
Adaptive Predicate Managers in Database Systema

Stefan BBttcher. Matthias Jarke and Joachim W. Schmidt

Fachbereich Informatik
Johann Wolfgang Goethe-Universitiit

Postfach 11 19 32. D-6000 Frankfurt/Main 11
West Germany

Abstract

Relational databases use predicates for a large variety of
different functions. some leading to database search,
others being handled by theorem proving. First we
demonstrate that the theorem provinr! applications have
very similar basic requirements for predicate mana-
eement but differ in their need foti efficiency. Second we
Gresent dedicated deduction methods fo; DBMS that
employ a copcept of “doubtfuls” in order to allow trade-
offs between deductive completene?s and efficiency. A
new algorithm for testing the satisfiability of predicates
with universally quantified variables is described and
shown to offer advantages over general-purpose theorem
provers for many database applications.

1. Introduction

Predicate logic and the relational model of data have
been closely related since the original papers by Codd
([Codd70].[Codd72]). ’ Predicates have been used for
auerv laneuaees (tuple and domain relational calculus)
&i well ai for exprkssing integrity constraints, acces$
rights, guard conditions in distributed databases, and
view definitions (deduction rules). Recehtly. much
interest has been directed towards the study of predica-
tively oriented constraint managers IShepherdBB] and
deduction components [Brachman86] in such systems.

When charged with the evaluation of a predicate, a DBMS
is faced with a choice: It can either search th,e database
extension or prove the predicate using schema informa-
tion alone. Proof methods have the advantage of avo-
iding secondary storage access but the potential dra-
wback of possibly non-terminating proofs. As part of an
effort to realizk a general predicative approach to
database management in the DBPL project at Frankfurt
University, we attempted to devalup a predicate
manager that offers theorem proving capabilities
tailored to the requirements of DBMS. To achieve this
goal. two propositions must be established. First, a sin-
gle varieti of theorem provers is shown to be sufficient
for all DBMS predicate management tasks. This allows
the development of a separate predicate management
component for an extensible DBMS architecture, similar
to the one proposed in [Carey&]. Second, the predicate
management tasks need different trade-of% between
generality and efficiency depending on their usage fre-
quency and response time requirements.

The paper is divided into two major sections. Section 2
demonstrates, how DBMS predicate management tasks
can be solved by a separate predicate manager. In order
to allow a clean trade-off between completeness and
efficiency, a concept of “doubtfuls” is introduced and

shown to apply uniformly to all DBMS predicate mana-
gement tasks. This section concludes that predicate
managers must be both extensible (i.e., allow the later
addition of more powerful or more efficient deduction
components) and adaptive (i.e., offer a dynamic choice
of deduction components depending on the affordable
costs).

In section 3, two dedicated predicate testers for relatio-
nal calculus predicates are presented. Both theorem
provers described here have been implemented as part
of ,the DBPL enhanced relational DBMS at Johann Wolf-
gang Goethe - University and are currently used as a
basis for predicate locking, access control, and semantic
query simplification. The first one is a slight extension of
a fast and relatively simple test for existential conjunc-
tive queries proposed by [RosenkrantzBO], whereas the
second one is a new proof procedure which takes into
account the quantification of tuple variables, especially
universal quantidcation. In this respect, the results of
the present paper complement IJarkef331. where extensi-
onai query evaluation broceduies for q&mtified queries
were piesented. The proposed algorithm is based on the
automatic generation of countereliamples. It is
reasonably efficient, as long as the number of universal
quantifleri in an expressioi is small. The paper conc-
ludes by comparing the dedicated database predicate
testers proposed here to general-purpose theorem pro-
vers, in particular to those based on resolution [Robin-
son 651. with respect to the different DBMS application
requirements identifled in section 2.

2. Roles of a Predicate Manager

This section reviews predicate management requi-
rements of the major components of a relational
database system. It focuses on theorem. proving
anDlications and does not discuss Dredicate handlinn
tedks that must be solved by query processing. A con-
cent of “doubtfuls” is then introduced to substitute for
i&omplete proofs.

Throughout this paper, predicates are represented in
the tuple relational calculus of DBPL ([Ma1184],
[Edelmann84]), a database programming language which
extends Pascal/R [Schmidt771 by concepts for modulari-
zation. access abstraction, and predicative multiuser
transaction handling. For simplicity of exposition, it is
assumed that predicates are in disjunctive prenex nor-
mal form (DPNF) and all relations occurring in the predi-
cate are non empty. The necessar terminolog is
established by the following example see [Jarke83 for r r
formal definitions and transformation procedures) :

Permission fo copy wifhouf fee all or par-f offhis maferial is granfed provided fhaf fhe copies are nof made or distributed for direcf commercial
aduanfage, fhe VLDB copyrighf notice and fhe fifle offhe publication and ifs dale appear, and nofice is giuen fhat copyin is by permission of
the Very Large Dafa Base Endowment. To cop
Proceedings of the Twelfth International Con erence on Very Large Data Bases J

ofherwise, or fo republish, requires a fee and/or special permission from f f e Endowment.
Kyoto, August, 1986

-21-

ALL x IN Rel, SOME t IN Rele
((x.ai < 5) OR

(x.ai=t.ai) AND (t.ae # 0))

is a predicate in DPNF with the prefix

ALL x IN Rel, SOME t IN Rele

and the matrix

(x.8, < 5) OR
(x.ai=t.ai) AND (t.ae # 0)

containing the conjunctions

(x.ar < 5) and

(x.ai=t.ai) AND (t.ae # 0) . .

