Retrieval-By-Unification Operation on a Relational Knowledge Base

Yukihiro Morita, Haruo Yokota! Kenji Nishida and Hidenori Itoh

Institute for New Generation Computer Technology

Mita Kokusai Building, 21F,
1-4-28 Mita, Minato-ku, Tokyo 108 Japan

Abstract

This paper describes a method for retrieval-by-
unificalion (RBU) operations, especially unification-
join, on a relational knowledge base. The relational
knowledge base is a conceptual model for a knowledge
base. In this model knowledge is represented by term
relations. Terms in the term relations are retrieved
with operation called RBUs (i.e., unification-josn and
unification-restriction). To perform unification-join jn
the simplest manner, all possible pairs of tuples in term
relations should be checked to see if each pair of terms
in the tuples is unifiable or not. This would result in an
extremely heavy processing load. We propose a method
which involves ordering terms and, as result, omitting
some pairs from this processing. The paper also de-
scribes a method for implementing the unification en-
gine { UE), that is, hardware dedicated to the RBU op-

erations.

1 Introduction

The Fifth Generation Computer Systems (FGCS)
project in Japan aims to develop inference and knowl-
edge base mechanisms to implement a knowledge in-
formation processing system. To create a large-scale
system for knowledge information processing it is nec-
essary to make a subsystem which efficiently manages
and shares knowledge, like the database management
system in data processing. In this paper, the machine
that efficiently realizes the above subsystem is called a
knowledge base machine. Development of a knowledge
base machine is one of the goals of the four-year inter-
mediate stage (1985 to 1988) of the project.

The knowledge base machine will be used by a va-
riety of users and host computers, so a flexible con-
ceptual schema is desirable. The relational knowledge
base suggested in [Yokota 86] is an extremely flexible
conceptual model of a knowledge base. Knowledge is
represented by term relations, which can include a set
of Horn clauses or of semantic networks. However, the

tCurrent address: Fujitsu Laboratories Ltd, Kawasaki 1015,
Kamikodanaka Nakahara-ku, Kawasaki 211, Japan

amot achine becomes enormous

moun roce i C

when the retrieval-by-unification (RBU for short) oper-
ations proposed in [Yokota 86] is performed in a simple
manner. _

This paper describes how to process the RBU op-
erations. Section 2 provides necessary information on
the relational knowledge base and the RBU operations.
Section 3 proposes an efficient method for processing
the RBU operations. Finally, Section 4 introduces a
method for implementing the unification engine (UE),
that is, dedicated hardware for performing RBU opera-
tions.

t of processing by the m

2 A Relational Knowledge Base

One reason why database systems have prospered is
that sets of data can be shared by a number of appli-
cations as a result of the establishment of data inde-
pendence based on data models. It is important for a
knowledge base system to supply a number of applica-
tions with more complex structures than the data stored
in databases. Thus, we must set up a knowledge model
for uniformly treating knowledge among suppliers and
users of the knowledge. We proposed a relational knowl-
edge base in [Yokota 86| as such a common model.

2.1 Basic Concept

The relational data model is suitable for treating sets
of data mathematically. Let U = {A,, 4z,..., A.} be
a set of attributes, then a domain D; = dom(4;) (s =
1,...,n). Formally, relation R(A,, A;,...,4,) on U is
defined as follows:

RCDyxDy,x...xD,.

1€ R(A;, Ay, ..., A,) is called a tuple. If it is necessary
to distinguish the disjoint sets of attributes X and Y
among the attributes, we use the notation R(X,Y,...).
For example if X = {A;, A;} and Y = {4, A, A5}, the
tuple (z,y,...) stands for (a,, a2, a3, a4, as, . . .).

