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Abstract 

In this paper we develop a framework for the sup- 
port of temporal data. The concept of a time se- 
quence is introduced, and shown to be an important 
fundamental concept for representing the semantics of 
temporal data and for efficient physical organization. 
We discuss properties of time sequences that allow 
the treatment of such sequences in a uniform fash- 
ion. These properties are exploited in order to design 
efficient physical data structures and access methods 
for time sequences. We also describe operations over 
time sequences, and show their power to manipulate 
temporal data. 

1 Introduction 

Recently there has been a surge of interest in tem- 
poral data, perhaps because memory and magnetic 
disk storage costs are rapidly decreasing, and the ad- 
vances in optical disk technology. In the past, tempo- 
ral data was mostly delegated to archival storage or 
discarded altogether because it was too expensive or 
impractical to access them on-line. While it was rec- 
ognized that historical data are of great importance 
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to applications such as data analysis for policy deci- 
sions, such applications were not viewed as essential 
for a day-to-day operation. As a result, existing data 
management systems are designed to support the view 
of the most current version of the database. The dom- 
inant approach is one of data being updated, deleted, 
and inserted in order to maintain the current version. 

In reality, many applications need to maintain a 
complete record of operations over the database. This 
is quite obvious in most business applications, such as 
banking, sales, inventory control, and reservation sys- 
tems, where the history of all transactions haa to be 
recorded. F’urthermore, if this history can be man- 
aged as an integral part of the database, it could also 
be statistically analyzed for decision making purposes. 
In addition, there are applications that are inherently 
time dependent. Our interest stems from such appli- 
cations in scientific and statistical databases (SSDBS), 
where physical experiments, measurements, simula- 
tions, and collected statistics are usually in the time 
domain. In such applications temporal data are es- 
sential, and in many cases the concept of a “current 
version” does not even make sense. Other applications 
where the time domain is inherent include engineer- 
ing databases, econometrics, surveys, policy analysis, 
music, etc. 

There is an extensive literature related to the con- 
cept of time, and the support of temporal data. There 
are several surveys, such as [Bolour et al 82) and 
[Snodgrass & Ahn 851, that summarize the relevant 
literature. Most of the work todate concentrates on 
the semantics of time, and on logical modeling and 
query languages for temporal data. Little work was 
done in the physical organization area. In this paper, 
we address both the logical and physical aspects of 
temporal data management. 

We refer to a collection of data values over time 
as a “time sequence”. Our purpose here is to de- 
velop a framework for the support of time sequences, 
rather than to define precisely the details of the de- 
sign. Thus, many concepts are only explained by us- 
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Figure 1: A Time Sequence Array 

ing examples. 
In section 2, we define time sequences and illustrate 

with several examples that they are a natural concept 
for viewing temporal data. In section 3, the differ- 
ent properties of time sequences are described. These 
properties are important for operations over time se- 
quences, and for their physical implementation. In 
section 4, we describe operations over time sequences. 
In section 5 we discuss methods for the physical or- 
ganisation of time sequences. Section 6 contains a 
summary and areas of future research. 

2 Time Sequences 

It has long been observed that a temporal value 
is actually a triplet (3, t,~) where s,t, and u stand 
for surrogate, time, and value respectively. Thus, 
the triplet (John, March, 180) may represent John’s 
weight in March drawn from the space (name X month 
X weight). Surrogates may be either taken from a 
defined domain, such as %ame” or may be assigned 
automatically by the system. The important thing 
is that they uniquely identify each element. We note 
that a collection of values for John over time will have 
the same surrogate, and thus could be represented as 
(3, (t, u)‘). (t, u)’ represents an ordered-sequence of 
pairs of times and their associated values. Thus, it 
is natural to think of temporal data as time ordered 
sequences of pairs (t, u) for each surrogate. We call 
each sequence ,for a single surrogate a time sequence 
(‘W. 

It is convenient, to view a collection of TSs for a set 
of surrogates as a two dimensional array, as shown in 
Figure 1. We call such an array a time sequence array 

(TSA). Note that each row of the array represents a 
TS, and that u;j represents a value associated with 
some surrogate si and some time tj. The existence 
of a value uij depends on the properties of the TS: 
some TSs may have many “null” values. A TSA made 
up from such TSs will therefore be sparse. As an 
example, consider the case of a bookstore database 
w.here the surrogates represent books, the time points 
represent days, and the values represent the number 
of c,opies of a certain book sold in a particular day. 
In that case, the two dimensional array will be fairly 
sparse, since only a small fraction of the books sell in 
any given day. 

