Checking Consistency of Database Constraints: a Logical Basis

Francois BRY. Rainer MANTHEY

ECRC, Arabellastr. 17, 8000 Muenchen 81, West Germany

Abstract

This paper addresses the problem of consistency of a set of
integrity constraints itself, independent from ‘any state. Jt is
pointed out that .database constraints. have not only to .be
consistent, but in addition. to be. finitely -satisfiable. This
stronger properly reflects that. the constraints have to admit a
finite set of (stored as well as derivable) facts. As opposed -to
consistency. being und_ec'id;nbvle, finite satisfiability is semi-
decidable. For efficiency puvrposes we investigate methods that
check both finite satisfiability as well as unsatisfiability. Two
different methods are proposed which extend two alternative
approaches to refutation.

1. Introduction

In a database context, a lot of work has been done on in-
tegrity enforcement, i.é.,.on checking;lhe validity of a database
state with respect to a given set of integrity constraints. The
question ‘whether the constraint set itself is consistent bas till
now received quite few attention, although the problem is fun-
damental { [12] constitutes a notable exception). Usually con-
straints are’ either t'a,citly assumed to be consistent, or the use
of a theorem prover is suggested in order to detecl inconsis-
tencies.] constraints are restricted to come from classes like
functional. multi-valued or implicational dependencies, consis-
tency is already implied by. the syntactical properties of the
respective classes. However, as pointed out by many authors,
more: general “kinds of constraints have to be admitted, and
therefore .the, problem has. to be - addressed or' a moré general
basis. As the formalisms. of relational databases and predicate
logic are so closel_vfrelaled, we will consider constraints as ar-
bitrary closed and function-free first order formulas.

Consistency "is 'a necessary wellformedness condition for con-
straint sets (as opposed to. e.g.. non-redundancy which is a
desirable, but not an indispensable requirement). -An inconsis-
tent set of constraints does not admit - any -valid database
state. In terms .of logic, database states can be considered as
interpretations of the constraints. Valid states correspond to
interpretations in which every constraint is true, i.e., .to models
of the constraint set. Inconsistent sets of formulas do not have
apy model - they are unsatisfiable. (The . model-theoretic
property ‘satisfiability’ is equivalent to the proof-theoretic
property ’'consistency' according to Goedel's Completeness
Theorem).

As database states correspond to models. of the constraints.
it is not sufficient to guarantee the existence of any model in
general., but finite models have to exist in particular. In con-

ventional ‘dﬁtabases,"constrgints have to admit finite models as
every state consists of a finite number of facts. In definite
deductive databases (as defined in |9]) the set of deduction
rqlc§ always has a finite minimal model., which is intended to
be a model of the constraint set as well. Satisfiability does not
necessarily imply finite satisfiability, i.e., the existence of a finite
model.’ There are satisfiable sets of formulas - cxlled ’'axioms
of -infinity’ - that have only infinite models. Consider, e.g., a
set -of integrity' constiaints for ‘a ‘managerial database contain-
ing {among others) the following constraints: ‘

. 'Everybod’y works for ‘somebody.
e Nobody works for himself.)
‘o If x works for y and y works for z, then x works for ¢.

Ekpres;cd as first-order formulas. these three constraints cor-
respond to a well-known axiom . of infinity. Although each of
them appears. to, be reasonable as such. an infinite number of
indiyid'uyglsi is_ required in any model of the set as a-whole.
This defect could be avoided by providing the -first constraint
with a proviso like, e.g.,. "everybody, except the top-manager..”.
Much mere complex axioms of .infinity . may be hidden inside a
l_argc\ and intricate set of copstraints which cannot: be so easily
identified as in the example. above. Therefore, in addition to
preventing constraints {rom. being -unsatisfiable, axioms of in-
finity have to be avoided as well... Constraints have to be
finitely satisfiable. as already briefly mentioned in |8].