Now in the relational data model, domains are re-
stricted to sets consisting of nothing but constants. In
the relational knowledge base, on the other hand, do-
mains are expanded to sets of terms. A term is a kind

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copylnﬁ is by permission of
the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment. 6
Proceedings of the Twelfth International Conference on Very Large Data Bases Kyoto, August, 198

of structure capable of containing a number of con-
stants and variables. A subset of the Cartesian prod-
uct of term domains K;, Ks,...,
relation|Yokota 86]) on U.

TCK xK,x...x K,

where K; is a set of terms. u € T(U) is also called a

tuple (over U).

Assume that Var is a set of vanables and Fun;

(i = 0,1,2,...) is a set of i-place function symbols.
Ui=0,1,2,.. Fun; is denoted by Fun. Elements of Fun, are
called constants. We assume that Funn Var = ¢. Now,
terms on Fun U Var are recursively defined as follows:

1. Any constant a € Fun, and any vanable zE Var ’

are terms.

2. I ty,t,,...,t, are terms and
J € Fun, is an n-place function symbol,
then f(t;,t2,...,ts) is‘also a term.

3. All terms are generated by applying the above
rules.

Let Term be a set of terms on Fun U Var. A substi-
tution 6 : Var — Term is represented by a finite set of
ordered pairs of terms and variables

{ {t:/z} |

tGTerm z; € Var
~and if i#j then z,;éz,}

Applying a substitution § to term ¢, we represent the
resulting term by t6. t is called an instance of &.

A substitution @ is called a untfier for ¢; and ¢, if and
only if t,0 = t,6. We also say that ¢, and {; are unifiable
when there is a unifier for them.

A unifier 0 is said to be the most general unifier
(mgu), if and only if for any unifier §' of the set there
is a substitution " such that ' = 6 o 6", where o is
composition of substitutions. We write the,‘mgu of t,
and t, as mgu(t;, t;).

A substitution @ is called a szmultaneous umﬁcr for
the set of pairs of terms {(¢;,u;) | § = 1, ...,n} if and
only if £;0 = u,0 for all 1.

A simultaneous unifier § is said to be the most gen-
eral simultaneous unifier (mgsu), if and only if for any
simultaneous unifier §' of the set there is a substitu-
tion 8" such that 6' = 8 o 6”. The mgsn for the set of
pairs of terms {({;,u;) | 1 =1,2,...,n} is denoted by
mgsu({(tr, 1), -+, (tn, ¥n)})e

2.2 RBU Operations

Data manipulation languages for relational databases
are basically grouped into two types: relational alge-
braic languages and relational calculus-based languages.

K, is called a fterm

Relational calculus is non-procedural while relational
algebra is procedural. Thus, it is easy to model real
operations on.data using relational algebra.

In the process of extending the relational data model
to the relational knowledge base model, operations of
conventional relational algebra, such as join and restric-
tion, are extended to operations based on unification.
In other words, equality-check operations between con-
stants are enbanced to unification operations between
terms. Thus (equi)join and restriction are extended to
unification-join and unification-restriction, respectively.

The projection of a (term) relation T(X,Y) over a set
of attributes X is defined by T[X] = { z | Jy (z,y) €
T).

“Let w, and w, be attributes or terms, and pu be a tuple
of 2 term relation. Let take term(w,,) be defined as

plwy], if w, is an attribute;
take t =
ake e;m(w,,ft) { wy, if w is a term.

wl o w2 represents the condition for the tuple g such
that take term(w,, p) and take_term{w,,u) are unifi-
able. Let F be a formula vy . ,,,(A,_l,..‘,,,.,.(A,, LOWix)),
where 4;,, is an attribute and w;y is a term or an at-
trlbute, a.nd A and V mean conjunction and dxsmnchon
The unification- restnc_tlon of term relation T, written
orT, is defined as

orT={ pé |3peT,3k,
0 = mgsu({(u[A.',.',],takc__tcrm(w,-,,,, m)l
j= 1,...,m5})~.

