
HISTORICAL MULTI-MEDlA DATABASES

M.Adiha , N.Bui Quang

Laboratoire de Genie lnfonnatique-IMAG
GRENOBLE-University, BP.68

38402 S&t Martin d’Hlres, France

ABSTkACT

We develop here several noiions in order to dejne.
store and manipulate historical data in generalized or
muhi-media databases i.e databases which are able to
handle non-classical data (text, image, voice).

For a given database object X. an history is a
sequence of the successive values that X rook accross time.
This notion has been srudied before but here. we generalize
histories by considering different types of database objects.
Pardcularly. we apply rhe history notion to muhi-media
documems and we, propose extensions for data dejirrition
and manipulaGon languages.

Here, we address the problem from a chronological point of
view i.e we consider the evolution of a (complex) database object
over time in order not to be specific of a given application.

In a previous work [ADI 851 we addressed the problem of
incorporating time in a generalized or multi-media database
system. Time was treated as a special data type which can be used
when defining the schema and manipulated by special extensions
to the DML. Here we describe an extension of this work in order
to provide solutions for managing histories for generalized data.
More precisely our goals are the following :

1) Insure fast access to current data

The following poinrs are discussed ;: definition of
object histories (periodicity. persistency). propagation of
historicity. update and history managemenr. history and
schema modijication.

t- INTRODUCTION

Today, database systems are only able to provide more
recent and consistent versions for data. However for many
applications this may not be always desirable. More and more,
historical data is needed (for instance in economical databases) or
“old” data is required by several applications. As an example
consider a rather traditional business application where a user
wants to ask queries such as :

In general and although providing historical data mana-
gement we think that most of the queries will concern current
versions and that a good response time must be provided.

2) Provide different granularily for historical data

In relational terms this means that the user wants to
define what attributes should be historical in a given relational
schema. For instance an employee’s name and birthdate dont
change acdross time but his/her address or salary does. In our
model, which is based on the Entity-Relationship approach, we
can also provide historical aspects on entities and relationships.

3) Extend lhe data definition and manipulation language in
order to manipulale historical dala

4) Take into account lhe evolution of the conceplual schema
over time

“What is the evolution of John’s salary during the last five
years ?”

Dealing with historical data is dealing with time and several
previous works have been done in databases [CL1 831. Most of
these studies introduced time in the data,structure, for instance
[BOL 82, KLO 81, OVE 82, SNO 851. Ln TERM [KLO 811 time
is explicitely introduced at the level of the Entity-Relationship
,model. It is considered as a particular data type with several
consistency constraints associated with it. Also [OVE 821 de&-
bed a time expert incorporated into the relational DBMS IN-
GM.

Other researches were concerned with the extension of a
DBMS in order to provide good data structure for historical data
but nothing was said about the definition and manipulation by
end-users of such histories [LUM 841.

Because relational DBMSs provide dynamic schema mo-
dification we apply also our versioning approach at this level.

The organ&ion of this paper is the following. In section 2
we define the main concepts for historical data. In section 3 we
discuss the problem of historical data with regards to data models
and we show that historicity can be provided at several levels of
granularity. Sections 4 and 5 deal with history manipulation. We
describe several extensions which can be made to a SQL-like
language in order to query and update data. Sections 6 and 7
describe mechanisms for historical data management, and storage.
In section 8 we discuss historicity with regards to schema modifica-
tion and we conclude the paper by section 9.

2- HISTORICAL DATA : MAIN CONCEPTS

In non traditional databa.se applications e.g office automa-
tion or CAD database objects are complex but it is also necessary
to deal with successive versions. As an example [KAT 851 describe
a version server for CAD data in order to provide the designers
with a way to manage successive states of the object under design.

Extensions for version management in CAD datnbascs arc
also described by [DIT 851.

Consider a database object V which takes over time
successive values. Let us denote by (vi,ti) the couples (value,time)
for V : at time ti V took value vi. With such histories we can
answer to the following kinds of queries :

(1) What was John’s salary at January 1985 ?

(2) What were John’s salaries during the last hvclve months ?

