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Abstract 

Relational databases use predicates for a large variety of 
different functions. some leading to database search, 
others being handled by theorem proving. First we 
demonstrate that the theorem provinr! applications have 
very similar basic requirements for predicate mana- 
eement but differ in their need foti efficiency. Second we 
Gresent dedicated deduction methods fo; DBMS that 
employ a copcept of “doubtfuls” in order to allow trade- 
offs between deductive completene?s and efficiency. A 
new algorithm for testing the satisfiability of predicates 
with universally quantified variables is described and 
shown to offer advantages over general-purpose theorem 
provers for many database applications. 

1. Introduction 

Predicate logic and the relational model of data have 
been closely related since the original papers by Codd 
([Codd70].[Codd72]). ’ Predicates have been used for 
auerv laneuaees (tuple and domain relational calculus) 
&i well ai for exprkssing integrity constraints, acces$ 
rights, guard conditions in distributed databases, and 
view definitions (deduction rules). Recehtly. much 
interest has been directed towards the study of predica- 
tively oriented constraint managers IShepherdBB] and 
deduction components [Brachman86] in such systems. 

When charged with the evaluation of a predicate, a DBMS 
is faced with a choice: It can either search th,e database 
extension or prove the predicate using schema informa- 
tion alone. Proof methods have the advantage of avo- 
iding secondary storage access but the potential dra- 
wback of possibly non-terminating proofs. As part of an 
effort to realizk a general predicative approach to 
database management in the DBPL project at Frankfurt 
University, we attempted to devalup a predicate 
manager that offers theorem proving capabilities 
tailored to the requirements of DBMS. To achieve this 
goal. two propositions must be established. First, a sin- 
gle varieti of theorem provers is shown to be sufficient 
for all DBMS predicate management tasks. This allows 
the development of a separate predicate management 
component for an extensible DBMS architecture, similar 
to the one proposed in [Carey&]. Second, the predicate 
management tasks need different trade-of% between 
generality and efficiency depending on their usage fre- 
quency and response time requirements. 

The paper is divided into two major sections. Section 2 
demonstrates, how DBMS predicate management tasks 
can be solved by a separate predicate manager. In order 
to allow a clean trade-off between completeness and 
efficiency, a concept of “doubtfuls” is introduced and 

shown to apply uniformly to all DBMS predicate mana- 
gement tasks. This section concludes that predicate 
managers must be both extensible (i.e., allow the later 
addition of more powerful or more efficient deduction 
components) and adaptive (i.e., offer a dynamic choice 
of deduction components depending on the affordable 
costs). 

In section 3, two dedicated predicate testers for relatio- 
nal calculus predicates are presented. Both theorem 
provers described here have been implemented as part 
of ,the DBPL enhanced relational DBMS at Johann Wolf- 
gang Goethe - University and are currently used as a 
basis for predicate locking, access control, and semantic 
query simplification. The first one is a slight extension of 
a fast and relatively simple test for existential conjunc- 
tive queries proposed by [RosenkrantzBO], whereas the 
second one is a new proof procedure which takes into 
account the quantification of tuple variables, especially 
universal quantidcation. In this respect, the results of 
the present paper complement IJarkef331. where extensi- 
onai query evaluation broceduies for q&mtified queries 
were piesented. The proposed algorithm is based on the 
automatic generation of countereliamples. It is 
reasonably efficient, as long as the number of universal 
quantifleri in an expressioi is small. The paper conc- 
ludes by comparing the dedicated database predicate 
testers proposed here to general-purpose theorem pro- 
vers, in particular to those based on resolution [Robin- 
son 651. with respect to the different DBMS application 
requirements identifled in section 2. 

2. Roles of a Predicate Manager 

This section reviews predicate management requi- 
rements of the major components of a relational 
database system. It focuses on theorem. proving 
anDlications and does not discuss Dredicate handlinn 
tedks that must be solved by query processing. A con- 
cent of “doubtfuls” is then introduced to substitute for 
i&omplete proofs. 

Throughout this paper, predicates are represented in 
the tuple relational calculus of DBPL ([Ma1184], 
[Edelmann84]), a database programming language which 
extends Pascal/R [Schmidt771 by concepts for modulari- 
zation. access abstraction, and predicative multiuser 
transaction handling. For simplicity of exposition, it is 
assumed that predicates are in disjunctive prenex nor- 
mal form (DPNF) and all relations occurring in the predi- 
cate are non empty. The necessar terminolog is 
established by the following example see [Jarke83 for r r 
formal definitions and transformation procedures) : 
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ALL x IN Rel, SOME t IN Rele 
( ( x.ai < 5 ) OR 

( x.ai=t.ai ) AND ( t.ae # 0 ) ) 

is a predicate in DPNF with the prefix 

ALL x IN Rel, SOME t IN Rele 

and the matrix 

( x.8, < 5 ) OR 
( x.ai=t.ai ) AND ( t.ae # 0 ) 

containing the conjunctions 

( x.ar < 5 ) and 

( x.ai=t.ai ) AND ( t.ae # 0 ) . . 