Let X,Y, 2, W be sets of attributes. The umﬁcatlon-]om
of Ty and T, written Ty(X,Y) YTz T»(Z,W), is defined
as the term relation on XUY UW:

Tl(XrY)yTz Tﬁ(ZrW)
={I"| Ju, € Ty, €Ty,
b = mg“(l‘l[Y]sﬂzlzl),
WX] = X6,
plY] = mlY)0 = p.(Z]0,
WW) = mWle).

Where W N X = ¢. Attributes are renamed if neces-
sary. Note that p[Y] can be regarded as a term even if
Y is set of attributes [Murakami 85].

In the relational knowledge base, knowledge is rep-
resented as term relations. Term relations stored in a
certain format may be regarded as a set of Horn clauses
(Figure 1). [Yokota 86] showed that input resolution
can be performed using RBU operations.

The relational knowledge base is also expected to be
capable of other types of knowledge representation such
as frames and semantic networks. A common model

m

i

ancestor(X,Y) V —~parent(X,Y)
ancestor(XY)V —parent(X, Z) V -ancestor(Z,Y)

parcnt(am:th clark)
parent(clark, turner)

(Saad Bl B A S b Ll)

anceator(X,Y)

lparent(X,Y)|S]

S
S

ancestor(X,Y)

[parent(X, Z}, ancestor(2,Y)|S]

;)nrpnf{nmtfh clarEN S } S

S ORI, eV R 10 2

iparent(clark, turner)| IBIE

KBz

ancestor(smith,Y)

[parent(samith,Y)] -

anceator(smith,Y)

[parent(amith, Z), anceator(Z Y)]

[KD3]

anccato}(amith, clark)]

‘|parent(smith, clark)]

[parent(smith, clark), ancestor(clark, Y)]

ancestor(clark,Y)]

ancestor(amith,Y)]

Figure 1. Example of term relations.

to handle varlous types of knowledge representatlon is
necessary to create a shared knowledge base. The rela-
tional knowledge base is a promising candldate for such
a model.

A mathematical foundation for formal semantics of

relational knowledge bases was studied in [Murakami 85].

Flgure 1 shows an example of term relations and RBU
operations. Here X,Y,;Z,W and S € Var, ancestor and
parent € Fun, and smith, clark and turner € Fun,.
KBI1(Ay, A;) is an example of a term relation. KB2 =
O A ojancestor(smith)| KB1, and KB3 = KB.?A:’;’Al KBi1.

Unification-restriction can be achieved by using
unification-join. For example, suppose T(A, A2, 43, A4)
is a term relation, f = (A 0t; AA;0A3)V(As0a,) and
X = {A,; A, A3, Ai}, where t; and a; are terms and
z,; are variables. Let a term relation T'(A4,, 4, 43, A))
be

{(t,, T2, 11,2,‘51,4), (52,11 T3, a4, ’32.4)}, then

U,T TXOXT

Where the tuple (tl,zl,g,zl,z,z“) is corresponding
to the condition (A, o t;y A A; 0 A;), and the tuple
(22,1, T2,2, 1, %24) I8 corresponding to (A3 0ay).

3 A Processing Method for RBU Operations

. The relational data model provides users with a flex-
ible data model, but it requires a large amount of pro-
cessing. In particular, performing join operations with

large relations requires a tremendous amount of compu-
tation. Several algorithms for implementing join have
been proposed and studied [King 80|[Merrett 83]. The
Delta machine [Kakuta 85] employed dedicated hard-
ware relational algebra engines to improve efficiency.

In the relational knowledge base, unification-join pro-
cessmg is likely to generate very large computation
loads. In this sectlon we propose a method to process
RBU operations, espec1ally unification-join.

In Section 4, we propose a method to reahze this in
hardware.

3.1 Orderiog of Terms

We assume that a very large amount of knowledge will
be stored in the knowledge base machine, so we further
assume these terms are stored in secondary storage (e.g.
moving head disks}).