Permission fo copy without fee all or part a fhis material is granted provided that fhe copies are not made or distributed for direct commercial
advantage, the VLDB copyright norice an d fhe title of the publication and its date appear, and notice is given that copyin is by permission af
‘the Very Large Data Base Endowment. To cop
Proceedings of the Twelfth International Con t

otherwise, or to republish, requires a fee an&or special permission from t a e Endowment.
erence on Very large Data Bases Kyoto, August, 1986

-63-

(3) Give us a complete history of John’s salary ’ :, A first approach for building histories is to let the user

Query (1) refers explicitely to a precise time in the past. decide when he/she wants to keep a new version after one or

Query (2) is relative and deals with a periodic notion(wnth:by sev$rpl mOd&~tions took place on a given object. In this case, we

month) and query (3) must provide all the couples &Ian, $ine) ; can spe$k ribout Manual History (MH). As an example, consider

which correspond to successive versions of the salary.

Our approach for historical data is based upon the three
following notions :

b ‘d&ument report for which we want to keep in the database
several versions :

1) Periodicity, of the ti,. i.e. the sequence of times we want to
conqider for the vi values. Npte that this periodiiity may not be
related to a change of. value. For instance if we, want John’s
salary for the last twelve months, this does not mean that this
salary izhamged each month.

,.. ,,

Our model is not b&d upon the &ary relational model but
on the entity relationship approach extcndch with the notion of
type. Our data defmition langdage will be tixtcndecl by the key
word “dynamic” for defining historical dafa. For instance’:

2) Modification:, .whe~ value v is changed by value VT, this
modification may or may not give, irs.a given history, a new
vers$ fQr V. It is the d&base user responsability to define
preclscly when a chaqge must be incorporated into the history.

3) Persistency of values in the database. Theoretically we can
consider that successive versions are stored in an ‘Iinfinite”
space. However, the user may want sometimes to keep only the
last n values.

Lgt us cgnsider the relation EM,PSAL(E#,’ NAME, JOB,
SALARY) which records for each employee whose number is E#
his name, -hi6 job and the torrespomling salary. We want tb keep
for each employee the evolution ,of his/her salary. A fiFt solution
is to add an attribute DATE and I$ the user deal with it. This may
lead iti inconsistencies if the Dl$$S does not, manage cxplicitely
the time copcept, If it does, then a!1 the tuples.af the relation,are
“equally treated” and thc,r,e is,no notion of last (current) yersion
and previous versions. So, it is necessary for the -DBMS to handle
explicitely historical data and this is precisely what we propose.
Wi4hout -adding the DATE attribute we are going :to define
EMPSAL as an historical rclationwith a petiotlicity of a year and
a persistency for 10 years., In this way the Jast version.v$l refer to
the current state of the employees and previous versions to their
histories.

Example I :

fype : EMPSAL : dynamic en&y
eakh year
lasr 10
with time > day

c# : intcgcr;
name : string(l0);
job : string(l0);
salary : (200..3000);

end:

In this example ‘:each year” dcfincs the pcriodici~y and “lust
IO” dcfincs the persistency. The time WC consider hcrc is rompo-
scd with (year, month, day. hour, minute. second) and “time >
day” means that wc want the ti to Ix: coml’c>sctl only with (yc’:u,
month).

type report : dynamic manual document
begin

iotroduction : text ;
body : list (I.+) of

chapter : ‘list (I.*) o/text ;
conlusion : text ;

end ;

Editing a given report occurrence r may involve over time
many modifications. IIowever at a given time the user may decide
that the current version should be kept because it correspnds lo a
“good” version. In this case the history .will contain all the
“successive” versions that the user decided to keep.

If wt: want to have automatic’treatment for hisiories, we
can USC an “each” clause to define the priodicity and in this case,
we speak about a Periodical History (PH). ,In a PH, if an object is
modified within the period, this modification affects the current
version. New versions are only generated at the end of each period
by putting in the history a copy of the current version. However
when there is neither the manual nor each clause, this means that
we want to store succesive versions and then we speak about
Successive History (SH).

As mother example, we define a type exchange which can
be used for an attribute in an entity or a relationship (see section
3) :

rype exchange : dynamic
real ;

The “last” clause refers to persistency : it indicates how
many old values,we want to keep. A persistency of zero corres-
ponds to a static type and if there is no “last” clause the persistency
is theor,etically illimited.

Here, each time a value of this type is updated, the old
value is stored into the history.

