
Checking Consistency of Database Constraints: a Logical Basis

Franc& BRY. Rainer MANTHEY

ECRC, Arabillastr. 17, 8000 Muencben 81, West Germany

Abstract

This paper addresses the problem of consistency of a set of
integrity con4raints itself, independent from any state. 11 is
pointed out that database constraints have not only to ,be
consistent. but in addition to be finitely .+atisfiablc. Thb
stronger property reflects that the constraints have to admit a
finite set of [stored ps well as derivqble) facts. As opposed .tu
consistency. being undecidable, linite satisfiability is semi-
decidable. For effickncy purposes WC investigate methods that
check both linite s&i&ability as ,well as unratisfiability. Two
different methods are proposed which extend two ajternative
approaches to refutation.

ventional databases, constraints have to admit finite models as
every state consists of a finite ‘number of facts. In definile
drdubtivr databases (as defined in 191) the set of deduction
ryle: always has a linite minimal model, which is intended to
be a model of the constraint set as well. Sqtisfiability does not
necessarily imply finite sat+xbiUy, i.e., the existence of a finite
model. There are ‘satisfiabk sets of for&n&s -’ called ‘axioms
of, infinity’ - that have ‘onI?: infinite models. Consider, e.g., a
se1 of integrity constraints for a managerial database contain-
ing (among others) the following constraints:

l Everybody works for somebody.
. Nobody works for himself.

’ . If x works for y and F works for t, then x works for L.

1. h t.roduction

In a database context, a lot of work has been done on in-
tegrity enforiement, i.&,‘on checking:thc validity of a database
state ritk respect to a given set of integrity constraints. The
question whelhcr the constraint set itself is consistenl has lill
now received quite few attention, although the problem is fun-
damental (1.12) constitutes a notable exception). Usually cbn-
straints arc’cither t’+ly assumed to be consistent, or the use
of a theorem prover is suggested in order to detecl inconsis-
tencies. If constraints are restricted lo come from classes like
functional. multi-valued or implicational dependencies, consis-
tency is already implied hy. the syntactical properties of the
respective classes. However, as pointed out by many authors,
more’ general ,‘kinds of constraints have to be admitted’, and
!hrrcforr .t.hr, problem has to be ‘addressed on’ a more general
basis. As the formalisms of. relational databases and predicate
Ionic arc so closely related, WC will consider constraints as ar-
birrar) closed and function.lrce first order iormulas.

Expressed as Rrst-order formulas. these three constraints cor-
respond to, a well-know? axiom of iniinity. Although each of
them appears to, be .reasonable as such. an inlinite number of
individuals is required in a~ model of the set as a whole.
Thjs driect cpu!d be avoided by providing the first constraint
,with a proviso likt. e.g., ‘everybody. except the top-manager..“.
Much mpre complex axioms of infinity may be hidden inside a
large and intricate set of ropstrainls which cannot. be so easily
ident’ified. as in the example above+ Therefore, in addition to
preventing $onstrz+r from being unsatisliable, axioms of io-
iinity have to be avoided as well. Constraints have to be
finitely satisfiable. as already brie& mentioned in 181.

Figure J illustrates how the three propcities mentioned are
related.

., _::

Consistency is a necess’ary w,ellformedness condition for con-
straint sets (as opposed to. ‘e.g.. non-redundancy which is a
desirable, but not an indispensable requirement). An inconsis-
tent set of constraints does not admit any valid database
staae. In terms d logic. database states can be considered as
interpretations of lhc constraints. Valid sta~tr correspond to
interpretations in which every constraint is true, i.e., .to models
of the constraint set. Inconsistent sets of formulas do not have

1
~ti*fiald*. uuw t isfiubh~

I

I I
fiiilrly axiom of infinity
natis&ble

L Y J

unacceptable as constraints

Fig. 1

an? model - they Are unsatisfiable. (The model-theoretic
properly ‘satisfiahility’ is equivalent to the proof-theoretic
properly ‘consistency’ according to Goedel’s Completeness
Theorem).