The following is the antiprenez form of the same predi- 
cate 

ALLxINReli 
( ( x.ai < 5 ) OR 

SOME t IN ReIz ( ( x.ai=t.a, ) AND ( t.az # 0 ) ) ) 

Intuitively, prenex normal form moves quantifiers as 
much to the left as possible, whereas antiprenex form 
moves them as far to the right as possible. 

2.1 Applications of a predicate manager 

There is a large number of useful roles predicates can 
play in database systems. The following is a list of appli- 
cations amenable to proof procedures rather than to 
database search. It extends a similar list given by 
[ Munz79] : 

- access control, 

- synchronizing transactions by predicate locking, 

- semantic query simplification. 

- reusing previous query results, 

- data partitioning and querying in distributed 
databases, 

- consistency and redundancy of integrity con- 
straints. 

In order to show similarities and differences, we briefly 
study the role of predicates in each of these functions. 

(1) To enforce access controls, the predicate manager 
must check whether the data read by the user query 
are a subset of the data for which the user has 
access rights. This requires the decomposition of the 
query into a set of query-relevant data sets, each of 
which accesses a single relation restricted by a pre- 
dicate [Bottcher85]. For each such data set. it has 
to be demonstrated that it is contained in the data 
set defined by the user’s access rights: 

1 EACH t IN Rel : Pquery(t) ] c 

1 EACH t IN Rel : Pri&t) ] 

Note that this proof-oriented technique differs from 
the runtime query modification technique proposed 
by [Stonebraker75]. 

(2) 

(3) 

(4) 

(5) 

(6) 

To synchronize transactions by predicate locking 
[Eswaran76, Klug83]. it must be shown that for any 
transaction writing on a set of data defined by a 
predicate P2 over relation Rel. there is no other 
transaction running concurrently which accesses an 
intersecting data set defined by Pl over Rel: 

1 EACH t IN Rel : P,(t) ] n 

t EACH t IN Rel : P*(t) ] = 1 ] 

A query submitted to the DBMS can be simplified, if 
some part of the query predicate is either 
unsatisfiable or redundant (i.e., implied by some 
other part) [Aho79]. Similarly a query can be 
simplified, if it contradicts or is implied by an 
integrity constraint [ChakravarthyEt?, JerkeBB]. 

The result of a previous query can be reused to eva- 
luate a new query more efficiently if the new query 
result can be shown to be a subset of the previous 
result [Finkelstein82]. Note, that this requires the 
same predicate test as access control. An access 
path can be seen as a shorthand for a set of previ- 
ous query results [Jarke85]; thus, the same predi- 
cate test can also be used for checking applicability 
of access paths. 

Query processing in a distributed database has to 
determine database fragments to be searched to 
answer a given query. A database fragment defined 
by predicate Pl over relation Rel can be excluded 
from the search if it is disjoint with the predicate P2 
over Rel appearing in the query [Ceri84. Munz79, 
Ullman82]. 

An integrity constraint must be consistent with 
existing constraints. Inconsistency is determined 
by a test for unsatisfiability of the expression 

IC, AND Ice AND . . . AND IC,,, 

Note, that this test is only sufficient if performed at 
database desien time: otherwise. an extensional 
search for datgbase tuples that violate the new con- 
straint will have to be added IBowen82. Kita- 
kaml84]. 

Conversely, redundant integrity constraints should 
be removed from a set of existing constraints. 
Testing redundancy requires for each integrity con- 
straint ICi one test for implication of 

IC, AND . . . AND IC,-, AND 

IC,,, AND . . . AND IC, -+ IC, . 

Collecting all requirements, a predicate manager has to 
perform tests of the following kinds: 

(1) Does 

1 EACH t IN Rel : Pi(t) ] n 
1 EACH t IN Rel : Pe(t) 1 = 1 1 

hold ? (for synchronizing transactions and for 
queries in distributed databases) 

(2) Does l EACH t IN Rel : P(t) ] = l ] hold ? 
(for query simplification) 
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(4) 

(5) 

(6) 

All 

Does 

{ EACH t IN Rel : P,(t) j c { EACH t IN Rel : Pz(t) 1 

hold ? (for access control and to reuse previous 
query results) 

Is P,(t, ,..., t,) + Pz(t, ,..., t,) valid ? 
(for rejecting unnecessary integrity constraints and 
for query simplification) 

Is P(t,,....t,) valid ? (for query simplification) 

Is P(t,.....t,) unsatisfiable ? (for consistency test 
of integrity constraints and for query simplification) 

these required tests can be standardized into the 
same theorem proving task by the following reduction 
steps. 