Figure 1 jlustrates how the three properties mentioned are
related. L C

satiafiable unvatisfiable

finitely g " axiom of illﬁixii)’
satisfiable

B :)
Y

unacceptable as constraints

Fig. 1

Because of the undecidability of satisfiability, no algorithm
can be constructed that stops for every possible set of for-
mulas and reports whether this set is finitely satisfiable, un-
satisfiable or an axiom of infinity. Finite satisfiability, as well
as unsatisfiability. is undecidable [17], but both are at least
semi-decidable: algorithms can be constructed that are
guaranteed lo report the respective property after finite (but
indefinite) time if applied 1o a set that actually has this
property, but possibly run forever else. Every refutation
method is in fact a semi-decision procedure for unsatisfiability.
Procedures of this kind have been in use as theorem provers

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copyznﬁ is by permission of
the Very Large Data Base Endowment. To copg' otherwise, or to republish, requires a fee and/or special permission from the Endowment.

e

Proceedings of the Twelfth International Conference on Very Large Data Bases

~13—

Kyoto, August, 1986

for more than two decades and have nuwadavs reached a con-
siderable standard of efficiency.

The semi-decidability of both. finite satisfiability as well as
unsatisfiability, implies that a procedure can be built that ter-
minates for both. finitely satisfiable as well as unsatisfiable in-
put. Such a procedure would be an adequate tool for deciding
whether a given set of formulas is acceptable as constraints
(within the limits imposed by undecidability. of course). The
simplest way of obtaining a simultaneous semi-decision proce-
dure would be to run two independent procedures for each of
the two semi-decidable properties in parallel. However. any at-
tempt to improve the unsatisfactory efficiency of the basic
semi-decision method for finite satisfiability (to test for increas-
ing n whether a model of cardinality n ‘exists) inevitably leads
to techniques that ‘are also required for refutation. Therefore it
seems reasonable to rely on existing refutation methods and to
extend them in order to make them sound and complete for
finite satlsﬁabihtv as well. o ’

There are certain classes of formulas where satisfiability and
finite satisfiability coincide, called finitely controllable. For sets
of formulas coming from such a class, satisfiability is decidable.
However. the known finitely controllable classes |7] appear:to
be too restricted for udmlthng only ronstramts that belong to
such a class.

In this paper we describe two basic approaches to extend-
ing refutation methods into procedures that semi-decide finite
satisfiability as well: the one is based on ‘the resolution prin-
ciple, while the other makes use ‘of a subcase analysis based
on splitting of clauses. Both approaches require a common’ fea-
ture (function - evaluation) to be added ‘to ‘the underlying
refutatiop principle in- order to reach completeness for finite
satisfiability.: Section 2 describes’ and ‘motivates this feature
after havinig briefly introduced ‘both approaches. Resolution re-
quires ‘another additional feature if ‘'completeness shall be
guaratiteed: This further extension 'is described in section 3
1ogether with a suggestion for an improvemeént of the extended
method. 1n -section ‘4, improvements ‘of the splitting-based ap-
proach are proposed that are mnecessary in order to make it
competitive as compared to the resolution-based method.

The method defined in [12] for checking consistency of con-
straints is based on the first-order tableaux method (in its
original non-clausal form as described in |16]). As opposed to
the methbds proposed here, Kung's approach is not complete
for finite satisfiability.

The paper bas been written in such a way that only an in-
tuitive understanding of’ resolution and other theorem proving
techniques is requlred Formulas are expressed in clausal form,
all functions occurring being Skolem functions. Transformation
to clausal form is known to preserve satisfiability. This holds
for finite satisfiability, too, for similar reasons. The
tutorials |l4; and [13] provide an introduction to refutation
methods in general and to resolution in particular. The term
‘resolution’ is used throughout this paper according to
Robinson’s original terminology, i.e., including factorization.

2. Refmatxon Methods and Finite
Satisfiability

A refutation method can be seen as a procedure that suc-
cessively generates new sets of clauses starting from the set to
refute. The generalion stops as soon as certain halting con-
ditions - based on syntactical properties of the sets - are ful-
filed. For any unsatisfiable input, a refutation-complete proce-
dure is guaranteed to stop, while for satisfiable input it may

either stop or run forever. Refutation procedures differ mainly
in the way in which the generation of new sets is organired
and in the halting conditions employed. Two main classes of
procedures can be distinguished with respect to these criteria.

