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Abstract 

One of the important means of specifying the se- 
mantics about data is via integrity constraints. Expe- 
rience has shown that the conventional database ap- 
proach to integrity constraint enforcement is not suc- 
cessful. In this paper, we demonstrate the feasibility 
and power of a knowledge-based approach to the effi- 
ciency problem of constraint validation. We propose a 
transformational mechanism which exploits knowledge 
about the application domain and database organiza- 
tion to reformulate integrity constraints into semanti- 
cally equivalent ones from which efficient code can be 
generated. 

database. This verification process can be performed 
using theorem proving techniques. However, integrity 
constraints are intrinsically state-dependent and have 
to be validated against the database extension when- 
ever state transition happens. This leads to a third 
validation function in which the key challenge is the ef- 
ficiency of validation. Finally, the constraint manager 
has to make decision on what to do when an invalid re- 
quest for changing database state is encountered. This 
may include either rejecting the request or making some 
further state changes to get another valid state. 

1 Introduction 

The need for integration of knowledge and data 
into knowledge base systems is widely recognized[l%, 
15, 19, 201. Knowledge base systems should provide 
uniform management of both data and knowledge. To 
achieve integration we need to generalize, on one hand, 
the database techniques to cope with the irregularity of 
knowledge and, on the other hand, to expand the knowl- 
edge processing techniques to deal with large amount 
of data. One of the important means of specifying the 
semantics of data in a database is via integrity con- 
straints. The existence of a constraint management 
component in an integrated knowledge base system is 
essential for the consistency and integrity of data and 
the validity of knowledge base system. 

There are several functions in such a constraint 

Research on constraint management in database or 
knowledge base systems has mainly concentrated on the 
first two functions[3,8,9]. Meanwhile, the efficient vali- 
dation of constraints against specific database states has 
been proved to be extremely difficult[l, 51. Most data- 
base researchers have explored the validation problem 
within the context of relational data model or its exten- 
sions[%, 8,9,10,14, IS]. These approaches try to derive 
efficient constraint validation algorithms from the syn- 
tactic structure of the constraint, specification. Because 
of the state-dependent nature of integrity constraints, 
they can only obtain sub-optimal checking code. Most 
AI researchers have simply ignored the efficiency issue 
because they usually deal with a small amount of facts 
and thus efficiency is of secondary importance. 

manager. First, it must provide certain means for the 
user to specify the integrity constraints in the data- 
base. The specification capability is usually supplied 
with some kind of declarative language. Second, the 
set of constraints specified by the user must be verified 
to be consistent or satisfiable. The verification of the 
mutual consistency of constraints is applied once for all 
possible extensions of the database because it only con- 
cerns the static, content-independent properties of the 
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Stonebraker [lS] proposed a validation mechanism 
in which a request for changing database state is mod- 
ified at. the query language level to contain all the rel- 
evant integrity constraints. The query processor will 
take the responsibility of validation during query pro- 
cessing. This method has been proved to be inefficient 
because (1) constraints have to be validated as stated 
by the user, (2) constraints have to be validated at the 
query processing stage, and (3) constraint validation al- 
gorithms do not make use of the knowledge about the 
specific application domain. The constraint manager 
has no means to reformulate the constraint checking 
part of the query to reduce the cost of constraint en- 
forcement,. Also the validation effort. may have to be 
duplicated since the constraint manager has to do val- 
idation on a query-by-query basis and no knowledge 
about previous validation activity is maintained. 

Bernstein, Blaustein, and Clarke gave an improved 
scheme in [2] in which some very limited primitive infor- 
mation (in forms of auxiliary aggregate data) is main- 
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tamed in order to improve the performance of cons- 
traint enforcement. llowevttr, they only considered a 
small class of database integrity constraints involving 
arithmetic comparison operators. Pige applied finite 
differencing technique to both query optimization and 
constraint validation in [13]. Although the finite differ- 
encing technique is very effective in reducing expensive 
recomputations to incremental updates, blindly apply- 
ing it without considering the usage of database some- 
times leads to more costly operations. 