(1) 

(2) 

(3) 

(4) 

(5) 

2.2 

To reduce requirement 1 to a test of kind 2. let 
P(t) := P,(t) AND Pg(t). 
Then we get 

{ EACH t IN Rel : Pi(t) j n 1 EACH t IN Rel : Pg(t) ] = 

{ EACH t IN Rel : P(t) 1 , 

Requirement 2 can be reduced to a test of kind 6 : 

1 EACH t IN Rel : P(t) 1 = 1 1 , iff 

SOME t IN Rel ( P(t) ) is unsatisfiable . 

To reduce 3 to 6, let P(t) := Pi(t) AND NOT Pz(t). 
Then 

1 EACH t IN Rel : Pi(t) { c t EACH t IN Rel : Pz(t) 1 , 

iff 
SOME t IN Rel ( P(t) ) is unsatisfiable . 

To reduce 4 to 6 let 
ptt ,,...,Q := P,(t, ,..., tn) AND NOT P,(t,,....t,). 

Then 
P,(t,....*t,) -B P,(t,,....t,) 

if7 
P(t,.....t,) is unsatisfiable 

P(t,*....t,) is’valid. iff 
NOT P(t,.....t,) is unsatisfiable. 

Incomplete Provers 

Supporting database system tasks by a predicate 
manager requires a sufficiently fast rather than a com- 
ulete theorem prover. For example, the time for optimi- 
zing a query should not exceed the savings throug-h the 
optimization. Therefore, instead of performing an 
exhaustive search, the predicate manager may finish 
with the output doubtjul : In the time given the predi- 
cate manager was unable to determine whether a predi- 
cate was satisfiable or not. In such cases, the predicate 
manager will assume that the predicate is satisfiable. 

In order to show that a single predicate management 
component is capable of dealing with all the above appli- 
cations, we have to demonstrate that the interpretation 
of “doubtfuls” as “satisfiables” always yields reasonable 
decisions. If this were not the case, -a more complex 
theorem-prover for double-sided correctness would be 
required, that would generate three-valued output 
(satisfiable, non-satisfiable, doubtful). Fortunately, the 
following discussion shows that such a theorem prover is 
not needed for the above applications : 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

To guarantee data security access is granted only if 
provably permitted. If in doubt, a predicate 
manager has to reject a query. Confronted with the 
rejection a user could then split his query into a 
sequence of simpler ones and possibly get an 
answer. 

Consider synchronizing transactions. In the 
doubtful case transactions must be serialized. The 
same is required, if the predicate manager finds out, 
that the predicate defining the data set used in 
common is satisfiable. 

In the doubtful case no query simplification should 
be performed. Recall that in the case of 
redundancy, this is tested by evaluating the impli- 
cation P + Q. If it does not hold,’ this corresponds to 
the fact that P AND NOT Q is satisfiable. 

Consider reusing previous query results. The case, 
that a predicate is satisfiable indicates that some 
error could occur when an existing query result (or 
access path) is reused; the doubtful case requires 
the same treatment. 

In doubt, a data collection in a distributed database 
has to be searched for tuples matching a query. 
Exactly the same has to be done, if the predicate 
manager finds out, that the intersection of query 
relevant information and the data collection is 
satisfiable. 

As long as a set of integrity constraints cannot be 
proved to be unsatisfiable, we assume them to be 
consistent and treat them as satisfiable. Similarly, 
as long as a predicate manager cannot prove an 
integrity constraint redundant, it has to be retained 
in the database schema - no matter, whether this 
proof failed because the integrity constraint is 
non-redundant or because of doubt. 

2.3 The Need for Adaptive Predicate Managers 

From the above discussion it might seem that a single 
theorem prover with doubtfuls would be sufficient for 
any of the above predicate management tasks in 
database systems. However, the tasks differ in the typi- 
cal complexity of predicates to be tested as well as in 
their performance requirements. For efficiency reasons, 
any theorem prover is complete only for a certain class 
of predicates and allows more and more doubtfuls as 
predicate complexity grows beyond this class. (This 
assumes that predicates of greater complexity are 
simplifled before submission to the theorem prover.) 
Furthermore, performance (especially worst-case per- 
formance) degrades as the class covered by a predicate 
tester is expanded. 

One criterion distinguishing the applications is the pre- 
cision required for predicate tests. Query optimization, 
for example, just requires unnecessary query processor 
work if too many doubtfuls occur. Preventing a user 
from access has to be handled much more carefully, 
since a high degree of doubtfuls may deny rightful 
requests. 
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The performance requirements also differ between rare 
applications, such- as testing consistency and 
redundancy of integrity constarints, more frequent com- 
pile time applications such as query simplification using 
integrity constarints. and very frequent runtime applica- 
tions. 