The following is the antiprenez form of the same predi-
cate

ALLxINReli
((x.ai < 5) OR

SOME t IN ReIz ((x.ai=t.a,) AND (t.az # 0)))

Intuitively, prenex normal form moves quantifiers as
much to the left as possible, whereas antiprenex form
moves them as far to the right as possible.

2.1 Applications of a predicate manager

There is a large number of useful roles predicates can
play in database systems. The following is a list of appli-
cations amenable to proof procedures rather than to
database search. It extends a similar list given by
[Munz79] :

- access control,

- synchronizing transactions by predicate locking,

- semantic query simplification.

- reusing previous query results,

- data partitioning and querying in distributed
databases,

- consistency and redundancy of integrity con-
straints.

In order to show similarities and differences, we briefly
study the role of predicates in each of these functions.

(1) To enforce access controls, the predicate manager
must check whether the data read by the user query
are a subset of the data for which the user has
access rights. This requires the decomposition of the
query into a set of query-relevant data sets, each of
which accesses a single relation restricted by a pre-
dicate [Bottcher85]. For each such data set. it has
to be demonstrated that it is contained in the data
set defined by the user’s access rights:

1 EACH t IN Rel : Pquery(t)] c

1 EACH t IN Rel : Pri&t)]

Note that this proof-oriented technique differs from
the runtime query modification technique proposed
by [Stonebraker75].

(2)

(3)

(4)

(5)

(6)

To synchronize transactions by predicate locking
[Eswaran76, Klug83]. it must be shown that for any
transaction writing on a set of data defined by a
predicate P2 over relation Rel. there is no other
transaction running concurrently which accesses an
intersecting data set defined by Pl over Rel:

1 EACH t IN Rel : P,(t)] n

t EACH t IN Rel : P*(t)] = 1]

A query submitted to the DBMS can be simplified, if
some part of the query predicate is either
unsatisfiable or redundant (i.e., implied by some
other part) [Aho79]. Similarly a query can be
simplified, if it contradicts or is implied by an
integrity constraint [ChakravarthyEt?, JerkeBB].

The result of a previous query can be reused to eva-
luate a new query more efficiently if the new query
result can be shown to be a subset of the previous
result [Finkelstein82]. Note, that this requires the
same predicate test as access control. An access
path can be seen as a shorthand for a set of previ-
ous query results [Jarke85]; thus, the same predi-
cate test can also be used for checking applicability
of access paths.

Query processing in a distributed database has to
determine database fragments to be searched to
answer a given query. A database fragment defined
by predicate Pl over relation Rel can be excluded
from the search if it is disjoint with the predicate P2
over Rel appearing in the query [Ceri84. Munz79,
Ullman82].

An integrity constraint must be consistent with
existing constraints. Inconsistency is determined
by a test for unsatisfiability of the expression

IC, AND Ice AND . . . AND IC,,,

Note, that this test is only sufficient if performed at
database desien time: otherwise. an extensional
search for datgbase tuples that violate the new con-
straint will have to be added IBowen82. Kita-
kaml84].

Conversely, redundant integrity constraints should
be removed from a set of existing constraints.
Testing redundancy requires for each integrity con-
straint ICi one test for implication of

IC, AND . . . AND IC,-, AND

IC,,, AND . . . AND IC, -+ IC, .

Collecting all requirements, a predicate manager has to
perform tests of the following kinds:

(1) Does

1 EACH t IN Rel : Pi(t)] n
1 EACH t IN Rel : Pe(t) 1 = 1 1

hold ? (for synchronizing transactions and for
queries in distributed databases)

(2) Does l EACH t IN Rel : P(t)] = l] hold ?
(for query simplification)

-22-

(4)

(5)

(6)

All

Does

{ EACH t IN Rel : P,(t) j c { EACH t IN Rel : Pz(t) 1

hold ? (for access control and to reuse previous
query results)

Is P,(t, ,..., t,) + Pz(t, ,..., t,) valid ?
(for rejecting unnecessary integrity constraints and
for query simplification)

Is P(t,,....t,) valid ? (for query simplification)

Is P(t,.....t,) unsatisfiable ? (for consistency test
of integrity constraints and for query simplification)

these required tests can be standardized into the
same theorem proving task by the following reduction
steps.

(1)

(2)

(3)

(4)

(5)

2.2

To reduce requirement 1 to a test of kind 2. let
P(t) := P,(t) AND Pg(t).
Then we get

{ EACH t IN Rel : Pi(t) j n 1 EACH t IN Rel : Pg(t)] =

{ EACH t IN Rel : P(t) 1 ,

Requirement 2 can be reduced to a test of kind 6 :

1 EACH t IN Rel : P(t) 1 = 1 1 , iff

SOME t IN Rel (P(t)) is unsatisfiable .

To reduce 3 to 6, let P(t) := Pi(t) AND NOT Pz(t).
Then

1 EACH t IN Rel : Pi(t) { c t EACH t IN Rel : Pz(t) 1 ,

iff
SOME t IN Rel (P(t)) is unsatisfiable .

To reduce 4 to 6 let
ptt ,,...,Q := P,(t, ,..., tn) AND NOT P,(t,,....t,).

Then
P,(t,....*t,) -B P,(t,,....t,)

if7
P(t,.....t,) is unsatisfiable

P(t,*....t,) is’valid. iff
NOT P(t,.....t,) is unsatisfiable.

