HISTORICAL MULTI-MEDIA DATABASES

M.Adiba , N.Bui Quang

Laboratoire de Genie Informatique-IMAG
GRENOBLE-University, BP.68
38402 Saint Martin d’'Héres, France

ABSTRACT

We develop here several notions in order to define,
store and manipulate historical data in generalized or
multi-media databases i.e databases which are able to
handle non-classical data (text, image, voice).

For a given database object X, an history is a
sequence of the successive values that X ook accross time.
This notion has been studied before but here, we generalize
histories by considering different types of database objects.
Particularly, we apply the history notion to multi-media’
documents and we propose extensions for data definition
and manipulation languages.

The following points are discussed :: definition of
object histories (perivdicity, persistency), propagation of
historicity, update and history management, history and
schema modification.

1- l.NTRODUCTION

Today, database systems are only able to provide more
recent and consistent versions for data. However for many
applications this may not be always desirable. More and more,
historical data is needed (for instance in economical databases) or
"old" data is required by several applications. As an example
consider a rather traditional business application where a user
wants to ask queries such as :

"What is the evolution of John's salary during the last five
years 7" .

Dealing with historical data is dealing with time and several
previous works hadve been done in databases [CLI 83]. Most of
these studies introduced time in the data’structure, for instance
[BOL 82, KLO 81, OVE 82, SNO 85]. In TERM [KLO 81] time
is explicitely introduced at the level of the Entity-Relationship
.model. It is considered as a particular data type with several
consistency constraints associated with it. Also [OVE 82] descri-
bed a time expert incorporated into the relational DBMS IN-
GRES. ‘ ,

Other researches were concerned with the extension of a
DBMS in order to provide good data structure for historical data
but nothing was said about the definition and manipulation by
end-users of such histories [LUM 84]. t »

In non traditional database applications e.g office automa-
tion or CAD database objects are complex but it is also neccssary
to deal with successive versions. As an example [KAT 85] describe
a version server for CAD data in order to provide the designers
with a way to manage successive states of the object under design.

Extensions for version management in CAD databascs arc
also described by [DIT 85].

- Here, we address the problem from a chronological point of
view i.e we consider the evolution of a (complex) database object
over time in order not to be specific of a given application.

In a previous work [ADI 85] we addressed the problem of
incorporating time in a generalized or multi-media database
system. Time was treated as a special data type which can be used
when defining the schema and manipulated by special extensions
to the DML. Here we déscribe an extension of this work in order
to provide solutions for managing histories for generalized data.
More precisely our goals are the.following :

1) Insure fast access to current data

In general and although providing historical data mana-
gement we think that most of the queries will concern current
versions and that a good response time must be provided.

2) Provide different granularity for historical data

 In relational terms this means that the user wants to
define what attributes should be historical in a given relational
schema. For instance an employee’s name and birthdate dont
change actross time but his/her address or salary does. In our
" model, which is based on the Entity-Relationship approach, we
can also provide historical aspects on entities and relationships.

: 3) Extend the data definition and manipulation language in
order to manipulate historical data

4) Take into account the evolution of the conceptual schema
over time

Because relational DBMSs provide dynamic schema mo-
dification we apply also our versioning approach at this level.

The organisation of this paper is the following. In section 2
we define the main concepts for historical data. In section 3 we
discuss the problem of historical data with regards to data models
and we show that historicity can be provided at several levels of
granularity. Sections 4 and 5 deal with history manipulation. We
describe several extensions which can be made to a SQL-like
language in order to query and update data. Sections 6 and 7
describe mechanisms for historical data management, and storage.
In section 8 we discuss historicity with regards to schema modifica-
tion and we conclude the paper by section 9.

2- HISTORICAL DATA : MAIN CONCEPTS

Consider a database object V which takes over time
successive values. Let us denote by (vi,ti) the couples (value,time)
for V : at time ti V took value vi. With such historics we can
answer to the following kinds of queries :

(1) What was John's salary at January 1985 ?

(2) What were John's salaries during the last twelve months ?

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of
‘the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee andlor special permission from the Endowment.