In this paper, we try to investigate a different ap- 
proach to integrity constraint validation, one that seeks 
to exploit knowledge about the application domain to 
transform user-specified integrity constraints into ones 
which are syntactically different but semantically equiv- 
alent in the sense that they enforce the same condi- 
tion, and which are cheaper to enforce given the existing 
database configuration. Rather than seeking the most 
efficient way of evaluating a constraint as stated, we are 
looking for methods to reformulate a more effective one. 
Such reformulation is not simply a syntactic alterna- 
tive to the original, but instead is a diierent statement 
that is only equivalent to the original one under the 
semantics of application. Hence the reformulation pro- 
cess cannot be made on a purely syntactic basis, it de- 
pends on the exploitation of a “knowledge base” about 
the world of which the database is a model, about the 
internal organization and access methods, and about 
the changing state of the database. Conventionally, the 
implementation of such transformations is beyond the 
scope of DBMS functions and would have to be en- 
coded by the database designer into triggering proce- 
dures. Because of the difficulty of maintaining proce- 
dural semantics and the desire for declarative specifi- 
cation of integrity constraints, such a transformation 
together with the evolution of the knowledge base must 
be automated. 

The paper is organized as follows. In Section 2, 
an overview is given about the knowledge-based ap- 
proach we adopt here to the integrity constraint vali- 
dation problem. In Section 3, we introduce the concept 
of integrity constraints and briefly classify commonly 
recognized types of constraints in the context of a rela- 
tional database. in Section 4, various techniques are dis- 
cussed to validate constraints more efficiently. An over- 
all architecture of our knowledge base and constraint 
manager is described in Section 5. Section 6 consists 
of some example transformation rules used to reformu- 
late constraints. We assume, in the rest of the paper, 
that the underlying database system is based on rela- 
tional model and the integrity constraints are expressed 
in relational calculus, augmented with arithmetic, ag- 
grcgate, set, and mapping operations. Throughout the 
discussion, we will take example constraints from the 

following database scheme about a company database: 

EMP(name, birth-date, salary, edept, manager, job) 
DEPT(code, name, location, manager, budget, sales) 

2 A Knowledge-based Approach to Constraint 
Validation 

Our solution to the efficiency problem mentioned 
in the previous section is to construct a knowledge base 
of transformation rules which can be combined to syn- 
thesize efficient code for constraint enforcement[6, 7, 
111. Such a knowledge base will consist of a collection 
of declaratively expressed meta-facts about the appli- 
cation domain and the database implementation, to- 
gether with a set of rules which transform expensive 
constraints into cheaper ones. Many types of knowl- 
edge can be explored by the constraint manager in or- 
der to improve the efficiency, e.g., information about 
inter-relationships between entities in the application, 
the database structure and binding, the available ac- 
cess methods and internal file organization, the statis- 
tics of database utilization, and the applicability of spe- 
cific transformation techniques. In this section, we illus- 
trate our knowledge-based approach by examples which 
explore these kinds of knowledge. 

Consider the following example constraint which 
specifies that none of the employees earn more than 
their manager: 

(Ve E EMP)(Vm E EMP) 
(e.MANAGER = m.NAME --t 
m.SALARY 2 e.SALARY) 

A naive implementation of enforcement of this cons- 
traint specification yields two nested enumerations over 
the relation EMP. The time complexity is thus O(n’) 
in the size of EMP relation n. With the knowledge that 
each employee can have exactly one manager and the 
manager of an employee is represented as a many-to-one 
database connection MGR: EMP H EMP such that: 

(Ve E EMP)(MGR(e) = e’ A e’ E EMPA 
e’.NAME = e.MANAGER), 

the above constraint can be synthesized into: 

(Ve E EM.P)(MGR(e).SALARY 2 e-SALARY) 

which leads to an implementation with time complex- 
ity O(n). With the knowledge about the equivalence 
between the above assertion and the statement: 

(Vm E EMP)(m.SALARY 1 
maz{e.SALARYle E EMP A MGR(e) = m}) 

we may choose to materialize an auxiliary partial map- 
ping: M : EMP H REAL where 

(Vm E EMP)(M(m) = 
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maz{e.SALAAYje E EMP A MGR(e) = m}). 

The availability of such kind of auxiliary information 
about current database state reduces the cost of cons- 
traint validation under insertion to constant O(1). The 
decision of whether to maintain such information or not 
can be made by comparing the time saved by not recom- 
puting the maximum employee salary for each manager 
at insertion time against the time overhead of maintain- 
ing such redundant data when a deletion or an update 
to the employee relation occur. The option of doing so 
can be expressed in another single transformation rule 
which takes into account the various update operation 
frequencies. 