To petform unification-join in the simplest manner,
all possible pairs of tuples in term-relations should be
checked to see if each pair of terms in the tuples is
unifiable or not. Generating all possible pairs, however,
would ‘result in extremely heavy processing loads. One
way of preventing it involves ordering terms and, as a
result, omitting some pairs.

To arrange terms in order, we introduced the concept
of generality as follows|Yokota 86):

Suppose ¢, and t, are terms. If ¢, is an instance of ¢,
then ¢; is more general than £,. That is,

t, Jt, iff 3F0t, =18 (0 is a substitution).

f
/\
/\
b

Family order: (f2) (g2) (z) (b0) (a0)
Level order: (f2) (g2) (a0) (z) (b0)

Figure 2. A tree and character strings representing term

f{g(z,b), a)

This generality order, however, is a partial order. All
terms should be ordered thoroughly keeping the order
of generality. Terms can be represented by trees (Fig-
ure 2), which can then be linearized to character strings.

Since. trees can be linearized in various ways, such as ..

family-order and level-order methods[Knuth 73a), there
are many character string representations. The charac-
ter string representation of method m of term ¢ is de-
noted by rep,(t). Note that each character corresponds
to elements of Var U Fun. The corresponding elements
of Var U Fun of the:character ¢ is denoted by node(c).

The length of string s is denoted by length(s). We
write the substring from the i-th character through the
j-th character of the character string s by s[i;7], where
i < j, and especially when ¢ > j it denotes the null-
string (length(s[1;0]) = 0). The position of a first vari-
able in character string s is denoted by posv(s) and
the position in which variable z appears first is denoted
by posv(s,z). If there are no variables in s then we
define posv(s)
ables z in s then we also define posv(s,) = length(s).
s[1;posv(s) — 1] is denoted by prefuv(s). We define
difpos(sy, s2) as
1, if s1[1;1] # sa[1;1] or,

Sy OF 85 is null-string;
n, if si{lin—1]="s;[1;n — 1),
il n] # safni] (n > 2).

We define a lexicographic order of character stnng rep-

resentations of terms as follows: ' ..
sy > s, if and only if n = difpos(s;, sz), and

difpos(sy, s2) =

1. nodc(alln,n]),nodc(az[n,n]) € Var,

(a) poav(sy,node(sy[n; n])) > posuf sz, node(ss[n;n})).
(b) posv(sy,node(s1[n;n])) = posv(s2, node(s2[n;n))),
si[n + 1;length(s1)] > a2ln + 1;length(s,)).
2. node(sy[n;n]) € Var, node(sa[n; n}) € Fun.
3. node(sy[n; n]), node(s2{n;n]) € Fun,

node(s1{n;n]} > node{sy[n;n]) in arbitrary order in
Fun

length(s), and if there are no vari-

INPUT : Two sets of terms Ty and Ts.
OUTPUT: All the possible pairs of terms.

Step 1: Set fs « null-string, class;(k) —
fori=1or2and k=0,1,2,....

Step 2: Take a term t € T;;, (¢ = 1 or 2),
such that t > ¢' forall ' € T, U Tb.
And let T; — T; — {t).
If there are no terms in T3 U T, then stop.

Step 3: Set p +— prefo(repn(t)), and n — difpos(p, f2).

Step 4: Let classy (k) — ¢, and classy(k)

Let fs « p.

—¢fork 2n,

Step 5: Output all pairs (¢, t'),
where ' € class;(k),1 <k <n—1,7#4,(f =10r2).

Step 6: Let class;{length(p)) «— class;(length(p)) U {t}
and go to step 2.

Figﬁre 3. The pair generation algorithm.

We use the lexicographic orde: (of method m) to or-
der the terms. That is,

t >m by » iff

In this paper, the method of ordering of terms which
corresponds to the family-order representation is called
the left-most method. Similarly, the method of ordering
of terms corresponding to the level-order representation,
is called the outer-most method.