Viewing temporal data as TSs is an important fun- 
damental concept to the logical and physical support 
of such data. As we will see next, categorizing the 
semantics of TSs facilitates the support of different 
types of temporal data uniformly. In section 4, we dis- 
cuss operations over entire TSAs that are both power- 
ful and practical. The physical structures and access 
methods proposed in section 5 hinge on the ability to 
treat sets of TSs collectively. 

2.1 Examples 

Before discussing properties of TSs, we examine a 
few examples shown in Figure 2. The first three exam- 
ples are from business applications and the last three 
are from scientific applications. Figure 2a shows the 
variation over time in the cost of a certain item (e.g. 
a part sold in a shop.) Note that the cost in this ex- 
ample changes every few days (shown as notches in 
the time scale). If this sequence were to be presented 
as the (time, cost) pairs (0,1)(4,2)(7,3)(11,2)(13,3)... 
,then the interpretation of the sequence is that the 
cost of 1 applies to the time points 0 to 3, the cost 2 
applies to time points 4 to 6, etc. We say that this 
TS has the property of being irregular in the time 
domain since the intervals between the time points 
0,4,7,11,13 )... vary. In addition, this TS has the prop 
erty of being step-wise constant during each interval. 

Figure 2b represents the number of units that a cer- 
tain item sold per day. Assuming that this item sells 
every day, the TS is said to be regular. In addition, 
this TS is discrete since data values exist only at spe- 
cific time points. Unlike the previous example, where 
values exists during the intervals, a discrete TS has no 
values associated with intervals. Values are associated 
only with discrete points. 

In Figure 2c we show the sequence of a patient’s 
visit to a hospital. This is a special case of the irregu- 
lar, step-wise constant TS, in that only two values are 
used. The values can be thought of as (off, on), (O,l), 
(does not exist, exist), etc. according to the applica- 
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0 2 4 6 8 10 12 14 16 
a) Item cost: irregular, step-wise constant. 

b) Items sold: regular, discrete. 

I I I _ I 
c) Patient visits: event. 

I I II I I III 
d) Detector data: irregular, discrete. 

e) Magnetic field: regular, continuous. 

I I I I l-7 
f) Failure data: event. 

Figure 2: Examples of Time Sequences 

tion. This special case is important since it represents 
events (a commonly occurring sequence). In addition, 
event TSs can be exploited in the physical organiza- 
tion of the data to achieve better storage utilization, 
as is pointed out in Section 5. 

Figures 2d, 2e, and 2f show data from a typical 
physics experiment. High energy particles are col- 
lided and the paths of the resulting sub-particles are 
recorded by detectors. Figure 2d shows the pattern of 
measurements that a particular detector registers as 
sub-particles go by. This pattern can be categorized 
aa irregular and discrete. 

The sub-particles move in a magnetic field so that 
the paths of the charged sub-particles are curved. 
Since the magnetic field may fluctuate, it is mea- 
sured in regular intervals, as shown in Figure 2e. 
(These measurements are needed later-in the anal- 
ysis phase in order to interpret the detector measure- 
ments.) Since detector measurements are taken at a 
higher frequency than magnetic field measurements, it 
is necessary to compute (interpolate) values for points 
in between those taken for the magnetic field. As a 
result, the TS for the magnetic field is continuous. In 
general, determining the value of a continuous TS at 
an intermediate point may not be a simple function. 

For example, interpolation functions may require the 
values of several points to each side, not only the two 
adjacent points. Thus, continuous TSs will usually 
have an interpolation function associated with them. 
The default is a simple interpolation of the two adja- 
cent points. 

Figure 2f represents the history of failures of de- 
tectors. It is quite slow relative to the frequency of 
detector measurements taken (the time scale is mea- 
sured in hours, rather than seconds). Nevertheless, 
this data is essential in order to disqualify some mea- 
surements taken at times that a detector is close to 
failing, because they may not be reliable. This is an- 
other case of an event TS. 

2.2 Viewing time sequences 

As can be seen from the examples above it may be 
more convenient to view TSs and TSAs graphically. 
The issue of the most appropriate user interface for 
temporal data is beyond the scope of this paper. How- 
ever, it is worth considering briefly how TSAs could 
be represented in the context of the relational model. 