As database states correspond to models of the constraints.
it is not sufficient LO guarantee the existence of any model in
general. but finite models have lo exist in particular. In con-

Because of the undecidability of satisliability, no algorithm
can be constructed that stops for every possible set of for-
mulas and reports whether this set is fmitcly satisfiable, un-
satisfiable or an axiom of inlinity. Finite satisfiability, as well
as unsalisfiability. is undecidable 1171, but both are at least
semi-decidable: algorithms can be constructed that are
guaranteed to report the respective property after linite (but
indefinite.) time if applied IO a SCI that actually has this
property, but possibly run forever else. Every refutation
method is in far1 a semi-decision procedure for unsatisfiability.
t’rocedurcs of lhis kind have been in use as theorem provers

Permission fo copy without fee all or-part offhis maferial is granfed provided fhaf the copies are not made or disfribufed for direct commercial
aduanfage, fhe VLDR copyrighf notice and fhe fifle offhe publicafion and ifs dafe appear, and nofice is given thaf copyin is by permission of
fhe Very Large Dafa Base Endowmenf. To cop
Proceedings of the Twelfth International Con 1

ofherwise, or fo republish, requires a fee andlor special permission porn 1 t e Endowmenf.
erence on Very large Data Bases Kyoto, August, 1986

-13-

The semi-drcidability of both. finite salisfiability as well as
“nratisfiability, implies that a procedure can be built that ter-
minal.es for both. finitely satisfiable as well as unsatisfiable in-
put. Such a procedure would be an adequate tool for deciding
whether a given set of Formulas is acceptable as constraints
(within the limits imposed by “ndecidability. of course). The
simplest way of obtaining a simultaneous semi-decision proce-
dure would be to run two independent procedures for each of
the two semi-decidable properties in parallel. However. any al-
tempt to improve the unsatisfactory efliciency of the basic
semi-decision method for finite salisfiability (to test for increas-
ing n whether a model of cardinality n exists) inevitably leads
to techniques ihat ‘are also required for refutation. Therelore it
seems reasonable LO rely on existing refutation methods and to
extend them in order to make them sound and complete for
finite satisftability as well.

either stop or run forever. Refutation procedures differ mainI>
in the way in which IIIC generation of new sets is organiced
and in the halting cnnditioor employed. Two main classes of
procedures can be distinguished with respect to these criteria.

The one class contains procedures that are based on the
resolution principle. For a given input set S they generate a
sequence S’S0 -:, Sl -> _.. -> Si -> Si+, -> _.. where S;+7

is constructed from Si by addition of factors and/or resolvents

of clauses in Si (possibly combined with a subsequent deletion

of tautologies or subsumed clauses). As resolution is an in-
ference rule. we have:

Whenever one of the Si contains the empty clause 0, this set

There are certain classes of formulas where satisfiability and
finite salisfjability coincide. called finitely controllable. For sets
of ,formulas coming from such a class, satisfiability is decidable.
However. the known ftnitely controllable classes]7] appear. lo
be too restricted for admitting only constraints that belong lo
such a class. ,’

.
In this paper we describe two basic approaches to extend-

is unsatisfiable. because o is the clausal representation of false-
hood. Therefore S is unsatisfiable, too, because of (‘) and the
generation of new sets slops. If, on the other hand, S is salis-
i-table, in general it will never stop as none of the Si contains

Cl _ In certain cases. however, a rafurded set will be reached,
i.e., a set lhal’ already contains all factors and resolvenls (or
at leas1 variants of them) that are constructable from its
‘members. In this case generation also stops (reporting
salisfiability).

ing refutation methods into procedures that semi-decide finite
satlsfiability as well: the one is based on the resolution prin’-
riple, while the other makes “se .of a subcase analysis based
on splitting of clauses. Both spproatbts require a common lea-
turc (function evaluation) to be added ‘lo ‘the underlying
refutation principle in. order lo reach completeness for finite
satisfiability. Section 2 describes’ and motivates this feature
after having briefly introduced both approaches. Resolution rc-
quires ‘another additional feature if ctirnpleteness shall be
guaranteed. This further extension is described in section’ ‘3
together with a suggestion for an improvement of the extended
method. In section 4, improvements ‘of the splitting-based ap-
proach arc proposed that are necessary in order Lo make it
competitive as compared to ,thr rcsolu.tion-based method.