3. Theorem Provers in the DBPL Predicate Manager 

The last criterion is the complexitv of medicates. 
depending on the expressive power of language con- 
structs offered to, and used by, the user. In particular, 
operations involving a large number of predicates (e.g., 
testing redundancy of integrity constarints) lead to very 
complex satishability tests; fortunately, those applicati- 
ons -- as observed above -- also allow for more testing 
time. 

Therefore, an adaptive database system should offer a 
choice of predicate testers, suitable for predicates of 
different complexity and adapted to the needs of the 
specific data definition and manipulation languages of 
the system. The extensible database system concept 
allows the subsequent addition of additional testers, as 
new interfaces are added to the system. Where per- 
formance requirements are stringent, predicates can be 
simplified and submitted to a tester of lower complexity. 

In the DBPL system [Eckhardt85], the relational calculus 
orientation of the languages requires two main levels of 
testing. So-called matrixtests only test .the satisflability 
of the matrix of a relational calculus ex 
easily shown [Rosenkrantz80. Chandra82 P 

ression. It is 
that matrix 

tests are sufficient for the frequent case of predicates 
which are conjunctive and do not contain universally 
quantified variables in their prefix. (Incidentally, this is 
also the class of SQL queries without set operations and 
negation.) 

However, a special property of the DBPL system is that it 
also attempts to sup 

P 
art quantified predicates (queries 

as well as constraints efficiently [Jaike83]. In particular, 
many integrity constraints (key constraints and referen- 
tial integrity, among others) rely on the use of univer- 
sally quantified variables. For example a key constraint 
on relation Rel can be expressed as : 

ALL t, IN Rel ALL t,‘lN Rel 
( (t,.key = tz.key) + (t,=ts) ) 

and a referential integrity constraint between .relation 
Rel, and Relz is expressed as : 

ALL t, IN Rel, SOME ts IN Rels 
( t,.fore/gnkey = ts.key ) , 

Conseauentlv. the DBPL medicate manaeer has been 
augmented by a second tester which uses a “counterex- 
ample” strategy to test satisfiability of quantified 
expressions. If there are not too many universal 
auantiflers. the efficiency of this testeris comparable to 
chat of the matrixtest; although its worst-case com- 
plexity is exponential in the maximum number of univer- 
sally quantifi,ed variables over a particular relation. The 
tester has also proven reasonably efficient (taking .5 to a 
few seconds on a VAX-750) for relatively small sets of 
integrity constraints to be checked for consistency or 
redundancy. For very complex theorem-proving tasks 
(e.g., consistency of large rule bases) it may be necessary 
to add a third theorem prover, for example, based on the 
resolution principle. 

In the following section, both DBPL predicate testers are 
described and compared to general-purpose theorem 
provers from Al with respect to their usefulness in 
database applications. 

3.1 Matrixtests 

A test examining the satisfiability of a matrix of a predi- 
cate given in DPNF is called matriztest. Each tuole vari- 
able of the matrix has to be SOME quantified (called an 
ezistenticrl uatible). The matrixtest is based on the fol- 
lowing principle: 

A matrix in disjunctive normal form is satisfiable. 
iff at least one of its conjunctions is satisfiable. 

The satisfiability of predicates of this important subclass 
is decidable [Ackermann54]. However, if each of the 
comparison operators 2, =, 5,4;, > and < is allowed, then 
already testing the satisfiability of a conjunction beco- 
mes NP-hard [Hunt79]. To manage problems of this com- 
plexity Carey and Johnson [Garey79] propose to design a 
partial solution solving a class of frequent cases in poly- 
nomial time. 

Rosenkrantz and Hunt [RosenkrantzBO] propose an algo- 
rithm testing in polynomial time the satisfiabilitv of a 
conjunction containing no # comparison operators: 
To reduce the number of doubtful cases we extend this 
algorithm by testing most of the practical relevant con- 
junctions containing # comparison operators. 

The algorithm proposed by [RosenkrantzBO] aligns all 
comparisons using the following rules : 

a=b --> (asb)AND(b<a) 

c<d --> csd+--1 

elf --> fse 

g>h --> hsg+-1 

x 4 constant --> x rS 0 + constant 

constant < x + offset --> 
0 < x + (offset - constant) 

For each aligned conjunction a graph is constructed : 
The constant 0 and each pair t.ai occurring in a compa- 
rison correspond to nodes and each aligned comparison 
corresponds to a directed edge valued by the offset of 
the aligned comparison. 