Now consider another example, which states essen- 
tially the referential integrity between employees and 
their department, namely that each employee must be- 
long to exactly one department. This constraint is de- 
composed into two sub-constraints: each employee be- 
longs to at least one department and each employee 
belongs to at most one department (functional depen- 
dency of EDEPT on NAME). The constraint is ex- 
pressed explicitly as: 

(Ve E EMP)((3d E DEPT) (e.EDEPT=d.NAME) A 
(Ve’ E EMP)(e’.NAME = e.NAME --t 

e’.EDEPT = e.EDEPT)) 

which takes time O(n x (n + m)) where n is the size 
of EMP relation and m is the size of DEPT relation. 
Suppose user supplies another constraint saying that 
the NAME attribute of EMP relation is the key: 

(Ve,e’ E EMP)(e’.NAME = e-NAME --t e’ = e). 

This key constraint subsumes the second part of the 
previous constraint. The first part of the previous cons- 
traint now becomes: 

(‘de E EMP)((% E DEPT)(e.EDEPT = d.NAME)) 

and takes time O(n x m). Furthermore, if there is an 
inverse mapping or index M: EMP --) DEPT where 
(Ve E EMP)(M(e).NAME = e.EDEPT), our cons- 
traint can be reformulated into: 

(Ve E EMP)(M(e) # NULL) 

which, with the assumption that index access takes time 
O(logm), takes 0( n x log m). In fact, we can do even 
better. If EMP relation is clustered with DEPT rela- 
tion in one file, the constraint is automatically enforced 
by file organization. The cost of validation is O! 

3 Integrity Constraints 

A database is a collection of objects or tuples. Ob- 
jects are classified into different types. Objects of the 
same type draw their values from the same domain. An 
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In the rest of the paper, we’ll concentrate on the 
validation problem of those application-dependent con- 
straints which have to be validated explicitly by the 
constraint manager, i.e., the set C, - (C, U Ci). 

3.1 Domain Constraints 

integrity constraint is an abstraction of a logical restric- 
tion that objects in the database must obey. The set of 
integrity constraints specifies the semantics of data in 
the database and represents knowledge about data. 

However, not all constraints in a database repre- 
sent application semantics. An application has a set 
of integrity constraints C, which specify application- 
dependent semantics. In order to model the application 
in a database it must be mapped into a fixed set of 
database structures called a data model, During this 
mapping process, an additional set of constraints C, is 
introduced which are due to the limitations of the types 
of structures available in a specific data model. Finally, 
the set of structures has to be implemented on a spe- 
cific computer with specific implementation techniques. 
This may introduce further constraints Ci. Thus the 
set of constraints C in a database is a combination of 
all the 3 types of constraints: C = C,, U C, U C’i. 

Since some application-dependent constraints can 
be mapped directly to certain database structure or 
implementation constraints, C,, n (C, U Ci) # 8. On the 
other hand, it is usually the case that C, g (C. U Ci). 
The set C, U Ci is called inherent constraints in [3, 171 
while the rest of C,: C,, - (C, U Ci) is called explicit 
constraints. Because the structures in a data model are 
built into the database system, it is obvious that the 
structure-dependent and implementation-dependent in- 
tegrity constraints in C, fl (C, U Ci) are efficiently en- 
forced. On the other hand, explicit constraints have to 
be specified explicitly by user, either as logical asser- 
tions or in a particular constraint language, and val-- 
idated by constraint manager. The more powerful a 
data model is, the larger the set C,, n (C, U Ci) is. 

In database systems that are based on relational 
model, we can think of three types of constraints: (1) 
domain constraints specify conditions on the values of 
attributes; (2) connection constraints specify conditions 
on inter-relation links; and (3) value constraints repre- 
sent restrictions on the combination of attribute val- 
ues of a relation, of which dependency constraints are 
special cases. Only a subset of these kinds of con- 
straints are in C. U Ci. For example, constraints about 
the single-valueness of attributes are enforced by fist- 
normal form relations; functional dependencies are en- 
forced by the uniqueness of keys condition in Boyce- 
Codd normal form relations; and certain many-to-one 
connections can be mapped to clustered file implemen- 
tations. There are still large amount of integrity con- 
straints in C,, that are not enforced by the model. 



