 0 when the correlat’an decreases to less than
0.2. In contrast the two and four interval estimates mislead the
optimizer in at most 15% of the cases and only in restricted
regions--the two interval estimate when the correlation is
approximately 0.8 and the four interval estimate when the
correlation is approximately 0.4. In both cases the number of
cases in which the optimizer is misled drops quickly as the
correlation moves away from these critical points. Thus by this
criteria, the independence approximation should only be used
when the correlation is in the range [0,0.2], the two interval
estimate should b,e used when the correlation is between 0.2 and
0.55, and the four interval estimate should be used when the
correlation exceeds 0.55.

5.2 Analysis

The failure of the two and four interval approximations to
produce accurate block estimates when the correlation between
the clustering and the queried attribute is less than 0.4 is
attributable to our choice of a block access distribution. Since we
assumed that the underlying distribution was not analytically
tractible, we tabulated it empirically. However, this decision
produces distributions that tend to’be more diffuse than the
actual djstributions. For example, if the actual underlying
distribution is uniform (i.e., each block has an equal chance of
being accessed), the tabulatgd distribution will almost surely be
diffuse with some blocks having no probability of being accessed
and some blocks having a fairly substantial probability of being
accessed. Thus the block estimates produced by the correlation
approximation will tend to underestimate the actual number of
block accesses. Further, these underestimates should be more
pronounded when the correlation between the queried and
clustering attribute is somewhat low. When the cor!elation is
high, the underlying block access distribution is already highly
diffuse so an empirical tabulation does not radially increase the
diffuseness of the distribution. However, when the correlation is
low, the underlying distribution is fairly uniform and thus the
empirical tabulation does increase ?he diffuseness somewhat
significantly. Since our block estimate expressions are Schur
concave, we would expect this increased diffuseness to lead to
the underestimates that were empirically observid.

-126-

Another interesting finding arose when we tried to reconcile
the performance of the various estimators in figures 5.3 and 5.4.
We were particularly interestested in explaining why the
independence approximation seemed feasible when the
correlation ranged between 0 and 0.4 in one figure and only
seemed feasible when the correlation ranged between 0 and 0.2
in the other. This discrepancy can be explained by examining

% 70
65
60
55
50
45
40
35

20 - 4 interval 2 interval

0 .2 .4 .6 .0 1
Correlation

Figure 5.4 -- Percentage of cases in which three block estimate
schemes lead a query optimizer to choose a bad processing strategy.
The one interval estimate corresponds to the independence assumption.

how badly ihe independence and correlation approximations can
under- or overestimate the number of block accesses required by
a query. The estimates produced by the correlation:
approximations are usually no more than 30% higher or lower
than the actual number of blocks retrieved. Further, errors of thii
magnitude generally occur when well over half the file is being
retrieved. In this case, even if the correlation approximation
underestimates the number of block accesses by 30%. it often
predicts that more than half the file must be retrieved and the
optimizer makes the correct decision. In contrast, the
independence approximation often overestimates the actual
number of block accesses by several hundred percent. In
addition, these errors normally occur when less than half of the
file is retrieved. But since the independence approximation often
overestimates the actual number of block accesses by several
hundred percent, the query optimizer often concludes that more
than half the file must be retrieved. Thus it often selects a relation
scan when it should have selected an index scan. In summary, ’
the independence approximation often produces more accurate
block access estimates when the correlation is between 0.2 and
0.4. However, it tends to perform so poorly on small size queries
that it causes the query optimizer to choose a poor processing
strategy somewhat often. On the other hand, while the
correlation approximation fends to underestimate the number of
block accesses required by large size queries, the
underestimates are not so serious as to cause the query
optimizer to choose an inappropriate strategy. Thus the
correlation approximation misleads the query optimizer less often
when the correlation is between 0.2 and 0.4.

6. CONCLUSION

Most database systems assume that attributes are
independent. However, as pointed gut in the introduction,
functional, multivalued, and implicit dependencies generate a
great deal of dependence and correlation between attributes. In
this paper we have examined the impact that correlated attributes
have on the number of block accesses required to process a
query. We found that the independence assumption produces
accurate block estimates when the correlation between the
clustering attribute and the queried attribute is less than 0.4. As
the correlation increases beyond this point, the independence
assumption begins to mislead an optimizer or designer in an
alarming number of cases, causing them to select inappropriate
query execution strategies that could dramatically increase the
cost of processing a query. Further even when it produces
pessimistic overestimates that do not immediately cause bad
decisions, it could distort strategies selected later in a multi-step
query operation. Thus when the attribute correlation exceeds

0.4, it becomes necessary to take this correlation into account
when generating block estimates.