Proceedings of the Twelfth International Con?;rence on Very Large Data Bases Kyoto, August, 1986

(3) Give us a complete history of John's salary

Query (1) refers explicitely to a precisc time in the past.
Query (2) is relative and deals with a periodic notion:{month.by-
month) and query (3) must provndc all the couples (salary, time) :
which correspond to successive versions of the salary.

Our approach for historical data is based upon the three
following notions :

1) Periodicity, of the ti,.i.e. the sequence of times we want to
consider for the vi values. Note that this periodicity. may not be
rclated to a change of value, For instance if we want John's
salary for the last twelve months, thls does not mean that this
salary changed each month.

2. Modlﬁcallon' whtn value v is changcd by valuc v’ thiﬁ
. modification may or may not give, in.a given history, a new
. version. for V. It is_the database user responsability-to define

preciscly when a change must be incorporated into the history.

3) Persistency of values in the database. Th'eoretically.we can
consider that successive versions. are stored in an infinite”
space. However, the user may want sometimes to kccp only the
last n values.

Let us consider the relation EMPSAL(E#, NAME, JOB,
SALARY) which records for each employee whose number is E#
his name, -his: job and the ‘corresponding saldry. We want to keep
for each employee the evolution of his/her salary. A first solution
isto add an attribute DATE and let the user deal with:it. This may
lead to. inconsistencies if the DBMS does not. manage cxplicitely
the time concept, If it does, then all the tuples.of the relation are

"equally treated” and there is, no notion of last (current) version
and previous versions. So, it is Dnecessary for the DBMS to handle
explicitely historical data and this is prccmcly what we propose.
Without -adding the DATE attribute: we' ate goirg ‘to dcfine
EMPSAL as an historical rclation 'with a pcriodlc'ity of a year and
a persistency for 10 years. In this way the last version. will refer to
the current state of thc employees and previous versions to their
histories.

Our ‘model is not bascd upon the ¢ 0 dry rclatlon.ll model but
on the entity relationship approach extended with the notion of
type. Our data definition tangiiage will be ‘extcnded by the key
word "dynamic” for deﬁmng hmoncal ddfd For instance :

Example 1 :
type : EMPSAL : dynamtc entity
edch year
last 10
with time > day
e# : intcger;
name : string(10); -
job : string(10);
salary : (200..3000);
end; '

In this example "each year” defines the periodicity and “lust
10" defines the persistency. The time we consider here is compo-
scd with (year, month, day, hour, minute, sccond) and “"time >
day” means that we want the ti to be composed only with (year,
month).

A first approach for building histories is to let the user
decide when he/she wants to keep a new version after one or
severgl modifications took place on a given object. In this case, we

L cdn spehk about Manual History (MH). As an example consnder
" *‘a document report for which we want to keep in the database

_64 —

several versions :

type reportt : dynamic manual document
begin
introduction : text ;
body : list (1,*) of
" chapter : list (1,*) of text ;
conlusion : text ;
end -)

Editing a given report occurrence r may involve over time
many modifications. However at a given time the user may decide .
that the current version should be kept because it corresponds to a
"g00d” . version. In this case the history will contain all the
"successive" versions that the user decided to keep.

If we want to have automatic treatment for histories, we
can use an "each” clause to define the periodicity and in this case,
we speak.about a Periodical History (PH). In a PH, if an object is
modified within the period, this modification affects the current
version. New versions are only generated at the end of each period
by putting in the history a copy of the current version. However
when there is neither the manual nor each clause, this means that
we want to store successive versions and then we speak about
Successive History (SH).

As another example, we define a type exchange which can
be used for an attribute in an entity or a relatlonshlp (see section
3):

type exchange : dynamic

real ;

Here, cach time a value of this type is updated, the old
value is stored into-the history.

The "last” clause refers to persistency : it indicates how
many old values we want to keep. A persistency of zero corres-
ponds to a static type and if there is.no "last” clause the persistency
is theoretically illimited. ‘

The "with" clause as we 'saw it before indicates the format
associated with the time ti stored in a given history. This time is an
internal time or physical’ time as it is' managed by the computer
system. We take the assumption that a differcnce may ‘exist
between the real world time of an event and its recording into the
database, but this difference is irrelevant. Logical time is also
disccussed in [DAD 84| and [SNO 85]..