The one class contains procedures that are based on the
resolution principle. For a given input set S they generate a

=S, - . . R
sequence S-~0 > Sl > > S -> SH_] > ... where Si+l

is constructed from Si by addltlon of factors and/or resolvents

of clauses in Si {possibly combined with a subsequent deletion

.. of tautologies or subsumed clauses). As resolution js an in-

ference rule, we have:

(*) ¥ i20 (s satisfiable <=> §; satisfiable)

Whenever one of the Si contains the empty claused, this set
is unsatisfiable. because O is the clausal representation of false-
hood. Therefore S is unsatisfiable, too, because of (*) and the
generation of new sets stops. H; on the other band, S is satis-
fiable, in. general it will never stop as none of the Si contains

‘0. In certain cases. however, a saturated set will be reached,

i.e., a set that’ already contains all’ factors and resolvents {or
at least variants of them) that are constructable from its

‘members.” 1o this case generation also stops (reporting

satisfiability).

The second class of procedures contains most of the
methods that have been proposed and implemented before the
resolution principle was developed (e.g., clausal versions of the
tableaux method - like the procedure of Gilmore [10] - or the
method of Davis and Putpam [6]). In these procedures the
generation of new sets follows a tree structure, as shown by
figure 2.

- .

" Fig. 2
Tht‘ tree Ts of ﬁgureA 2 is. expanded (either depth- or

breadth-first) reflecting a case analysis. The edges of Tg are

constructed in such a way that the following holds:
(**) VS5,eTg (s satisfiable <=> S, has at least
one direct descendant that is satisfiable)

As soon as along a branch a set has been reached that con-
tains two contradictory units, this branch is "closed” (i.e., not
further expanded) because the respective set is obviously un-
satisfiable.: If all branches of the tree can be closed in this
way, the unsatisfiability of S has been shown because of (**).
There may be infinite branches - which can never be closed -
as well. as finite non-closed branches that cannot be further
extended by the construction rules of the method. In the lat-
ter case, satisfiability of S is reported. ’

Figure 3 (see next page} shows the refutation of a four-
clause set by means of unit resolution (seguential organization)
as well as a clausal version of the tableaux method (tree
organization) that uses instantiation of clauses in S and split-
ting of ground clauses as construction rules. Matrix notation
for sets of clauses has been used in the examples each line
representing a clause.

at unit resolution method | LIT)

5 = SO:
pi{x) "qlA)
A47p(A] vr(y)
/1 als)
/ £x(A)
ls

pix) =q(A)
Voobp(a) arg)| N
t qfz) — \
\ Y(A) \\L '
“ra) 1V)

SZ: l \)

p(ﬂ -9{A '
p(A) 1y} | /
“q{x) 7

A .-r(A) 'JV’
/plA)
ke €«
//
¥,
53:
{ .
'\ L 3
\ []
~ A0

Fig. 3

For detecting unsatisfiability, the sequential approach is su-,
perior to the tree approach because closing all branches of a
tree is more expensive than generatmg one set that containsgg .
This is one of the reasons why splitting-based methods have
been discarded for theorem-proving purposes after resolution
was introduced. Symn;i-trirally,' satishability s reported by
such a splitting-based method as soon as one non-closed branch
has bLeen found (unless ap infinite branch is entered) while
resolution, e.g., has to wait until all possible factors and - resol-
vents have been added (whlch possibly requires infinite time as
well). . :

A further advantage of many splitting-based methods is
that the length of clauses never increases {instances of clauses
are added or clauses are replaced by shorter ones}. This is nol
the case for resolution since in general a resolvent is longer
than each of its parents.

All refutation-complete methods are necessarily sound for
satisfiability: they never report satisfiability when applied to
an unsatisfiable set. Undecidability of satisfiability, however,
prevents them from being complete for this property. How do
refutation procedures behave with respect to finite satisfiability

tableaux method

S = SO:
P(x) —q(A)
Ap(A) mrly)
ais)
r(A)
instantiat_ilon L
S, :
1
¥
*
p(A) ~qlA)
ap(A} ir(A)
q(A).
splitting 1“ clause
Slxz Slz:
5 . .
- []

. ‘ T alA) |,
plA} ; o pnalA)
aplitting 2nd clause ,‘cloud,

S112° L
L]
L]
r(A)
=ir(A)
closed closed

- which is a semi-decidable property in contrast to satis-
fiability? :

Whenever unrestricted resolution stops because a saturated
set (not containing 7} has been reached, the respective input
set is finitely satisfiable {3.. Although this result appears to be
rather natural. we were nol able to find it in the literature.
Splitting-based methods are also sound for Tinite satisfiability.
The lableaux method, e.g., stops whenevcr a set has been con-
structed that contains a gmodel This gmodel directly
represents a finite model of S, i.e., S has been shown to be
finitely satisfiable in a constructive way.

