
Managing Text as Data*

Cordana Pavlovic-Lazetic** and Eugene Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, CA 94720

1. Introduction

With all their advances, database management sys-
tems of the present. generation are designed to handle only
data of primitive types, namely, numbers and character
strings. Several approaches to extending their capabilities
to handle data with higher order semantics exist.. One is to
add general abstract data type support. so that users can
define such data types easily. In this approach, the DBMS
makes no attempt to understand the semantics of user-
deflned d&a types. and evaluation of operators on such
data are done in applications progranis. As’s supplement,
rather than an alternative, one can also extend the query
language and its processor so that certain common non
primitive data types are directly supported by the DBMS.
Of these. tezt and geometric data are probably the two
most. prominent examples. This paper deals with the case
of text. Direct embedding of complex data in a database
management system has obvious advantages, the most
important, one being performance.

To manage text as data, the first step is to handle
words satisfactorily. Words are after all natural atoms of
text. Whereas representing texts as strings of characters
capture none of their meaning. representing them as
sequences of words is a reasonable Arst order semantic
representation. Our first. step, then, is to intrbduce
“words” as a data type.

Important operations on words are lexical operators.
not string operators. They deal with how words are related
to each other and how they are used. For example, “went”
is a verb in past tense with “go” as its root.. “Verb”, “past
tense”, and “go” are values returned by these distinct
operators on the word “went”. We refer to “words”
together with a class of operators on words as the lexical
da& type. The principal objective of this papei is to deal
with issues that arise in implementing the lexical data
type.

The specific issues that we shall consider are the fol-
lowing:

* efficient storage of words in a relational data-
base

*Research supported by the National Science Foundation under
Grant&S-8300463.

On leave from the University of Belgrade, Yugoslavia.

Permission to copy without fee all or part of this material is
granted prouided that the copies we n# made or distributed for
direct commerciul advati e the VWB copyright notice and the
title of the publication a r&P Its date appear, and notice is giuen
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

+ implementation of lexical operators
* resolving ambiguous words represented by the

same character strings.

The principal application that we envisage for textual
databases is automatic extraction of facts. We shall con-
sider some simple examples of this using lexical operators.

2 mcodlnguQrds

A natural way.of storing texts in a relational database
is to represent text by a relation:

textname(seqno. word)

where “seqno” denotes the order of appearance and “word”
stands for words, punctuation and special symbols such as
“new paragraph”. As character strings, words have greatly
varying lengths. For storage in a ffxed-length field, charac-
ter strings are grossly inef&ient. A solution to this prob-
lem is to encode words into a fixed-length representation.
Great compression can be achieved. For exam,& a 4-byt.5
integer suffices to represent a vocabulary of 2 N 4810
words.

There is a second and equally compelling reason to
encode. Very little of the lexical information is contained
in the character-string representation of a word. Clearly,
the fact that “went” has “go” as its root cannot. be deduced
from the string w-e-n-t alone. If the goal is to implement.
lexical operators. then words need to’be represented in a
form whereby the values returned by the operators are
explicit. in the representation. Basically, the coded form of
a word should be a composite of the values returned by the
set of all admissible operators on the word.

There is yet. a third reason to encode, namely, remov-
ing ambiguity. The same character string often has
several meanings. In effect., it represents several different
words, or more precisely, different “lexical units”. For
example, “well” has at least. two unrelated meanings: “good
and proper” and “a hole in the ground”.

For these reasons we believe that encoding words is a
must in storing text in a database system, if its meaning is
to be exploited. The question is: how can this encoding be
done? For compression alone, some kind of automatic
encoding can probably be devised. However, no automatic
encoding using only the character-strings as input can
achieve the other two goals, since additional information
must be supplied. To provide the lexical information. we
shall use a dictionary. To resolve ambiguities. we shall use
an expert system.

The amount of lexical information that has to be sup-
plied depends on the lexical operators to be supported.
Thus, the first step is define the lexical data type.

3. Lexical Data Type

We adopt the following terminology: a Zezical unit is
the image of a word under encoding, 1ezi.ca.L data set is a
set. of lexical units together with certain default values,

Proceedings of the Twelfth International
Conference on Very Large Data Bases

-lll-
Kyoto. August, 1986

ledcal d&a type is a pair (X, L) where X is a lexical data
set and L the set of all supported operators. An element in
X is of the form (id, descr) where id is a four byte integer
that uniquely identifies the element (lexical unit), and
descr a two byte descriptor that incorporates additional
semantic information.