If a graph contains a cycle of edges with a negative sum 
of values, the conjunction is unsatisfiable. Searching for 
cycles by drawing transitive edges has a complexity of 
O((number of comparisons)3). 

TQ include # comparisons into the test, the predicate 
manager at first sorts the comparisons of each conjunc- 
tion such that # comparisons are processed last. Only if 
the graph for a conjunction contains no negative valued 
edge from one node to itself, the following additional 
test is performed : 

A comparison a # b is incompatible with the graph, 
and the conjunction tested is unsatisfiable. if the 
graph contains paths from a to b and from b to a 
with value 0. 
Similarly, a comparison c # constant is incompa- 
tible with the graph, if the graph contains edges 
c S 0 + constant and 0 4 c - constant. 

Otherwise, the conjunction is assumed to be satisfiable. 
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This assumption can be erroneous, e.g., for the conjunc- 
tion “are there three different integer numbers between 
10 and 13” : 

lO<a AND a<13 AND lO<b AND b<13 AND lO<c AND 
c<13 AND a#b AND a#c AND b#c 
(a.b.c:INTEGER). 

Such predicates have little practical relevance; even if 
they occur, searching the database may be faster than 
an extensive predicate test. 

In connection with semantic query simplification, a simi- 
lar algorithm was implemented -as part of the Prolog 
database controller described in [JarkefM]. That algo- 
rithm also includes tableau techniques [Aho79] which 
handle some special cases more efficiently than the 
general matrix test. In the DBPL implementation the 
matrixtest has been extended to other attribute types 
such as REAL and TEXT, possibly in combination 
[BGttcher35]. 

3.2 Testing arbitrary quantified relational. calculus 
exp-tmriona 

As stated earlier, most integrity constraints and many 
other medicates in DBPL contain quantified variables. 
Therefore this subsection extends the matrixtest to a 
general predicate test. However, in contrast to general- 
purpose- theorem provers, this test is tailored- to the 
needs of database systems in that it is very fast for pre- 
dicates with few universally quantified tuple variables 
over the same relation, which constitute the majority of 
database predicates to be tested. 

For the frequent case that the predicate contains only 
existential variables the matrixtest is sufficient. Hence 
we consider tests for predicates containing ALL 
auantified tunle variables (universal variables). The 
key idea is. that such a predicate is unsatisfiable if by 
substituting constants for the universal variables we find 
a counterexample. We then analyie various ways to con- 
struct counterexamples. Finally, we develop an algo- 
rithm which svstematicallv constructs potential counter- 
examples. Combining this algorithm with the matrixtest 
yields a test for arbitrary predicates. This test is then 
illustrated by a comprehensive example. 

3.2.1 The theorem proving principle 

To show the unsatisfiability of a predicate P. the tester 
tries to construct a counterexample by substituting 
some constant ci for each universal variable xi of P. This 
yields a predicate P’ which is a logical consequence of P. 
i.e. P * P’. P’ is testable by the matrixtest. since it has 
no universal variables. If the matrixtest shows P’ to be 
unsatisfiable. i.e. P’ + FALSE, we have 

P -. P’ -. FALSE, 

hence P is unsatisfiable. 

As an example, consider the following predicate Pi : 

SOMEtINRALLxlNR 
( (t.a, # x.ai) AND (x.as < 20) ) 

The substitution x:=t applied to predicate Pl yields Pre- 
dicate Pl’ : 

SOME t IN R 
( (ta, # t.a,) AND (t.as < 20) ) 

The matrixtest proves that predicate Pl’ is unsatisfiable, 
hence predicate Pl is unsatisfiable. Intuitively, since 
there is one (representative) tuple t in R for which the 
matrix is unsatisfiable. it cannot be satisfiable for all 
elements of R. Thus. we have constructed the desired 
counterexample. 

3.22 Compatible tuple substitMions 

In general, there are several essentially different ways to 
construct potential counterexamplea. using different 
variable substitutions., However, not all of these substi- 
tutions actually preserve correctness of the predicate 
test. In this subsection, we first show how to enumerate 
potential counterexamples. and then how to eliminate 
illegal ones. 

To enumerate, potential counterexamples. we Arst intro- 
duce two kinds of precedences between tuple variables : 
scope precedences (<) given b the predicate structure, 
and substitution precedences <--) for each substitution f 
made by the predicate tester. 

Two tuple variables t,. ts of a predicate P are in scope 

precedence (t,<t,). if in every equivalent predicate AP in 
antiprenex form, ts is deflned in the scope of ti. For 
example, predicate P, has the scope precedence t < x. 
since one cannot change the sequence of t and x in the 
prefix without changing the meaning of the predicate. 