Thus, both approaches are sound for finite satisfiability,
but none of them is complete for this property as shown by
figure 4 (see next page).

1A g-model {13] is a set U of ground umits such that each

ground instance of a clause in § is subsumed by a unjt in U.

a) resolution mwethod) tableaux miethod =teven(x) odd(Fx)
Tloddix) eveniFx}
even(0) .
sl even{x) odd(Fx) instantiation
/7 |Poeddix) even(Fx) i'
{ even(0) R]
/ ~teven(0) _odd(FO)‘_
{ ! —10dd{0) even (F0)
“’ h ;
Jeven(x) odd(Fx)
\ [|Tvodd(x} even{Fx)\ 4’ j' .
\ even(0) \ even(0) ¢
B 0dd(FO) — ., LI : s
~ N I [even(0) odd(F0)
BT 1 closed I
/eveni(x) odd(Fx) | ‘l : ' B
/ —~odd(x) even(Fx)| [~ - 0dd(0) ' ; even(FO)
even{0) _ instantiation : mnannanon
[| oda(Fo) y A ¢
{ -)’"even(f"zﬂ K - ‘ . 2 b5
v/ R S ' : “teven(F0) odd(F~0) "'!even(FO) odd(F 0)
o . hodd(Fo) even(¥?0) H10dd{FO) ° wenu-' 29)
¢ Seven(x) odd(Fx) : :
\ [odd{x) even(Fx) N Sk — i — ¥
N even(0) N : CVQI.I(FO) .
| oddiFo) “|a éven(Fo0) 0dd({F20) Reven(F0) odd(F20)
\| even(F 0)) o o
N odd(r3o) B P e 1 closed
l Joreed odd(F0)| .. :
o - 0dd(Fo)] en(F20)
: closed
Fig: 4
Both metbods run forever, although .S: . has a very small Indeed, adding an evaluation facility for gro\lnd functional

finite model": its only individual is the constant’ 0, FO
evaluates to 0 and both, even(0) and odd(O) are true. In both
cases a purel) syntactic mechanism causes an unrestnrted
growth in nesting o(functlonal ierms.
leads to an mﬁmte sequence of units

even(0) -> 0dd(F0) -> even(F’ %0) -> 0dd(F%0) =3 ..

while in case b) instantiation produces a_ similar sequence

along each non- clmed branch, e.g.,

even(0) -> odd(F0) -> even(F0) -> bda(F?'d).->

along the rightmost one. None of the two ‘methods offers a
tool for ‘identifying FO with 0 and thus detecting that "after
such a function evaluation each of the infinite sequences would
“collaps™ into the finite sequence even{0) -> odd(0).

2 . .
“Due to the fact that S does not completely . axiomatize

even-odd for the integers.

ln case a) unification

terms to. each of lhe approaches enables them 1o detect finite
sausﬁabllll) in, all those cases where infinite growth in func-
tion nesting prevents the ongmal methods from’ stopping. Such
a feature for the ldentlﬁcatmn of ground terms is indispensable
for ﬁmu model detrrtmn This is rrlnu-d to the well-known
fact thal ﬁnueness is not first-order expressable.

In order to -evaluate a ground: functional - term; a case
analysis is required as there may be several possible ground
terms with. which the functional term ‘could be identified.
Therefore resolution loses its sequential organization when ex-
tended by function‘ evaluation and is turned into a tree-
structure method 00. When added (o resolution, evaluation
of ground funcuonal terms has, of course, to be combined with
instantiation, because sets without any ground terms have to
be handled as well. Many splitting-based methods already
provide instantiation.

that the tableaux method with func-
tion evaluation is complete for finite satisfiability. For similar
reasons, the same is true for the Davis-Putnam method.
Resolution. however, is not complete for finite satisfiability

We have shown in [1j

even afier extending it
As

length may

tion. shown in

clause

the
prevent resolution from stopping even for

by instantiation

following section,

sets without any. function symbols.