Note that,; in both of the linearized methods, family-
order and level-order, the ‘father’ node appears before
it’s ‘son’ nodes. So for substitution 6, = {{t,/z:}}
and term t, let sy,s, and k be rep,(t), rep,.(t6,) and
posv(sy, z,), respectively. Then s, and s, have a com-
mon identical substring s;[1;k] and node(s,[k;k]) €
Var, node(s,[k; k]) € FunuU Var. So rep,.(t) > repa(t6,).
(Note that when node(s,|k; k]) € Var, posv(s;,z,) = k
and posv(s,,t;) < k.)

Therefore, for term ¢ and

0 = ({t:/z}i=s.. n}
repa(t) > rep,,,(tﬂ)

repm(ti) > repm(tz)

substitution

Where rep,(t) = repm(t6) hold when 8 is a renaming
substitution (i.e., & = {{t;/z:;}} then t; € Var for all i
and if § # j then t; # t;). Thus both of these ordering
methods maintain the order of generality (i.e., if t, J ¢,
then t; > t,). The order introduced in [Yokota 86] is an
instance of the left-most method.

3.2 A Processing Method for Unification-Join

In a set of terms ordered in the above way (i.e., left-
most method or outer-most method), character strings

¥OERCaNCS
IGIC00N0.
osQaoos e

NOSaORECE
5]

3l
QonENRGOORE
s Qo

r

T

T

0

|

I

[

f

f

f

f

T

-

f

20 i

DN It

0 oos {

L) i

g ugg ¢

o oo 0

5 o0 i

"Re H

] DOk 1

»

s 00w !

: 80000 |

8 29 111 I

o sDu Qobo [

B 00D oUgo i

0 " s e wgo T

9 e w800 f

. i1} aR00 S {

" [s]ela} ooes [{

- 000 Q I

H 200060 0 1

naRe 1

2 20 i
on

S - !

» Jggg 1
0 O

n: i

1858 Total:2025

(left-most method)

b vl e ki S i & e ek R e e

Figure 4. Example of combination of terms.

of terms which can be unified should have a common
identical substring preceding a variable.

Let us consider a pair of terms ¢, and {;. Suppose s, =
repm(ti), S2 = repm(t2), k = min(posv(s,), posv(s,)).
If t;, and t, are unifiable, then there exists § =
mgu(t;,t;) and ¢,0 = t,0, 80, repy, (£18) = repm(t28), and
repn(89)[1;k] = si[ljk] = repm(t20)[1; k] = s2[1;K].
That is, ‘ ‘

si{lik] = s3[1;K] :
where. k = min{posv(s,}, posv(s;}).

Therefore, only such terms should be paired and checked
as unifiable or not. It is easy to select such pairs, when
character strings are sorted. ' ‘

Figure 3 shows a pair generation algorithm. Here we
maintain the set class;(k) as a set of terms such that
prefu(t) is fs[1;k]. ,

Generated pairs in each case (left-most method and
outer-most method) are represented as shown in Fig-
ure 4, with terms on both vertical and horizontal axes,
Internal points (black squares, white squares and dia-
monds) represent the pair, where a black square indi-
cates a unifiable pair, a diamond indicates a pair the
algorithm can omit, and a white square indicates a pair
which is not unifiable but can not omited.

In tree representation, variables appear only at leaves
of a tree. Since the level-order method lists the nodes
from left to right, one level at a time, leaves appear
later in repivd order(t) than in rep,,,,,,;;, ordes(t). Since we
check only prefu(repm(t)), the outer-most (level-order)
method omits more pairs of terms than the left-most
(family-order) method in general.