Domains are sets of values that attributes can take 
in forming tuples. Donmin constraints apply to values 
of a single type, i.e., values in a single domain. Do- 
main constraints are often used in the definition of a 
domain to represent the membership condition of the 
domain. It is actually the means to specify “instance- 
of” abstractions or classifications. The general form of 
domain constraints are (VT E R)(r.A E D A P(r.A)), 
where P is a predicate stating the qualification of the 
values in domain D of attribute A of relation R. It 
is equivalent to say that the domain D is defined as 
D = {ZIP(Z)). Tl 1c example below shows a domain 
definition which contains domain constraints. 

[Example l] Th e d omain “DATE” defines a set of struc- 
tured values each of which consists of three subfields: 
year, month, and day. There are constraints on both 
the ranges of values of subfields and the possible com- 
binations of these values. 

DOMAIN Date 
DESCRIPTION 

Day : integer 
Month : integer 
Year : integer 

CONSTRAINT 
(Day 2 1) A (Day < 31) A (Month 2 l)A 
(Month 5 12) A (Year 2 0) A (Year 5 9999)A 
(Month E {4,6,9,11} --) Day 5 30)h 
(Month = 2 -+ Day 5 29) 

END Date 

3.2 Connection Constraints 

Connection constraints denote relationships among 
objects of one or more compound domains (relations). 
These constraints restrict the way that objects in these 
domains can be connected together. A connection cons- 
traint P(D1, D2, . . . . Dn) which relates relations or com- 
posite domains Di, i = 1, . . . . n specifies that only a sub- 
set of the Cartesian product D1 x Ds x . . . x D,: 

{dl...d,l dl E D1 A . . . A d, E D, A P(dl, . . . . d,)} 

can be part of a valid database extension. In other 
words, the following statement is always true: 

(Vdl E Dl)...(Vd, E D,)(P(dl,..., d,)). 

Connection constraints can also be further subdi- 
vided into cardinality constraints[4, 181 and value con- 
straints. A cardinnlity constraint constrains the num- 
ber of tuples in an inter-relation connection. The cons- 
traint specifies a range of allowable numbers for each 
type of tuples in the connection. In relational model, 
connections are represented by matching domains of re- 
lations. We can characterize a connection among at- 
tributes Xi,2 = l,..., n of relations Ri,i = l,..., n by 

Conn(Ri : X1, . . . . R, : X,). A cardinality constraint 
on this connection can be expressed as: 

Let VAL = Uy=, {V](3ri E Ri) A ri[Xi] = v), then 

(Vi E (1, . ..) n})(b E VAL) 
(si~~{rlr E Ri A T[Xi] = V} E (Ziyaeeymi}) 

where Ii 5 mi E N, (; = 1,2, . . . . n) and N is the set of 
non-negative integers. 

A cardinality constraint is called total with respect 
to a domain D if every object in the domain must be as- 
sociated with at least one connection. This means that 
the cardinality of domain D in the constraint specifica- 
tion must be greater than 0. Otherwise the constraint 
is called partial with respect to D, in the sense that an 
object may have no associations with others. 

[Example 21 A b inar cardinality constraint is a special y 
case and has been discussed in great detail in litera- 
ture[4]. Followed is a table of.commonly recognized 
types of cardinality constraints on binary connections 
Conn( RI : Xl,& : X2): 

Total (wrt RI) Partial (wrt RI) 
One-to-One: h= ml = 1 zi=o,mr=1 
Many-to-One: II = 1,mi = 00 Ii = 0,mi = 00 

3.3 Value Constraints 

Inter-domain value constraints specify value depen- 
dencies among objects in several domains. The value 
dependency is usually expressed as logical relationships 
among functions of object values. A value constraint on 
objects of domains D1, Dz, . . . . D, has the general form: 

Ptf,(D,,..., Dn),fz(D~, -,Dn),-, fmtDl,...,Dn)) 

where P is a predicate and fi,i = l,...,m are func- 
tions. The functions can be either system-defined or 
user-defined, numerical- or non-numerical-valued, and 
intra- or inter-domain functions. 

