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Abstract 

This paper addresses the problem of consistency of a set of 
integrity con4raints itself, independent from any state. 11 is 
pointed out that database constraints have not only to ,be 
consistent. but in addition to be finitely .+atisfiablc. Thb 
stronger property reflects that the constraints have to admit a 
finite set of [stored ps well as derivqble) facts. As opposed .tu 
consistency. being undecidable, linite satisfiability is semi- 
decidable. For effickncy purposes WC investigate methods that 
check both linite s&i&ability as ,well as unratisfiability. Two 
different methods are proposed which extend two ajternative 
approaches to refutation. 

ventional databases, constraints have to admit finite models as 
every state consists of a finite ‘number of facts. In definile 
drdubtivr databases (as defined in 191) the set of deduction 
ryle: always has a linite minimal model, which is intended to 
be a model of the constraint set as well. Sqtisfiability does not 
necessarily imply finite sat+xbiUy, i.e., the existence of a finite 
model. There are ‘satisfiabk sets of for&n&s -’ called ‘axioms 
of, infinity’ - that have ‘onI?: infinite models. Consider, e.g., a 
se1 of integrity constraints for a managerial database contain- 
ing (among others) the following constraints: 

l Everybody works for somebody. 
. Nobody works for himself. 

’ . If x works for y and F works for t, then x works for L. 

1. h t.roduction 

In a database context, a lot of work has been done on in- 
tegrity enforiement, i.&,‘on checking:thc validity of a database 
state ritk respect to a given set of integrity constraints. The 
question whelhcr the constraint set itself is consistenl has lill 
now received quite few attention, although the problem is fun- 
damental ( 1.12) constitutes a notable exception). Usually cbn- 
straints arc’cither t’+ly assumed to be consistent, or the use 
of a theorem prover is suggested in order to detecl inconsis- 
tencies. If constraints are restricted lo come from classes like 
functional. multi-valued or implicational dependencies, consis- 
tency is already implied hy. the syntactical properties of the 
respective classes. However, as pointed out by many authors, 
more’ general ,‘kinds of constraints have to be admitted’, and 
!hrrcforr .t.hr, problem has to be ‘addressed on’ a more general 
basis. As the formalisms of. relational databases and predicate 
Ionic arc so closely related, WC will consider constraints as ar- 
birrar) closed and function.lrce first order iormulas. 

Expressed as Rrst-order formulas. these three constraints cor- 
respond to, a well-know? axiom of iniinity. Although each of 
them appears to, be .reasonable as such. an inlinite number of 
individuals is required in a~ model of the set as a whole. 
Thjs driect cpu!d be avoided by providing the first constraint 
,with a proviso likt. e.g., ‘everybody. except the top-manager..“. 
Much mpre complex axioms of infinity may be hidden inside a 
large and intricate set of ropstrainls which cannot. be so easily 
ident’ified. as in the example above+ Therefore, in addition to 
preventing $onstrz+r from being unsatisliable, axioms of io- 
iinity have to be avoided as well. Constraints have to be 
finitely satisfiable. as already brie& mentioned in 181. 

Figure J illustrates how the three propcities mentioned are 
related. 

., _:: 

Consistency is a necess’ary w,ellformedness condition for con- 
straint sets (as opposed to. ‘e.g.. non-redundancy which is a 
desirable, but not an indispensable requirement). An inconsis- 
tent set of constraints does not admit any valid database 
staae. In terms d logic. database states can be considered as 
interpretations of lhc constraints. Valid sta~tr correspond to 
interpretations in which every constraint is true, i.e., .to models 
of the constraint set. Inconsistent sets of formulas do not have 
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an? model - they Are unsatisfiable. (The model-theoretic 
properly ‘satisfiahility’ is equivalent to the proof-theoretic 
properly ‘consistency’ according to Goedel’s Completeness 
Theorem). 