Incomplete Provers

Supporting database system tasks by a predicate
manager requires a sufficiently fast rather than a com-
ulete theorem prover. For example, the time for optimi-
zing a query should not exceed the savings throug-h the
optimization. Therefore, instead of performing an
exhaustive search, the predicate manager may finish
with the output doubtjul : In the time given the predi-
cate manager was unable to determine whether a predi-
cate was satisfiable or not. In such cases, the predicate
manager will assume that the predicate is satisfiable.

In order to show that a single predicate management
component is capable of dealing with all the above appli-
cations, we have to demonstrate that the interpretation
of “doubtfuls” as “satisfiables” always yields reasonable
decisions. If this were not the case, -a more complex
theorem-prover for double-sided correctness would be
required, that would generate three-valued output
(satisfiable, non-satisfiable, doubtful). Fortunately, the
following discussion shows that such a theorem prover is
not needed for the above applications :

(1)

(2)

(3)

(4)

(5)

(6)

To guarantee data security access is granted only if
provably permitted. If in doubt, a predicate
manager has to reject a query. Confronted with the
rejection a user could then split his query into a
sequence of simpler ones and possibly get an
answer.

Consider synchronizing transactions. In the
doubtful case transactions must be serialized. The
same is required, if the predicate manager finds out,
that the predicate defining the data set used in
common is satisfiable.

In the doubtful case no query simplification should
be performed. Recall that in the case of
redundancy, this is tested by evaluating the impli-
cation P + Q. If it does not hold,’ this corresponds to
the fact that P AND NOT Q is satisfiable.

Consider reusing previous query results. The case,
that a predicate is satisfiable indicates that some
error could occur when an existing query result (or
access path) is reused; the doubtful case requires
the same treatment.

In doubt, a data collection in a distributed database
has to be searched for tuples matching a query.
Exactly the same has to be done, if the predicate
manager finds out, that the intersection of query
relevant information and the data collection is
satisfiable.

As long as a set of integrity constraints cannot be
proved to be unsatisfiable, we assume them to be
consistent and treat them as satisfiable. Similarly,
as long as a predicate manager cannot prove an
integrity constraint redundant, it has to be retained
in the database schema - no matter, whether this
proof failed because the integrity constraint is
non-redundant or because of doubt.

2.3 The Need for Adaptive Predicate Managers

From the above discussion it might seem that a single
theorem prover with doubtfuls would be sufficient for
any of the above predicate management tasks in
database systems. However, the tasks differ in the typi-
cal complexity of predicates to be tested as well as in
their performance requirements. For efficiency reasons,
any theorem prover is complete only for a certain class
of predicates and allows more and more doubtfuls as
predicate complexity grows beyond this class. (This
assumes that predicates of greater complexity are
simplifled before submission to the theorem prover.)
Furthermore, performance (especially worst-case per-
formance) degrades as the class covered by a predicate
tester is expanded.

One criterion distinguishing the applications is the pre-
cision required for predicate tests. Query optimization,
for example, just requires unnecessary query processor
work if too many doubtfuls occur. Preventing a user
from access has to be handled much more carefully,
since a high degree of doubtfuls may deny rightful
requests.

-23-

The performance requirements also differ between rare
applications, such- as testing consistency and
redundancy of integrity constarints, more frequent com-
pile time applications such as query simplification using
integrity constarints. and very frequent runtime applica-
tions.

3. Theorem Provers in the DBPL Predicate Manager

The last criterion is the complexitv of medicates.
depending on the expressive power of language con-
structs offered to, and used by, the user. In particular,
operations involving a large number of predicates (e.g.,
testing redundancy of integrity constarints) lead to very
complex satishability tests; fortunately, those applicati-
ons -- as observed above -- also allow for more testing
time.

Therefore, an adaptive database system should offer a
choice of predicate testers, suitable for predicates of
different complexity and adapted to the needs of the
specific data definition and manipulation languages of
the system. The extensible database system concept
allows the subsequent addition of additional testers, as
new interfaces are added to the system. Where per-
formance requirements are stringent, predicates can be
simplified and submitted to a tester of lower complexity.

In the DBPL system [Eckhardt85], the relational calculus
orientation of the languages requires two main levels of
testing. So-called matrixtests only test .the satisflability
of the matrix of a relational calculus ex
easily shown [Rosenkrantz80. Chandra82 P

ression. It is
that matrix

tests are sufficient for the frequent case of predicates
which are conjunctive and do not contain universally
quantified variables in their prefix. (Incidentally, this is
also the class of SQL queries without set operations and
negation.)

However, a special property of the DBPL system is that it
also attempts to sup

P
art quantified predicates (queries

as well as constraints efficiently [Jaike83]. In particular,
many integrity constraints (key constraints and referen-
tial integrity, among others) rely on the use of univer-
sally quantified variables. For example a key constraint
on relation Rel can be expressed as :

ALL t, IN Rel ALL t,‘lN Rel
((t,.key = tz.key) + (t,=ts))

and a referential integrity constraint between .relation
Rel, and Relz is expressed as :

ALL t, IN Rel, SOME ts IN Rels
(t,.fore/gnkey = ts.key) ,

Conseauentlv. the DBPL medicate manaeer has been
augmented by a second tester which uses a “counterex-
ample” strategy to test satisfiability of quantified
expressions. If there are not too many universal
auantiflers. the efficiency of this testeris comparable to
chat of the matrixtest; although its worst-case com-
plexity is exponential in the maximum number of univer-
sally quantifi,ed variables over a particular relation. The
tester has also proven reasonably efficient (taking .5 to a
few seconds on a VAX-750) for relatively small sets of
integrity constraints to be checked for consistency or
redundancy. For very complex theorem-proving tasks
(e.g., consistency of large rule bases) it may be necessary
to add a third theorem prover, for example, based on the
resolution principle.