Encoding is done using a dictionary that is
represented as a relation as follows:

SYNT (syntactic data set) is a union of:

dictionary(word. class, form, root, prefix,

ending, feature, id, descr)

where "word" denotes the character-string repreSenting a
word, “class” denotes the syntactic classification of the
word (i.e., verb. noun etc.), “form” denotes a specific form
of the word class (e.g., feminine, infinitive, etc.), “feature”
denotes semantic feature’ to be spebifled later. The mean-
ing of “root”, “prefix”. and “ending” is clear. The code (id,
descr) is a composite made up as’followi:

id =(code(root)*lOo + &od&(prefix))tloo
+ code(knding)

descr=code(form)+lOO + code(feature)

Codes for prefixes. endings and semantic fea&es are
read from tables, and a root is encoded on the basis of
interpolation of words density in a ‘dictionary: starting
codes for roots beginning with a specific letter are deter-
mined on the basis of the tot&l number of codes available,
and proportionally do the number of pages occupied bfr
that beginning letter in a sample dictionary.

Code of a word’s form is a number that is joined, in
the table containing. an entry for every .possible form of
any. word class, to the form of that word (e.g., 40 for
infinitive form of anomalous verbs like “to have” or “to be”.
41 for the Arst person in singular of .the present tense of
those verbs -as “have” or “am”,46 for participle of those
verbs -as “had” or “been”, 150 for regular nouns in singu-
lar, 151 for tegular nouns in plural..210’fqr comparatives of
adjectives ending on “+r”. etc.).

Encoding is done as follows: Given e word as a charac-
ter string, we first search for the corresponding entry in
the dictionary and extract the cpde (id, descr). If lhere is
more than one entry, then ,dis+mbiguation is nqc$sgary.

The set of operators L consilts of four type’s of opera-
tors: letinf operators such as finding rout, prefix, ending
or semantic feature of a lexical unit, building specific lexi-
cal forms such ,as plural for nouns or pa+ tense for verbs,
concatenating, or qeleting one lexical unit, with/from
another one; syntu&ic ope@ors ,such as finding word class
for a given lexical unit, .tense,for a given ,verp. degree for a
given adjective, kind; gender. case for a given pronoun;
metric operatom such ps length of a lexical unit.in chasac-
ters; t~th operators such as equality or order of lexical
units based 0~ weights of roots, ‘pref~xe~, endings, yard
forms and semantic features.

Examptes of those operators are:
r@.(went)=go;
end(action)=ion;
tense(went)=past;
lexform pl, datum)=hata: ,,”
lexform

i
past, go)=went;

lexform past, datum)=null;
concat. act,

I
ion)=action;

concat, trans! ion)=tiull:

Q
TF

3.2.

3.3.

letid opemtors: LEiX+ -> LM+ op
LEX+XSYNT->LEX; ’

syntactic openxtors: LEX+ X SYNT -> SYNT;

metric opera&; L!IX+ -> Q;

truth operators: LEX’ -> TF.

The operators on lexical data type:

lLTUl3-y:

In what follows, we give a precise and formal
specification for the lexical data type.

3.1. kxical Data Set .’

LEX (lexical data set) is a union of the follo&ing sets of
pairs of integers (id, descr):

-112-

- encoded full lexical untis - encoded lexical units
from the dictionary, which are images of words,

-sets of pairs (id, descr) having codes of all the entries
from PREFIX. ENDlNG and SEM-FEATURE data rela-
tions in the corresponding portions of id, descr, and
all the other zeros, and
-“null”.

-WCL (word-class set), and

-NFORM. VFORM, AFORM and PFORM sets (sets of all
the different forms corresponding to noun, verb,
adjtctive-adverb, and pronoun word classes, respec-
tively, ie.