As database states correspond to models of the constraints. 
it is not sufficient LO guarantee the existence of any model in 
general. but finite models have lo exist in particular. In con- 

Because of the undecidability of satisliability, no algorithm 
can be constructed that stops for every possible set of for- 
mulas and reports whether this set is fmitcly satisfiable, un- 
satisfiable or an axiom of inlinity. Finite satisfiability, as well 
as unsalisfiability. is undecidable 1171, but both are at least 
semi-decidable: algorithms can be constructed that are 
guaranteed to report the respective property after linite (but 
indefinite.) time if applied IO a SCI that actually has this 
property, but possibly run forever else. Every refutation 
method is in far1 a semi-decision procedure for unsatisfiability. 
t’rocedurcs of lhis kind have been in use as theorem provers 
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The semi-drcidability of both. finite salisfiability as well as 
“nratisfiability, implies that a procedure can be built that ter- 
minal.es for both. finitely satisfiable as well as unsatisfiable in- 
put. Such a procedure would be an adequate tool for deciding 
whether a given set of Formulas is acceptable as constraints 
(within the limits imposed by “ndecidability. of course). The 
simplest way of obtaining a simultaneous semi-decision proce- 
dure would be to run two independent procedures for each of 
the two semi-decidable properties in parallel. However. any al- 
tempt to improve the unsatisfactory efliciency of the basic 
semi-decision method for finite salisfiability (to test for increas- 
ing n whether a model of cardinality n exists) inevitably leads 
to techniques ihat ‘are also required for refutation. Therelore it 
seems reasonable LO rely on existing refutation methods and to 
extend them in order to make them sound and complete for 
finite satisftability as well. 

either stop or run forever. Refutation procedures differ mainI> 
in the way in which IIIC generation of new sets is organiced 
and in the halting cnnditioor employed. Two main classes of 
procedures can be distinguished with respect to these criteria. 

The one class contains procedures that are based on the 
resolution principle. For a given input set S they generate a 
sequence S’S0 -:, Sl -> _.. -> Si -> Si+, -> _.. where S;+7 

is constructed from Si by addition of factors and/or resolvents 

of clauses in Si (possibly combined with a subsequent deletion 

of tautologies or subsumed clauses). As resolution is an in- 
ference rule. we have: 

Whenever one of the Si contains the empty clause 0, this set 

There are certain classes of formulas where satisfiability and 
finite salisfjability coincide. called finitely controllable. For sets 
of ,formulas coming from such a class, satisfiability is decidable. 
However. the known ftnitely controllable classes ]7] appear. lo 
be too restricted for admitting only constraints that belong lo 
such a class. ,’ 

. 
In this paper we describe two basic approaches to extend- 

is unsatisfiable. because o is the clausal representation of false- 
hood. Therefore S is unsatisfiable, too, because of (‘) and the 
generation of new sets slops. If, on the other hand, S is salis- 
i-table, in general it will never stop as none of the Si contains 

Cl _ In certain cases. however, a rafurded set will be reached, 
i.e., a set lhal’ already contains all factors and resolvenls (or 
at leas1 variants of them) that are constructable from its 
‘members. In this case generation also stops (reporting 
salisfiability ). 

ing refutation methods into procedures that semi-decide finite 
satlsfiability as well: the one is based on the resolution prin’- 
riple, while the other makes “se .of a subcase analysis based 
on splitting of clauses. Both spproatbts require a common lea- 
turc (function evaluation) to be added ‘lo ‘the underlying 
refutation principle in. order lo reach completeness for finite 
satisfiability. Section 2 describes’ and motivates this feature 
after having briefly introduced both approaches. Resolution rc- 
quires ‘another additional feature if ctirnpleteness shall be 
guaranteed. This further extension is described in section’ ‘3 
together with a suggestion for an improvement of the extended 
method. In section 4, improvements ‘of the splitting-based ap- 
proach arc proposed that are necessary in order Lo make it 
competitive as compared to ,thr rcsolu.tion-based method. 

The second class of procedures contains most of the 
methods that have been proposed and implemented below the 
resolution principle was developed (e.g., ciausal versions of the 
tableaux method - like the procedure of Gilmore ]lO] - or the 
method of Davis and Putnam IS]). In these procedures the 
generation of new sets follows a- tree structure, as shown by 
figure ?. 