An important special case of the inter-domain value 
constraints is functional constraints which completely 
determine the value of the object being constrained. In 
a functional constraint, P is the identity predicate ‘=’ 
and.has the general form: D = f(Dl, OS,..., Dn). Vari- 
ous functional constraints can be established among do- 
mains. The functions used to represent the functional 
constraints are actually mappings among domains. New 
concepts (domains) may be defined which are arbitrary 
functions of existing concepts (domains). A lot of prop- 
erties of these mappings can be examined to obtain 
knowledge. Distinctions can be made between total ver- 
sus partial mappings, onto versus into mappings, or one- 
to-one versus many-to-one mappings, etc. The knowl- 
edge about these properties can be used in domain cons- 
traint propagation as well as inter-domain constraint 
enfor,cement . 
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Those non-functional constraints are called rela- 
tional constraints. Relational constraints describe value 
relationships among object values. However, these ob- 
ject values cannot be determined completely from the 
constraints. 

Such a “small” change to a parameter off often results 
in a corresponding “small” change to the value off. Fi- 
nite differrncing refers to the detection and exploitation 
of this situation. 

[Example 3] Derived Attributes. We may want to have 
an attribute for each department to represent the total 
number of employees in that department: 

[Example 51 Suppose that x is equal to the set of em- 
ployees in the department whose manager is Smith: 

x = f (EMP, MANAGER, Smith) 

(tld E DEPT)(d.#EMP = 
aize{ele E EMP A e.EDEPT = d.NAME}) 

#EMP is a derived attribute. Whether it is material- 
ized in the database or not, the constraint manager has 
to keep consistency between it and the EMP relation. 

[Example 4] Virtual Attributes. Suppose the company 
has several departments in Europe and the staff in those 
departments would prefer using pound instead of amer- 
ican dollar as the unit of departmental sales attribute. 
Now we can define a view V-DEPT with a virtual at- 
tribute SALES on top of the real relation DEPT such 
that: 

(Vd’ E V-DEPT)@d E DEPT) 
(d’.SALES = d.SALES x tateh 
d’[U - {SALES}] = d[U - {SALES}]) 

Here EMP, MANAGER, and Smith are the parameters 
of the constraint; MANAGER is a mapping whose do- 
main is a subset of EMP. Smith is an element of the 
range of MANAGER. Suppose EMP is updated by the 
insertion of a tuple for Brown. The naive validation of 
x would recompute the set former. However the value 
of x can be updated simply by inserting the tuple for 
Brown into z if and only if Brown’s manager is Smith. 
In such a situation we say that f is continuous with 
respect to the operation of tuple insertion to EMP. It 
is easy to see that f is continuous with respect to tuple 
deletion to EMP, or a redefinition of MANAGER on a 
single tupb in EMP. However f is not continuous with 
respect to any changes to Smith or to MANAGER as a 
whole. 

where ‘U is the set of attributes of DEPT and rate is 
the exchange rate between pound and dollar. Only one 
relation is materialized and the other one must always 
be computed according to the above constraint. 

4.2 Store versus Compute 

Even for relational constraints where the value of 

4 Validation Techniques 

Various techniques can be explored to reduce the 
cost of constraint validation. In this section, we illus- 
trate several common techniques used by our constraint 
manager to reformulate constraint. 

4.1 Finite Differencing 

As we pointed out earlier in the paper, no improve- 
ment on validation efficiency can be achieved for in- 
tegrity constraints which relate single objects together. 
It is those constraints relating groups of objects in their 
entirety that give the potential of improvement. Gener- 
ally the validation of such type of constraints is costly, 
i.e., at least G(n) where n is the size of the group. Finite 
differencing is a technique in which costly recomputa- 
tions are replaced by incremental updates, which can 
often be done in constant time[l3]. 
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f is not explicitly required in the database, naive im- 
plementations of inter-domain constraint validation re- 
quire accessing groups of tuples to evaluate the con- 
straints at each time the tuples in a connection are 
changed. By keeping some relevant information (e.g., 
the value of f) in the database, it is possible to trans- 
form the access operation of groups of tuples to an ac- 
cess operation to single piece of information. In order 
for this transformation to be cost-effective during the 
constraint validation process, the maintenance cost of 
the extra information must be lower than the cost of 
actually evaluating the constraint for each update. 

Suppose that there is a functional constraint z = 

f(Y i, . . . . y,). One method of maintaining this cons- 
traint is to recompute x whenever any of the param- 
eters yi,i = l,..., n changes. The change to any of 
y;,i = 1 , . . . . n is actually due to object-wise operations 
such as insertions or deletions of single objects into re- 
lations or redefinitions of connections for single objects. 