Substitution precedences are caused by so-called tuple 
substitutions: A tuple substitution of a predicate is a 
function of the form 

1 t, <-- XI , . . . . t, <-- x, 1 , 

which maps each universal variable xr either to an 
existential variable of the same relation or to a sort 
constant CR of the range relation R of xi. For example 
the predicate Pl has two possible tuple substitutions 

T, = 1 t <-- x 1 and Ts = 1 CR <-- x 1 

Remarks: 

(1) 

(2) 

(3) 

Substitution with CR, an arbitrary element of the 
relation R. leads to unification of the remaining 
universal variables. 

There cannot be two different sort constants of the 
same relation because there are predicates which 
are satisfiable only by relations with a single 
element. 

This restriction to one sort constant CR per relation 
R does not lead to lass of completeness 
[BMtcherB5]. A similar restriction of substitutions is 
the Herbrand Universe [Chang73]. 

Tuple substitutions may be incompatible with the scope 
precedences of the tuple variables i.e., they do not 
preserve a logical implication from .P to the simplified 
predicate P’. For example, compare the following predi- 
cate with Pi : 

Predicate Ps : 

ALLxINRSOMEtINR 
( (t.a, # x.a,) AND (x.as < 20) ) 
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The substitution x:=t (t<--x) is allowed for P, but not for 
Pz because in P,, t is not known at the moment x is fixed 
by substitution. Note that, the scope rules for P, 
determine a precedence x < t which, together with the 
precedence required by the substitution t <-- x (t 
before x), would require a cyclic precedence x < t <-- x . 

To generalize, we define a preflz graph. The tuple vari- 
ables and the sort constants are the nodes, and the 
scope and substitution precedences are the edges of this 
graph. If the prefix graph is acyclic. we call the tuple 
substitution compaiible with the scope precedence. 
Only compatible tuple substitutions can be used to con- 
struct counterexamples. For example, we cannot con- 
struct a counterexample for predicate P, although one 
existed for Pl. Consequently. P, is unsatisfiable but P2 is 
assumed to be satisfiable. 

Frequently. the number ,of possible substitutions is redu- 
ced substantially by the compatibility rule. For exam- 
ple, predicate Ps 

ALLxINR ALLyINR SOMiZtINR’ .( . ..) 

determines the scope precedence? 1 x < t , i < t 1 The 
tuple substitutions Ti of predicate P, are : 

T, = 1 t <-- x , t <-- jr j 

T,=I t<--x,&<--y] ’ 

T, = l CR <:- x , t ,(-- y 1 
, 

T, = 1 CR <-- x , CR <-- y 1 

Together with the scope precedences the tuple iubstitu- 
tions TI and T, induce the following cycle in the prefix 
graph : 

odg 

The tuple substitutions T, and T, induce the cycle : 

o~f>~:~,~l .*. 

Hence only tuple substitution T, is compatible. 

If a predicate obtained by a compatible tuble~substitu- 
tion is unsatisfiable, the origina! predicate is 
unsatisfiable, because a feasible .countel’exbrpp!e has 
been constructed. Togethei with the matrixtest, this 
reasoning yields the theorem: 

A predicate in DPNFis utiatisfiable, ij ’ 
there is a cycle free p?‘eflz graph such that 
(after substitution) every conjunction graph 
contains a negative valued cycle. 

Searching for cycles in the prefix graph can be perfor- 
med by the same algorithm, as used for conjunctions in 
the matrixtest, if we treat each precedence ( < or <-- ) 
as a comparison containing the < operator. 

Using this result. we obtain the following algorithm for 
testing an arbitrary predicate containing universal vari- 
ables: 

FOR EACH tuple substitution DO 
IF the tuple substitution is compatible THEN 

IF the matrixtest yields that the substituted 
predicate is unsatisfiable THEN 

RETURN( the predicate tested is unsatisfiable ) 
END ; 

END : 
END ; 

RETURN( the predicate tested is 
assumed to be satisfiable ) ; 

To illustrate the interaction of the concepts introduced 
in this section, we now present a comprehensive exam- 
ple: 

In a database containing relations employees and papers 
the following integrity constraints are submitted to a 
consistency test : 

I,: 

I.$ 

Is: 

I,: 

There exists a paper with the author number 100 

SOME p1 IN PAP ( pl.authol’ = 100 ) 

All authors are employees (referential integrity) 

AL4 pz IN PAP SOME,e2 IN EMP ( p2.author = e2.enr ) 

For every employee there exists a paper, of which he 
is not an author 

ALL es IN EMP SOME ps IN PAP ( ps.author # es.enr ) 

Ali employees have an employee number less than 
50 

ALL e4 IN EMP ( e,.enr < 50 ) . 