The method defined in ]IZ] for checking consistency of Con- 
straints is based on the ftrsl-order tableaux method (in its 
original non-clausal form as described in IIS]). As opposed to 
the methbds proposed here, Kung’s approach is not complete 
for finite .satisfiability. 

i1 

%1 %“’ 
II” . ” 
. . .- 

The paper has been written in such a way that only an in- 
tuitive understanding qf resolution and other theorem proving 
techniques is required. Formulas are expressed in clausal form, 

breadth-first) reflecting a case analysis. The edges of TS are 

all functions occurring being Skolem functions. Transformation 
to clausal form is known to preserve satisfisbility. This holds 
for finite satMtabilit)-, loo. for similar reasons. The 
tutorials (4; and ]1’3] provide an introduction lo refutation 
methods in general and lo resolution in particular. The term 
‘resolution’ is used throughout this paper according to 
Robinson’s original terminology, i.e., including factoriration. 

constructed in such a way that the following holds: 

(“1 V .Si 6 TS (Si satisfiable <=> Si has al least 

2. Refut.ation M&hod& and (Finite 
Sa tisfiabi1it.y 
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As soon as along a branch a set has been reached that con- 
tains two contradictory units, this branch is “closed” (i.e., not 
further expanded) because the respective set is obviously “n- 
satisfiable. If all branches of the tree can be closed in this 
way, the unsarisfiability of S has been shown because of (“). 
There may be infinite branches - which can nc~er be closed - 
as well as finite non-closed branches that cannot be further 
extended by the construction rules of the method. In the lat- 
ter case, satisfiability of S is reported. 

A refutation method can be seen as a procedure that RUC- 
cessively generates new sets of clauses starting from the set to 
refute. The generation slops as soon as certain halting con- 
ditions - based on syntactical properties of the sets - are ful- 
filled. For any unsatisfiable input. a refutation-complete Proce- 
dure is guaranteed to stop, while for satisfiable input it ma] 

Figure 3 (see next page) shows the refutation of a four- 
clause SC! by means of “nit resolution (sequential organization) 
as well as a clausal version of the tableaux method (tree 
organization) that uses instantiation of clauses in S and splil- 
ting of ground clauses as construction rules. Matrix notation 
for sets of clauses has been used in the examples each line 
representing a clause. 

(‘) V i > 0 (Si satisfiable <=> Si+l satisfiable) 

. . . 

Fig. 2 

The tree TS of figure 2 is expanded (either depth- or 

one direct descendant that is satisfiable) 



s = s,: 

-IP(A) 1 r(y) 

I splitting 1 st clause 

rplltting 2 nd clause closed 

1 

closed closed 

Fig. 3 

For tjetrrtinp unsatisfiability, .the sequential approach is su-, 

perior to the tree approach because closing dl branches of a 
tree is more expensive than generating one set that containsta. 
This is one of the reasons why splitting-based methods have 
heen discardvd Ior theorem-proving purposes after resolution 
wnz intmdurrd. S,vmnktrirally. satisfirbi)ity ir rrpnrl,ed hy 
ouch a splitt.inp-based method as soon as one n&-closed branch 
has been lound (unless an infinite branch is entered) while 
resolution. e.g., has to wait until oil possible factors and resol- 
vents have been added (which possibly requires infinite time as 
Well). 

- which is a semi-decidabli property in contrast to satis. 
fiability? 

Whenever unrestricted resolution slops hrcause a saturated 
set (not containing r~) has been reached, the respective input 
set is linitcly satisfiable !31. Although this result appears to be 
ralhrr natural. wr wrrr nut aLle LU find it in the literature. 
Splitting-bawd methods are also sound for finite satisfiability. 
The tableaux method, e.g., stops whenever a set has been con- 

structed th6t contains a g-model.” This g-model directly 
represents a Iinitr model of S, i.e., S has been shown lo be 
finitely satistiablc in a constructive way. 

A further advantage of many splitting-based methods is 
that the length oi clauses never increases (inslance~ of clauses 
are added or &uses are replaced hy shorter ones). This is nol 
the case rot resolution since in general a resolvenl is longer 
than each of ils parents. 

Thus. both approaches are sound for finite satisfiability, 
but none of them is complete for this property as shown by 
figure, 4 (see next page). 