CP : Contrel processor UL
MM : Main memory of CP DKS

1I0OP : /0 Processor

s
241,
IEisssrazasseces or L TR
1 . #ROOB R HRr e Wi
ODEaRO00e0OR80080 o*DO00D 0000 Ty
¥ORaEO DEeCOsm man 4 o 0000 VX
CoogEsaroonEEas DOCORREEREN OODeREES Y
12;2-: ogoEs SR onesna ”E:
DO0D 1
3asace 3 ::E;:!
T{s.r(,
HH : e
i E fiils
SOSaRO0 it
FHH £ g it
0% 88 D00 . {HA. e
Rom0ROO! }3})
85388 e
gpooow e
80000 s il
o H Bi{d et
i 1 Hiad i3]
» 11 HAEGN
S el
R : il
sobesnes geseELs -,
s0gEDaf0n HIRR
DOwawaDD 1{k3x3 . Ma
gesten [
e paa
HadH [e
=0000ECRES 583 [ERRaH
637 -0:382 ©O:1006 Total:202%
(outer-most method)
- . Control Bus B
c LHRHRIENullullullu
plMm ok & HENY[YIY|Y
o Plls]is]ls]
K3
cp

MPPM

: Unification engine
: Disk system
MPPM : Multiport page-
memory

Figure 5. A Knowledge machine configuration.

4 Design of the UE

In the initial stage of the FGCS project, we devel-
oped a relational database engine to be used in the rela-
tional database machine Delta[Kakuta 85|[Sakai 84]. In
the knowledge base machine, we also aim at improving
efficiency by creating hardware dedicated to the RBU
operation.

A relational knowledge base system architecture was
proposed in [Yokota 86][Monoi 86]. Here we propose
dedicated hardware called a unification engine (UE for
short) for performing retrieval-by-unification operations
as fast as possible.

Figure 5 shows a configuration of a knowledge base
system [Monoi 86|. We assume that a very large amount
of knowledge will be stored in the several disk systems.

- PRU P> SuU 1 > TS

from the!

. to the
sort unit. QE

PGU

= PRU SU > >

PRU :Preprocess unit

SU :Sort unit ‘

PGU :Pair generation unit
UNU :Unification unit
POU :PostProcess unit

Figure 6. Unification engine configuration.

In order to enlarge bandwidth between disk sys-
tems and UE’s, disk systems and UE’s are connected
with the multiport page-memory. A multiport page-
memory[Tanaka 84] is a kind of shared memory de-
signed to be able to access the same page from several
ports at the same time. The control processor controls
the data flow and the parallel execution environment
among UE’s and disk systems. More details on architec-
ture are given in [Yokota 86), and on control technique
in [Monoi 86].

The following describes a method to realize this ded-
icated hardware UE is based upon the RBU processing
method proposed in Section 3.

4.1 Unification Engine Configuration

The unification engine retrieves terms from term re-
lations. Figure 6 shows a unification engine configura-
tion. A unification engine uses three channels, two for
input data streams to it and one for output data streams
from it. It processes data streams by pipeline process-
ing, while it gets the data stream from input channuels,
process it and put the results on the output channel.

The unification engine consists of the following five
units:

preprocess unit: This unit extracts an object item
(term) from a tuple and sends out only that item
to the sort unit.

sort unit: The sort unit sorts sets of terms into order.

pair generation unit: This unit accepts two strings
of sorted terms, then generates pairs of possibly
unifiable terms.

unification unit: The unification unit obtains the
most general unifier {mgu) of generated term

UNUb-|POU> ;

cMP| | FS ou

RIR’

CMP :Comparator
FS :Functor stack
TS :Term stack
OU :Output unit

Figure 7. Pair generation unit configuration.

pairs.

postprocess unit: The postprocess unit applxes the
mgu to the original tuples.

4.2 Sort Unit

We show that it can perform the unification-join effi-
ciently by sorting terms in some order of generality.

Several sorting algorithms have been proposed and
studied[Knuth 73b]. The relational database engine of
Delta employed a sorter which adopted the two-way
merge sort algorithm|Todd 77]. If we number variables
left-to-right in character strings of terms, we can ob-
tain the lexicographic order by variable length charac-
ter sort. So we adopt the variable-length two-way merge
sort method. We use a TRIE representation of variable-
length character strings to avoid readjusting compari-
son starting points. This representation is used in a
pipelined heap sorter proposed in [Tanaka 85].