Figure & gives

order to evaluate

reached. because in certain cases the decision whether
model exists or nof requires an explicit 'irlenl.ification

another

functions,

the ground level

and fuuction
infinite growth

evalua-
in

example presenting the extended
tableaux method. This example is intended to show that,

in
be
a finite
of two

has to

grouno ierms sucn lnﬂ‘v a Cel'lbl" pl’CCIICDlC is irue IOl' the one

but false for the olher

The Resoliltion—B‘ased Approac}'n

In the previous section, we have claimed that extending
resolution with function evaluation and instantiation is still not

A

c-\ren(xf
—even{x)

even(Fx)
=even{Fx)

instantiation

2

even{A)
~even(A)

even{FA)
—Jeven(FA)

function evaluation

sufficient for achievine rompleteness for finite satisfiability.
There is a second source of infinite growth apart from growth
in function nesting 11. The example of figure 6 (see next
page) shows the problem. The clauses in the initial set ex-
press that the spouse of a woman is a man, and the spouse of
a man is a woman. Resolution does never stop when applied
to the initial set because the number of distinct variables (and
thus the length of clauses) increases continuously. However,
this set has finite models {e.g.. one man which is not married).
Obviously, function evaluation does not help as no functions

occur.

As a solution to this problem we propose another feature
that we call compactification. ‘Let v(S) denote the mulmal num-
ber ‘of variables in any clause in the set S. For n < v(S) the
n-compactification of S (denaoted by compn(S)) is obtained by
replacing each clause C with m > n variables by a set of
clauses with exactly n variables. This set is constructed by
identifying (m-n+1) of the variables in C in all possible ways.

{with su arbitrary constant A)

--> FA]

o

FA kept as new: individual

o-o‘..

even(A) even{FA) wen(Fz'A')
~teven(A) ~even({FA). -wvcn(FzA)
closed function jevaluation
P2 ' 2,
A --> FZA] [FA --> F“A)
L N '
L] L]
L] -
even(FA) even(A) even{FA)
= even(FA) "even(A) " even(FA)
) I
splittilng closed
R m
. L]
L] L]
even{FA) even(A) even(FA) even{A}
-1 even(FA) —teven({A)

unit resolution

AR

even{A)
—1even(FA)

N

7

unit resolution

L]
L
even(FA)
— even(A)

contain a g-model over {A,FA}
=> finitely satisfiable

Fig. &

man{x) =<couple(x,y) “awoman(y)

woman(x) =acouple(x,y) -snan(y)

N

mnn(xl) ﬂcouple(xl.xz) —vcouple(xz,xs) -wvoman(xsﬂ

e
man(xl) -u'ouple(xl,xz) -couple(xn_l,xn) w:woman(xnjl

for n = 5,7,9....

Fig. 6

As an example, we give the 2-compactification of the third
clause:
man(x]) —*couple(x],x]) ﬂcouple(xl,x,,) Hwoman(xz)

man(x]) ﬂcouple(x],xg) —-couple(xz.x]) —-woman(x])
man(xl) —-couple(x],x,,) —-couple(x,,,xz) —»woman(xz)

Compactification is applied as soon as resolution produces a
clause that has more variables than any of the alfeady exist-
ing clauses. After having constructed the respective n-
compactification, resolution (and instantiation/function evalua-
tion, if necessary) is applied to the compactified set. Whenever
a clause with more than n variables is derived anew from the
n-compactification, it is immediately n-compactified, too. If a
saturated set is reached, the initial set has been shown finitely
satisfiable (with a model of cardinality n). If resolution derives
the empty clause for all possible subsequent function evalua-
tions (if any). then such a model does not €xist, and we have
to backtrack and go on with the uncompactified set. In :this
case, compaclification is invoked again after the next increase-
ment in variable number has occurred and along another "side
branch™ the existence of a finite model is checked. The overall
organization of this approach is illustrated by figure 7.

The application of function evaluation within a sequence of
resolution steps is organized in a similar way. Here the in-
creasement of functional heighi serves as an indicator for invoca-
tion of function evaluation. The functional height of a term is
the icvel of nesting of functions in that term, e.g.. the funec-
tional height of F(Fxy, y) is 2. The maximal functional height
of a term in S is denoted by {(S}). Whenever resolution leads
Lo an increasement of f(S), function evaluation is invoked on a
“side branch” while resolution will go on without -evaluating
the new functional term on the "main branch” in case back-
tracking is required, as shown by figure 8.