The “with”‘clause as we saw it before indicates the format
associated with the time ti stored in a given history. This time is an
inteinal time or physical time as it is managed by the computer
system. We takk the assumption that a difference may exist
between the real world time of an eCent and its recording into the
database, but this difference is irrelevant. Logical time is also
disccussed in [DAD 841 and [SNO 8.51.

3- HISTORICI\L DATA AND DATA MODELS

In the n-ary relational model, the history notion can only be
applied at the relation level. This means that one must bc able to
(rc)build all instances ri that a given relation K hail accross lime.
Going from an instance (ri,ti) to (ri+ l .ti+ 1) is done by inserting.
deleting or updating tuples, (ri+ I,ti+ 1) is the currrnt vcr+n

-64 -

Our work is done in the framework of the TfGRE project
for generalized databases. The TIGRE data model is based upon
the Entity-Relationship approach [LOP 83, VEL 8Sb]. By intro-
ducing types we want to introduce more semanrics into the
description of database objects. Therefore. the history notion can
be seen differently than in the (flat) relational model. Each entity
instance has an internal surrogate and eventually several attribu-
tes. By defining some attributes as dynamic types it is possible to
maintain an history of all the successive values taken by these
attributes, for a given entity instance.

More generally there are several kinds of data types : for
attributes we can have basic types (integer, real, string etc.),
record, list or document. The document constructor type defines a
complex tree structure whose lcavcs are big size objects containing
text, graphics, pictures, voice coded data. Entities, relationships
and also generalization; specialization or agregation notions arc
refered as clas? types in TIGRE. Each class type may have typed
attributes as mentioned above. We can apply our history notion on
record, list, document types but also on class types bui in this case,
subcomponents cannot be historical. We do not accept history of
history for semantic reasons. However, when an entity is dynamic
this dynamicity is propagated on its attributes. We will come back
later on this problem.

Consider the following example :

Example 2 :

type T-employee : dynamic enfi~
name : string(20) ;
address : t-address ;
salary : (3tNJ..4oo(x)) ;
department : string(l0) ;

end;
where t-address is defined as :

type t-address : record
number : integer ;
street : string(l5) ;
town : string(U) ;
zipcode : integer ;

end;

With such a definition and for a given employee we can
store the history of all addresses and answer queries such as :
“Give me all the towns where John lived”. WC will have also the
history of all the employees created into the database since the
bcgining of its implementation.

For the database administrator the choice where to put the
dynamicity either at the attribute or entity levels is a design
problem which is application dependent. Our goal here is to
provide specific tools to handle differcnr kinds of histories in :I
grneralized DBMS. When a type is not dcfincd as an history we
rcfcr it as a static type otherwise it is a clynamic enc.

Let us now discuss the problem of history propagation.
From an history type to its componcnls historicity keeps Ihc came
charateristics that is same periotlicity. pcrsistcncy.kll{, SlI or PI 1
etc. WC said that a type is explicitely defined as an his~orv it’ it is
&fined as a dynamic type othenvisc a Iypc can tx: implicilcly
defined ils an history because it is ;I component of :u, historv ty(x
Ihi\ history inheritance can bc \t:ltcd more compl~:tclv 15 in I’!<*
lollowmg :

1) Hislory and basic types

- By construction a basic type is predef’ined therefore it cannot
be dynamic.

2) History and built lypes

- Renamed, record, list, document types and component types
of a static document can be dynamic.

For multi-media documents we have often the case where it is
not necessary to store all the successive versions of a document
but only for subparts of it. However this dynamic document
notion must be taken with care because the corresponding
objects are big size objects (see section 7).

- Component types for a dynamic record’or a dynamic list are
static.

- Nodes of a dynamic document type are implicitely dynamic.

3) History and class lypes

- Component types of a dynamic class are implicitely dynamic.

- A dynamic relationship can only link static entities. In this
cake we have to propagate the dynamicity to these entities. Let
us see this with an example :

type shipment : dynamic relationship
each month

between supplier and product
quantity : integer ;

end :

We want to store quantities of products supplied month by
month by. each suppliers. For consistency; the corresponding
suppliers and products associated with the corresponding
months must exist. This means that historicity has to be
propagated to the linked entities. This propagation is also
discussed later.

- A specialization of a dynamic type is implicitely dynamic.

- In a dynamic aggregation, components become implicitely
dynamic.