One possibility is to view the TSA as a relation with 
the columns: surrogate, time, attribute. This will be a 
special type of an order preserving relation, where the 
sequence of values in time for the same surrogate have 
a special interpretation (i.e. that of a time sequence). 
This possibility is quite compatible with the relational 
model, as TSAs can be viewed as tables. 

Another possibility is to introduce a special tem- 
poral data type, where for each surrogate a sequence 
of (time, value) pairs could exist. It is more difficult 
to represent such complex data types in a table form, 
but perhaps a two level representation could be used. 

Regardless of the specific user interface chosen, we 
wish to emphasize here that the modeling concept of 
a TSA is an important one, since it carries temporal 
semantics, and powerful operators can be define over 
it. We will discuss the semantics and operators of 
TSAs next. 

3 Properties of time sequences 

There are four properties of TSs that are of interest 
to US, two of which were already observed in the ex- 
amples above: regularity, type, static/dynamic, and 
time unit. These properties can be represented in a 
concise form in the data description part of a system. 
We discuss each below. 
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3.1 Regularity 

There are two reasons for distinguishing between 
regular and irregular TSs. First, this is a semantic 
property that is needed by the system in order to in- 
terpret the TS. The sequence of time points of regular 
TSs can be described concisely as part of the data def- 
inition section. In addition, it is needed for operations 
on TSs and among TSa. This will be discussed fur- 
ther in Section 4. Second, this property is extremely 
important for the physical organization of TSs. As 
discussed in Section 5, the techniques for supporting 
regular TSs are much simpler than those needed for 
irregular TSs. 

regular TSs are very common in scientific database 
applications. Most scientific experiments and simu- 
lations measure or compute series of data values at 
regular intervals, often by some mechanical device or 
detector. Irregular values usually result from man- 
ual measurements or from unpredictable events, such 
as the failure of a detector. Statistical databases also 
tend to be regular, since statistics are usually collected 
at regular intervals for analysis purposes. There is, of 
course, the possibility that data values are null (miss- 
ing or unknown). TSs that contain a large number of 
null values can be thought of as irregular TSs. The 
term “time series” refers to a regular TSs, and is im- 
portant in statistical analysis, because special analysis 
methods can take advantage of the regularity of the 
data. On the other hand, business transaction data, 
such as items sold in a store, are typically irregular 
over the time dimension. 

3.3 Static/dynamic 

3.2 Type 

In the examples above, we have seen four types of 
TSs and their semantics explained. The four types 
are: discrete, continuous, step-wise constant, and 
event. They seem to be sufficient to describe the ap- 
plications we encountered so far. Other types could 
be added if such a need arises. 

The classification of TSs by type is important, since 
it permits the treatment of TSs in a uniform ivay. For 
example, two regular TSs of different types, say dis- 
crete and continuous can now be implemented using 
the same data structures. In effect, the type infor- 
mation removes the “behavioral” part of TSs from 
consideration of physical organization. 

The type information is also important for opera- 
tions over and among TSs. It can be used to inter- 
pret TSs as to whether a value exists for a certain 
time point, and whether a value can be implied or 
interpolated if it does not exist. 

Another aspect of temporal databases that effects 
their logical and physical properties, is whether the 
temporal data set is static or dynamic. By ‘static” 
we mean a data set that has been fully collected, and 
no more additions over the time dimension are ex- 
pected. Many examples can be found in SSDBs, such 
as data from an experiment which were fully collected, 
and are now ready for analysis. Similarly, many sta- 
tistical databases represent collections that are con- 
sidered complete, such as the census data or gasoline 
consumption over the last 10 years. 

On the other hand, “dynamic” data sets are con- 
tinuously growing. Most business data are dynamic 
since transactions, such as sales, represent a continu- 
ous process. Of course, one can choose to cut off the 
process at some point and consider the set of data col- 
lected so far as a static data set. As we will see later, 
dynamic databases are more difficult to support phys- 
ically. 

3.4 Time units 

Regardless of whether the TS is regular or irregular, 
part of its semantic description should be the lime 
unit. The time unit determines the interval between 
time points, such as seconds, hours, days, etc. In 
regular TSs a value exists for every time point, while 
in irregular TSs values exist only for some of the time 
points. 