4.3 Pair Generation Unit

The pair generation unit generates all pairs of terms
(t1,t2) such that rep,(t,)[1; k] = repn.(t:)[1; k], where
k = min(posv(rep,.(t,)), posv(rep..(t.))).

The pair generation unit puts terms in the stack until
all possibilities for unification are exhausted. Compar-
ing these terms with the input term, the unit outputs
all pairs of terms apart from irrelevant pairs of terms.
That is, the pair generation unit omits pairs of terms
corresponding to diamonds in Figure 4. Then unifica-
tion unit selects pairs of terns corresponding to black
squares in Figure 4 from the “squares” pairs of terms.

St‘ep 1: Set k=0,Wy =W, and 0 = ¢.

Step 2: If Wy is a singleton, stop;
O is most general unifier for W.
Otherwise, find the disagreement set Dy of Wy,

Step 9: If there exist elements vg and ¢; in D
such that vy is a variable that does not occur in 2,
go to step 4.
Otherwise, stop; W is not unifiable.

Step 4: Let Opqq = 0k{tk/vk} and Wy, = Wk{tk/vk}.
(Note that Wiy = Wé,,.)

Step 5: Sct k = k + 1 and go to Step 2.

Figure 8. Unification algorithm [Robinson 65]

Figure 7 shows the configuration of the pair generation
unit. ‘

The pair generation unit consists of four components,
a comparator, two term stacks, a functor stack and an
output unit. The term stacks and the functor stack are
corresponding to ‘class’ and ‘fs’ in Figure 3, respec-
tively.

The comparator sends out streams of two terms to be
input one by one in order. Term stacks store terms while
possibilities of unification remain and the functor-stack
indicates the order of current processing. The output
unit control sends out streams of pairs of terms to be
output to the unification unit. ‘

This unit accepts the TRIE representation, and
marge two input- stream, so it is easy to compute the
difpos(p, fs) in Figure 3 (difpos(p, fs) equal to posi-
tion number of first character of marged TRIE repre-
sentation of p). '

The unification units process each pair of terms, so
it is not appropriate that term be represented in TRIE
representation. The pair generation unit need to reform
the representation, and it does so using the functor-
stack.

4.4 Unification Unit

Unification was first introduced by Robinson as the
basic operation of resolution. Several unification algo-
rithms have been studied|Yasuura 85]. Most unifica-
tion algorithms, structure shared methods or structure
copy methods, use pointers to bind variables. However,
pointers are not appropriate to data stream processing.

Figure 8 shows one of the basic unification algorithms
[Robinson 65). Here W is a set of terms.

Let us consider the hardware for executing the repe-
tition part of Figure 8 (step 2 — step 4) (we call this
hardware a unification element.). Collecting unification
elements in series (see Figure 9) allows pipeline process-

Control information

T

Pairs —p — —]
of i i

terms .yl ue; [uez .. .= ue, > terms

—>

same

P S

£ —ip —p = R

> mgu

,.._

ue : Unification element

Figure 9. Hardware for unification algorithm.

Li—> > SAU > > L1’
DEU ECU
L,—» > sau > > Ly’
¥
oCU
> Usu >

DEU: Disagreement extraction unit
OCU: Occurrence check unit

SAU: Substitution apply unit

USU: Unifier synthesize unit

ECU: EQualty check unit

Figure 10. Unification element configuration.

ing of pairs of terms from the pair generatioh unit.

Figure 10 shows a configuration of the unification el-
ements. The blocks corresponding to each ‘step’ in the
algorithm processes character streams in the pipeline
manner.

If there are no limits set on the number of variables in
terms, then an infinite number of unification elements
would be required. This problem is easily solved by a
modification of the configuration using circuit changing
switches or a switching network as shown in Figure 11.