Note that in certain cases, history propagation can be
cascaded until basic component types.

Example 3 : Consider two entities SCHOOL and STUDENT :

fype SCHOOL : enfify
sname : string(20) ;
address : t-address ;
tcl : integer ;
teaching : description ;

end:

ry/je STUDENT : ertfify
name : string(20);
b-date : date ;
address : t-address ;
scolarship : dossier ;

lWtl:

-65-

and dynamic relationship INSCRIPTION
rypc INSCRIPTION : ciyrranric refurionship lust 5

h~rwee~r !jTUDENT : student (1,l)
and SCHOOL, : school (1, ‘)

ins-date : date ;
academic-year : time-interval ;
speciiility : string(l5) ;
category : (Cl, C2, C3) ;
course : list-of-lcctute ;

end;
where : date is a renamed type (time 7 hour);

t-address is a record
description and scolarship are documents
list-of-lecture is a list of string(20)
They are dtatic and prcclcfined.

The relationship INSCRLPTION is a successive history
(SH) with a persistency of 5. This historicity is propagated to
SCHOOL and STUDENT and then to’t-address, dossier, descrip-
tion and list-of-lecture which become dynamic.

The historicity propagation,is not trivial: For instance let US
consider three static entities types and two relationships Rl and
R2, RI linking A and B, R2 linking B and C. If we define Rl as
dynamic this will implicitely make A and B dynamic. Then, if we
want R2 to be dynarhic we have a pioblem because B is already
dynamic. However if both R2 and B have the same historicity,
making dynamic should be possibie. More generally and by
considering compatible histories we allow the historicity propaga-
tion to take place on implicitely defined histories.

4- HISTORY AND DATABASE ‘UPDATE

U@ates made on a dynamic type are to be considered
differently than those made on static types.

4. I- Update operalions

- Insertion of an occurcncc in a dynamic type is always
made on the current version with the timestamp for the creation of
this occurcncc

- Updating a successive history (SH) is done in two phases :
tuples to change with their associated time ti are copied in an
history area (see section 6) and then new thplcs are stored in the
current version. Hence, for a given object it? current version is
physically separated from its history, insuring fast acces to it. If
the user wants to update a manual h&tory (MH) he/she should
explicitcly say that this modification will gcncratc a new version in
the history or not. In the DML this means that the UPDATE
command modifies the current version without keeping the old or
new version in the history. If the user wants to keep :I new version
either bcforc or after an uptlatc. hc/shc can use the command
GENERATE VERSION.

For a periodic history (PI I) modification i5 tlonc directly
as if there were no history. Howcvcr, pcritxlically. d:lt:l ix copied
in the history arca.

For tlclction WC h;t\c to conxidcr lhc iollowin< IYI\,C’Y

- If a tuple of a dynamic class is deleted it is written in the
history area with a special deletion flag. This deletion must be
followed by the deletion of all its component types.

- If a tuplc of a static class which contains dynamic
attributes is deleted, then we have to delete for each such
attribute, the corresponding history. For instance if employees
have dynamic addresses when an employee instance is delkteh so
all his successive addresses must be deleted.

4.2- Persistency

Each time a data is introduced into the history area we have
to verify its persistency. This is an important notion because it is a
way to control the size of the history area. Hence, if p is the
persistency, the (p+ 1) insertion must trigger the deletion of the
oldest version in the history area. In order to improve performance
we can think of several techniques to handle space in the history
area. For instance we can put a flag on areas which are freed and
then, have some garbage collector policy to gather unused space.

4.3 Correction and modification

By definition it is not possible to update data stored in the
history area. However it is always possible that some mistakes or
inconsistent data have been introduced there. This is a very
delicate problem but we think that we have to provide a special
manipulation primitive in order to correct historical data. Ob-
viously this primitive has to be,u.sed very carefully by authorized
users but semantically this operation is different from insertion,
deletion and updating which are always done on the current
version.

Note also that sometimes we have to correct the current
version without affecting the corresponding history. This means
that in this case, the automatic history mechanism should be
disconnected.

5- HISTORY AND M&NIPULATION LANGUAGE

The data manipulation language must provide the user with
a way to manipulate current and historical data. In the following
we are going 8 to describe some extensions that we made to the
TIGRE data definition and manipulation language called
LAMBDA {VEL 84, VEL 85bJ. This language is a SQL-like
language but it is not intended to be given to the end-user, rather,
it is going to be embedded into general (typed) programing
languages or offered to end-user through graphical interfaces.