Every TS has a &art time associated with it. 
Clearly, the start time and the time unit can be used 
to map the real time specification of a time point (e.g 
March 17, 1986) to an ordinal position of the columns 
of the TSA (e.g. column 372). Such a mapping func- 
tion should be supported by a temporal data manage- 
ment system. Note that a end time exists for static 
TSs only. 

Properties summary 

In summary, the following properties should be 
identified for TSs and made part of the data descrip 
tion file. 

1. Regular/irregular. 

2. Type: discrete, continuous, step-wise constant, 
event. 

3. Static/Dynamic. 

4. Time unit, start time, end time (end time in the 
static case only.) 
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a) Item cost 

b) Items sold 

11 III 
c) Total revenues: item cost X items sold 

._ 
Figure 3: Composition operator 

4 Operations Over Time Se- 
quences 

One of the advantages of representing temporal 
data with TSs is that it is possible to specify opera- 
tions over the entire collection of values of TSs (or any 
desired part thereof) using a single operator. Con- 
sider, for example, that we wish to get the revenues 
per day of selling a certain book during the month 
of January. This situation is illustrated in Figure 3. 
Suppose that we have a TS that reflects the variations 
of the book price as shown in Figure 3a, and a sec- 
ond TS that represents the number of copies sold, as 
shown in Figure 3b. We want a new TS to be gen- 
erated with the desired result, as shown in Figure 3c. 
To achieve this we need only to specify the multipli- 
cation of the two TSs. The effect of this operation 
would be to find matching pairs (in time) using the 
properties of the TSs, and to perform the multiplica- 
tion for all matching pairs of the TSe. Furthermore, 
such an operation (which we call compoGtion) can be 
specified for a set of books, i.e. it can be applied to 
entire TSAs. 

Operations over the time domain have been sug- 
gested by several authors [e.g. Snodgrass 84, Clifford 
& Tansel 851. Such operations (for example, selecting 
a time interval) are also useful in order to specify re- 
strictions in the time dimension of TSs. However, we 
want to emphasize in this section the type of opera- 
tions that can be applied directly to collections of TSs. 
We will only cover the functionality of such operations 
in a generic descriptive form, as the specification of 
such detail would require a separate paper. 

1 I 
I 

a) Deposits and withdrawals 
1 

I 
b) Account balance 

- 

Figure 4: operation over a single TSA 

4.1 Restriction 

The purpose of the restriction operator is to derive 
sub-arrays. It is the conventional restriction operator 
applied to both the time and surrogate dimensions of 
a TSA. For example, referring back to the bookstore 
example above, we may wish to restrict our attention 
to mathematics books and the month of March only. 
The result of this operation is another TSA. 

4.2 Operations over a single TSA 

These operators can be applied to a single TSA to 
produce another TSA with the same number of mum- 
gates and time points. Consider the example of Fig- 
ure 4. Figure 4a shows an example TS from a TSA 
that represents deposits and withdrawals to accounts. 
Suppose that we wish to generate a running balance 
from this TS. Figure 4b shows the result of such an 
operation on the TS of Figure 4a. This is an example 
of an operation on a single TSA of type “discrete” 
that generates a TSA of type ‘step-wise constant” 

In general, operations over a single TSA may 
change the type, but do not change the time unit of 
the original TSA. Operations that change the time 
unit involve aggregate functions over groups in the 
time domain. This case is discussed in section 4.5 
below. 

4.3 Composition 

Figure 3 was an example of a composition opera- 
tor. In general, two or more TSAs can be composed 
to form a new TSA. The composition may involve sim- 
ple arithmetic functions, or complex functions that re- 
quire a program. As an example of the need for com- 
plex functions with the composition operator, refer 
back to the scientific examples in Figures 2d, 2e, and 
2f. In this application, we need to correct the detector 
data according to the magnetic field. This function re- 
quires the use of a program as it is quite complex. The 
corrected values need to be further composed with the 
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failure data, so that we can invalidate (say generate a 
null) incorrect values. 

The use of TSAs for such problems simplifies the 
specification of the operations to be performed. A sys- 
tem that supports TSAs can handle the entire prob- 
lem in a clean and concise fashion (including the in- 
terpolation of values of the magnetic fields.) Further- 
more, the performance of such operations may benefit 
from efficient storage structures and access methods, 
such as those proposed in section 5. 