The second class of procedures contains most of the
methods that have been proposed and implemented below the
resolution principle was developed (e.g., ciausal versions of the
tableaux method - like the procedure of Gilmore]lO] - or the
method of Davis and Putnam IS]). In these procedures the
generation of new sets follows a- tree structure, as shown by
figure ?.

The method defined in]IZ] for checking consistency of Con-
straints is based on the ftrsl-order tableaux method (in its
original non-clausal form as described in IIS]). As opposed to
the methbds proposed here, Kung’s approach is not complete
for finite .satisfiability.

i1

%1 %“’
II” . ”
. . .-

The paper has been written in such a way that only an in-
tuitive understanding qf resolution and other theorem proving
techniques is required. Formulas are expressed in clausal form,

breadth-first) reflecting a case analysis. The edges of TS are

all functions occurring being Skolem functions. Transformation
to clausal form is known to preserve satisfisbility. This holds
for finite satMtabilit)-, loo. for similar reasons. The
tutorials (4; and]1’3] provide an introduction lo refutation
methods in general and lo resolution in particular. The term
‘resolution’ is used throughout this paper according to
Robinson’s original terminology, i.e., including factoriration.

constructed in such a way that the following holds:

(“1 V .Si 6 TS (Si satisfiable <=> Si has al least

2. Refut.ation M&hod& and (Finite
Sa tisfiabi1it.y

-14-

As soon as along a branch a set has been reached that con-
tains two contradictory units, this branch is “closed” (i.e., not
further expanded) because the respective set is obviously “n-
satisfiable. If all branches of the tree can be closed in this
way, the unsarisfiability of S has been shown because of (“).
There may be infinite branches - which can nc~er be closed -
as well as finite non-closed branches that cannot be further
extended by the construction rules of the method. In the lat-
ter case, satisfiability of S is reported.

A refutation method can be seen as a procedure that RUC-
cessively generates new sets of clauses starting from the set to
refute. The generation slops as soon as certain halting con-
ditions - based on syntactical properties of the sets - are ful-
filled. For any unsatisfiable input. a refutation-complete Proce-
dure is guaranteed to stop, while for satisfiable input it ma]

Figure 3 (see next page) shows the refutation of a four-
clause SC! by means of “nit resolution (sequential organization)
as well as a clausal version of the tableaux method (tree
organization) that uses instantiation of clauses in S and splil-
ting of ground clauses as construction rules. Matrix notation
for sets of clauses has been used in the examples each line
representing a clause.

(‘) V i > 0 (Si satisfiable <=> Si+l satisfiable)

. . .

Fig. 2

The tree TS of figure 2 is expanded (either depth- or

one direct descendant that is satisfiable)

s = s,:

-IP(A) 1 r(y)

I splitting 1 st clause

rplltting 2 nd clause closed

1

closed closed

Fig. 3

For tjetrrtinp unsatisfiability, .the sequential approach is su-,

perior to the tree approach because closing dl branches of a
tree is more expensive than generating one set that containsta.
This is one of the reasons why splitting-based methods have
heen discardvd Ior theorem-proving purposes after resolution
wnz intmdurrd. S,vmnktrirally. satisfirbi)ity ir rrpnrl,ed hy
ouch a splitt.inp-based method as soon as one n&-closed branch
has been lound (unless an infinite branch is entered) while
resolution. e.g., has to wait until oil possible factors and resol-
vents have been added (which possibly requires infinite time as
Well).

- which is a semi-decidabli property in contrast to satis.
fiability?

Whenever unrestricted resolution slops hrcause a saturated
set (not containing r~) has been reached, the respective input
set is linitcly satisfiable !31. Although this result appears to be
ralhrr natural. wr wrrr nut aLle LU find it in the literature.
Splitting-bawd methods are also sound for finite satisfiability.
The tableaux method, e.g., stops whenever a set has been con-

structed th6t contains a g-model.” This g-model directly
represents a Iinitr model of S, i.e., S has been shown lo be
finitely satistiablc in a constructive way.