All relutation-complete methods are necessarily sound for 
5atirfiabilit.y: they never report satisfiability when applied lo 
an unsatisfiable set. Undecidability ol salisfiability, however, 
prevents them from being complete for this property. How do 
refutation procedures behave with respect lo finite satisfiability 

‘A g-model (131 is a set U of ground units such that each 
ground instance of a clause in S is subsumed by a unit in U. 
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Roth rnetbods run forever. although .S ..hcs a very ,small 

finite model’: its only individual is the conslsnl 0, FO 
rvalua~rr IO 0 and holh, even(,O),,and od,d(O). are lrue. In both 
c&es a purely syntactic mechanism &uses an unr&lrirled 
twzawvth in nesting al fkc~ional terms. 1,n’ case, a) ‘unification‘ 
leads to an infinile sequence of unils 

even(O) -> odd(F0) -> even(F20) -> odd(F’0) ‘-3 ‘... 

while in case b) instantiation produces a simijar sequence 
along each non-cloacd branch. e..g:, * .~ 

even(O) -> odd(F0) -> ev&(FO) -> odd(F%) -> . . . 

along the rightmost “lie. None of the two inethodr offers a 
1001 for identifying FO with 0 and thus detecling that afler 
such a function evaluation each of the inlinite sequences would 
‘rollaps” in10 the finilc sequence even(O) -> odd(O). 

? Due lo the fact that S does no1 complrlely axiomatize 
even-odd for the integers. 

Indeed, addine: an evaluation facility for ground functional .,&,-. 
terms to each, of the approaches enabkr them t& delecl finite 
satkiability in, aI,1 those cqses wheke intinile growth in func- 
tion nesting preknts the originbl methods from’ stopping. Such 
a fkure for the ideniification of ground terms i’s indispensable 
for finit mnkl dptrctkn. Tdis ia rrlatrd to the well-known 
fact lhal, iin’iteness is not @St-order expressable. 

In order, to evaluate a ground iunctional term, a case 
analysis is required as there may bt several possible ground 
lcrms with which the functional lerm could be identified. 
Therefore resolution loses its sequential organization when ex- 
tended by function evaluation and is turned into a tree- 
structure method. too. When added lo resolution, evaluation 
of iround functional lerms has, of course, lo be combined with 
instantiation, because sels without any ground terms have lo 
he handled as well. Many split&p-based methods already 
provide inslanlialion. 

We have shown in Jlj that the tableaux melhod with func- 
tion evaluation is complete for finite salisfiability. For similar 
,*?LSO”S. lhr same is true for the Davis-Putnam method. 
Resolution. however. is no1 complete for finite satisiiability 
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even after rxtendiue il hy instantiation and fuuctiou evalua. 
tiou. As shown in thp following section, iufinilc prow01 in 
clause lenpth may prevent resolution from stopping even for 
sets without any function symbols. 

Fipure 5 gives another example prrsentinp the extended 
tableaux method. This example is intended to show that, in 
order to evaluac.e iunctions, the Rround level has to he 
reached. because in certain cases the decision whether a finite 
model exists or nof requires an explicit identification of two 
ground terms such that a cerlain predicate is -1ruc for the one 
but false for the other. 

3. The Resolution-Based Approach 

In the previous section, WC have claimed that extending 
resolution with function evaluation and instantistion is still not 

sufficient for arhirx ma ronrplctcness for f1nit.e satisfiabilitl. 
Thcrr is a second wurw ~$1 infinite growth apart from growth 
in funclion nesting 11 The example of figure 6 (see next 
pace) show the prohlcm. The clauses in the initial set ex- 
press lhat the spouse of a woman is a man, and the spouse ot 
a man is a woman. Resolution does never stop when applied 
LO the initial set because the number of distinct variables (and 
thus the length of clauses) ‘ increases continuously. However, 
this se1 has f4nit.e modeis (e.g.. one man which is not married). 
Obviously. function evaluation does not help a~ no functions 
OCCUT. 

As a solution to this problem we propose another feature 
that WC call compoctificd:on Let v(S) denote ,the maximal nuti. 
her of vs&bles in a. &use in the set S. For n’ < v(S), the 
n-compactification of S (denoted by camp,(S)) is obtained by 

replacing each clause C with m > n variables by a se1 of 
clauses with exactly II variables. This set is constructed by 
identifying (m-n+]) of the variables in C in all possible ways. 

function evaluation 

IA !-> FA] FA kept as new individual J . . 
even(FA) rven(F’A) 

leven(FA). ywen(F’A) 

closed function rvaluatioo 

[A --; F’A] IFA --> F’A] 

V 

unit rerolution unit rcrotution 

closed 

Fig. 5 

contain a g-model over {A,FA) 
=> fmitely satisfiable 
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mall(x) 1couple(x,y) vwman(y) 

woman(x) ~rouple(x,y) -unan(y) 
& 

resolution 

man(xl) 1c0up1e(x1.x2) -rcouple(x2+3) -iwoman(x3) 