The time unit of the new TSA will assume the time 
unit of one of the original TSAs involved in the com- 
position. In the example just discussed, the new TSA 
will have the time unit of the detectors TSA. This 
needs to be specified with the composition operator. 

4.4 Operations over surrogate groups 

Suppose that in the bookstore example above, we 
want to get the total revenues per day for all mathe- 
matics books. We will have to total the revenue figure 
over all surrogates of the TSA representing mathemat- 
ics books. This is an example of an aggregate function 
(sum) over a TSA that generates a single TS. 

This example can be generalized to the case of gen- 
erating totals for groups of surrogates according to 
some grouping function, say groups by category, such 
as mathematics, biology, etc. This is equivalent to 
the aggregate functions in data management systems, 
as applied to TSAs. The aggregate functions can, 
in general, include any function over groups, such as 
standard deviation. The result of such an operator 
is a TSA that contains a TS for each group that was 
aggregated. The time unit is the same as that of the 
original TSA. 

4.5 Operations over the time domain 

This class of operations is symmetric to the previous 
one, but it applies to the time domain of the TSAs. 
Aggregate operations in the time dimension cause the 
time unit to change. Suppose that we wizh to get the 
total revenue per month for all mathematics books 
sold during 1985. Th e result would be a TSA with 
time points representing months for the year 1985. 

In this case, we need the capability to describe 
groupings in the time domain. The most common 
case, we believe, will generate regular TSAs, since 
time is organized in a hierarchy of regular groupings, 
such as second, minute, hour, day, etc. 

5 Physical Organization 

Several authors [e.g. Lum et al 84, Ahn 861 have 
pointed out that storage efficiency is the key to the 
practicality of supporting temporal data. The rea- 
son is that history data can be very large relative to 
the current version of the database. Therefore, the 
design of the physical organization should take ad- 
vantage, whenever possible, of the properties of tem- 
poral data so as to minimize the amount of storage 
used while maintaining reasonable access time. One 
obvious property that can be exploited is that while 
new data may be appended, changes to previous data 
are rare. A few changes (updates, deletes, and in- 
sertions) may be made in order to correct mistakes, 
but then the data stay practically unchanged. Thus, 
non-updatable data structures can be used to achieve 
better storage and access efficiency. 

Other properties of TSs were discussed in Sec- 
tion 3. Two of these properties, “regular/irregular” 
and “static/dynamic”, effect greatly the design of the 
physical structures. Their effect is discussed briefly 
below. 

5.1 Design goals 

It is easy to visualize the goals of the physical struc- 
ture design of TSAs by referring to the two dimen- 
sional representation shown in Figure 1. There are 
three main issues: storage efficiency, efficient indexes, 
and partitioning of the array. 

The most storage efficient physical structure that 
can be expected is a structure that stores the surro- 
gate values and the time values only once, rather than 
with each data value, i.e. the surrogate and time val- 
ues are =factored out”. Obviously, if we implement the 
TSA as a two-dimensional array structure we achieve 
this goal. This can work well for regular TSAs, but 
special methods are needed for storing sparse arrays 
for irregular TSAs. 

The second issue is providing indexes for the surro- 
gate and time domains. In the surrogate domain con- 
ventional indexes can be used to locate the rows that 
represent ‘TSs. The physical order of the rows and the 
best index to use depend on the access patterns to the 
TSA. We discuss the effects of access patterns below. 
The index in the time domain can take advantage of 
the fact that time points are ordered. Thus, in the 
case or regular TSAs, no explicit index needs to be 
created since the column for a given time point can 
be calculated using the start time and the time unit 
of the TSA. In the case of irregular TSAs, the array 
may be compressed and an index to the compressed 
time domain is needed. More details will be discussed 
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in the section on file structures below. 
The third issue is the physical partitioning of the 

TSA into blocks. We are primarily interested in stor- 
age structures that optimize access to secondary stor- 
age, such as magnetic or optical disks. We believe 
that even if large amounts of main memory exist on 
a system, temporal data will be stored primarily on 
secondary devices. One reason is clearly the large 
amount of temporal data. Another reason is that tem- 
poral data will tend to be accessed less frequently as 
it gets older, and would be delegated to secondary 
storage. 