In [ADI X5] we described some extensions concerning the
manipulation of time in general. Here. we concentrate on the
manipulation (interrogation) of historical data. In this case, time
can bc used in hvo diffcrcnt ways :

I/ Explicitely (or absolu(e)

QI: “Give me the value of V at time t”
02: “Give me all the values of V in the interval (t.l .t21”
(13: “Give me all the vitlucs of V. after (bcforc) time t”

2/ Implicilely (or relalive)

-66-

In this case WC want to consider versions for V such as :

Q4: “Give mc the last version of V (current version)”
Q5: “Give me the three last versions”
Q6: “Give me all the versions of V”

Our main extension in the language is to use the key word
“version” to refer to historical data.

For illustrating the manipulation of historical data we are
going to consider the following example which concerns cm-
ployces of a given company :

Example 4 :

type EMPLOYEE : mriry
name : string(20);
address : t-address ;
category : (engineer, secretary, technician);
contract : t-contract;

Old;

The t-address type has been defined in example 2 and let us
suppose tllat the contmcdCt of each emp\oyec is a document which
can be modified accross time and for which we want to keep the
successive history (SH) :

hegirl contractant
he@r employer : constant TO

employee : reference bearer
end ;
body : list(l,5) of clause
signature : picture

end :
c~n~/uru [exr TO := ‘Company ABC
paramrter

bearer : text;

end:

contract-duration : dtiration;
signature-date : time > hour;
dcpartmcnt : string(20);
lcvcl : string(20);

firttctiort salary : sal(level, department);

This definition needs some explanations because it refers to
specific notions of the TIGRE model. Leaves of the document are
generalized (or multi-media) data whose nature are either text,
picture etc. A document is defined by its structure which is a tree
but also by specific components which are constants, i.e data
which are present in all the instances of the document and
parameters. Paramctcrs are used to niodcl variable parts of
tlocumen&. They may require to appcnr in a fixed place in the tree
structure (for instance the “bcarcr” patamctcr above). They are
components with direct access to their value. This accecs is
cxpresscd through the use of the LAMBDA language and may
involve user definctl functions such as the one defined for the
salary. Here the sal:lry \torcd in ;I contract i$ computed hi the sal
function using the two pnramctcrs : Ic,ve/ I& &*~~~~rm~errr.

Ewmple 5 Ahe I;~st :tiIdrcsh of .lohn :

SELECT last version of eaddress
FROM EMPLOYEE e
WHERE e.name = ‘John’

For historical data and by convention we associate to each
version an integer or a function called last : 1 is associated to the
first version, 2 to the second . . . last-l to the before last version
and last to the current version. Using this convention the previous
example is equivalent to :

SELECT e.address
FROM EMPLOYEE e
WHERE e.name = ‘John’

Example 6 : Names and first three salaries of all the engineers.
The salary is computed from the document by using the function
Sal :

SELECT e.name,l..3 version oj evaf
sal(puromerer level, department) of e.contract

FROM EMPLOYEE e
WHERE e.category = ‘engineer’

Example 7 : The three last salaries of John

SELECT 3 last version of eval sal(paramerer level,
department) of ccontract

FROM EMPLOYEE e
WHERE e.namc = ‘John’

Example 8 : We want all the versions of the first clause of John’s
contract :

SELECT all version of clause 1 of e.contract
FROM EMPLOYEE e
WHERE e.name = ‘John’

WC can also have an equivalent formulation using l..last version.

Let us now give some examples with an explicit time.

Example 9 : John’s address at 1982/6/30 :

SELECT version at ‘lY82/06/30’ o/ e.address
FROM EMPLOYEE e
WHERE e.name = ‘John’

The key-word version at t is used to query historical data and
refering to a particular time. The time value t must have a
granularity greater or equal to the time type associated with the
corresponding history.