A further advantage of many splitting-based methods is
that the length oi clauses never increases (inslance~ of clauses
are added or &uses are replaced hy shorter ones). This is nol
the case rot resolution since in general a resolvenl is longer
than each of ils parents.

Thus. both approaches are sound for finite satisfiability,
but none of them is complete for this property as shown by
figure, 4 (see next page).

All relutation-complete methods are necessarily sound for
5atirfiabilit.y: they never report satisfiability when applied lo
an unsatisfiable set. Undecidability ol salisfiability, however,
prevents them from being complete for this property. How do
refutation procedures behave with respect lo finite satisfiability

‘A g-model (131 is a set U of ground units such that each
ground instance of a clause in S is subsumed by a unit in U.

-15-

\

\
.

_ ,
lwen(;) odd(Fx)

odd(x) even (Fr

\
w**(O)

\

t

?dd(FO)

wen(F20)

odd(F30 ’
I

wenltli I i
instantiation

&ii$zz;

’ ’ Ieve:jFO,I
inrtantiation

/
&

ke&FO) f:odd,F20,

lodd(F0) ‘win(F’O)

Fig. 1

*--.q

eves
.
.
.

leven(FO odd(F’0)
.I

rlorcd

Roth rnetbods run forever. although .S ..hcs a very ,small

finite model’: its only individual is the conslsnl 0, FO
rvalua~rr IO 0 and holh, even(,O),,and od,d(O). are lrue. In both
c&es a purely syntactic mechanism &uses an unr&lrirled
twzawvth in nesting al fkc~ional terms. 1,n’ case, a) ‘unification‘
leads to an infinile sequence of unils

even(O) -> odd(F0) -> even(F20) -> odd(F’0) ‘-3 ‘...

while in case b) instantiation produces a simijar sequence
along each non-cloacd branch. e..g:, * .~

even(O) -> odd(F0) -> ev&(FO) -> odd(F%) -> . . .

along the rightmost “lie. None of the two inethodr offers a
1001 for identifying FO with 0 and thus detecling that afler
such a function evaluation each of the inlinite sequences would
‘rollaps” in10 the finilc sequence even(O) -> odd(O).

? Due lo the fact that S does no1 complrlely axiomatize
even-odd for the integers.

Indeed, addine: an evaluation facility for ground functional .,&,-.
terms to each, of the approaches enabkr them t& delecl finite
satkiability in, aI,1 those cqses wheke intinile growth in func-
tion nesting preknts the originbl methods from’ stopping. Such
a fkure for the ideniification of ground terms i’s indispensable
for finit mnkl dptrctkn. Tdis ia rrlatrd to the well-known
fact lhal, iin’iteness is not @St-order expressable.

In order, to evaluate a ground iunctional term, a case
analysis is required as there may bt several possible ground
lcrms with which the functional lerm could be identified.
Therefore resolution loses its sequential organization when ex-
tended by function evaluation and is turned into a tree-
structure method. too. When added lo resolution, evaluation
of iround functional lerms has, of course, lo be combined with
instantiation, because sels without any ground terms have lo
he handled as well. Many split&p-based methods already
provide inslanlialion.

We have shown in Jlj that the tableaux melhod with func-
tion evaluation is complete for finite salisfiability. For similar
,*?LSO”S. lhr same is true for the Davis-Putnam method.
Resolution. however. is no1 complete for finite satisiiability

-16-

even after rxtendiue il hy instantiation and fuuctiou evalua.
tiou. As shown in thp following section, iufinilc prow01 in
clause lenpth may prevent resolution from stopping even for
sets without any function symbols.

Fipure 5 gives another example prrsentinp the extended
tableaux method. This example is intended to show that, in
order to evaluac.e iunctions, the Rround level has to he
reached. because in certain cases the decision whether a finite
model exists or nof requires an explicit identification of two
ground terms such that a cerlain predicate is -1ruc for the one
but false for the other.