In the following section, both DBPL predicate testers are
described and compared to general-purpose theorem
provers from Al with respect to their usefulness in
database applications.

3.1 Matrixtests

A test examining the satisfiability of a matrix of a predi-
cate given in DPNF is called matriztest. Each tuole vari-
able of the matrix has to be SOME quantified (called an
ezistenticrl uatible). The matrixtest is based on the fol-
lowing principle:

A matrix in disjunctive normal form is satisfiable.
iff at least one of its conjunctions is satisfiable.

The satisfiability of predicates of this important subclass
is decidable [Ackermann54]. However, if each of the
comparison operators 2, =, 5,4;, > and < is allowed, then
already testing the satisfiability of a conjunction beco-
mes NP-hard [Hunt79]. To manage problems of this com-
plexity Carey and Johnson [Garey79] propose to design a
partial solution solving a class of frequent cases in poly-
nomial time.

Rosenkrantz and Hunt [RosenkrantzBO] propose an algo-
rithm testing in polynomial time the satisfiabilitv of a
conjunction containing no # comparison operators:
To reduce the number of doubtful cases we extend this
algorithm by testing most of the practical relevant con-
junctions containing # comparison operators.

The algorithm proposed by [RosenkrantzBO] aligns all
comparisons using the following rules :

a=b --> (asb)AND(b<a)

c<d --> csd+--1

elf --> fse

g>h --> hsg+-1

x 4 constant --> x rS 0 + constant

constant < x + offset -->
0 < x + (offset - constant)

For each aligned conjunction a graph is constructed :
The constant 0 and each pair t.ai occurring in a compa-
rison correspond to nodes and each aligned comparison
corresponds to a directed edge valued by the offset of
the aligned comparison.

If a graph contains a cycle of edges with a negative sum
of values, the conjunction is unsatisfiable. Searching for
cycles by drawing transitive edges has a complexity of
O((number of comparisons)3).

TQ include # comparisons into the test, the predicate
manager at first sorts the comparisons of each conjunc-
tion such that # comparisons are processed last. Only if
the graph for a conjunction contains no negative valued
edge from one node to itself, the following additional
test is performed :

A comparison a # b is incompatible with the graph,
and the conjunction tested is unsatisfiable. if the
graph contains paths from a to b and from b to a
with value 0.
Similarly, a comparison c # constant is incompa-
tible with the graph, if the graph contains edges
c S 0 + constant and 0 4 c - constant.

Otherwise, the conjunction is assumed to be satisfiable.

-24-

This assumption can be erroneous, e.g., for the conjunc-
tion “are there three different integer numbers between
10 and 13” :

lO<a AND a<13 AND lO<b AND b<13 AND lO<c AND
c<13 AND a#b AND a#c AND b#c
(a.b.c:INTEGER).

Such predicates have little practical relevance; even if
they occur, searching the database may be faster than
an extensive predicate test.

In connection with semantic query simplification, a simi-
lar algorithm was implemented -as part of the Prolog
database controller described in [JarkefM]. That algo-
rithm also includes tableau techniques [Aho79] which
handle some special cases more efficiently than the
general matrix test. In the DBPL implementation the
matrixtest has been extended to other attribute types
such as REAL and TEXT, possibly in combination
[BGttcher35].

3.2 Testing arbitrary quantified relational. calculus
exp-tmriona

As stated earlier, most integrity constraints and many
other medicates in DBPL contain quantified variables.
Therefore this subsection extends the matrixtest to a
general predicate test. However, in contrast to general-
purpose- theorem provers, this test is tailored- to the
needs of database systems in that it is very fast for pre-
dicates with few universally quantified tuple variables
over the same relation, which constitute the majority of
database predicates to be tested.

For the frequent case that the predicate contains only
existential variables the matrixtest is sufficient. Hence
we consider tests for predicates containing ALL
auantified tunle variables (universal variables). The
key idea is. that such a predicate is unsatisfiable if by
substituting constants for the universal variables we find
a counterexample. We then analyie various ways to con-
struct counterexamples. Finally, we develop an algo-
rithm which svstematicallv constructs potential counter-
examples. Combining this algorithm with the matrixtest
yields a test for arbitrary predicates. This test is then
illustrated by a comprehensive example.

3.2.1 The theorem proving principle

To show the unsatisfiability of a predicate P. the tester
tries to construct a counterexample by substituting
some constant ci for each universal variable xi of P. This
yields a predicate P’ which is a logical consequence of P.
i.e. P * P’. P’ is testable by the matrixtest. since it has
no universal variables. If the matrixtest shows P’ to be
unsatisfiable. i.e. P’ + FALSE, we have

P -. P’ -. FALSE,

hence P is unsatisfiable.

As an example, consider the following predicate Pi :

SOMEtINRALLxlNR
((t.a, # x.ai) AND (x.as < 20))

The substitution x:=t applied to predicate Pl yields Pre-
dicate Pl’ :

SOME t IN R
((ta, # t.a,) AND (t.as < 20))

The matrixtest proves that predicate Pl’ is unsatisfiable,
hence predicate Pl is unsatisfiable. Intuitively, since
there is one (representative) tuple t in R for which the
matrix is unsatisfiable. it cannot be satisfiable for all
elements of R. Thus. we have constructed the desired
counterexample.