Example IO : John’s salaries during 1970-1980 (the key-word
during must he followed by a value of typ time-interval)

SELECT versiun during ‘lY70-1980 o/ eval
s;d(puromrler Icvcl. department) of e.contract

FROM EMPLOYEE e
WHERE c.name = ‘John’

Example It : John’s s;tlarics after 1980 (XC cxamplc 1) :

-67-

SELECT version afler ‘1980 of e.snlary
FROM EMPSAL e
WHERE e.name = ‘John’

.Note that to a periodic history (PH) 0n V it is associated a
periodic sequence of time T = {tl,tl,..,tn}. Suppose that we want
the value of V at time 10. If tO belongs to T the nnswcr is easy to
give. On the contrary, one solution may consist of finding 10 of T
“closest” to tO and to give as an approximative result the corrcspon-
ding value. However it may exist ti and ti+ 1 of T equidistant from
in this cast we can take by convention the value at time ‘i+ 1
because it is the more recent one.

Example 12 : List of employees which are in the company for
more than 10 years (we suppose that all the contracts are,finishing
this year) :

SELECT e.name
FROM EMPLOYEE c
WHERE SUM[all version ofpnrnnrefcr contract
-duration of e.contractl >= ‘IO year’

Example I3 : We want to correct an error in John’s contract : the
paramcfer contract-duration must be 3 years

CORRECT p~~rnrnete~ contract-duration of e..contract
: = ‘3ycar’

FROM EMPLOYEE c
WiIERE e.nnmc = ‘John’

Example 14 : The zipcode of the before last version of Martin
(38056) is not correct. it should be corrected to 38072 :

CORRECT lasl-I version of e.address.zipcode
:= 38072

FROM EMPLOYEE c
WfIERE c.name = ‘Martin’

Note that here the modification is done on an history value.

6- HISTORY MANAGEMENT

Traditionally different operations can be issued on a data-
base : query, insertion, deletion. update or schema modification.
In a more general context of database management, applied to
different kinds of applications, objects can be of diffcrcnt granula-
rity : tuplcs, relations. big ohjccts (c.g documents or designs) etc.
So, dealing with histories. the question arises : what should be the
data unit to store in such historics ?.

For relational tlatal~ases one way to answer this question is
to “historicizc” the tuplcs and solutions for this can hc found in
(LUM 541, for instance. In our prutotypc, built upon a relational
DBMS, we can make :I distinctio? bctwccn data internally mapped
to n-ary relations and big objects (tlocumcnts) which arc managed
separately hut idcntifictl by internal surrogates. For the first kind,
we also took the tuplc as the history component. In a Succcs\i\c
IIistory. heforc updating a luplc. WC store the old value in what
wc call the history :Irca. The new updatctt 1upIc is stored in the
current version of the rcl:ition.

store a tupte in the history area only if it differs from the last one
in the history.

This strategy implies that we maintain for each “relation”
two versions : one for the current data and another for the history
(see section 7).

For documents and complex objects, in general. the data
unit is a leaf of the tree structure. These leaves are what we call
big objects. Modifying a document is changing one (or several)
leaf content without modifying the structure of the tree. If a
particular document type is updated this will give different
versions for particular leaves. In this case leaves are naturally the
data unit for histories (see section 7).

For both relational data and documents, history manage-
ment is simplified by using surrogates. The couple (surroga-
te,time) is in fact the primary key for the relations stored in the
history arca.

When we delete a data unit (tuple or document leaf) we
store in the history area t’ . . .I’ . ,” ‘; ‘t .t it has been deleted
and this terminates the . “. 8 : ’ s. . .

7- HISTORY AREA

Let us now give some details about the content of the
history area which allows to store separately historical data and
current data. For each history an additional attribute is put by our
system in order to contain the timestamp associated to each
operation : creation, deletion, update. Note that this timestamp is
however invisible to the users.

7.1-Relalians associated wilh non document historical types

In the database catalogs, for each relation R which corres-
ponds to a dynamic type we generate a corresponding historical
relation H-R which is going to contain successive or periodical
data. For instance to the type definition of example 1 will
corresponds two relations one for the current version of EMPSAL
and one for historical data of EMF’SAL.

7.2- Document history

Before going into more details about historical document
Ict us describe how these documents are managed by the TIGRE
system. Documents arc trcatcd scparateiy,by a module called the
Big Object Manager (or BOM). In this module each big object is
idcntificd by an intcmal surrogate (BO[D). A given big object
may span over several logical data blocks and these blocks are
chained togcthcr. The BOM has an internal catalog to describe
big object storage. This catalog is composed with two relations :

(I) BIGOB (BOID. BLOCK, SIZE) which gives the
idcntificr of each big object, the address of its first block
and its size.