3. The Resolution-Based Approach

In the previous section, WC have claimed that extending
resolution with function evaluation and instantistion is still not

sufficient for arhirx ma ronrplctcness for f1nit.e satisfiabilitl.
Thcrr is a second wurw ~$1 infinite growth apart from growth
in funclion nesting 11 The example of figure 6 (see next
pace) show the prohlcm. The clauses in the initial set ex-
press lhat the spouse of a woman is a man, and the spouse ot
a man is a woman. Resolution does never stop when applied
LO the initial set because the number of distinct variables (and
thus the length of clauses) ‘ increases continuously. However,
this se1 has f4nit.e modeis (e.g.. one man which is not married).
Obviously. function evaluation does not help a~ no functions
OCCUT.

As a solution to this problem we propose another feature
that WC call compoctificd:on Let v(S) denote ,the maximal nuti.
her of vs&bles in a. &use in the set S. For n’ < v(S), the
n-compactification of S (denoted by camp,(S)) is obtained by

replacing each clause C with m > n variables by a se1 of
clauses with exactly II variables. This set is constructed by
identifying (m-n+]) of the variables in C in all possible ways.

function evaluation

IA !-> FA] FA kept as new individual J . .
even(FA) rven(F’A)

leven(FA). ywen(F’A)

closed function rvaluatioo

[A --; F’A] IFA --> F’A]

V

unit rerolution unit rcrotution

closed

Fig. 5

contain a g-model over {A,FA)
=> fmitely satisfiable

-17-

mall(x) 1couple(x,y) vwman(y)

woman(x) ~rouple(x,y) -unan(y)
&

resolution

man(xl) 1c0up1e(x1.x2) -rcouple(x2+3) -iwoman(x3)

.L

Fig. 6

As an example, we give the I-compactification of the third
ChUW

man(x,) -couple(x,,x,) ~couplt(xl.x2) -noman(x2)

man(xf) ~c0uple(x,.x,) -couple(x2.x,) -wornan
-

man(xl) ~ouple(x~,x,) -couple(x2,x2) -woman(x2)
-

Compactifiration is applied as soon as resolution produces a
clause that has more variables lhan any of the already exist-
ing clauses. After having constructed the respective n-
rompactification. resolution (and instantiation/function evalua-
tion. if necessary) is applied to the compactified set. Whenever
a clause with more than n variables is derived anew from the
n-compactifiration, it is immedialely n-compactified, too. If a
saturated set is reached, the initial set has been shown finitely
sstisfiahlr (with a model of cardinality n). If resolution derives
the empty clause for all possible subsequent function l valua-
tions (if any). then such a model does not ixist, and we have
LO hacktrack and go on with lhc uneompactified set. In this
case. compactification is invoked again after the next increase-
ment in variable number has occurred and along &other “side
branch- the existence of a finite model is checked. The overall
urpanisation of this approach is illustrated by figure 7.

The application of function evaluation within a sequence of
resolution steps is organized in a similar way. Herr the in-
creasement of /unctionol he:ghl serves as an indicator for invoca-
tion of function evaluation. The functional height of a term is
thr level of nesting of functions ill that term, e.g.. the funr-
tional height of F(Fxy. y) is 2. The maximal functional height
of a t.erm in S is denoted by f(S). Whenever resolution leads
to an increasemtnt of f(S), function evaluation is invoked on a
-side branch” while resolulion will go on witboul evaluating
thr new functional term on the “main branch” in case back-
tracking is rrquired. as shown by figure 8.

If both kinds of increasements occur for a given S, invoca-
tions of both additional features - compactiiication as well as
function cvalualion - have to be mcr&d. of course. A
saturated set on a “side branch” indicates finite satisfiahility,
while closed ‘side branches” plus a closed “main branch” in-
dicate unsatisfiability of S. For axioms of infini1.y the “main
branch” never closes while all “side branches” are closed.

The extended resolution method outlinrd here may be corn-
binrd wilh any strat.egy provided that refutation-completeness
is preserved. In his paper mentioned. Joyner proposes a
strategy t.hat would save a lot of instanlialions and function
evaluation steps although it requires a transformation of the
inilial set: all rrsolvents and factors containing ncstrd func-
tional terms may be discarded if the initial sel. is the clausal
representation of formulas in Skolem normal form 151, i.e., in

(+
resolution \1

subsequent v(S)-compactification) .
: :

I
resolution

I . :

J V(S?l > v(S,)

v
.