The choice of physical partitioning depends on the 
expected access patterns to the data. For example, if 
we expect that most accesses in the time domain are 
for consecutive time points, then we should try and 
cluster the consecutive values of the TSs into blocks 
in order to minimize I/O to secondary storage for a 
given query. In addition, the property that TSAs are 
static or dynamic may effect the array partitioning. In 
the case of a static TSA, the distribution of the data 
values is known, and the array partitioning can be 
analyzed and optimized ahead of time. In the case of 
dynamic TSAs the partitioning has to adjust dynam- 
ically to the arrival of new data points. These issues 
are discussed in more detail in the file structures sec- 
tion below. But first we discuss several assumptions 
we make about access patterns. 

5.2 Access patterns 

The first assumption is that the order of values in 
TSs is important, and should be preserved in the phys- 
ical structure. The reason is that operations in the 
time domain are usually over periods of time, such as 
asking for occurrences before or after a certain time or 
within a time range. Thus, one design consideration 
is to minimize the the number of pages (blocks) read 
from secondary storage for range queries in the time 
domain. 

The second assumption is that we wish to have ran- 
dom access in the time domain. While in some ap- 
plications one can envision accessing entire TSs, we 
believe that efficient access to parts of the sequences 
is necessary. Thus, some indexing method on the time 
domain is necessary. 

The third assumption is that there may be applica- 
tions where ordering in the surrogate domain is desir- 
able. For example, in the books database mentioned 
above, we may wish to order the books by category 
in order to facilitate more efficient access to groups of 
books according to their categories. Thus, we would 
like to permit the specification of partitioning in the 
(ordered) surrogate domain as an option. We call this 

option below the “surrogate partitioning” option. 
The fourth assumption is that random access to sur- 

rogates is necessary. This implies that there must be 
a mapping (an index) from the list of surrogates to 
the ordinal position of the rows of the TSA. An or- 
dinary index can be used for this purpose, such as 
a B-tree or a hashing method. We will assume the 
existence of such an index. In many cases, an index 
for the surrogates already exists in order to support 
the non-temporal part of the database. If the order of 
the surrogates in the TSA is the same, then the same 
index can be augmented for accessing the TSA. 

The f;lth assumption is that a secondary index over 
the data values is not needed in most applications. 
Such an index can potentially be very expensive in 
terms of storage, because the number of entries for 
such an index is in the order of the number of data 
values. In any case, such an index provides a marginal 
benefit in situations where the typical access to the 
data involves restrictions on the surrogate and time 
domains. We will assume that such indexes (if ab- 
solutely necessary) would use conventional indexing 
methods. 

5.3 File structures 

Physical organization methods for temporal data 
were recently discussed in the literature. In [Lum et 
al 841 the authors consider the support of temporal 
data in the context of the relational model. Their 
methods consist of chained structures of values in the 
time domain. These chained structures are similar in 
concept to TSs. However, our approach differs in that 
we consider the support of the set of all TSs over all 
the surrogates in order to achieve common storage effi- 
ciency and common indexing structures. The concept 
of Uattribute versioning” mentioned in [Ahn 861 can 
also be thought of as representing TSs. While cluster- 
ing of attribute versions is proposed generically, there 
is no discussion of how to store and access the clusters 
jointly. 

In the designs below, we distinguish between the 
cases of regular and irregular TSAs. For each case 
we discuss the effects TSAs being static or dynamic 
and the effects of the ‘surrogate partitioning” op 
tion. Because of space limitations the designs are only 
sketched here. More details can be found in the full 
version of this paper issued as report LBL-21143. 

5.3.1 Regular TSAs 

Regular TSAs can be simply represented as a two 
dimensional non-sparse array. All the surrogates have 
regular TSs whose time points coincide, and thus the 
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time points can be Ufactored out”. Furthermore, it 
is not necessary to store the sequence of time points 
or to build an index over them. As mentioned before, 
given a time point, it’s corresponding column position 
can be calculated using the start time and time units 
of the TSA. 

a) The static case 

In order to preserve the temporal order, the array is 
stored in a row-wise fashion, i.e. the TSs are concate- 
nated in the order of the surrogates. The allocation to 
pages (or blocks) of secondary storage is straight for- 
ward, in the order of the concatenated list. The access 
to this structure is achieved with array linearization. 
It requires a simple calculation that uses the ordinal 
positions of the row(s) and column(s) requested. (The 
array linearization algorithm is well known, and will 
not be discussed further here.) 