.L 

Fig. 6 

As an example, we give the I-compactification of the third 
ChUW 

man(x,) -couple(x,,x,) ~couplt(xl.x2) -noman(x2) 

man(xf) ~c0uple(x,.x,) -couple(x2.x,) -wornan 
- 

man(xl) ~ouple(x~,x,) -couple(x2,x2) -woman(x2) 
- 

Compactifiration is applied as soon as resolution produces a 
clause that has more variables lhan any of the already exist- 
ing clauses. After having constructed the respective n- 
rompactification. resolution (and instantiation/function evalua- 
tion. if necessary) is applied to the compactified set. Whenever 
a clause with more than n variables is derived anew from the 
n-compactifiration, it is immedialely n-compactified, too. If a 
saturated set is reached, the initial set has been shown finitely 
sstisfiahlr (with a model of cardinality n). If resolution derives 
the empty clause for all possible subsequent function l valua- 
tions (if any). then such a model does not ixist, and we have 
LO hacktrack and go on with lhc uneompactified set. In this 
case. compactification is invoked again after the next increase- 
ment in variable number has occurred and along &other “side 
branch- the existence of a finite model is checked. The overall 
urpanisation of this approach is illustrated by figure 7. 

The application of function evaluation within a sequence of 
resolution steps is organized in a similar way. Herr the in- 
creasement of /unctionol he:ghl serves as an indicator for invoca- 
tion of function evaluation. The functional height of a term is 
thr level of nesting of functions ill that term, e.g.. the funr- 
tional height of F(Fxy. y) is 2. The maximal functional height 
of a t.erm in S is denoted by f(S). Whenever resolution leads 
to an increasemtnt of f(S), function evaluation is invoked on a 
-side branch” while resolulion will go on witboul evaluating 
thr new functional term on the “main branch” in case back- 
tracking is rrquired. as shown by figure 8. 

If both kinds of increasements occur for a given S, invoca- 
tions of both additional features - compactiiication as well as 
function cvalualion - have to be mcr&d. of course. A 
saturated set on a “side branch” indicates finite satisfiahility, 
while closed ‘side branches” plus a closed “main branch” in- 
dicate unsatisfiability of S. For axioms of infini1.y the “main 
branch” never closes while all “side branches” are closed. 

The extended resolution method outlinrd here may be corn- 
binrd wilh any strat.egy provided that refutation-completeness 
is preserved. In his paper mentioned. Joyner proposes a 
strategy t.hat would save a lot of instanlialions and function 
evaluation steps although it requires a transformation of the 
inilial set: all rrsolvents and factors containing ncstrd func- 
tional terms may be discarded if the initial sel. is the clausal 
representation of formulas in Skolem normal form 151, i.e., in 

(+ 
resolution \1 

subsequent v(S)-compactification) . 
: : 

I 
resolution 

I . : 

J V(S?l > v(S,) 

v 
. 

Fig. 7 

0 
& sll . . 

resolution 
. 

i”,ta”tr++ f(S2’ ’ f(S” 
+ 

function evaluation & . 

Fig. g 

prenex normal form with prefix G.3’. For any first-order 
formula F there exists a formula SNF(F) in Skolem normal 
form such that F is finitely satisfiable if and only if SNF(F) is 
finitely satisfiable. The construction of this normalized formula 
is illustrated by an example: 
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F: ;rx:+cs jp(y.x)=>q(y.s)] 

SNF(F): VxQSr+ ((lp(y.x)=>q(y,s)]vs(x,y))/x+x,w)) 

The new predicate s is not allowed to occur in F. It w’as 
known before that this transformation preserves unsatisfiability. 
In 121 we have shorn that this is also lhe case for finite satis- 
fiability. 

Although operating with formulas in Skolem normal form 
allOWS to discard clauses with nested functions. function 
evaluation and instantiation do not become superfluous. There 
arc still cases in which thr evaluation of unnested functional 
terms is required in order LU guarantee the soundneis of the 
extended method. 