Fig. 7

0
& sll . .

resolution
.

i”,ta”tr++ f(S2’ ’ f(S”
+

function evaluation & .

Fig. g

prenex normal form with prefix G.3’. For any first-order
formula F there exists a formula SNF(F) in Skolem normal
form such that F is finitely satisfiable if and only if SNF(F) is
finitely satisfiable. The construction of this normalized formula
is illustrated by an example:

-18-

F: ;rx:+cs jp(y.x)=>q(y.s)]

SNF(F): VxQSr+ ((lp(y.x)=>q(y,s)]vs(x,y))/x+x,w))

The new predicate s is not allowed to occur in F. It w’as
known before that this transformation preserves unsatisfiability.
In 121 we have shorn that this is also lhe case for finite satis-
fiability.

Although operating with formulas in Skolem normal form
allOWS to discard clauses with nested functions. function
evaluation and instantiation do not become superfluous. There
arc still cases in which thr evaluation of unnested functional
terms is required in order LU guarantee the soundneis of the
extended method.

4. Improvements of the Split.ting-Based
Approach

In Section 2, splitting-based refutation methods were shown
to be coinpiete for finite satisfiability if combined with func-
tion evaluation. We had chosen the tableaux method as a rep
rescntative of lhis class of methods because of the simplicity of
its splitting rule. However, this method is by far loo ineflicient
for practical applications if compared, e.g., with resolution-
based methods. Two .reasons are responsible for this in-
cfticiency:

l the only construction rule of the tableaux1 method -
clause splitting - is 100 primitive

l a vast amount of instantiations is required because clause
splitting is only applicable to ground clauses

A more efficient set of rules for testing unsatisfiability of a
WI of ground clauses is available in the Davis-Putnam proce-
dure. The rules of this method take into account several
clauses in S instead of looking only al. a single? isolated clause
in each step. This leads to trees which are in general con-
siderably smaller than the trees constructable with the rules of
OIC tableaux method. Four construction rules are provided by
the Davis-Putnam procedure:

I. deletion of tsutological and subsumed clausrs

2. ground unit resolution

3. introduction of new units: if a pure grbund literal L oc-
curs in S (i.e., a literal the complement of which does not oc-
rur in S), then the unit {L) can be added to S (allowing a
subsequent elimination of all clauses that contain L as they
are subsumed by the new unit)

4. complement splitting: if L is a non-pure ground literal in
S. then two subcases can be introduced. In the one case the

unit {L), in the other cake {Lr) is added (Lr de&es the
complement of L). (In each of the cases the new unit sub-
sumes at least one clause and can be resolved against al leas1
one lileral.)

Nevertheless. the Davis-Putnam method suffers from the
same drawback as the tableaux method, namely lo require in-
stantiations as all its rules operate only on ground qlauses.
The number of instances of a claunr depends exponentially on
the number al ground terms that are used for, inslantiation.
Resolution refutation procedures do nol need any explicit in-
stantiation at all. This fact makes them superior to both.
Davis-Putnam as well as tableaux method for refutation pur-
poses. But, as pointed oul in the previous section. inslantia-
tion has to be added lo resolution, in order to yield complete-
ness for finite satisfiability. However, these inevitable instanlia-
tion steps are performed as late as possible and only in those

caaw where absolutely necessary for making function evaluation
possible. II would be desirable LU reduce the number of instan-
tiations required by the Davis-Putnam procedure in a com-
parative way.

A necessary prerequisite for such a reduction is that the
construction rules of the method are somehow generalized lo
the non-ground level (in the same way as general resolution
has been originally introduced as a generalization of the
propositional ‘cul’ rule). The first three Davis-Putnam rules
can be easily generalized. Elimination of tautologies and sub-
sumed ChUSeS is a standard feature of many reduction
strategies for resolution procedures. Unit resolution is a spe-
cial case of general resolution (known to be refutation-complete
for the important class of Horn clauses). The notion of a pure
literal is also easil) extendable to non-ground literal6 if in-
stances and variants of the complementary literal are taken
into account.