WCL=Ireg.noun, reg.verb, reg.adjective, reg.adverb,
irreg.noun. irreg.verb. irreg.adjective. irreg.adverb,
anom.verb, pronoun, conjunction, prefix, preposition,
nu!lj:

NFORM=lsing, pl. null];

VFORM=~presjst.~ing, presznd. presJrd>ing, past,
part, ndlj:

AFORhI=fpositive. comparative, Superlative, null];

PFORM={pers_fJstsing, .perSJn)stSing. persAstg1.
pers_f&hiing, p,ers&thding, persdthql,
poss_f_Sing. PQSS&rndmg,
showding, showgl, null]

poss-.n3ing. possgl,

- set of numbers.

- truth valu,es set tT,F].

Constants, Variables

Constants:

li from LEX;

si from SYNT;

qi from Q;

T,F from TF.

Va7-iubles:

Li from LEX:

Si from SYNT;

Qi from Q:

TRi from TF.

Operators

lexical:
root(Ll) (ih LEX);

prefix(Ll) (in LEX);

end(L1) (in LEX);

feat(Ll) (in LM);

syntactic:

w_class(Ll) (in WCL);

tense(Ll) (in VFORM):

number(Ll) (in NFORM U PFORM);

degree(Ll) (in AFORM):

kind(Ll) (in PFORM);

gender(Ll) (in NFORM U PFORM);

case(Ll) (in PFORM):

metric:

length(Ll) (in Q).
binary:

lexical:

lexform(Sl. L1) (in LEX);

concat(Ll, L,-& (in LIB+);

delete(Ll,LZ) (in l+EX+);

truth:

equal(L , L) (inTF):

less_eq&.‘$) (in TF);

grsn(L1. $) (in TO

3.4. Iexical and lqical Expressions

.kzicakezprestin is a sequence of constants and vari-
ables from the set LEX and the sets supporting it, inter-
mixed with operators leading to LEX-type result.

Lezical predicates are of the form truthgp(exprl,
expr). where expr are any lexical expressions,
and %uth+op is .anylAfet!%%inary truth operatbrs de@ed
above.

hgiccxl equressims (and thus qud~catimts) are
extended tp accept lexical predicates as arguments of logi-
cal operators (not, and, or).

3.5. Procedures Eor Operator Evaluation
Operators on lexical data are, deAned by procedures

having encoded lexical units, (ie. pairs of integers) and
values from syntactic data set as their arguments.

The following are some examples of those procedures
written in a C-like language:
root:

I’
L[O]=(4[0]/10**4) * 10**4;

L[l]=o;
] ‘.

lezf arm:

lexform(f0rm.L)
char *form;
int L[2];

I
if(form==‘sing’

singular L); 2
else if (form==‘pl’)

pluraW;

else if (fprm==‘presjst_sing’)
prlsg(L);

else if (form==‘pres-.&d’)
pr2(L);

else if (form==‘presJrd_sing’)
pr3sgW

else if (form==‘past’)
past(L);

else if (form==‘part’)
participle(L):

else if (form==‘positive’)
psit(L);

else if (form==‘comparative’)
compar(L);

else if (form==‘superlative’)
superl(L);

else if (form==‘persl_lst_sing’)
prf Is(L):

else if (form==‘perslnjst>ing’)
prmls(L);

else if (form==‘persjstql’)
PrlpW

else if (form==‘pers&&ing’)
prf4s(L);

else if (form==‘pers_ln_4th~ing’)
prm4s(L):

else if (form==‘pers-4thgl’)
pr4ptL):

else if (form==‘poss_f_sing’)
psfs(L);

else if (form==‘possming’)
psms(L);

else if (form==‘possJ&3g’)
psns(L):

else if (form==‘possgl’)
psp(L):

else if (form=‘show-$ng’).
ss(L):

else if (form==‘showql’)
sp(L):

else
L=NULL;

1

Procedure “singular” might be deAnea as follows:

singular(L)
int U21;

I’
if(L[l]/lOOO!=El && L[1]/1000!=15)

L=NULL;

else if(L[l]/lOq==Ell 11 L[1]/100==151)
I

~o]=Yol-1;

Ml]=Ul]-100;
j

1
and similarly for other procedures.

4. Text Representation
Our goal is to take a text in its natural form and

automatically convert it into a relation:
text(seqn0. lex)

where seqno represents the sequential order and lex (lexi-
cal unit) is either the image of a word under encoding or a
special symbol. The process of encodin

(b k
(a) reduces a

word to a fixed length representation, makes explicit
the lexical properties required to support the desired
operators, and (c) resolves any ambiguity that may be
present in the character string form. The automatic
conversion of text is done using: a text scanner, a diction-
ary, and an expert system for resolving ambiguity.