3.22 Compatible tuple substitMions

In general, there are several essentially different ways to
construct potential counterexamplea. using different
variable substitutions., However, not all of these substi-
tutions actually preserve correctness of the predicate
test. In this subsection, we first show how to enumerate
potential counterexamples. and then how to eliminate
illegal ones.

To enumerate, potential counterexamples. we Arst intro-
duce two kinds of precedences between tuple variables :
scope precedences (<) given b the predicate structure,
and substitution precedences <--) for each substitution f
made by the predicate tester.

Two tuple variables t,. ts of a predicate P are in scope

precedence (t,<t,). if in every equivalent predicate AP in
antiprenex form, ts is deflned in the scope of ti. For
example, predicate P, has the scope precedence t < x.
since one cannot change the sequence of t and x in the
prefix without changing the meaning of the predicate.

Substitution precedences are caused by so-called tuple
substitutions: A tuple substitution of a predicate is a
function of the form

1 t, <-- XI , t, <-- x, 1 ,

which maps each universal variable xr either to an
existential variable of the same relation or to a sort
constant CR of the range relation R of xi. For example
the predicate Pl has two possible tuple substitutions

T, = 1 t <-- x 1 and Ts = 1 CR <-- x 1

Remarks:

(1)

(2)

(3)

Substitution with CR, an arbitrary element of the
relation R. leads to unification of the remaining
universal variables.

There cannot be two different sort constants of the
same relation because there are predicates which
are satisfiable only by relations with a single
element.

This restriction to one sort constant CR per relation
R does not lead to lass of completeness
[BMtcherB5]. A similar restriction of substitutions is
the Herbrand Universe [Chang73].

Tuple substitutions may be incompatible with the scope
precedences of the tuple variables i.e., they do not
preserve a logical implication from .P to the simplified
predicate P’. For example, compare the following predi-
cate with Pi :

Predicate Ps :

ALLxINRSOMEtINR
((t.a, # x.a,) AND (x.as < 20))

-25-

The substitution x:=t (t<--x) is allowed for P, but not for
Pz because in P,, t is not known at the moment x is fixed
by substitution. Note that, the scope rules for P,
determine a precedence x < t which, together with the
precedence required by the substitution t <-- x (t
before x), would require a cyclic precedence x < t <-- x .

To generalize, we define a preflz graph. The tuple vari-
ables and the sort constants are the nodes, and the
scope and substitution precedences are the edges of this
graph. If the prefix graph is acyclic. we call the tuple
substitution compaiible with the scope precedence.
Only compatible tuple substitutions can be used to con-
struct counterexamples. For example, we cannot con-
struct a counterexample for predicate P, although one
existed for Pl. Consequently. P, is unsatisfiable but P2 is
assumed to be satisfiable.

Frequently. the number ,of possible substitutions is redu-
ced substantially by the compatibility rule. For exam-
ple, predicate Ps

ALLxINR ALLyINR SOMiZtINR’ .(. ..)

determines the scope precedence? 1 x < t , i < t 1 The
tuple substitutions Ti of predicate P, are :

T, = 1 t <-- x , t <-- jr j

T,=I t<--x,&<--y] ’

T, = l CR <:- x , t ,(-- y 1
,

T, = 1 CR <-- x , CR <-- y 1

Together with the scope precedences the tuple iubstitu-
tions TI and T, induce the following cycle in the prefix
graph :

odg

The tuple substitutions T, and T, induce the cycle :

o~f>~:~,~l .*.

Hence only tuple substitution T, is compatible.

If a predicate obtained by a compatible tuble~substitu-
tion is unsatisfiable, the origina! predicate is
unsatisfiable, because a feasible .countel’exbrpp!e has
been constructed. Togethei with the matrixtest, this
reasoning yields the theorem:

A predicate in DPNFis utiatisfiable, ij ’
there is a cycle free p?‘eflz graph such that
(after substitution) every conjunction graph
contains a negative valued cycle.

Searching for cycles in the prefix graph can be perfor-
med by the same algorithm, as used for conjunctions in
the matrixtest, if we treat each precedence (< or <--)
as a comparison containing the < operator.

Using this result. we obtain the following algorithm for
testing an arbitrary predicate containing universal vari-
ables:

FOR EACH tuple substitution DO
IF the tuple substitution is compatible THEN

IF the matrixtest yields that the substituted
predicate is unsatisfiable THEN

RETURN(the predicate tested is unsatisfiable)
END ;

END :
END ;

RETURN(the predicate tested is
assumed to be satisfiable) ;

To illustrate the interaction of the concepts introduced
in this section, we now present a comprehensive exam-
ple:

In a database containing relations employees and papers
the following integrity constraints are submitted to a
consistency test :

I,:

I.$

Is:

I,:

There exists a paper with the author number 100

SOME p1 IN PAP (pl.authol’ = 100)

All authors are employees (referential integrity)

AL4 pz IN PAP SOME,e2 IN EMP (p2.author = e2.enr)

For every employee there exists a paper, of which he
is not an author

ALL es IN EMP SOME ps IN PAP (ps.author # es.enr)

Ali employees have an employee number less than
50

ALL e4 IN EMP (e,.enr < 50) .

These integrity constraints determine the scope prece-
dences

~2 <e2 and

e3 <p3

The conjunction of ;he integrity constraints leads to the
DPNF predicate :

‘SOME p, IN PAP ALL p2 IN PAP SOME e2 IN EMP
ALL e3 IN EMP SOME‘p3 IN PAP ALL e4 IN EMP
((pl.author = 100) AND

(p2.author = e2.enr) AND
(ps.author # es.enr) AND
(er.enr < 50))

Among others, the following tuple substitutions are con-
sidered :

1 p3 <-- p2, e2 <-- e3, cEMP <-- e4 I

1 cEMP <-- e3, cPAP <-- p2, cEMP <-- e4 j

t p1 <-- p2, cEMP <-- es, e2 <-- e4 1

-26-

The first tuple substitution yields the substitution prece-
dences p3 <-- pz and e2 <-- e3 . Together with the
scope precedences this leads to the following cycle in
the prefix graph :

p3 <-- p2 < e2 <-- es < p3.