3- HISTORICAL DATA AND DATA MODELS

In the n-ary relational model, the history notion can oaly be
applied at the relation level. This means that one must be able to
(re)build all instances ri that a given relation R had accross time.
Going from an instance (ri,ti) to (4 1.tj4 1) is done by inserting,
deleting or updating tuples, (14 1.tj4 1) is the current version.

Our work is done in the framework of the TIGRE project
for generalized databases. The TIGRE data model is based upon
the Entity-Relationship approach {[LOP 83, VEL 85b]. By intro-
ducing types we want to introduce more semantics into the
description of database objects. Thercfore, the history notion can
be seen differently than in the (flat) relational model. Each entity
instance has an internal surrogate and eventually several attribu-
tes. By defining some attributes as dynamic types it is possible to
maintain an history of all the successive values taken by these
attributes, for a given entity instance.

More generally there are several kinds of data types : for
attributes we can have basic types (integer, real, string etc.),
record, list or document. The document constructor type defines a
complex tree structurc whose leaves are big size objects containing
text, graphics, pictures, voice coded data. Entities, relationships
and also gencralization, specialization or agregation notions arc
refered as class types in TIGRE. Each class type may have typed
attributes as mentioned above. We can apply our history notion on
record, list, document types but also on class types but in this case,
subcomponents cannot be historical. We do not accept history of
history for semantic reasons. However, when an entity is dynamic
this dynamicity is propagated on its attributes. We will come back
later on this problem.

Consider the following example :
Example 2 : '

type T-cmployee : dynamic entity
name : string(20) ;
address : t-address ;
salary : (300..40000) ;
department : string(10) ;
end; '
where t-address is defined as :
" type t-address : record
number : integer ;
street : string(15) ;

town : string(15) ;
zipcode : integer ;
end; :

With such a definition and for a given employce we can
storc the history of all addresses and answer queries such as :
"Give me all the towns where John lived". We will have also the
history of all the employees created into the database since the
begining of its implementation.

For the database administrator the choice where to put the
dynamicity either at the attribute or cntity levels is a design
problem which is application dependent. Our goal here is to
provide specific tools to handle different kinds of histories in a
generalized DBMS. When a type is not defined as an history we
refer it as a static type otherwise it is a dynamic onc.

Let us now discuss the problem of history propagation.
From an history type to its components historicity keeps the same
charateristics that is same periodicity, persistency, MH, SH or PH
ctc. We said that a type is explicitely defined as an history if it is
defined as a dynamic type otherwise a type can be implicitely
defined as an history because it is a component of an historv type
This history inheritance can be stated more completelv as in e
following :

1) History and basic types

- By construction a basic type is predefined therefore it cannot
be dynamic.

2) History and built types

- Renamed, record, list, document types and component types
of a static document can be dynamic.

For multi-media documents we have often the case where it is
not necessary to store all the successive versions of a document
but only for subparts of it. However this dynamic document
notion must be taken with care because the corresponding
objects are big size objects (see section 7).

- Component types for a dynamic record or a dynamic list are
static.

- Nodes of a dynamic document type are implicitely dynamic.
3) History and class Lypes
- Component types of a dynamic class are implicitely dynamic.

-*A dynamic relationship can only link static entities. In this
case we have to propagate the dynamicity to these entities. Let
us see this with an example :

type shipment : dynamic relationship
each .month
 between supplier and product
quantity : integer ;
end ;

We want to store quantities of products supplied month by
month by each suppliers. For consistency, the corresponding
suppliers and products associated with the corresponding
months must exist. This' means that historicity has to be
propagated to the linked entities. This propagation ‘is also
discussed later. '

- A specialization of a dynamic type is implicitely dynamic.
- In a dynamic aggregation, components become implicitely
dynamic. ' v
Note that in certain cases, history propagation can be
cascaded until basic component types.