-113-

4.1. Dictionary

The structure of the dictionary has already been
described in section 3. It contains all words except plurals
for regular nouns, tenses for regular verbs and compara-
tives and superlatives for regular adjectives and adverbs.
Roots, prefixes and endings are determined by hand and
their meaning is obvious; one rule about roots is that they
are always words themselves.

Semantic feature is a marker that ex resses seman-
tics of a word or of a specific use of a word P e.g., ACTION for
the word “work”, LOCATION for the word “abroad”, TIME for
the word “then”, QUALITY for the word “brilliance”, both
MEASURE and EMOTION for the word “content”). The se1 of
semantic features we use is much like the one in [SiCh 621.
extended with a hierarchical structure. For example,
semantic feature TIME has as its subordinated semantic
features FUTURE, PRESENT and PAST. Our set contains
about 50 semantic features.

The dictionary encoding is done by an EQUEL
program. For our experimental study, we have built a dic-
tionary with 1400 entries of basic words.

4.2. Lexical Rules

Since different forms of regular words are not present.
in the dictionary, lexical (ie. morphological) rules for syn-
thesizing them or recognizing them is necessary in order
for a text to be encoded.

An example of those rules is the follbwing:

- if a word from the text ends with “ies” and in the diction-
ary there is a noun equal to that word except for the end-
ing being “y” instead of “ie$‘. th?n the word is the noun
from the dictionary, in plural.

Those rules are stored in a relation,“lexrule” which is
of the form: /

word-ending 1 dict.ent.ry_ending 1 word’s class 1

dict.entry’s class ldescr 1 codeoffset

Word and dict.entry endings are the letter groups that
should be deleted at the end of the word that is to be
encoded and that should be then added to the end of such
a word, respectively, in order to obtain a dictionary entry
corresponding to the word being encoded (e.g., the ending
“ies” should be deleted at the end of the word “copies” and
then the ending “y” should be added to “cop” in order to
get a dictionary entry “copy”).

Word and dict.entry:s classes are word classes that
the word being encoded and the corresponding dictionary
entry, respectively. belongs to (e.g., noun for both in the
previous example).

Descriptor is an’explenation of the form found in the
text (the code for “plural” in our case), and a code offset
says how to calculate the code of the word being encoded
on the basis of the code of the corresponding ‘dictionary
entry.

The lexical rules relation created contains About 40
rules.

4.3. An l!@ert System for Revolving Ambiguity

According to. the classification of expert systems in
[HaWL 631. our expert system is of the interp~etatiorc twe.
The components of the system are:

(1) a blackbomd used to record intermediate tesults.

(2) a knowleae base containing facts from the dictionary
and rules used for resolving ambiguity,

(3) an interp?etel- that applies a rule from the knowledge
base and posts changes to the blackboard,.

(4) a scheduler that controls the order of rule processing

according as whether the ambiguity is to be resolved syn-
tactically or semantically.

In most cases, ambiguity is between word classes
(e.g., noun and verb) and is resolved using context. For
example, suppose that the phrase “a set of rules” is
encountered. The word “rules” is either “verb - third per-
son singular” or “noun - plural”. In this case, t.he ambi-
guity is easily resolved by the rule: “preposition-noun”
combination is far more likely than “preposition-verb”
combination. As in MYCIN [DAVI 771. we use a probability
model, and our rules have the form

(antecedent., consequent, probability)

where antecedent specifies a set of conditions under which
the rule is applicable, consequent is the conclusion and
probability gives a weight to the conclusion. For example,
we might have:

antecedent: if x is a noun or a verb and if x follows a
preposition

consequent: then x is a noun with
probability: weight 0.9.

The architecture of the expert system was chosen on
the basis of knowledge, data and solution space appropri-
ate to our problem. Using the terminology found in [STEF
621. we find that we have a small solution space (few possi-
ble choices), unreliable data and knowledge (the context
used for resolving ambiguity of a word might be ambiguous
as well, and rules, representing knowledge, are not abso-
lutely corredt), and f?xed (time - independent) data. For
such an environment, the [STIFF 8~1 suggests an expert
system organization that applies exhaustive search and
combines evidence from multiple sources and a probhbility
model.