Thus, the first tuple substitution is incompatible :
Although this substitution leads to an unsatisfiable
matrix, this is not sufficient to prove the integrity con-
straints to be inconsistent.

The second tuple substitution is compatible but yields a
predicate with a satisfiable matrix :

SOME pi IN PAP SOME e2 IN EMP SOME p3 IN PAP
((pi.author = 100) AND

(cPAP.author = e2.enr) AND
(pa.author # cEMP.enr) AND
(cEMP.enr < 50))

The third tuple substitution is compatible and yields a
predicate with an unsatisfiable matrix :

SOME pi IN PAP SOME e2 IN EMP SOME p3 IN PAP
((p,,.author = 1,OO) AND

(p,.author = es.enr) AND
(ps.author f cEMP.enr) AND
(e2.enr < 50))

The matrix is unsatisfiable because it contains

100 = pi.author = e2.enr < 50.

Constructing this counterexample is sufficient to prove
that the integrity constraints are inconsistent.

3.2.3 Evaluation Costs

The number of tuple substitutions] T] of a predicate and
thus the maximum number of matrixtests depends pri-
marily on the number of universal and existential ,vari-
ables per relation :

ITI=

SOMEr =

ALLr =

Rdn

number of existential variables bound to rela-
tion r,

number of universal variables bound to rela-
tion r.

For the above example there are twelve tuple substituti-
ons. This number can be reduced by first combining a11
ICs beginning w,ith a universal quantifier over the same
relation : in the example there are only six tuple substi-
tutions if the the third and the forth integrity constraint
are combined into one by identifying e3 with e4. In com-
pile and runtime applications, there will be rarely more
than one variable for a given range relation. Thus,
although the worst case complexity of this algarithm is
exponential, its costs are typically quite acceptable:

The number of conioatible tuole substitutions is even
smaller. Using a backtracking algorithm. to produce
comoatible tuple substitutions Bdttcher86] further dec-
rear&s the number of produced tuple substitutions.

The time spent on constructing the prefix graph is at
most 0((number of quantifiers + number of relations)3).
Hence the bottleneck of runtime applications is usually
the matrixtest, consumin a time of at most
0((number of comparisons)

8
).

3.3 Comparison with general purpose theorem provers

The goal of well known theorem provers ([Andrew&l].
[BibeIBl], [BIgsiusBl]. [Hsiangf33], [Kowalski75]) is the
analysis of arbitrary first order predicates. In genera1
these theorem provers offer the problem of termination :
Since the first order predicate calculus is undecidable
[Kleene71]. for every complete theorem proving algo-
rithm there are some predicates for which it doesn’t
terminate. Hence it is impossible to calculate, after how
many steps at most the algorithm will terminate. In con-
trast most database applications must estimate execu-
tion time in advance. If we wish to limit thenumber of
deduction steps the question arises : Which limitation of
which deduction steps is adequate ?

Most special purpose theorem provers focus on reasoning
with equality alone (e.g. Prolog). A’<-resolution princi-
ple proposed by Bledsoe and Hines [BIedsoe30] is based
upon techniques called variable elimination, splitting
and chaining. However, the key idea, restriction of
chaining, is not applicable to database predicates; hence
the search space remains unrestricted and a long testing
must be expected.

Considering most of the applications of the predicate
manager, another weakness of most of the well known
theorem provers is, that they do not integrate compari-
sons of variables with natural or real numbers, and texts
values. Treating ‘these comparisons as axioms is much
too expensive.

To demonstrate the usefulness of different predicate
managers we map the application requirements to the
following three, kinds of predicates to be tested :

(1) Predicates containing no universal variables. For
these applications the matrixtest is sufficient.

(2) Predicates containing few universal variables. For
these applications the extended matrixtest is
suflicient.

(3) Predicates containing many universal variables. For
these applications more powerful theorem provers
are required, e.g.‘general purpose theorem provers.

Throughout the discussion: it is assumed (realistically,,
we believe) that user queries will contain no or few
universal variables per relation.

(1)

(2)

Access rights are usually expressed as simple selec-
tions (no quantifier) or at most by.referential con-
straints (one quantifier). Thus, predicates of type 1
or 2 have to be proven.

In principle;’ precision predicate lock tests might
require several univarsal quantifiers over the same
relation. However, this will happen only if there is.
heavy concurrent access to the same relation and if
this access is not via the same’ lo&al access oath
(in which case the range relation 7s easily parGtio-
ned). Thus, we expect this case to be rare; if it does’
occur: predicates-must be simplified so that tests of
type 1 and 2 become applicable. General proof pro-
cedures must be considered infeasible for synchro-
nization of short transactions.

-27-

(3)

(4)

(5)

(6)

Query simplification is only useful if fast proof pro-
cedures are available. Predicate testers of type 1
and 2 can be used as a syntactic simplification tool
which may be useful only in conjunction with
semantic simplification lJarke66. Chakravarthv861
or in combination with other fast special-purpose
provers, such as tableau techniques [Aho79].