Example 3 : Consider two entitics SCHOOL and STUDENT :

type SCHOOL : entity
sname : string(20) ;
address : t-address ;
tel : integer ;
teaching : description ;
end;

type STUDENT : entity
name : string(20);
b-date : date ;
address : t-address ;
scolarship : dossier ;
end;

and dynamic relationship INSCRIPTION
type INSCRIPTION : dynamic relationship last 5
between STUDENT : student (1,1)
and SCHOOL : school (1,*)
ins-date : date ;
academic-year : time-intcrval ;
speciality : string(15) ;
category : (C1, C2, C3);
coursc : list-of-lecture
end;
where : date is a renamed type (time > hour);
.t-address is a record .
description and scolarship are documents
list-of-lecture is a list of string(20)
They are static and predefined.

The relationship INSCRIPTION is a successive history
(SH) with a persistency of 5. This historicity is propagated to
SCHOOL and STUDENT and then to t-address, dossier, descrip-
tion and list-of-lecture which become dynamic. -

The historicity propagation is not trivial: For instance let us
consider three static entitics types and two relationships R1 and
R2, R1 linking A and B, R2 linking B and C. If we define R1 as
dynamic this wil} implicitely make A and B dynamic. Then, if we
want R2 to be dynamic we have a problem because B'is already
dynamic. However if both R2 and B have the same historicity,
making dynamic should be possible. More gencrally and by
considering compatible histories we allow the historicity propaga-
tion to take place on implicitely defined histories.

-, -4- HISTORY AND DATABASE UPDATE

. Updates made on a dynamic type are to be considercd
differently than those made. on static types.

4.1- Update operalions

- Inscrtion of an occurcnce in a dynamic type is always
made on the current version with the timestamp for the creation of
this occurence.

- Updating a successive history (SH) is done in two phases :
tuples to change with their associated time ti are copied in an
history area (see section 6) and then new tuples are stored in the
current version. Hence, for a given object ity cwrent version is
physically separated from its history, insuring fast access to it. If
the user wants to updatc a manual history (MH) he/she should
explicitely say that this modification will generate a new version in
the history or not. In the DML this meuns that the UPDATE
command modifies the current version without keeping the old or
new version in the history. If the user wants to keep a new version
either before or after an update, he/she can use the command
GENERATE VERSION.

- For a periodic history (PH) modification is done dircctly
as if there were no history. However, periodically. data is copied
in the history area. ’ :

For delction we have to consider the following cases

- If a tuple of a dynamic class is deleted it is writtcn in the
history area with a special deletion flag. This deletion must be
followed by the deletion of all its component types.

- If a tuple of a static class which contains dynamic
attributes is deleted, then we have to delete for cach such
attribute, the corresponding history. For instance if employecs
have dynamic addresses when an employee instance is deleted so
all his successive addresses must be deleted.

4.2- Persistency

Each time a data is introduced into the history arca we have
to verify its persistency. This is an important notion because it is a
way to control the size of the history area. Hence, if p is the
persistency, the (p+1) insertion must trigger the deletion of the
oldest version in the history area. In order to improve performance
we can think of several techniques to handle space in the history
area. For instance we can put a flag on areas which are freed and
then, have some garbage collector policy to gather unused space.

4,3- Correction and modification

By definition it is not possible to update data stored in the
history area. However it is always possible that some mistakes or
inconsistent data have been introduced there. This is a very
delicate problem but we think that we have to provide a special
manipulation primitive in order to correct historical data. Ob-
viously this primitive has to be used very carefully by authorized
users but semantically this operation is different from insertion,
deletion and updating which are always done on the current
version.

Note also that sometimes we have to correct the current
version without affecting the corresponding history. This means
that in this case, the automatic history mechanism should be
disconnected.

5- HISTORY AND MANIPULATION LANGUAGE

The data manipulation language must provide the user with
a way to manipulate current and historical data. In the following
we are going to describe some extensions that we made to the
TIGRE. data definition and-manipulation language called
LAMBDA {VEL 84, VEL 85b]. This language is a SQL-like
language but it is not intended to be given to the end-user, rather,
it is going to be embedded into general (typed) programing
languages or offercd to end-user through graphical interfaces.

In [ADI 85] we described some extensions concerning the
manipulation of time in general. Here, we concentrate on the
manipulation (interrogation) of historical data. In this case, time
can be used in two different ways :

1/ Explicitely (or absolute)

Qt: "Give me the valuc of V at time t"
Q2: "Give me all the values of V in the interval [t1,e2]"
Q3: "Give me all the values of V. after (before) time t”

2/ Implicitely (or relative)

In this case we want to consider versions for V such as :

Q4: "Give me the last version of V (current version)”
QS "Give me the three last versions"

noe Y

\.10 Give me ali the versions of V

Our main extension in the language is to use the key word

version

s €) o 1 A
to eicr o lllolUuLdl Gata.