Such “store versus compute” decision is closely re- 
lated to the access pattern of the database as well as 
the cost of recomputation. For expensive computation 
such as reduction operations of groups of tuples, good 
candidates for the “store” strategy are those which are 
continuous with respect to tuple-wise changes in param- 
eters because small changes in parameters are reflected 
to incremental changes to the stored values. 

[Example 61 Suppose that a relational constraint re- 
stricts the sum of employee salaries in any department 
to be less than the department budget: 

(Vd E DEPT)(d.BUDGET > aum{e.SALARYI 
e E EMP A e.EDEPT = d.NAME}). 

A direct validation of it would be to recompute 

= {e E EMPfe.MANAGER = “Smith” }. 



f(d) = sum{e.SALARYI 
e E EMP A e.EDEPT = d.NAME} 

each time a change is made to EMP. Since f(d) is con- 
tinuous with respect to changes in EMP, sturing the 
value of f as a mapping f : DEPT t--+ REAL and in- 
crementally updating it by finite differencing will often 
results in an asymptotic improvement in performance. 

[Example 8] Supp ose the company entity has a derived 
attribute flE which is the total number of employees in 
the company. The EMP domain has been specialized 
into several sub-domains: ENGINEER, MANAGER, 
and SALESMAN. The constraint is that 

flE = sum(size(ENGINEER),size(MANAGER), 
size(SALESMAN)) 

When x is not scalar-valued, the cost of maintain- 
ing 2 = f (yl , . . . . y,) increases dramatically such that it 
may outweigh the cost of evaluating f. In such cases, 
storing z is beneficial only when yi,i = 1, . . . . n are rarely 
changed and z is accessed frequently. Generally, the 
“store versus compute” decision depends on the cost of 
both constraint validation and query processing. 

4.3 Discontinuity Removal 

Now suppose that finite differencing is not possi- 
ble since discontinuous changes to a parameter occur. 
Another alternative would be to remove discontinuity, 
in which, by the introduction of auxiliary knowledge, 
changes to a parameter of a function formerly discon- 
tinuous becomes continuous. Such auxiliary knowledge 
could be some internal parameters, functions, or ‘data 
structures. 

[Example 7] Consider the integrity constraint that the 
number of employees in administrative departments are 
restricted to be no more than 200: 

ADM = (PERSONNEL,PAYROLL) 
size{e E EMPle.EDEPT E ADM) 5 200. 

The constraint is continuous with respect to object-wise 
changes in EMP and redefinition of EDEPT for single 
element in EMP but is not continuous with respect to 
changes in ADM, e.g., adding a new department to 
it. This can be remedied by introducing as auxiliary 
information a mapping f : DEPT t-+ INTEGER where 

(t’d E DEPT)(f(d) = 
ai.ze{ele E EMP A e.EDEPT = &NAME)). 

If y is inserted or deleted from ADM, f(y) is added 
or subtracted accordingly from the stored size value. 
Of course this is correct only when an employee can 
work in at most one department. Otherwise an auxil- 
iary mapping M: DEPT A set of EMP would have to 
be introduced. 

4.4 Algebraic Properties 

Applying the techniques discussed before, we would 
have three pieces of information for the current sizes of 
the three subsets. Realize that the above assertion is 
equivalent to: 

tfE = size( ENGINEER U MANAGER U SALESMAN) 

we could maintain only one piece of data for the current 
size of EMP and synthesize the tuple-wise operations to 
all the subsets in such a way that the value of that piece 
of data is consistently updated. 

We have discussed how various techniques can be 
applied to save constraint validation cost. For complex 
constraints, application of multiple transformation rules 
may be necessary before the constraints are actually 
synthesized into efficient code. A transformation may 
not be beneficial by itself but can introduce opportunity 
of optimization. 