5 Summary

In this paper we proposed an RBU operation pro-
cessing method and an approach to its implementation.
Our method and unification engine applies not only to
knowledge base machines, but also to other knowledge
information processing systems. The ordering of terms

v

\4

NW

SW
I> »»ue1->-~—>uek-| > --»uekhl

SW :Circuit changing switches
SWNW :Switching network
ue; :Unification element

Figure 11. Unification unit configurations.

proposed in Section 3 can also be used fot a disk cluster-
ing method, a kind of page indexing method, to narrow
the search space. In the future, we plan to evaluate the
proposed algorithm and engine by means of simulation.

ACKNOWLEDGEMENTS

The authors thank Mr. K. Yokota of ICOT research
center, Mr. H. Sakai, Mr. 1. Yamazaki of Toshiba Cor-
poration and the members of KBM working group at
ICOT for many useful discussions. The authors also
thank VLDB referees for their helpful suggestions.

References

[Kakuta 85] Kakuta, T., Miyazaki, N., Shibayama,
S., Yokota, H., and Murakami, K., “The
Design and Implementation of Rela-
tional Database Machine Delta”, Pro-
ceedings of the International Workshop
on Database Machines’85, March 1985.

[King 80] King, W. F., “Relational Database
Systems: Where We Stand Today”,
IFIP,pp.368-381,1980.

[Knuth 73a] Knuth, D. E., The Art of Computer
Programming, Vol. 1, Fundamental
Algorithms, second edition, Addison-
Wesley, 1973.

[Knuth 73b] Knuth, D. E., The Art of Computer
Programming, Vol. 3, Sorting and
Searching, Addison- Wesley, 1973.

{Merrett 83] Merrett, H. T., “Why Sort/Merge Gives
the Best Implementation of the Natural
Join.”, ACM SIGMOD Record 13, No
2, January 1983.

[Monoi 86]

[Murakami 85]

[Robinson 65]

[Sakai 84]

[Tanaka 84]

|Tanaka 85]

[Todd 77]

[Yasuura 84]

{Yasuura 85]

[Yokota 86]

Monoi, H., Yokota, H., Murakami, M.,
and Itoh, H., “A Large-Scale Knowledge
Base Machine Control Technique Using
Multi-Port Page-Memory”, ICOT Tech-
nical Report TR-156., February 1986.

Murakami, M., Yokota, H., Itoh, H,,
“Formal Semantics of a Relational
Knowledge Base”, ICOT Technical Re-
port TR-149., December 1985.

Robinson, J.A., “A Machine-Oriented
Logic Based on the Resolution Prin-
ciple”, J.ACM 12, pp.23-41, January
1965.

Sakai, H., et. al., “Design and Imple-
mentation of the Relational Database
Engine” ICOT Technical Report TR-
063., April 1984, Proceedings of Interna-
tional Conference on Fifth Generation
Computer Systems, November 1984.

Tanaka, Y., Multiport Page-Memory
Architecture and A multiport Disk-
Cache System, New Generation Com-
puting 2, pp.241-260, 1084.

Tanaka, Y., “A VLSI Algorithm for
Sorting Variable-Length Character
Strings”, New Generation Compuling 3,
pp-273-306, 1985.

Todd, S., “Algorithm and Hardware for
a Merge Sort Using Multiple Proces-
sors”, IBM Journal of Research and De-
velopment, 22, 1977.

Yasuura, H., “On Parallel Computa-
tional Complexity of Unification”, Pro-
ceedings of International Conference on
Fifth Generation Compuler Systems,
1984.

Yasuura, H., Ohkubo, M., and Yajima,
S., “A Hardware Algorithm for Unifica-
tion in Logic Programming Language”,
Technical Report of IECE, ECB84-67,
pp-9-20, March 1985, in Japanese.

Yokota, H., and Itoh, H., “A Model and
Architecture for a Relational Knowl-
edge Base”, ICOT Technical Report
TR-144, Proceedings of the 13th Inter-
national Symposium on Computer Ar-
chitecture, pp.2-9, June 1986.