For illustrating the manipulation of historical data we are
going to consider the fnllnwmg example which conce

ns em-

ployues of a given company :

Example 4 :

type EMPLOYEE : enuity
name : string(20);
address : t-address ;
category : (engineer, secretary, technician);
contract : t-contract;

[t y

end;

The t-address type has been defined in example 2 and fet us
suppose that the contract of each employee is a document which
can be modified accross time and for which we want to keep the
successive history (SH) :

type t-contract : dynamic document with time > hour

structure
begin contractant

booin emnlover

s consta
gegin TmphOyCer | CONSe

nt TO
il

ant

. employee : reference bearer
end ;
body : list(1,5) of clause
signature : picture
end ;
constant text TO := *Company ABC’
parameter
bearer : text;

contract-duration : duration;
signature-date : time > hour;

department : string(20);
level : string(20);
Sunction salary : sal(level, department);

end;

This definition needs some explanations because it refers to
specific notions of the TIGRE model. Leaves of the document are
generalized (or multi-media) data whose nature’ are either text,
picture etc. A document is defined by its structure which is a tree

but also by specific components which are constants, i.e data
which

are nresent in and

anag

alt the instances of the document

UChH dre present m an Wie mnsiances of e agdument

parameters. Paramcters are uscd to model vardable parts of
documents. They may require to appear in a fixed place in the tree
structure (for instance the "bearer” parameter above). They are
components with direct access to their value. This access is
expressed through the use of the LAMBDA language and may
involve user defined functions such as the one defined for the
salarv Hcr(, the salary stored in a contract is wmputcd by the sal

¢ two p(u.uuLu,l\ :

1
level and (l([/(lll"l(’"l

Example 5

:The last address of John :

SELECT last version of e.address
FROM EMPLOYEE e
WHERE €e.name = ’John'

For historical data and by convention we associate to each
version an integer or a function called last : 1 is associated to the

laot frrn lact varcin
@ase-1

o the ba n
lU UL UvilyvIv Aol yoloiwva

lllhl VLlDIUll’ L lU llLlC \(.Lulld e
and last to the current version. Using this convention the previous
example is equivalent to :

SELECT e.address
FROM EMPLOYEE e
WHERE e.name = ‘john’
Example 6 : Names and first three salaries of all the engineers.
The salary is computed from the document by using the function
sal ¢

SELECT e.name,1..3 version of eval
sal(pammeter level, department) of e.contract

WHERE e.category = cngineer’

Example 7 : The three last salaries of John

SELECT 3 last version of eval sal(parameter

Ao cboan i)

uclldlllllClll)
FROM EMPLOYEE e
WHERE e.name = ’John’

level,

af o conteact

gy e€.conmract

Example 8 : We want all the versions of the first clause of John’s
contract :

SELECT all version of clause 1 of e.contract
FROM EMPLOYEE e

,
WHERE e.name = 'John

W ~re alen havws ar aasiunlant farmalatinn ncine 1 lact varcinan

YYU Ldil aidy 11aye ail Cl.lulval(,lll LULTIGIAUVLL USTITE Lo TS FLASAUSR

Let us now give some examples with an explicit time.
Example 9 : John’s address at 1982/6/30 :

SELECT version at "1982/06/30’ of e.address
FROM EMPLOYEE e
WHERE e.name = ’John’

bOSPA, g o

The KCy-WOl’G version ai i is used to query historical data and
refering to a particular time. The time value t must have a
granularity greater or equal to the time type associated with the
corresponding history.