The effect of the ‘surrogate partitioning” option is 
that we now want to have clustering of data values 
in both the temporal and surrogate dimensions. We 
partition the array into cells of equal size. As a prac- 
tical matter the size of the cells can be chosen to be 
the size of secondary storage pages. The dimensions 
of the cells are parameters that can be chosen by a 
database administrator to fit the application. The or- 
der of elements within a cell is row-wise to preserve 
the order of TSs. Thus, the elements of a cell can 
also be accessed randomly using array linearization. 
In order to read a data value, two array linearization 
computations are needed: one to determine the ap- 
propriate cell, and one to locate the position of the 
value in the cell. 

This cell partitioning scheme still retains the fol- 
lowing properties: the surrogate and time values are 
“factored out”, the time points are not stored explic- 
itly (they can be computed), random access in the 
time dimension can be achieved without the overhead 
of an index, and random access in the surrogate di- 
mension can be achieved as long as the ordinal posi- 
tion of the surrogate is known, usually available from 
existing indexes. The dimensions of the cells are a 
design choice that determines the effectiveness of ac- 
cess in the time and surrogate domains. Note that 
choosing a surrogate dimension of 1 is equivalent to 
the initial design where the %urrogate partitioning” 
option is not required. 

b) The dynamic case 

The dynamic case can be handled as an extension to 
the cell partitioning mentioned above. The surrogates 
are assigned to cells, and the cells fill up as new values 
arrive. Since the rate of arrivals is the same for all 

surrogates, we only need to keep track of the active 
cells currently being filled and treat the previous cells 
as static. 

The access in the time domain is also similar to the 
static case. Given a surrogate and a time point, one 
can calculate the cell number and the displacement 
within the cell. 

One difficulty associated with dynamic TSAs is that 
the cells currently being filled have to be managed. 
Suppose that there are m surrogates. The worst case 
is when each cell is assigned to a single surrogate, since 
we need m cells to be “active” at the same time. If 
we do not have a large enough buffer to hold the m 
cells, we need to write the cells to secondary storage 
in a piece-wise fashion. 

5.3.2 Irregular TSAs 

The support of irregular TSAs is more complex. 
Clearly, we could store the (irregular) TSAs as series 
of (time, value) pairs. However, the ability to Ufactor 
out” time values that are shared across surrogates is 
lost, as well as the simple indexing capability over 
the time domain that exists in the regular case. In 
the following design we take advantage of the static 
nature of the TSs to achieve these goals. 

a) .The static case 

Consider, for example, the bookstore example men- 
tioned before. Each TS will have points only for the 
days that books were sold. Assume that each non- 
existing point is represented as an explicit null value. 

Obviously, this sparse array can be accessed in a 
way similar to the regular case using array lineariza- 
tion. The problem is how to get rid of the nulls while 
preserving efficient access. Such a technique, called 
‘header compression”, was developed previously in 
[Eggers & Shoshani 801. It is essentially a run-length 
compression method where counts of null and non- 
null sequences are stored in a separate header. This 
permits the elimination of all the nulls from the stored 
data. The header can be organized as an index so that 
it can be searched in logarithmic time. We can apply 
this technique to the sparse array by concatenating 
the rows, resulting in a long sequence of values, many 
of them null. In order to find an element in the array 
we first use the array linerization computation and 
then the header to map into the non-null values. 

As mentioned in section 3, the event type is a spe- 
cial case of irregular TSs since it has only two val- 
ues. Using the header compression method mentioned 
above, it can be handled with a header only where the 
header keeps track of sequences of O’s and 1’s. There 



is no compressed data values list, only the header. 
Thus, it is worth treating the event type as a special 
case as it greatly enhances storage utilization. 

The above method may not be very effective in 
cases that the array has little overlap of the time 
points across surrogates. In the worse case, if there 
is no overlap at all, the number of points on the time 
line is the same as the number of data values. Thus, 
the storage requirements are equivalent to storing the 
(time, value) pairs. However, we do not believe that 
such applications are common. 

Now, consider the effects of the Usurrogate parti- 
tioning” option. As in the static case we can partition 
the array into cells. However, in this case the array 
is sparse. This problem is precisely that of designing 
a grid file [Nievergelt et al 841 in a two dimensional 
space. The selection of the partition lines (in both 
the time and surrogate dimensions) is determined by 
the grid file method so as to minimize empty space in 
cells. This method partitions the array dynamically: 
each time that a cell overflows a new partition line is 
introduced. Experimental results in [Nievergelt et al 
841 show that a storage utilization of about 70% can 
be expected on the average. However, since we are 
dealing with the static case, better methods could be 
used that take advantage of pre-analyzing the entire 
data set. In a recent paper (Rotem & Segev 851 which 
deals with the static case of grid files, the authors 
have developed methods that achieve better storage 
utilization than the dynamic grid file. 