These integrity constraints determine the scope prece- 
dences 

~2 <e2 and 

e3 <p3 

The conjunction of ;he integrity constraints leads to the 
DPNF predicate : 

‘SOME p, IN PAP ALL p2 IN PAP SOME e2 IN EMP 
ALL e3 IN EMP SOME‘p3 IN PAP ALL e4 IN EMP 
( ( pl.author = 100 ) AND 

( p2.author = e2.enr ) AND 
( ps.author # es.enr ) AND 
( er.enr < 50 ) ) 

Among others, the following tuple substitutions are con- 
sidered : 

1 p3 <-- p2, e2 <-- e3, cEMP <-- e4 I 

1 cEMP <-- e3, cPAP <-- p2, cEMP <-- e4 j 

t p1 <-- p2, cEMP <-- es, e2 <-- e4 1 
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The first tuple substitution yields the substitution prece- 
dences p3 <-- pz and e2 <-- e3 . Together with the 
scope precedences this leads to the following cycle in 
the prefix graph : 

p3 <-- p2 < e2 <-- es < p3. 

Thus, the first tuple substitution is incompatible : 
Although this substitution leads to an unsatisfiable 
matrix, this is not sufficient to prove the integrity con- 
straints to be inconsistent. 

The second tuple substitution is compatible but yields a 
predicate with a satisfiable matrix : 

SOME pi IN PAP SOME e2 IN EMP SOME p3 IN PAP 
( ( pi.author = 100) AND 

( cPAP.author = e2.enr ) AND 
( pa.author # cEMP.enr ) AND 
( cEMP.enr < 50 ) ) 

The third tuple substitution is compatible and yields a 
predicate with an unsatisfiable matrix : 

SOME pi IN PAP SOME e2 IN EMP SOME p3 IN PAP 
( ( p,,.author = 1,OO ) AND 

( p,.author = es.enr ) AND 
( ps.author f cEMP.enr ) AND 
( e2.enr < 50 ) ) 

The matrix is unsatisfiable because it contains 

100 = pi.author = e2.enr < 50. 

Constructing this counterexample is sufficient to prove 
that the integrity constraints are inconsistent. 

3.2.3 Evaluation Costs 

The number of tuple substitutions ] T ] of a predicate and 
thus the maximum number of matrixtests depends pri- 
marily on the number of universal and existential ,vari- 
ables per relation : 

ITI= 

SOMEr = 

ALLr = 

Rdn 

number of existential variables bound to rela- 
tion r, 

number of universal variables bound to rela- 
tion r. 

For the above example there are twelve tuple substituti- 
ons. This number can be reduced by first combining a11 
ICs beginning w,ith a universal quantifier over the same 
relation : in the example there are only six tuple substi- 
tutions if the the third and the forth integrity constraint 
are combined into one by identifying e3 with e4. In com- 
pile and runtime applications, there will be rarely more 
than one variable for a given range relation. Thus, 
although the worst case complexity of this algarithm is 
exponential, its costs are typically quite acceptable: 

The number of conioatible tuole substitutions is even 
smaller. Using a backtracking algorithm. to produce 
comoatible tuple substitutions Bdttcher86] further dec- 
rear&s the number of produced tuple substitutions. 

The time spent on constructing the prefix graph is at 
most 0( (number of quantifiers + number of relations)3). 
Hence the bottleneck of runtime applications is usually 
the matrixtest, consumin a time of at most 
0( ( number of comparisons ) 

8 
). 

3.3 Comparison with general purpose theorem provers 

The goal of well known theorem provers ([Andrew&l]. 
[BibeIBl], [BIgsiusBl]. [Hsiangf33], [Kowalski75]) is the 
analysis of arbitrary first order predicates. In genera1 
these theorem provers offer the problem of termination : 
Since the first order predicate calculus is undecidable 
[Kleene71]. for every complete theorem proving algo- 
rithm there are some predicates for which it doesn’t 
terminate. Hence it is impossible to calculate, after how 
many steps at most the algorithm will terminate. In con- 
trast most database applications must estimate execu- 
tion time in advance. If we wish to limit thenumber of 
deduction steps the question arises : Which limitation of 
which deduction steps is adequate ? 

Most special purpose theorem provers focus on reasoning 
with equality alone (e.g. Prolog). A’<-resolution princi- 
ple proposed by Bledsoe and Hines [BIedsoe30] is based 
upon techniques called variable elimination, splitting 
and chaining. However, the key idea, restriction of 
chaining, is not applicable to database predicates; hence 
the search space remains unrestricted and a long testing 
must be expected. 

Considering most of the applications of the predicate 
manager, another weakness of most of the well known 
theorem provers is, that they do not integrate compari- 
sons of variables with natural or real numbers, and texts 
values. Treating ‘these comparisons as axioms is much 
too expensive. 