Example 10 : John’s salaries during 1970-198C (the key-word
during must be followed by a value of type time-intervai)

SELECT version during "1970-1980° of eval

sal(parameter level, department) of e.contract
FROM EMPLOYEE e
WHERE c.name = "John’

Example 11 : John’s salaries after 1980 (sce example 1) :

SELECT version after '1980 of e.salary |
FROM EMPSAL e
WHERE e.name = 'John’

‘Note that to a peripdic history (PH) on V it is associated a
periodic sequence of time T.= {t1,t1,..,tn}. Suppose that we want
the value of V at time 0. If 10 belongs to T the answer is casy to
give. On the contrary, one solution may consist of finding t0 of T
"closest” to t() and to give as an approximative result the.correspon-
ding value. However it may exist ti and tj 4 1 of T equidistant from
in this casc we can takec by convention the valuc at tlmc 41
because it is the more recent one.

Example 12 : List of employees which are in the compd‘ny for
more than 10 years (we suppose that all the contracts arefinishing
this year) : ;

SELFCT e.name
FROM EMPLOYEE e
WHERE SUM] all version of paramewr contract
-duration of e.contract] >= 10 year’
Example 13 : We want to correct an errot in John's contract : the
paramcter contract-duration must be 3 ycars.

CORRECT parameter contract-duration. of e.contract
. = dycar’

EMPLOYEE ¢
e.name = 'John'

FROM
WHERE

Example 14 : The zipcode of the before last version of Martin
(38056) is not correct, it should be corrected to 38072 :

CORRECT last-1 version of e.address.zipcode
= 38072
EMPLOYEE ¢

e.name = 'Martin’

FROM
WHERE

Note that here the modification is done on an history value.

6- HISTORY MANAGEMENT

Traditionally differcat operations can be issucd on a data-
base : query, insertion, deletion, update or schema modification.
In a more general context of databasc management, applied to
different kinds of applications, objects can-be of diffcrent granula-
rity : tuples, relations, big objects (e.g documents or designs) ctc.
So, dealing with historics, the question arises : what shoutd be the
data unit to store in such histories 7.

For relational databases onc way to answer this question is
to "historicize" the tuples and solutions for this can be found in
[LUM 84], for instance. In our prototype, built upon a relational
DBMS, we can make a distinction between data internafly mapped
to n-ary relations and big objects (documents) which are managed
separately but identificd by internal surrogates. For the first kind,
we also took the tuple as the history component. In a Successive
History, before updating a.tuple, we store the old value in what
we call the history arca. The new updated tuple is stored in the
current version of the relation.

For a Periodic History, tuples are periodically written into
the history area but updates are made diccetly on the current
version as if there was no history. In order not o waste space we

store a tuple in the history area only if it differs from the last one
in the history.

This strategy implies that we maintain for each "relation” -
two versions : one for the current data and another for the history
(sce section 7).

For documents and complex objects, in gencral, the data
unit is a leaf of the tree structure. These leaves are what we call
big objects. Modifying a document is changing one (or several)
leaf content without modifying the structure of the tree. If a
particular document type is updated this will give different
versions for particular leaves. In this case leaves are naturally the
data unit for histories (sce section 7).

For both relational data and documents, history manage-
ment is simpliﬁed by ueing surrogates. The couple (surroga-
te,time) is in fact the primary key for the relations stored in the
history area.

When we delete a ddld umt (tuple or document leaf) we
store in the history area "~ + 7 7 4 .t it has been deleted
and this terminates the .- ..+ 1 T

7- HISTORY AREA

Let us now give some details about the content of the
history area which allows to store scparately historical data and
current data. For each history an additional attribute is put by our
system in order to contain the timestamp associated to each
operation : creation, deletion, update. Note that this timestamp is
however invisible to the users.

7.1-Relations associated with non document historical types

In the database catalogs, for each relation R which corres-
ponds to a dynamic type we generate a corresponding historical
relation H-R which is going to contain successive or periodical
data. For instance to the type definition of example 1 will
corresponds two relations one for the current version of EMPSAL
and one for historical data of EMPSAL.

7.2- Document history

Before going into more details about historical document
let us describe how these documents are managed by the TIGRE
system. Documcnts are treated separately by a module called the
Big Objcct Manager (or BOM).. In this module each big object is
identificd by an internal surrogate (BOID). A given big object
may span over several logical data blocks and these blocks are
chained together. The BOM has an internal catalog to describe
big object storage. This catalog is composed with two relations :

(1) BIGOB (BOID, BLOCK, SIZE) which gives the
identificr of cach big object, the address of its first block
and its size:

(2) BIGOC (BLOCK, SIZE, NEXT-BLOCK) which gives
the identificr of a block, its size and the next block in the
chain.