5 General Model of Constraint Validation 

The problem of integrity constraint validation can 
be stated as follows. Let C be the set of integrity con- 
straints, E be the set of all possible database extensions, 
E’ 2 E be the set of all valid database extensions such 
that the constraints in C are satisfied, 0 be the set of 
database operations, 0’ E 0 be the set of database op- 
erations that change the database state, and a special 
operation or E 0 be the identity operation which, when 
applied to a database, does not result in any state tran- 
sition. Given C, a particular database extension e E E’, 
and an operation o E 0’, find out a sequence of database 
operations in 0 which, when applied to e E E’ together 
with o, leads to another valid database state e’ E E’. To 
express it more formally, let o(e,d) denote the resulting 
database extension by applying operation o to object d 
in database extension e and 02 (01 (e, dl), dz) denote the 
composition of operation 01 followed by 02 applied to 
extension e, the task of the integrity constraint manager 
is to prove or disprove the statement 

Lets reconsider the constraint z = f(yl,...,y,). 
The function f may be a composition of several opera- 
tors. The properties of these operators can help improve 
the performance of the constraint validation. The cons- 
traint manager can apply the knowledge about these 
properties, such as distributivity, commutativity, and 
associativity to reformulate f such that it is more effi- 
ciently evaluated. 

(301, *-*, o, E O)(e E E’ A o E O’A 
on((...ol(o(e,d),dl),...),d,) E E’) 

and if the statement is true, the constraint manager 
is also responsible for actually finding the sequence of 
operations. In this paper, our set of operations 0’ will 
only include insert/dclcte/update of single objects. 

5.1 Knowledge in the Knowledge Base 
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Various kinds of knowledge are needed in order to 
make the validation process efficient. Fist, the cons- 
traint manager must have knowledge about the way 
constraints are specified and how they constrain objects 
in an application. The situation is made complicated by 
the fact that syntactically different constraints might 
define semantically equivalent conditions. For exam- 
ple, if we want to isolate managers from employees as a 
separate relation, the subset constraint between EMP 
and MANAGER which states that MANAGER is a 
subset of EiUP can be expressed in at least two ways: 

{m.NAMElm E MANAGER} C 
{e.NAMEle E EMP}, or 

(Vm E MANAGER)(Se E EMP) 
(m.NAME = e.NAME) 

Second, the constraint manager should know the 
types of structures that are available in the database 
and how objects in the application are represented or 
mapped into these structures. With such information, 
it is possible to map certain constraints directly to the 
database structure and enforce them without extra u- 
ecution cost. For example, if the database supports 
network data model, most of the many-t+one cardi- 
nality constraints can be implemented as DBTGset 
stmctures. 

Finally, the constraint manager must have knowl- 
edge about the particular internal structures used to 
implement these database structures and r&te them 
to objects in the application. The particular file orga- 
nization and access methods supported by the underly- 
ing file system, the cost of each kind of operation, and 
the current state of the database (e.g., the available in- 
dexes, the image sizes of attributes, the sines of Sles, and 
clustering information) should all be taken into consid- 
eration to effectively synthesize the constraints. 

6.2 Transformation Rules 

The constraint manager processes the constraint 
specifications and synthesizes them into efficient code 
according to the transformation rules in the knowledge 
base. A transformation rule is of form “X : C + Y”. 
X is the expression to be transformed, C is a set of con- 
ditions which specifies the class of situations in which 
the transformation rule can be applied. Y describes the 
result from applying the rule. 

Two categories of transformation rules exist. One 
category consists of the rules that synthesire the prim- 
itive operations into efficient code. Another consists of 
the rules that transform object specifications by adding 
internal properties, functions, or data structures. In ad- 
dition, rules can also be used to derive facts which can 
be used later in validation, to express knowledge about 
efficiency characteristics of various usage patterns, or 

even to govern the order and focus of the rule appli- 
cation process itself. 

5.3 Architecture of Constraint Manager 

The constraint manager performs two major time- 
tions: (1) knowledge acquisition and management, and 
(2) constraint transformation. _ It extracts knowledge 
from the database schema definition, from user-specified 
constraints, and from the results of continuous monitor- 
ing of the database state. Constraint synthesis is done 
by applying the transformation rules iu the knowledge 
base. The set of rules to be applied depends on the 
meta-facts available in the knowledge base. The amount 
of knowledge must be relatively small compared to the 
database in order to make the constraint validation pm 
cess efficient. Thus we are not interested in knowledge 
about individual objects - it is maintained in the data- 
base itself. Instead, we are interested in utii knowl- 
edge about groups of objects, either about some com- 
mon properties that objects in a group share or about, 
the properties of a group as a whole. 