Query results will be retained, or access paths will
be supported, only if they save expensive operations
and correspond to relatively simple queries. Typical
examples are single or multiple attribute indexes
(no quantifiers) or join indexes (one quantiAer).
Thus, tests of type 1 or 2 are typically sufficient.

For distributed databases, the same argument as for
access rights holds if data partitioning is by predi-
cates at all.

Tests for consistency and redundancy of integrity
constraints may involve many quantifiers over the
same relations if there are many integrity con-
straints per relation. Note, however, that universal
variables can often be combined. as shown in the
example of section 32.2. Formalizing this idea
[BBttcher86] presents an algorithm that reduces the
number of -matrixtests by- testing only so-called
“maximal tuple substitutions”. It is also shown that
testing only maximal tuple substitutions is equi-
valent to testing all tuple substitutions. Neverthe-
less, the question of whether a type 2 tester, one of
the AI provers, or another special-purpose tester is
preferable for checking consistency and redundancy
of integrity constraints, must remain open until
further practical experimentation.

In summary, then, it turns out that the two predicate
testers presented in this paper are efficient and
sufficient for most database aoolications. with the DOS-

sible exception of query simpli’fi’cation (where they must
be combined with other methods) and consistency L
redundancy checks for .constraints (where further rese-
arch is needed to establish the best methods). However
the latter task is usually performed only at database
design or restructuring time, where efficiency is of less
concern.

4. Conclusion

There are two major conclusions to be drawn from this
research. First, it was demonstrated that the same phi-
losophy of predicate testing with doubtfuls applies to all
of the major theore,m proving applications in relational
DBMS. Second, it was shown that specialized theorem
provers taking explicitly into account the trade-off
between number of doubtfuls (completeness) and execu-
tion speed may offer advantages over general purpose
methods for most time-critical DBMS applications.

The matrixtest by [RosenkrantzBO]. itself based on sear-
ching cycles, has been extended by a prefixtest for
general predicates with universally auantified variables.
also searching cycles. This extended matrixtest proves a
predicate to be unsatisfiable, if it has a cycle free prefix
graph such that every conjunction graph has a negative
valued cycle. It is intended to integrate this algorithm
with the- tableau-oriented semantic auerv ootimizer of
[Jarke86] which is also graph based and allows efficient
handling of specialized constraint classes such as functi-
onal dependencies and referential integrity constraints.

As the cost estimates show, the proposed tester is
suitable for the frequently occurring predicates con-
taining few tuple variables per relation. This is
confirmed by experience with the implementation.

In further work, we plan to augment the predicate mana-
gement system by faster and simpler tests (e.g.. dropping
analysis of inequalities), and by more powerful tests,
taking into account, e.g.. deduction rules with recursion.
In this way. we want to use the extensible database
architecture to provide fully adaptive predicate mana-
gement. The predicate manager will also be used to pro-
vide an interface of the DBPL system to a multi-level
logic-based design environment for data-intensive appli-
cations.

Acknowledgment

This work was supported by the Deutsche Forschungs-
gemeinschaft under grant no. SCHM450/3- 1 (principal
investigator: J.W.Schmldt).

References

rAckermann
Ackermann. W.: Salvable Cases of the Decision Bo-
blem. Amsterdam, North Holland, 1954.

[Aho79]
Aho, A.V.. Sagiv, Y., Ullman, J.D.: Efficient optimiza-
tion of a class of relational expressions. ACM ‘Ifans-
actions on fitabase Systems, 4, 4. pp. 435-454.

[Andrews8 l]
Andrews. P.B.: Theorem Proving via General Matings.
JACM 28, 2. 1981. pp. 193-214.

[Bibel81 J
Bibel. W.: On Matrices with Connections. JACM 28, 4,
1981. pp. 633-645.

[BlgsiusBl]
BlBsius. K., Eisinger. N.. Siekmann, J., Smolka. G.,
Herold, A., Walthet:C.: The Markgraph Karl Refuta-
tion Procedure. Boceedings 71h IJCAI, Vancouver,
1981.

fBledsoe801
Lmm Bledsok. W.W.. Hines, L.M.: Variable Elimination and

Chaining in a Resolution-based Prover for Inequali-
ties. 56 Conference on Automated &duct&, Les
Arcs, Juli. 1980.

IB~t’-$~~r
S.: EXn Testver,fahren fiir

Bztenba&prlidikate. Report No. 114. Universitlit
Hamburg, Fachbereich Informatik. 1985.

[By;gc;tJr Ein s.: Beweisverfahren fiir
Datenbankprgdikate. In Stoyan, H. (Ed.): GWAI-85.
9th German Workshop on Artificial Intelligence,
Dassel/Solling, September 1985. Informatik Fach-
berichte 118. Berlin, Springer, 1986. pp.164-175.

[Bowen82]
Bowen. K.A.. Kowalski. R.A.: Amalgamating language
and metalanguage in logic rogramming. In Clark,
K.L.. Taernlund, S.A. (eds. : P Logic Bogramming.
Academic Press, 1982. pp. 153-172.

-28-

[Brachman661
Brachman, Levesque. H.J.: What Makes a Knowledge
Base Knowledgeable - A View of Databases from the
Knowledge Level. In [Kerschberg66].

[Carey651
Carey, M.J., Dewitt, D.J.: Extensible database
systems. In Mylopoulos, J., Brodie. M.L. (eds.): On
Knowledge Base Management Systems. Springer,
1965.

[Ceri84]
Ceri. S.. Pelagatti G.: Distributed Databases: Princi-
ples and Systems. McGraw Hill, 1964.