For document storage we have the relation

DOCLEAF (DOCID, LEAF-NAME, BOID)

where each tuple describes a leaf (LEAF-NAME) of the
document (DOCID) and this leaf is stored as the big object
BOID.

7.2.1- Document and Periodic History

For this kind of history the relation DOCLEAF is historici-
zed : a relation H-DOCLEAF is created. Each document leaf is
copied periodically from the current version. This copy is then
stored as big object and the catalogs are updated accordingly. In
this solution, the different versions of a document leaf are
identified by a set of BOID associated with the corresponding
time.

7.2.2- Document and Successive History

A similar approach can be taken for this kind of history.
When a document leaf is modified the tuple which describes the
old version in DOCLEAF is delcted and stored into H-
DOCLEAF together with the corresponding timestamp. The new
tuple for the new leaf is then inserted into DOCLEAF. This
solution, however is rather too expensive because it does not take
into account the fact that only some blocks of the document leaf
were modified. A more realistic approach consists of historicizing
the catalogs BIGOB and BIGOC. In this case, two successive
versions of a document feaf may have the same blocks.

Hence, document history management is made through a
subset of the BOM catalogs or via their history area,

Remark : To allow document sharing between scveral users we
have to historicize the catalog which describes the document trec
structure.

8- HISTORY AND SCHEMA MODIFICATION

Several relational DBMS allow their users to dynamically
change the database schema [CHA 76, MIC 82] : add or delete
attributes. Then, the question arises : how it is possible to apply
our history approach to this problem ?.

In the TIGRE model schema modification concerns the
addition of a class or document types. It is therefore possible to
add (delete) an attribute in a entity or to add (delete, modify) a
substructure in a given document type.

In order to maintain historicity in case of schema modifica-
tion we simply apply the history notion to the database catalogs.
For instance the (meta) relation CAT-ATT which describes entity
attributes can become a successive version history in order to
reflect attribute creation and/or deletion.

The same policy is applied to the catalogs which describe
the document structure and history structure of a given TIGRE
type. For a more detailled description on this problem see
{BUIT 85].

9- CONCLUSION

We preseated here several mechanisms in order to define,
store and manipulate historical multi-media data. We think our
approach is original for several reasons :

(1) We tried to define basic concepts for historical data,
namely periodicity, modification and persistency.

(2) We apply these concepts in the framework of a semantic
data model

(3) We are dealing with generalized data.

(4) We tried also to separate clearly between historical data
as it is defined and manipulated by users and the internal
mechanisms that the DBMS provide in order to insure fast
access to current data while managing different kinds of
histories : Manual, Periodical or Successive.

This work is done in the framework of the TIGRE project
where a prototype of a generalized DBMS is under construction.
Application of this prototype is mainly office automation but we
think that concepts developed here can also be applied to other
applications such as CAD databases. In the prototype we are
currently implementing history management. An important point
of course is space management because for big size and complex
objects histories can be difficult to implement. One solution to this
problem is to study the use of optical disks in such an environment
[BOU 85].

As an extension of this work we are now considering the
snapshot notion [ADI 80] for generalized data. We can consider
snapshot as a gereralization of historical data because a snapshot
may involve several database objects. A more formal work on this
problem in under way [BUI 86].

Acknowledgements : Several ideas for dealing with time in
gencralised DBMS are due to our colleague J.Palazzo. We are
thankful to our colleagues of the TIGRE project and particulary
M. Lopez for his discussions about the document manager, F.Ve-
lez and C.Collet for patient reading of the manuscript, for their
pertinent remarks and their suggestions to this work.