To demonstrate the usefulness of different predicate 
managers we map the application requirements to the 
following three, kinds of predicates to be tested : 

(1) Predicates containing no universal variables. For 
these applications the matrixtest is sufficient. 

(2) Predicates containing few universal variables. For 
these applications the extended matrixtest is 
suflicient. 

(3) Predicates containing many universal variables. For 
these applications more powerful theorem provers 
are required, e.g.‘general purpose theorem provers. 

Throughout the discussion: it is assumed (realistically,, 
we believe) that user queries will contain no or few 
universal variables per relation. 

(1) 

(2) 

Access rights are usually expressed as simple selec- 
tions (no quantifier) or at most by.referential con- 
straints (one quantifier). Thus, predicates of type 1 
or 2 have to be proven. 

In principle;’ precision predicate lock tests might 
require several univarsal quantifiers over the same 
relation. However, this will happen only if there is. 
heavy concurrent access to the same relation and if 
this access is not via the same’ lo&al access oath 
(in which case the range relation 7s easily parGtio- 
ned). Thus, we expect this case to be rare; if it does’ 
occur: predicates-must be simplified so that tests of 
type 1 and 2 become applicable. General proof pro- 
cedures must be considered infeasible for synchro- 
nization of short transactions. 
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(3) 

(4) 

(5) 

(6) 

Query simplification is only useful if fast proof pro- 
cedures are available. Predicate testers of type 1 
and 2 can be used as a syntactic simplification tool 
which may be useful only in conjunction with 
semantic simplification lJarke66. Chakravarthv861 
or in combination with other fast special-purpose 
provers, such as tableau techniques [Aho79]. 

Query results will be retained, or access paths will 
be supported, only if they save expensive operations 
and correspond to relatively simple queries. Typical 
examples are single or multiple attribute indexes 
(no quantifiers) or join indexes (one quantiAer). 
Thus, tests of type 1 or 2 are typically sufficient. 

For distributed databases, the same argument as for 
access rights holds if data partitioning is by predi- 
cates at all. 

Tests for consistency and redundancy of integrity 
constraints may involve many quantifiers over the 
same relations if there are many integrity con- 
straints per relation. Note, however, that universal 
variables can often be combined. as shown in the 
example of section 32.2. Formalizing this idea 
[BBttcher86] presents an algorithm that reduces the 
number of -matrixtests by- testing only so-called 
“maximal tuple substitutions”. It is also shown that 
testing only maximal tuple substitutions is equi- 
valent to testing all tuple substitutions. Neverthe- 
less, the question of whether a type 2 tester, one of 
the AI provers, or another special-purpose tester is 
preferable for checking consistency and redundancy 
of integrity constraints, must remain open until 
further practical experimentation. 

In summary, then, it turns out that the two predicate 
testers presented in this paper are efficient and 
sufficient for most database aoolications. with the DOS- 

sible exception of query simpli’fi’cation (where they must 
be combined with other methods) and consistency L 
redundancy checks for .constraints (where further rese- 
arch is needed to establish the best methods). However 
the latter task is usually performed only at database 
design or restructuring time, where efficiency is of less 
concern. 

4. Conclusion 

There are two major conclusions to be drawn from this 
research. First, it was demonstrated that the same phi- 
losophy of predicate testing with doubtfuls applies to all 
of the major theore,m proving applications in relational 
DBMS. Second, it was shown that specialized theorem 
provers taking explicitly into account the trade-off 
between number of doubtfuls (completeness) and execu- 
tion speed may offer advantages over general purpose 
methods for most time-critical DBMS applications. 

The matrixtest by [RosenkrantzBO]. itself based on sear- 
ching cycles, has been extended by a prefixtest for 
general predicates with universally auantified variables. 
also searching cycles. This extended matrixtest proves a 
predicate to be unsatisfiable, if it has a cycle free prefix 
graph such that every conjunction graph has a negative 
valued cycle. It is intended to integrate this algorithm 
with the- tableau-oriented semantic auerv ootimizer of 
[Jarke86] which is also graph based and allows efficient 
handling of specialized constraint classes such as functi- 
onal dependencies and referential integrity constraints. 

As the cost estimates show, the proposed tester is 
suitable for the frequently occurring predicates con- 
taining few tuple variables per relation. This is 
confirmed by experience with the implementation. 

In further work, we plan to augment the predicate mana- 
gement system by faster and simpler tests (e.g.. dropping 
analysis of inequalities), and by more powerful tests, 
taking into account, e.g.. deduction rules with recursion. 
In this way. we want to use the extensible database 
architecture to provide fully adaptive predicate mana- 
gement. The predicate manager will also be used to pro- 
vide an interface of the DBPL system to a multi-level 
logic-based design environment for data-intensive appli- 
cations. 
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