(2) BIGOC (BLOCK, SIZE, NEXT-BLOCK) which gives
the idcntificr of a block, its size and the next block in the
chain.

-68-

DOCLEAF (DQCID, LEAF-NAME, BOID)

where each tuple describes a leaf (LEAF-NAME) of the
document (DOCID) and this leaf is stored as the big object
BOID.

7.2.1- Document and Periodic Hislory

For this kind of history the relation DOCLEAF is historici-
zcd : a relation H-DOCLEAF is created. Each document leaf is
copied periodically from the current version. This copy is then
stored as big object and the catalogs are updated accordingly. In
this solution, the different versions of a document leaf are
identified by a set of BOID associated with the corresponding
time.

7.2.2- Document and Successive History

A similar approach can be taken for this kind of history.
When a document leaf is modified the tuple which describes the
old version in DOCLEAF is deleted and stored into H-
DOCLEAF together with the corresponding timestamp. The new
tuple for the new leaf is then inserted into DOCLEAF. This
solution, however is rather too expensive because it does not take
into account the fact that only some blocks of the document leaf
were modified. A more realistic approach consists of historicizing
the catalogs BIGOB and BIGOC. In this case, two successive
versions of a document leaf may have the same blocks.

Hence, document history management is made through a
subset of the UOM catalogs or via their history area.

Remark : To allow document sharing between several users WC
have to historicize the catalog which describes the document tree
structure.

8- HISTORY AND SCHEMA MODIFICATION

Several relational DBMS allow their users to dynamically
change the database schema [CHA 76, MIC 821 : add or delete
attributes. Then, the question arises : how it is possible to “pply
our history approach to this problem ‘?.

In the TIGRE model schema modification concerns the
addition of a class or document types. It is therefore possible to
add (delete) an attribute in a entity or to add (delete, modify) a
substructure in a given document type.

In order to maintain historicity in case of schema modifica-
tion we simply apply the history notion to the database catalogs.
For instance the (meta) relation CAT-ATT which describes entitv \ , ,
attributes can become a successive version history in order to
rcflcct attribute creation and/or deletion.

The same policy is applied to the catalogs which describe
the tlocumcnt structure and history structure of a given TIGRE
type. For a more tlcrailletl description on this problem see
lOUI X5].

9- CONCLUSION

We presented here several mechanisms in order to define,
store and manipulate historical multi-media data. We think our
approach is original for several reasons :

(1) We tried to define basic concepts for historical data,
namely periodicity, modification and persistency.

(2) We apply these concepts in the framework of a semantic
data model

(3) We are dealing with generalized data.

(4) We tried also to separate clearly between historical data
as it is defined and manipulated by users and the internal
mechanisms that the DBMS provide in order to insure fast
acces to current data while managing different kinds of
histories : Manual, Periodical or Successive.

This work is done in the framework of the TIGRE project
where a prototype of a generalized DBMS is under construction.
Application of this prototype is mainly office automation but we
think that concepts developed here can also be applied to other
applications such as CAD databases. In the prototype we are
currently implementing history management. An important point
of course is space management because for big size and complex
objects histories can be difficult to implement. One solution to this
problem is to study the use of optical disks in such an environment
[BOU 851.

As an extension of this work we are now considering the
snapshot notion [ADI 801 for generalized data. We can consider
snapshot as a gereralization of historical data because a snapshot
may involve several database objects. A more formal work on this
problem in under way [BUI 861.

Acknowledgements : Several ideas for dealing with time in
generalised DBMS are due to our colleague J.PaIazzo. We are
thankful to our colleagues of the TIGRE project and particulary
M.Lopez for his discussions about the document manager, F.Ve-
lez and C.Collet for patient reading of the manuscript, for their
pertinent remarks and their suggestions to this work.