REFERENCES

[ADI 80] M.Adiba,B.Lindsay "Database snapshots”
VLDB Montreal Oct 1980

[ADI 81] M.Adiba "Derived relation : A unified mechanism
for views,snapshots and distributed data”
VLBD Cannes Sept 1981

[ADI 85] M.Adiba,N.Bui Quang,J.Palazzo
"Time concepts for generalized data bases”
ACM Annual Coufcrence, Denver Cotorado Oct 1985

|BOL 82} A.Bolour.L.. Anderson,J. Dekeyser, T.Wong
“The role of Time in Information processing:A survey”
ACM SIGMOD Record 12.3 Aprit 1982

[BOU S35) P.Boursier. M.Scholl, C. Triffaut
“Organisation et gestion de donndes sur disque optique

numérique non réinscriptible” Journées Bascs de Données
Avancées, INRIA, St.Pierre de Chartreuse, Mars 1985

[BUI 85] N.Bui Quang "Gestion des historiques pour la base
de données généralisées TIGRE” R.R TIGRE N.29
IMAG,Grenoble Juin 1985

|BUI 86] N.Bui Quang "Aspccts dynamiques et gestion du
temps dans les SGBDs généralisées” These de
PINPG, IMAG Grenoble 1986 (in preparation)

[CHA 76] Chamberlin D.D et al."SEQUEL 2: A unified
approach to Data definition, manipulation and
control” IBM Journal of Research
and development Nov 1976

[CLI 83] J.Clifford, D.S.Warren "Formal semantic for time
in databases” ACM TODS Vol 8 Nb 2 June 1983 *

[CLI 85] J.Clifford, A.Tansel "On an algebra for historical
relational databases : Two views” Proceedings of
ACM-SIGMOD Austin May 1985

[COD 79] E.F.Codd "Extending the data base relational
model to capture more meaning”
ACM TODS, Vol.4, N.4, 1979

[DAD 84] P.Dadam,V.Lum,H.D. Wemer
"Integration of Time versions into a Relational Database
system” VLDB Singapour August 1984

|DIT 85} K.R.Dittrich, R.A.Lorie
"Version support for engineering database systems"
. IBM Research Report RJ 4769 July 1985

|[KAT 82] R.H.Katz,T.J.Lehmen
"Storage structures for versions and alternatives”
University of Wisconsin, Madison R.R (479) Mai 82

[KAT 85] R.H.Katz, M. Anwaruddin, E.Chang
"A Version Scrver for Computer_Aided Design Data”
Report N. UCB/CSD 82/266 University of California
Nov/1985

[KLO 81] M.R.Klopproge "TERM : An approach to include
the Time dimension in the Entity-Rclationship Modet”
Proceed 2nd Conf on E-R Approach Washington 1981

[LOP 83] M.Lopez,J.Palazzo Oliveira,F. Velez
"The TIGRE data-model” R.R TIGRE N 2 IMAG
et CIl-Honeywell Bul, Grenoble Nov 1983

JLUM 84] V.Lum ¢t al."Designing DBMS support for the
temporal dimension” Proceedings of the
SIGMOD 84 Conference, June 1984

[MIC 82| F.Fernandez, L. Ferrat,J. Lee Y, G.T.Nguyen
MICROBE. Manucl de référence
Laboratoire INAG. Grenoble 1982

FOVE 2] RiOvermyer. M Stonebraker

"Implementation of a time expert in a database
system" ACM-SIGMOD Vol 12 N 3 April 1982

[PAL 83] J.Palazzo Oliveira,F.Velez "La correspondance
de schémas entre les modeles TIGRE et rclationnel”
Rapport de recherche TIGRE N 5 Nov 1983

[PAL 84] J.Palazzo Oliveira "Un modele de données et
sa représentation relationnelle dans un systéme de
gestion de base de données generalisées. Projet TIGRE"
These de Docteur Ingénicur Juin 1984 INPG Grenoble

[SNO 85] R.Snodgrass, 1. Ahn "A Taxonomy of Time
in Databases” Proceedings of the ACM-SIGMOD
Austin May 1985

[VEL 84] F.Velez "Un modéle et un tangage pour les bases
de données généralisées”
These de Docteur Ingénieur INPG Grenoble Sept 1984

[VEL 85a] F.Velez "La prise en compte des documents
structurés dans un SGBD : Aspects modele, langage
et architecture du systéme” Journées BD Avancées,
INRIA St Pierre de Chartreuse, Mars 1985

[VEL 85b] F.Velez "LAMBDA : An entity-relationship
based language for the retrieval of structured
documents” Proceedings of the 4th Itern Conf
on E-R Approach, Chicago, October 1985