Thus, our strategy is a.MYCIN-lie one [DAY1 771. It is
designed to make an exfidustive search through the set of
rules applicable to a given situation. and stops short of
exhaustion only when ambiguity is resolved with certainty.

Baclojard chaining control strategy is used. The
search is hypothesis driven: from possible solutions to
related antecedent conditions and to .their required data.

Our expert system was built using EQUEL [INGR 611.
which is QUEL (QUEry Language for INGRES) coupled with
general purpose programming language “c” [KeRi 761.
rather than knowledge representation languages [HaWL
es].

In our experimental system. we ,have 110 rules, 50 of
which involve IM& class (e.g., noun vs. verb), 30 involve
semunti.c featzL1-e (e.g., time or place), and 30 are word
specific (e.g., noun “drama” or adverb/noun “back”). Both
rules and facts as well as the dictionary are stored as rela-
tions in INGRES. Figure 1 depicts the ‘flow of control
among the basic procedures. All procedures have read
and write access to a blackboard, which is a “C” array of
structures.

4.4. Text Encoding

Texts are scanned first., rind then encoded and stored
on a sentence by sentence ‘basis. A current word is
matched against the dictionary entries, taking into
account lexrule relation. It is appended to the blackboard
together with the information’about its position in the text,
and, if unambiguous, with its cdde and descriptor. If a
word is ambiguous, then it is marked indicating the kind
of ambiguity that is encountered. The procedure for
resolving ambiguities in a sentence is then called. which
Ties the expert system procedures for every word on the
blackboard marked as ambiguous. T,he contents of the
blackboard is then written into an output file, and at the
end stored in a relation.

As an experiment, Albert Einstein’s biography [ENCY
791 has been used as a text that contained 4096 words

-114-

-----1 RULE INTEIWnl?TEn 1 r
SCIIEDULER

J

Figure 1. Basic cooperating procedures in the expert system

(including numbers, punctuations and special symbols)
within 140 sentences. The following are some numbers
that are obtained as a result of applying the system to the
text: 82% of all the sentences (115 sentences) were found
to contain ambiguous words, 251 in total (5% of all the
words). Out of all the ambiguous words, 147 were found to
be syntactically ambiguous and 104 semantically ambigu-
ous. In the process of resolving ambiguities, 139 out of 147
syntactic ambiguities were resolved correctly (94%). exam-
ples of incorrect resolution bei

(adverb/ dj t’ “$
some occurrences of the

word “after” a ec Ive preposition/conjunction),
of the word “found” (regular/irregular verb) and the word
“divorce” (noun/verb) in the phrase “was to lead to
divorce”. Semantic ambiguities were mostly on semantics
of prepositions. Out of 104 semantic ambiguities, 62 were
resolved correctly (79%), examples of incorrect being
several occurrences of the preposition “by” (TIME/
SOURCE/ INSTRUMENT) as in the phrase “rejection of his
ideas by statesmen”, and the word “content”
(EMOTION/MEASURE) in the phrase “energy content”.

Source of incorrect resolution of ambiguities is mostly
in that we decided on a very limited and simple analysis of
context, and it would significantly improve with addition of
more complex analysis. In order to resolve semantic ambi-
guities better, the system would also have to be enchanced
with context-dependent semantics.

As an example of what has been successfully resolved,
the following is an extract from the text been encoded:

Albert Einstein was born in Ulm, Germany, on
March 14. 1879.

. . .
His t,heories of relativity were a profound

advance over the old Newtonian physics and revolutionized
scientific and philosophic inquiry.

The words “on”, “advance” and “over” were recognized
as ambiguous ones (first one as having more than one
semantic feature, last two as belonging to more than one
word-classes) and were successfully resolved(TIME. regular
noun, preposition, respectively).

5. Ekemple Applications

Operations on texts that we have experimented with

include: extraction of keywords and phrases, (information
retrieval application), stylistic homogeneity testing (com-
puter linguistics application) and extracting precise infor-
mations from texts. We shall describe the last one in
greater detail.