We proceeded to show that precise analytical estimates could
be easily derived when the clustering attribute and queried
attribute are correlated but that the expressions which generated
these estimates could not be efficiently evaluated. Thus we
looked for properties that these expressions satisfied which
could be exploited to produce simple approximations. The
property of Schur concavity provided us with the necessary
insight. Specifically, it allowed us to devise an algorithm that
constructs compact block access distributions which can be used
to rapidly compute the block cost of a query. We then
demonstrated how the original block access distribution could be
constructed using several pre-tabulated distributions and the size
of the query as input. Finally, we presented the results of several
experiments that demonstrated the superiority of our
approximations when attributes were highly correlated. Thus the
techniques introduced in this paper provide a powerful
mechanism for estimating the cost of a query in the presence of
correlated attributes.

REFERENCES

Cardenas, A.F. 1975. Analysis and Performance of Inverted
Database Structures,. Commun. ACM, 18, 5 (May),
253-263.

Christodoulakis, S. 1981. Estimating Selectivities in Data Bases.

Technical Report CSRG-136; (Dec.), University of Toronto.

Christodoulakis, S. 1983a. Estimating Block Transfers and Join
Sizes, In Proceedings SIGMOD 1983 Conference,
ACM, 40-50.

Christodoulakis, S. 1983b. Estimating Record Selectivities.
Information Systems, 8, 2, 105115.

Christodoulakis, S. 1984a. Estimating Block Selectivities.
Information Systems , 9,i .69-79.

Christodoulakis, S. 1984b. Implications of Certain Assumptions
in Database Performance Evaluation, Trans. Database
Syst. , 9,2 (June), 163-186.

Demolombe, R. 1980. Estimation of the Number of Tuples
Satisfying a Query Expressed in Predicate Calculus
Language. In Proceedings of the 6th lnfernafional
Conference on Very Large Databases, IEEE, New
York, pp. 55-63.

Fagin, Ft., Nievergelt, J., Pippenger, N., and Strong, H.R.
Extendible Hashing--A Fast Access Method for Dynamic Files.
Trans. Database Syst ., 4,3 (Sept.), 315-344.

Feller, W. 1968. An lnfroduction to Probability Theory
and Ifs Applications. Vol 1. 3rd Ed. New York: John
Wiley.

Kamel, N. and King, R. 1985. A Model of Data Distribution Based
on Texture Analysis. In Proceedings SlGMOD 7985
Conference, ACM, 319-325.

Kerschberg, L.. Ting, P.L. and Yao, S.B. 1982. Query
Optimization in Star Computer Networks. Trans. Dafabase
Syst., 7, 4 (Dee), 678-711.

Kotz, S. and Johnson, N.L. 1977. Urn Mode/s and Their
Application, New York, John Wiley and Sons.

Luk. W.S. 1983. On Estimating Block Accesses in Database
Organizations. Commun. ACM, 26, 11 (Nov.), 945-947.

Marshall, A., and Olkin, I. 1979. Inequalities: Theory of
Majorizalion and its Applications. Academic Press,
New York.

Merrett, T.H. and Otoo, E. 1979. Distribution Models of
Relations. In Proceedings of the 5fh International
Conference on Very Large Data Bases, IEEE, New
York, 418-425.

Montgomery, A.I., D’Souza, D.J., and Lee, S.B. 1984. The Cost
of Relational Algebraic Operations in Skewed Data: Estimates
and Experiments. In Information Processing 83
Elsevier North-Holland, New York, 235-241.

Piatetsky-Shapiro, G. and Connell, C. 1984. Accurate estimation
of the- number of tuples satisfying a condition. In
SIGMOD 84, Proceedings of the Annual
Meeting (Boston, Mass., June18-21). ACM, New York,
256-276.

Siler, K.F. 1976. A stochastic evaluation model for database
organizations in data retrieval systems. Commun. ACM
19, 2 (Feb.), 84-95.

Vander Zanden, B.T., Taylor, H.M., and Bitton, D. 1985. A
general framework for computing block accesses.
Technical Report 85-718, Cornell University.

Yao. S.B. 1977. Approximating block accesses in database
organizations. Commun. ACM 20, 4 (April), 260-261.

Zahorjan, J., Bell, B.J., and Sevcik, K.C. 1983. Estimating Block
Transfers when Record Access Probabilities are
Non-Uniform. lnformafion Processing Letters , 16,
5 (June), 249-252.

-127-