Problems arise if the complement splitting rule shaJl be er-

tended. Thr introduction of alternative L-L’ cases is justiIicd

by zhe fact that (LvL’) is a tautology for ground literals. On
the general level. any variable ‘x in a 1itCral L has to be
regarded as implicitly universally quantified. The disjunction

(Vx[L] v Vxlt’]), however, is not a tautology. Therefore a
direct generalization of complement splitting to the general
level is nol possible wilhoui losing completeness. In 14, P.
164j generalized splitting rules arc investigated that overcome
this problem by keeping track of all variable substitutions per-
formed along the alternative branches and checking their corn-
patibility at the end. It is not clear how such methods .can be
adapted for finite satisfiability checking.

lCWSl(Xl odd(Px)
-odd(x) wen(Fx)

uuit res:*lutiou

-?-V*Xl(X) odd(Fx)
-‘odd(x) even(Fx)

crcn(0)

complemenl splitting

I I

closed

IO ---> FO] function evaluation

successful branch --)
f-l
even(O)
odd(O)

Fig. 9

The .solution we propose is based on the idea lo view each
of the alternative case introduced by complement splitting as a
kind of “Tess of an assumption”. Does any finite model of S

exist in which the (additional) unit {L) - respectively (L’) -
is true? If one of the assumptions leads to a success, the other
assumption needs not be tested any more. If both assumptions
lead to a closed branch. then it has only been shown that
these assumptions are not compatible with S, but not that S
is unsatisfiable because of the above reasons. A third branch

-19-

has therefore 1.0 be provided by each complement splitliuR stc)t

on which. in case of “lailure 01 both assumptions’. the two

liter& L and Lc are removed from lhe list of ‘unit
candidales- and other non-pure liter& are tested. If all of
lhem lead to closed branches, then instantiation has to be in-
voked on the remaining branch. However, ihis is the only case
in which instantiation is required at all by the generaliced ver-
sion of lhc Davis-Putnam method dedcril’ed here. II S is un-
satisliable. then none of the “unit cahdidat&” will be ,succe&-
ful. and instantiation is inevitable. For many satisfiable sets,
however. a Irk abplicalions of the generalized compiemenl
splitling lead ‘LO a non-closed tinkle bianch already.

Figure 9 (see previous page) shows how &he set used in
figure 4 is checked lor fiiitr satirfiability using the generalized
Davis-Putnam procedure with function evaluation.

In (his paper we, hqve introduced finite satisfiability~ as ,a
necessary wellforme~ness condilioD for dqtabasc conrtrsint sets.
1~ reflects tbq rcqqirement that .c”nstraints. have to admil
finite sets of fact! (in a conventional as well as in a deductive
context). Finite satisfibbility is a stronger properly than consis-
tency this autom.atically implying tbe la&.

In order lo obtain a method for finite satisfiability checking
we have.cbosca lo extend existing refutation procedures. Two
different approaches to finite ‘Mtisliability checking have been
investigated that are based on two different approaches to
refutation. Both require the same extension. namely the ad-
dition of an evaluation facility for ground functional terms in
order to control gtowth in funcliol nesting. This addition
prevents production of infinitely many c.Iauses by identifying
certain ground tern& The approach based on the resolution
principle hai to be friilher extended with a feature for the
limitation of growth in clause length. called compaclificalion.
Of course. the addition of these features lo refutation
procedures will drcieasc lheir efficiency for unsatisfiable input.
However. this price has to be paid if completeness for finite
satirliability shall be reached. The rirlues of both approaches
rannoi be simply combined, as the undecidability of satis-
fiability preven1s *“y refutation-complete procedure from
removing both kinds of growth at the same time. Each of the
two methods obtained by the extensions mentioned is sound
and complete for finite s&&ability as well ai for unsatis-
fiabilit>.

The two melhods are justified and described in detail in]z]
and 1143. respectively. At the moment, we don’t see any other
reAsonable solution to the problem of constructing a simul-
taneous semi-decision procedure for finite satisfiability and un-
satisfiability. Although WC have no resulls about the differences
in efficiency between the two methods, WC- believe that a
splitting-based approach will be preferable. Resolulion produces
to” many clauses especially if applied to co,Fpactified sets 01
clauses. Moreover, the big advantage of resolution-hased refuta-
tion procedures - namely to do without any instantiation - is
lost, as function evaluation has nrccssarily to be performed on
the ground level. A first prototype implemenlation of the
sp)itling-based method writ.t.en in Prolog is meanwhile avail-
able.