There are other cell partitioning methods that could 
be used (e.g. Quad-trees). Experimentation would 
determine the most appropriate methods. Our main 
point here is that cell partitioning methods seem to 
be the most appropriate in this case, and that pre- 
analysis for the static case should yield better parti- 
tioning. 

b) The dynamic case 

As can be expected by now, this is the most complex 
case as we need to deal with irregular TSs which grow 
dynamically. In addition, different TSs have different 
rates of growth that can change over time. 

First, we consider the case where the Yzurrogate 
partitioning” option is not required. In this case, cell 
partitioning methods are not effective because we wish 
to preserve the physical ordering of TSs, and these 
methods partition the TSs into cells according to the 
data distribution. Thus, we consider other alterna- 
tives. 

Suppose that pages (blocks) are assigned to each 
surrogate. The pages fill up at different rates and 
therefore at different times. The effect is that each 

surrogate has a string of pages associated with it, 
where each page has a different start time and du- 
ration. This information can be organized into an in- 
dex where each surrogate has an ordered list of (page 
number, start time) elements. Given a surrogate and 
time (or range of time), such an index can be searched 
for the page(s) holding the corresponding values. The 
cost of such an index is obviously proportional to the 
number of pages. If we assume that a typical page 
holds 100-200 values, then the index size would be 
about ‘1% of the array size. 

There are two problems associated with this scheme. 
One is indexing in the time domain over the pages 
which have different start times and durations. The 
second problem is that the pages of slow rate surro- 
gates may remain mostly empty for a long time. This 
w,astes storage. 

The problem of searching pages with different start 
times and durations was addressed recently in the 
context of proximity search in space and searching 
of time intervals ]Hinrichs & Nievergelt 83, Ruben- 
stein 85). We describe the solution in terms of our 
context. The idea is to represent pages in a two di- 
mensional space, whose coordinates are start time and 
duration. Thus, each page is represented as a point in 
this space. A search for all pages that contain a range 
in the time domain translates into searching a region 
in this two dimensional space. By organizing this two 
dimensional space as a grid file, one can efficiently find 
all the pages that fall in that region. This technique 
seems most appropriate for our indexing problem. 

The solution to the problem of wasted storage is 
not obvious. The intuitive solutions is to store several 
slow rate surrogates on the same page. The higher the 
rate of the surrogate, the fewer the number of surro- 
gates that will be stored on the same page. However, 
such a scheme introduces more complex indexes and 
access methods. It requires further research. 

Now, we consider the effects of the “surrogate par- 
titioning” option. Obviously, the dynamic grid file 
method can be used here. However, this is an unusual 
case of a grid file where the boundary keeps growing 
and new elements are only added at the end of the 
time domain. We are not familiar with any work that 
treats this case, and consider the performance of such 
a method an open problem. However, we note that we 
can cut off the grid file at selected intervals (say, ev- 
ery month in the bookstore example above) and treat 
the arrays thus created as static. Each static array 
created periodically can be organized as a static grid 
file using the methods mentioned above. This could 
be an effective way of exploiting the linear insertion 
property of TSs. As mentioned before, other cell par- 
titioning methods could be considered. The study of 
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their relative performance is open for further research. 

6 Summary and Conclusions 

In this paper we have described a framework for 
the support of temporal data. It is based on the con- 
cept of a time sequence, which represents sequences 
of data values over time for a given surrogate. We 
discussed properties of time sequences that allow the 
treatment of different types of time sequences in a 
uniform fashion. We described operations over time 
sequences, and their power to manipulate temporal 
data. Finally, we have analyzed the design criteria 
for the physical support of time sequences, and pre- 
sented designs for physical data structures and access 
methods for such sequences. 

The main advantage of our approach is the ability 
to operate on an array of time sequences with a single 
operator. Also, viewing the data as time sequence ar- 
rays suggests efficient physical structures for the sup- 
port of temporal data. 

Future work includes the development of detailed 
syntax for operations on time sequences, and the eval- 
uation of the physical designs with analytical methods 
and real data. 
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