4. Improvements of the Split.ting-Based 
Approach 

In Section 2, splitting-based refutation methods were shown 
to be coinpiete for finite satisfiability if combined with func- 
tion evaluation. We had chosen the tableaux method as a rep 
rescntative of lhis class of methods because of the simplicity of 
its splitting rule. However, this method is by far loo ineflicient 
for practical applications if compared, e.g., with resolution- 
based methods. Two .reasons are responsible for this in- 
cfticiency: 

l the only construction rule of the tableaux1 method - 
clause splitting - is 100 primitive 

l a vast amount of instantiations is required because clause 
splitting is only applicable to ground clauses 

A more efficient set of rules for testing unsatisfiability of a 
WI of ground clauses is available in the Davis-Putnam proce- 
dure. The rules of this method take into account several 
clauses in S instead of looking only al. a single? isolated clause 
in each step. This leads to trees which are in general con- 
siderably smaller than the trees constructable with the rules of 
OIC tableaux method. Four construction rules are provided by 
the Davis-Putnam procedure: 

I. deletion of tsutological and subsumed clausrs 

2. ground unit resolution 

3. introduction of new units: if a pure grbund literal L oc- 
curs in S (i.e., a literal the complement of which does not oc- 
rur in S), then the unit {L) can be added to S (allowing a 
subsequent elimination of all clauses that contain L as they 
are subsumed by the new unit) 

4. complement splitting: if L is a non-pure ground literal in 
S. then two subcases can be introduced. In the one case the 

unit {L), in the other cake {Lr) is added (Lr de&es the 
complement of L). (In each of the cases the new unit sub- 
sumes at least one clause and can be resolved against al leas1 
one lileral.) 

Nevertheless. the Davis-Putnam method suffers from the 
same drawback as the tableaux method, namely lo require in- 
stantiations as all its rules operate only on ground qlauses. 
The number of instances of a claunr depends exponentially on 
the number al ground terms that are used for, inslantiation. 
Resolution refutation procedures do nol need any explicit in- 
stantiation at all. This fact makes them superior to both. 
Davis-Putnam as well as tableaux method for refutation pur- 
poses. But, as pointed oul in the previous section. inslantia- 
tion has to be added lo resolution, in order to yield complete- 
ness for finite satisfiability. However, these inevitable instanlia- 
tion steps are performed as late as possible and only in those 

caaw where absolutely necessary for making function evaluation 
possible. II would be desirable LU reduce the number of instan- 
tiations required by the Davis-Putnam procedure in a com- 
parative way. 

A necessary prerequisite for such a reduction is that the 
construction rules of the method are somehow generalized lo 
the non-ground level (in the same way as general resolution 
has been originally introduced as a generalization of the 
propositional ‘cul’ rule). The first three Davis-Putnam rules 
can be easily generalized. Elimination of tautologies and sub- 
sumed ChUSeS is a standard feature of many reduction 
strategies for resolution procedures. Unit resolution is a spe- 
cial case of general resolution (known to be refutation-complete 
for the important class of Horn clauses). The notion of a pure 
literal is also easil) extendable to non-ground literal6 if in- 
stances and variants of the complementary literal are taken 
into account. 

Problems arise if the complement splitting rule shaJl be er- 

tended. Thr introduction of alternative L-L’ cases is justiIicd 

by zhe fact that (LvL’) is a tautology for ground literals. On 
the general level. any variable ‘x in a 1itCral L has to be 
regarded as implicitly universally quantified. The disjunction 

(Vx[L] v Vxlt’]), however, is not a tautology. Therefore a 
direct generalization of complement splitting to the general 
level is nol possible wilhoui losing completeness. In 14, P. 
164j generalized splitting rules arc investigated that overcome 
this problem by keeping track of all variable substitutions per- 
formed along the alternative branches and checking their corn- 
patibility at the end. It is not clear how such methods .can be 
adapted for finite satisfiability checking. 

lCWSl(Xl odd(Px) 
-odd(x) wen(Fx) 

uuit res:*lutiou 

-?-V*Xl(X) odd(Fx) 
-‘odd(x) even(Fx) 

crcn(0) 

complemenl splitting 

I I 

closed 

IO ---> FO] function evaluation 

successful branch --) 
f-l 
even(O) 
odd(O) 