[ChakravarthyBB]
Chakravarthy, U.S., Fishman. D., Minker. J.: Seman-
tic Query Optimization in Expert Database Systems.
In [Kerschberg66].

[Chandra62]
Chandra, A.K.. Harel. P.: Structure and complexity
of relational queries. Journal oj Computing System
Sciences, 25. 1962. pp. 99-126.

[Chang73]
Chang, C., Lee, R.C.: Symbolic Logic and Mechanical
meotem f+-ouing. New York [u.a.], Academic Press,
1973.

[Codd70]
Codd. E.F.: A Relational Model of Data for Large Sha-
red Data Banks. CACM. 13, 6. 1970, pp. 377-367.

[Codd72]
Codd, E.F.: Relational Completeness of Data Base
Sublanguages. Courant Computer Science Sympo-
sin 6. pp. 65-101.

[Eckhardt65]
Eckhardt. H.. Edelmann. J.. Koch, J., Mall, M.,
Schmidt, J.W.: Draft Report on the Lhxtabase f+o-
gsamming Language DBPL. Internal Memo, Univer-
sity of Frankfurt, 1965.

[Edelmann64]
Edelmann. J.: Die Datenbankprogrammiersprache
DBPL: Eine Beschreibung ausgewahlter .!$rach-
konstrukte und deren Implementation. Diploma
thesis, Universittit Hamburg, Fachbereich Informa-
tik. 1964.

[Eswaran761
Eswaran. K.P., Gray, J.N.. Lorie, R.A. Traiger. I.L.: The
Notions of Consistency ad Predicate Locks in a
Database System. CACM, 19, 11, 1976, pp. 624-633.

[FinkelsteinBB]
Finkelstein, S.: Common expression analysis in
database applications. Boceedings ACM-SIGMOD
International Conference, Orlando, June 1962. pp.
127- 133.

[Garey79]
Garey. M.R.. Johnson, D.S.: CompuLters and Intrac-
tability. Bell Telephon Laboratories, 1979.

[HsiangBS]
Hsiang. J., Dershowitz. N.: Rewrite Methods for Clau-
sal and Non-Clausal Theorem Proving. Automata.
Languages and Programming, 10th Colloquium,
Barcelona, July 1963. Berlin [u.a.], Springer 1963.

[Hunt791
Hunt, H.B.. Rosenkrantz. D.J.: The Complexity of
Testing Predicate Locks. Proceedings ACM-SIGMOD
fnternational Conference on Management of Data,
May 1979. pp. 127-133.

[Jarke63]
Jarke, M.. Koch, J.: Range Nesting: A Fast Method to
Evaluate Quantitled Queries. Proceedings ACM-
SIGMOD international Conference on Management
of Data. San Jose, June 1963. pp. 196-206.

[Jarke65]
Jarke. M.: Common Subexpression Isolation in Multi-
ple Query 0 timization. In Kim, W.. Reiner, D.S..
Batory. D.S. Eds.): Query Processing in Database P
*stems. Springer, 1965.

[Jarke66]
Jarke. M.: External semantic query simplification : a
graph-based algorithm and its implementation in
Prolog. In [Kerschberg66].

[KerschbergBB]
Kerschberg, L. (Ed.): Ezpert Database Systems.
Benjamin Cummings, 1966.

Kitakami641
Kitakami, H., Kunifuji. S.. Miyachi. T., Furukawa. K.:
A Methodology for Implementation of a Knowledge
Acquisition System. Procedings hternational Syrn-
posium on Logic Bogramming. Atlantic City, NJ,
1964. pp. 131-142.

Kleene711
Kleene, S.C.: Introduction to Metamathematics.
Wolthers-Noordhoff, North Holland, 1971.

Wb631
Klug. A.: Locking Expressions for Increased Database
Concurrency. JACM 30, 1. 1983. pp. 36-54.

[Kowalski75]
Kowalski. R.: A Proof Procedure Using Connection
Graphs. JACM 22. 4, 1975. pp. 572-595.

[Mall641
Mall, M.. Reimer, M.. Schmidt. J.W.: Data Selection,
Sharing and Access Control in a Relational Scenario.
In Brodie, M.L.. Mylopoulos, J.L.. Schmidt, J.W. (Eds.):
On Conceptual Modelling: Perspectives from
Ariificial intelligence. Databases and Programming
Lunguages. Berlin [u.a.], Springer, 1964.

[Munz79]
Munz, R., Schneider, H.J.. Steyer, F.: Application of
Sub-Predicate Tests in Database Systems. Aoc. of
5th International Conference on Very Large Aorta
Bases, Rio de Janeiro, October 1979.

[Rosenkrantz60]
Rosenkrantz. D.J.. Hunt, H.B.: Processing Conjunc-
tive Predicates and Queries. Proc. of 6th Internatio-
nal Conference on Very Large Data Bases, Montreal,
October 1960. pp.64-74.

[Schmidt771
Schmidt. J.W.: Some High Level Language Constructs
for Data of Type Relation. ACM i’Fansactions on
Database Systems 2. 3. 1977. pp. 247-261.

[Shepherd66]
Shepherd, A., Kerschberg. L.: Constraint Mana-
gement in Expert Database Systems. In [Kersch-
berg66].

[Stonebraker75]
Stonebraker. M.: Implementation of Integrity Con-
straints and Views by Query Modification. In Rot.
ACM-SIGMOD Conference, San Jose, pp. 65-77.

[Ullman62]
Ullman. J.D.: fiinciples of Database Systems. 2nd
Ed., Computer Science Press, RockvilIe, 1962. .

-29-