If both kinds of increasements occur for a given S, invoca-
tions of both additional features - compactification as well as
function evaluation - have (o be merged. of course. A
saturated set on a "side branch” indicates finite satisfiability,
while closed "side branches” plus a closed "main branch” in-
dicate unsatisfiability of S. For axioms of infinity the "main
branch™ never closes while all "side branches” are closed.

The extended resolution method outlined here may be com-
bined with any strategy provided that refutation-completeness
is preserved. In his paper mentioned, Joyner proposes a
strategy that would save a lot of instantiations and function
evaluation slteps although it requires a transformation of the
initial set: all resolvents and factors containing nested func-
tional terms may be discarded if the initial set is the clausal
representation of formulas in Skolem normal form [§], i.e., in

~
¥
resolution
N
L S‘l V(S]) ~ v{S)
comp.(<)(S,)
resolution
(+ subsequent v(S)-compactification)
l resolution
J function rvgluation :
e o]
£ S2 v(S..,) > v(S])
compv(si)(sz)
Fig. 7
s
v
resolution
Sl f(S]) > 1(8)
instantiation
Sll E
resolution

1funclio'n evaluationl :
2

0 0

2 | 118, > f(s))

instantiation

function evaluation v

‘!’ .

Fig. 8

prenex normal form with prefix V.B‘. For any first-order
formula F there exists a formula SNF(F) in Skolem normal
form such that F is finitely satisfiable if and only if SNF(F) is
finitely satisfiable. The construction of this normalized formula
is illustrated by an example:

F: vx3yvz jply.x)=>q(y.z))
SNF(F): vxvyvzIw {(({p(y.x)=>q(y.z)]vs(x,y))7-s(x,w))

The new predicate s is not allowed to occur in F. It was
known before that this transformation preserves. unsatisfiability.
In }2] we have shown that this is also the case for finite satis-
fiability.

Although operating with formulas in Skolem normal form
allows to discard clauses with nested functions, function
evaluation and instantiation do net become superfluous. There
are still cases in which the evaluation of unnested functional
terms is required in order to guarantee the soundness of the
extended method.

4. Improvements of the Split't‘ihg--Based
Approach

In Section 2, splitiing-based refutation methods were shown
to be complete for finite satisfiability if combined with func-
tion evaluation. We had chosen the tableaux method as a rep-
resentative of this class of methods because of the simplicity of
its splitting rule. However, this method is by far too inefficient
for practical applications if compared, e.g., with resolution-
based methods. Two -r are responsible for this in-
efficiency: :

e the only conmstruction rule of the tableauxl method -
clause splitting - is too primitive

e a vast amount of instantiations is required because clause
splitting is only applicable to ground clauses

A more efficient set of rules for testing unsatisfiability of a
set of ground clauses is available in the Davis-Putnam proce-
dure. The rules of this method take into account several
clauses in S instead of looking only at a single, isolated clause
in each step. This leads (o trees which are in general con-
siderably smaller than the trees constructable with the rules of
the tableaux method. Four construction rules are provided by
the Davis-Putnam procedure:

1. deletion of tautological and subsumed clauses
2. ground unit resolution

3. introduction of new units: if a pure ground literal L oc-
curs in S (i.e., a literal the complement of which does not oc-
cur in S), then the unit {L} can be added 10 S (allowing a
subsequent elimination of all clauses that contain L as they
are subsumed by the new unit)

4. complement splitting: if L is a non-pure ground literal in
S. then two subcases can be introduced. In the one case the
unit {L}, in the other case {L7} is added (L® denotes the
complement of L). (In each of the cases the new unit sub-
sumes at least one clause and can be resolved against at least
one literal.)

Nevertheless. the Davis-Putnam method suffers from the
same drawback as the tableaux method, namely to require in-
stantiations as all its rules operate only on ground clauses.
The number of instances of a clause depends exponentially on
the number of ground terms that are used for instantiation.
Resolution refutation procedures do not need any explicit in-
stantiation at all. This fact makes them superior to both,
Davis-Putnam as' well as tableaux method for refutation pur-
poses. But, as pointed out in the previous section, instantia-
tion has to be added to resolution, in order to vield complete-
ness for finite satisfiability. However, these inevitable instantia-
tion steps are performed as late as possible and only in those

cases where absolutely necessary for making function evaluation
possible. It would be desirable to reduce the number of instan-
tiations required by the Davis-Putnam procedure in a com-
parative way.