Fig. 9 

The .solution we propose is based on the idea lo view each 
of the alternative case introduced by complement splitting as a 
kind of “Tess of an assumption”. Does any finite model of S 

exist in which the (additional) unit {L) - respectively (L’) - 
is true? If one of the assumptions leads to a success, the other 
assumption needs not be tested any more. If both assumptions 
lead to a closed branch. then it has only been shown that 
these assumptions are not compatible with S, but not that S 
is unsatisfiable because of the above reasons. A third branch 
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has therefore 1.0 be provided by each complement splitliuR stc)t 

on which. in case of “lailure 01 both assumptions’. the two 

liter& L and Lc are removed from lhe list of ‘unit 
candidales- and other non-pure liter& are tested. If all of 
lhem lead to closed branches, then instantiation has to be in- 
voked on the remaining branch. However, ihis is the only case 
in which instantiation is required at all by the generaliced ver- 
sion of lhc Davis-Putnam method dedcril’ed here. II S is un- 
satisliable. then none of the “unit cahdidat&” will be ,succe&- 
ful. and instantiation is inevitable. For many satisfiable sets, 
however. a Irk abplicalions of the generalized compiemenl 
splitling lead ‘LO a non-closed tinkle bianch already. 

Figure 9 (see previous page) shows how &he set used in 
figure 4 is checked lor fiiitr satirfiability using the generalized 
Davis-Putnam procedure with function evaluation. 

In (his paper we, hqve introduced finite satisfiability~ as ,a 
necessary wellforme~ness condilioD for dqtabasc conrtrsint sets. 
1~ reflects tbq rcqqirement that .c”nstraints. have to admil 
finite sets of fact! (in a conventional as well as in a deductive 
context). Finite satisfibbility is a stronger properly than consis- 
tency this autom.atically implying tbe la&. 

In order lo obtain a method for finite satisfiability checking 
we have.cbosca lo extend existing refutation procedures. Two 
different approaches to finite ‘Mtisliability checking have been 
investigated that are based on two different approaches to 
refutation. Both require the same extension. namely the ad- 
dition of an evaluation facility for ground functional terms in 
order to control gtowth in funcliol nesting. This addition 
prevents production of infinitely many c.Iauses by identifying 
certain ground tern& The approach based on the resolution 
principle hai to be friilher extended with a feature for the 
limitation of growth in clause length. called compaclificalion. 
Of course. the addition of these features lo refutation 
procedures will drcieasc lheir efficiency for unsatisfiable input. 
However. this price has to be paid if completeness for finite 
satirliability shall be reached. The rirlues of both approaches 
rannoi be simply combined, as the undecidability of satis- 
fiability preven1s *“y refutation-complete procedure from 
removing both kinds of growth at the same time. Each of the 
two methods obtained by the extensions mentioned is sound 
and complete for finite s&&ability as well ai for unsatis- 
fiabilit>. 

The two melhods are justified and described in detail in ]z] 
and 1143. respectively. At the moment, we don’t see any other 
reAsonable solution to the problem of constructing a simul- 
taneous semi-decision procedure for finite satisfiability and un- 
satisfiability. Although WC have no resulls about the differences 
in efficiency between the two methods, WC- believe that a 
splitting-based approach will be preferable. Resolulion produces 
to” many clauses especially if applied to co,Fpactified sets 01 
clauses. Moreover, the big advantage of resolution-hased refuta- 
tion procedures - namely to do without any instantiation - is 
lost, as function evaluation has nrccssarily to be performed on 
the ground level. A first prototype implemenlation of the 
sp)itling-based method writ.t.en in Prolog is meanwhile avail- 
able. 

Additional points thal may influence the work on a more 
elaborate version are: 

1. For ,Ml”?’ data models (especial)> those providing 
generalization hierarchies) a many-sorted logic is more ap 
propristc. Introduction of many-sortedness is known to improve 
the efliciency of the methods discussed in this paper. 

L’ The question of suitable strategies has noI been addressed 
in this paper at all. A thorough investigation of this topic is 
inevitable. For resolution a lot of strategies have already been 
introduced in the context of refutation. lt has to be inves- 
tigated wbelher the) can be adapted lor the extended method 
as well. Strategies for the generalized Davis-Pufnam procedure 
should especially provide criteria for making good choices of 
“unit candidates’ when applying complement qplitthg. 

3. Very often WC can expect that a considerable part of the 
constraint set under c”nsidc+ion consists of dependcntics that 
arc known to be finitely satisfiable becadsr of,lheir syntactical 
structure. Strattgits should bc developed that take advantage 
of this knowledge. Similar techniques can be useful in rt COD- 
text where constraint sets are modiIied. 
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