Extracting precise informations from texts consists of
asking a question about a fact from the text (e.g., when a
person named “x” was born) and finding the answer (e.g.,
1879).

Our approach to extracting facts from texts is to view
texts as a virtual relational database corresponding to a
specific schema. The schema defines. a priori. the
universe of all queries that may be posed, and the answer
to a query is found from one or more texts at execution
time. Thus, except for the encoding at load time, the texts
are not preprocessed. Query processing makes heavy use
of the syntactic and semantic features of words that we
have designed into the code.

We have constructed an experimental system with a
collection of biographies in the (virtual relational) data-
base and the following schema:
reiations with attribute:domain pairs:

birth(author:person, birth-&date. birthgl:place);

degree(name:person. deg:degree, deg-&date.
deg_inst:institution, field:field_of_science):

education(name:person, attend.inst:institution,
field:field_of>cience,period:(date,date));

emp_history(name:person. employer:institution,
position:position, d_started:date. dJeft:date);

location(inst-pame:institution, pl:place);

researchJnterest(name: erson,
P

area:field_of>cience,
period:(date.date) U wlfeat(w)= “PRY] U (date-date));

publication(author:person. title:citation. &date,
published:institution).

A priori, lexical information concerning some of the
relations and domains may be supplied, for example,
birth:

root: “birth”;
person:

word class: proper phrase:
semantic feature: HUM;

place:
word class: proper phrase:
semantic feature: LOC;

As we have explained, no stored relations correspond
to the schema above. Instead. the collection of texts is
stored as a relation

codJext(tno. sno. id, descr)
where tno (text number) identifies a particular biography,
sno identifies a sentence, and (id, descr) is the coded form
of a lexical unit. Now the question: “Where was Albert Ein-
stein born?” can be expressed as a virtual query:

range of e is birth
retrieve (e.birth-place) where
e.author=“‘Albert Einstein”.

Using the facts: code(“LOCATION”)=46, code(“Albert
Einstein”)= -1607030, code(root=“birth”)=12636. we can
translate virtual query into a real query:

range of e is cod-text

range of u is codlext
range of v is codlext

retrieve(e.id) where e.id<O and feat(e.id, e.descr)=46

and e.sno=u.sno and e.tno=u.tno

and root(e.id.e.descr)=(126360000,0)

-115-

and v.tno=u.tno and v.sno=u.sno

and v.id=-1607030

which yields the answer “Ulm. Germany”.

8. Conclusion

We have presented a way of handling texts in a rela-
tional database system so that: (a) storage efficiency is
maintained, (b) ambiguity of words is resolved, and (c) lex-
ical (word based) information, both syntactic and seman-
tic, is made explicit. These goals are achieved through
encoding, which in turn uses a dictionary and an expert
system for resolving ambiguity. Once a dictionary is built.,
any machine readable text can be automatically encoded
with no human intervention.

Our long term goal is to apply what we have done to
the problem of extracting facts from texts. A simple and
rather primitive version of such a system is given as an
example. However. considerable more work will be
required for a fact-extraction system of general utility,
and we are in the midst of such a development.

References:

[DAVI 771 Davis,R.. et al., Production rules as a represen-
tation for a knowledge-based consultation pro-
gram. Arttficial Intelligence. 6(1977). pp. 15-45;

[ENCY 791 The new Encyclopaedia Britannica, Macro-
paedia. 15th edition, Vol. 6. pp.510-514;

[HaWL 631 Hayes-Roth.F..Waterman,D.A..Lenat,D.B.(Eds.),
Building expert systems, Addison Wesley Publ.
Comp. Inc., 1963;

[INGR 611

[KeRi 761

[SiCh 621

[STEF 821

INGRES Version 7 Reference Manual.ERL UC
Berkeley, Memo. No. UCB/ERL M61/61, Aug
1961;

KernighanBW.. Ritchie,D.M.. The C program-
ming language, Prentice Hall Software series,
1978;

Simm0ns.R.F.. and Chester.D.. Relating sen-
tences and semantjc networks with procedural
logic, CACM. Aug. 1962. vol. 25. No.6, pp.527-547;
Stefik.M.. et al., The organization of expert sys-
tems, A tutorial, Artificial Intelligence.
16(1982). pp. 135-173.

-116-