A necessary prerequisite for such a reduction is that the
construction rules of the method are somehow generalized to
the non-ground level (in the same way as general resolution
has been originally introduced as a generalization of the
propositional "cut™ rule). The first three Davis-Putnam rules
can be easily generalized. Elimination of tautologies and sub-
sumed clauses is a standard feature of many reduction
strategies for resolution pror.edixres. Unit resolution is a spe-
cial case of general resolution (known to be refutation-complete
for the -important class of Horn clauses). The notion of a pure
literal is also. easily extendable to non-ground literals if in-
stances and variants of the complementary literal are taken
into account.

Problems arise if the complement splitting rule shajl be ex-
tended. The introduction of alternative L-L® cases is justified

by the fact that (LVL') is a tautology for ground literals. On
the general level, any variable x in a litéral L has to be
regarded as implicitly universally quantified. The disjunctiod

(vx[L] v Vx[L®]), however, is not a tautology. Therefore a
direct generalization of complement splitting to the general
level is not possible without losing completeness. In {4, p.
184] generalized splitting rules are ‘investigated that overcome
this problem by keeping track of all variable substitutions per-
formed along the alternative branches and checking their com-
patibility. at the end. It is not clear how such methods .can be
adapted for finite satisfiability checking.

=-leven(x) odd(Fx) }
Sodd(x) even(Fx)

evenil) .

unit resolution

“even(x) odd{Fx)
“odd(x) even({Fx)

even(0)

odd(F0)

complement)splitting

|]

: even(Fx) .no need to
odd(F0) even(0) enter this
2 o0dd(x). dd(x) branch
instantiation l
closed ’
odd(0)
even(F0)
even(0)

|

[0 ---> FO] function evaluation’
J
even(0)
odd(0) -

successful branch —3

Fig. 9

The .solution we propose is based on the idea to view each
of the alternative case introduced by complement splitting as a
kind of "test of an assumption”. Does any finite model of S
exist in which the (additional} unit {L} - respectively {L°} -
is true? If one of the assumptions leads to a success, the other
assumption needs not be tested any more. 'If both assumptions
Jead to a closed branch, then it has only been shown that
these assumptions are not compatible with S, but not that §
is unsatisfiable because of the above reasons. A third branch

has therefore to be provided by ecach complement splitting siep

on which. in case of "failure of bLoth assumptions™, the two

literals L and LS. are removed from the list of Tunit
candidates™ and other non-pure literals are tested. If all of
them lead to closed branches, then instantiation has to be in-
voked on the remaining branch. However, this is the only case
in which instantiation is required at all by the generalized ver-
sion’ of the Davis-Putnam method des'crib‘ed“hére. If S is un-
satisfiable. then none of the "unit candidates™ will be success-
ful. and instantiation is inevitable. For many satisfiable sets,
however. a few applications of the generalizted complement
sphthng lead Vo a non-closed finite branch alread) '

Figure 9 (sce previous page) shows how . the set used in
figure 4. is_checked for finite satisfiability using the generalized
Davis-Putnam procedure with function evaluation.

5. Conc]uslon

In this paper we. hlve |ntroduced finite sat;sﬁablllty as .a
necessary welllormedness conditiop for database constraint sets.
1t reflects the requirement that constraints. have to admit
finite sets of facts (in a conventional as well as in 2 deductive
context) Finite utlsﬁablllty is a stronger’ properlv than consis-
tency thus aul.omnhcally xmplymg the latter.

ln order. to obtain a method for finite uhsﬁabnhty checking
we have chosen to exiend existing refutation procedures.. Two
different approaches to finite -satisfiability checking have been
investigated - that are - based on two different approaches ‘to
refutation. Both require. the same extension, namely the ad-
dition of an evaluation facility for ground functional terms in
order to control growth in function nesting. This addition
prevents production of infinitely ‘many clauses by identifying
certain ground terms. - The approach based on the resolution
principle has to be fur(her extended with a feature for the
limitation of growth in clause length. . called compactification.
Of course. the addition of these features to refutation
procedures will decrease ‘their efficiency for unsatisfiable input.
However, this price has to be paid if completeness for finite
satisfiability shall be reached. The virties of both approaches
cannoi be simply * combined, as the undecidability of satis-
fiability prevents any refutation-complete procedure from
removing both kinds of growth at the same time. Each of the
two methods obtained by the e*tensions mentioned is sound
and complete for finite satisfiability as well as for unsatis-
fiability. '