Additional points thal may influence the work on a more
elaborate version are:

1. For ,Ml”?’ data models (especial)> those providing
generalization hierarchies) a many-sorted logic is more ap
propristc. Introduction of many-sortedness is known to improve
the efliciency of the methods discussed in this paper.

L’ The question of suitable strategies has noI been addressed
in this paper at all. A thorough investigation of this topic is
inevitable. For resolution a lot of strategies have already been
introduced in the context of refutation. lt has to be inves-
tigated wbelher the) can be adapted lor the extended method
as well. Strategies for the generalized Davis-Pufnam procedure
should especially provide criteria for making good choices of
“unit candidates’ when applying complement qplitthg.

3. Very often WC can expect that a considerable part of the
constraint set under c”nsidc+ion consists of dependcntics that
arc known to be finitely satisfiable becadsr of,lheir syntactical
structure. Strattgits should bc developed that take advantage
of this knowledge. Similar techniques can be useful in rt COD-
text where constraint sets are modiIied.

Acknowledgement: We would like to thank Jean-Marie
Nicolas r&r his, advice .and aneoaragemenl during the prepara-
tion of this paper.

1. Bry. F. Npte on Consistency Checking of Database
Schemas. lnt. Report KB-4. ECRC. Jul.. 1985.

2. Bry F. The Compactificalion Method. Int. Report KB-6,
ECRC, Sept., 1985.

3. Dry. F. On Resolution and Finite Salisfiabilily. in
preparation.

4. Chang. C.-L. and Lee R.C.-T. Symbdic Logic and Mcchanicd
7heorem Proving. Academic Press, 1973.

5. Church, A: Jntrodudion to Mathernoticd Log:. Princeton
University Press, 1956. cited in 1111.

6. Davis, M. and Putnam, H. “A Computing Procedure for
Quantitlcation Theory”. JACM 7, 3 (Jul. 1960), 201- 215. also
in]15]:125-139.

7. Drebcn. B. and Gotdfarb, W. The Decision Problem. Sdwbt~c
Clrusrr o/ Quatir/tcdiond Formula. Addison-Wesley. 1979.

8. Fagin, R. and Vardi M.Y. The Theory of Data Dcpen-
drncies - An Overview. Proc. of ICALP, 1984.

9. Gallairc. H., Minker J. and Nicolas. J.-M. “Logic and
Databases: A Deductive Approach’. ACAf Camp. Suru. 16, 2
(Jun. 1984), 153-185.

10. Gilmore. P.C. ‘A Proof hlcthod for Quanlificalion
Theory: Its Juskification ‘and Restiratibn”. fBM J. o/ Rer. and
Dcr. 4 (1960), 28-35. also in]15]:151-158.

11. Joyner. W.H. ‘Resolution Strategies as Decision
Procedure’. JACM 23. 3 (JtrI. 1976). 398-41i.

12. Kunp. C.H. A 7empord Framework /or lnjorrnalion Syrtcms
Specrl,catwn and Vcrrficatwn. Ph.D. Th.. U. of Trondheim, Nor-
way, Apr. 1984.

13. Loveland, D.\Y. Aulomated Theorem Prowng: a Logical Baris.
North-Holland. 1978.

14. Manthey, R. A Generalized Davis-Putnam Procedure
Able to Detect Finite Salisfiability. in preparation.

15. Siekmann. J. and Wrightson, C.. Automation ofRe~“nning,
vd. 1. Springer Verlag, 1983.

16. Smullyan. R. Fvst-Order Logic. Springer Verlag. 1968.

17. Trachlenbrot, B.A. “Impossibility of an Algorithm for
the Decision Problem in Finite Classes”. Dokf. Acad. h&k.
SSSR 70 (1950). in Russian, trans. in English in Amer. Sot.
Translations, Series 2, 23:1-5, 1963.

-2o-