REFERENCES

[ADI 801 M.Adiba,B.Lindsay “Database snapshots”
VLDB Montreal Ott 1980

[ADI 811 M.Adiba “Derived relation : A unified mechanism
for views,snapshots and distributed data”
VLBD Cannes Sept 1981

[ADI SS] M.Adiba,N.Bui Quang,J.Palazzo
‘Time concepts for generalized data bases”
ACM Annual Conference, Denver Colorado Ott 1985

(BOL X2.1 A.Bolour.l,.Auderson,J.Dekeyser,T.Wong
“fhc role of Time in Information proccssing:A survey”
.:\c‘M SIGMOD Rccortl 12.3 April 1982

[BOrl ‘+;I P. Ikturqicr. \I.>holl. C.Triffaut
“Org;rru~.ltion ct gcstion tic donn~cs sur tlisque optiquc

-69-

numErique non r&nscriptible” Joum6es Bases de Don&es
Avancges, INRIA, St.Pikre de Chartreuse, Mars 1985

[BUT 851 N.Bui Quang “Gestion des historiqucs pour la base
de don&es g&bralis&s TIGRE” R.R TIGRE N.29
IMAG,Grenoble Juin 1985

[BUI 861 N.Bui Quang “Aspects dynamiques et gcstion du
temps dam les SGBDs gtnCralisCes” ThZse de
I’INPG, IMAG Grenoble 1986 (in preparation)

[CHA 761 Chamberlin D.D et al.“SEQUEL 2: A unified
approach to Data definition, manipulation and
control” IBM Journal of Research
and development Nov 1976

[CLI 831 J.Clifford, D.S.Warren “Formal semantic for time
in databases” ACM TODS Vol 8 Nb 2 June 1983 ’

[CL1 8.51 J.Clifford, A.Tansel “On an algebra for historical
relational databases : Two views” Proceedings OF
ACM-SIGMOD Austin May 1985

[COD 791 E.F.Codd “Extending the data base relational
model to capture more meaning”
ACM ‘I‘ODS, Vol.4, N.4, 197Y

[DAD 841 P.Dadam.V.Lum,H.D.Wemer
“Integration of Time versions into a Relational Datahasc
system” VLDB Singapour August 1984

IDIT 8.51 K.R.Dittrich, R.A.Lorie
“Version support For engineering database systems”
IBM Research Report RJ 4765, July 1985

[KAT 82) R.H.Kntz,T.J.Lehmen
“Storage structures for versions ilnd alternatives”
University of Wkonsin, Madison R.R (479) Mai 82

[KAT 851 R.H.Katz, M.Anwaruddin, E.Chang
“A Version Scrvcr for Computer-Aided Design Data”
Report N. UCB/CSD 82/266 University OF California

NovllY85

1 KLG 811 M.R.Klopproge ‘TERM : An approach to include
the Time dimension in the Entity-Relationship Model”

Proceed 2nd Conf on E-R Approach Washington 1981

ILOP X3] M.lLopez,J.Palazzo Olivcira.F.Vclcz
‘*lhc TIGRE data mod& R.R TIGRE N 2 IMAG
et CII-lloneywcll 8111, Grcnohlc Nov 1983

ILUM $41 V.Lum et aI.“Dcsigning DBMS support For the
tempor;ll tlimcnsion” Prwecdings of the
SIGMOD 84 Confcrcncc. June 1984

“Implementation of a time expert in a database
system” ACM-SIGMOD Vol 12 N 3 April 1982

[PAL 83) J.Pahuzo Oliveira,F.Velez “La correspondance
de schtmas entre les mod&les TIGRE et rclationnel”
Rapport de recherche TIGRE N 5 Nov 1983

[PAL 841 J.Palazzo Oliveira “Un modEle de dorm&s et
sa reprtsentation relationnelle dans un syst&me de

gestion de base de dorm&es generalis&es. Projet TIGRE”
These de Docteur Ingtnieur Juin 1984 INPG Grenoble

[SNO SS] R.Snodgrass, I.Ahn “A Taxonomy of Time
in Databases” Proceedings of the ACM-SIGMOD
Austin May 1985

[VEL 841 F.Velez “Un modele et un langage pour les bases
de don&es gtntralistes”
Thke de Docteur Ing&nieur INPG Grenoble Sept 1984

[VEL 85a] F.Velcz “La prise en compte des documents
structurts dans un SGBD : Aspects modele, langage
et architecture du systeme” Joumees BD Avanc&es,
INRIA St Pike de Chartreuse, Mars 1985

[VEL 85b] F.Velez “LAMBDA : An entity-relationship
based language For the retrieval of structured
documents” Proceedings of the 4th Item Conf
on E-R Approach, Chicago, October 1985

-7o-