The two methods are justified and described in detail in [2]
and i]4j. respectively. At the moment, we don’t see any other
reasonable solution to the problem of constructing a simul-
taneous semi-decision procedure for finite satisfiability and un-
satisfiability. Although we have no results about the differences
in efficiency between the two methods, we” believe that a
splitting-based approach will be preferable. Resolution produces
too many clauses especially if applied to compactified sets of
clauses. Moreover, the big advantage of resolution-based refuta-
tion procedures - namely to do without any instantiation - is
lost, as function evaluation has necessarily to be performed on
the ground level. A first prototype implementation of the
splitting-based mrthod written in Prolog is meanwhile avail-
able.

Additional points that may influence the work on a more
elaborate version are:

1. For many data models (especially those - providing
generalization hierarchies) a many-sorted logic is more ap-
propriate. Introduction of many-sortedness is known to improve
the efficiency of the methods discussed in this paper.

2 The question of suitable strategies has not been addressed

in this paper at all. A thorough investigation of this topic is
inevitable. For resolution a lot of strategies have already been
introduced in the context of refutation. 1t has to be inves-
tigated” whether they can be adapted for the extended method
as well. Strategies' for the generalized Davis-Putnam procedure
should especially provide criteria for making good choices' of
*unit candidates” when applying complement splitting.

3. Verv often we can expect that a' considerable part of -the
constraint set under consideration consists of dependencies that
are known to be finitely satisfiable becatise of their syntactical
struocture. Strategies should be developed that take advantage
of this knowledge. Similar techniques can be useful in a con-
text where constraint sets are modified.

Acknowledgement: We would like to thank Jean-Marie
Nicolas. Jor ‘his:advice and encouragement during the prepara-
tion of this paper.

References

1. Bry. F. Note on Consistency Checking of Database
Schemas. Int. Report KB-4, ECRC, Jul,, 1985.

2. Bry F. The Compactlﬁcatlon Method Int. Report KB-6,
ECRC, Sept., 1985. :

3. Bry. F. On Resolution and Finite Satisfiability. in
preparation.

4. Chang, C.-L. and Lee R.C.-T. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, 1973.

5.. Church, A." Introduction to Mathematical Logiz. Princeton
University Press, 1956. cited in [11]. : :

6. Davis; M. and Putnam, H. "A Computing Procedure for
Quantification Theory”. 'JACM 7, 3 (Jul. 1960), 201- 215. also
in |15] 12.: 139. a

7. Dreben B. and Goldfarb, W The Decision Problem. Solvable
Classes of Quantificational. Formulas. Addison-Wesley, 1979.

8. Fagin, R. and Vardi M.Y. The Theory of Data Depen-
dencies - An Overview. Proc. of ICALP, 1984.

9. Gallaire, H_, Min“l‘(‘er J. and Niéolas. kJ.-M. "Logic and
Databases: A Deductive Approach™. ACM Comp. Surv. 16, 2
(Jun. 1984), 153-185,

10. Gilmore. P.C. “A Proof Method for Quantification
Theory: Its Justification ‘and Realization”. IBM J. of Res. and
Dex. 4 (1960), 28-35. also in [15):151-158.

11. Joyner. W.H. "Resolution Strategies as Decision
Procedure™. JACM 25. 3 (Jul. 1976), 398-417.

12. Kung, C.H. A Tempora Framework for Information Systerns
Spectfication and Vertfication. Ph.D. Th.. U. of Trondheim, Nor-
way, Apr. 1984,

13. Loveland, D.W.

Automated Theorem Prowing: a Logical Basis.
North-Holland, 1978. :

14. Manthey, R. A Generalized Davis-Putnam Procedure
Able to Detect Finite Satisfiability. in preparation.

15. Siekmann, J. and Wrightson, C..
Vol. 1. Springer Verlag, 1983.

Automation of Reasonning,

16. Smullyan, R. Firsi-Order Logic. Springer Verlag, 1968.

17. Trachtenbrot, B.A. "Impossibility of an Algorithm for
the Decision Problem in Finite Classes”. Dokl. Acad. Nauk.
SSSR 70 (1950). in Russian, trans. in English in Amer. Soc.
Translations, Series 2, 23:1-5, 1963.