constraint specification 
1 I 1 

Constraint Compiler 

1 
Intend Representation 

1 
Assertion Synthesiaer -) IKnowledge 

1 
Weak Equivalent Assertion 

+I 

1 
LISP code 

Fig.1 Architecture of Constraint Manager 

Three types of actions are possible for the cons- 
traint manager to take to validate an integrity cons- 
traint. In the simplest situation, the constraint manager 
does not need to do anything more than checking the 
update request. The validation of domain constraints 
is such a case. The constraint manager may have to re- 
trieve further information from the database to validate 
a constraint. In the most complex case, the constraint 
manager has to retrieve some data and update some 
objects in order to .obtain another valid database ex- 
tension. It is the improvement on the last two types of 
actions that are most benellcial. 

The overall organisation of the constraint man- 
ager is as shown in Fig. 1. It consists of three compo- 
nents. The Constraint Compiler takes as input the wer- 

supplied constraint specifications and compiles them 
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into some internal representations with cost information 
associated with each of the sub-expressions. The As- 
sertion Synthesizer takes the internal representation of 
constraints and reformulate them into weak-equivalent 
assertions when necessary using the knowledge in the 
knowledge base such that the cost is reduced. Finally 
the Assertion Compiler compiles these assertions into 
LISP code which are associated with database manipu- 
lation operations. 

6 Example Transformation Rules 

In this section, we present example transformation 
rules which cover all types of integrity constraints men- 
tioned before. These rules are intended to be stored in 
the knowledge base and used by the constraint manager 
to reformulate constraint assertions into efficient code. 

6.1 Domain Constraint Validation 

The validation of domain constraint happens when- 
ever an object is INSERTed or an attribute is UP- 
DATEd. The constraint manager evaluates the cons- 
traint for each domain involved against the input data 
and performs the operation only when the constraint 
is satisfied. No extra information need to be accessed 
to validate the constraint. The tiansformation rules for 
domain constraint validation are: 

inserted objects of the virtual domains can be validated 
against the “virtual” constraints. 

[Example 91 Let D 1 and 02 be two domains and f be an 
inter-domain functional constraint on Dz: 02 = f(D1). 
Assume there is a domain constraint defined on D1: 
(Vz E D,)(P(z)). A d irec validation of operation t 
INSERT(D2,d) would be to validate the operation 
INSERT(DI, f-‘(d)), i.e., to prove .P(f-l(d)). A bet- 
ter approach would be to first find out an equivalent 
domain constraint defined on Dz : (Vz E Dz)(P’(z)) 
such that (Vz E D,)(P’(z) G P(f-l(z))), which will 
save the evaluation of f-‘(d) if the request is invalid. 
This argument is sound only when f is a one-to-one 
mapping, i.e., when f-’ exists. Although it is possible 
to propagate domain constraints through many-to-one 
functional mappings, it usually does not make sense to 
update a virtual domain which is the result of a many- 
to-one mapping because such update cannot be mapped 
to any specific database state transitions. 

The transformation rule for domain constraint pro- 
pagation through an inter-domain one-to-one functional 
constraint is: 

rule DOMAIN-INSERT-VALIDATION 
params (P: domain-constraint; D: domain) 
transform 

insert(D, OBJECT) 
+ 

if P(OBJECT) then insert(D, OBJECT) 
else REJECT 

rule DOMAIN- UPDATE-VALIDATION 
params (P: domain-constraint; D: domain) 
transform 

update@, OBJECTl, OBJECT2) 
4 

if P(OBJECT2) then 
update( OBJECTI, OBJECT2) 

else REJECT 

-lO- 

The propagation of domain integrity constraints 
through inter-domain functional constraints may make 
the validation of domain constraints more effective. Be- 
cause a domain constraint is validated against the input 
data object, it is most efficient if this validation can be 
done directly without any transformation on the input 
object. Such a situation occurs when multiple views 
are integrated into the database hence many virtual do- 
mains are defined as functions of several other domains 
and the constraints on these domains can be mapped to 
certain constraints on the virtual domains. Now newly 

6.2 Cardinality Constraint Validation 

The important information necessary to validate 
a cardinality constraint for an inter-domain connection 
Conn(R1 : Xl,..., R, : Xn) is the number of tuples of 
each relation involved in the connection. Notice that 
the size function of a set is continuous with respect to 
the object-wise changes to the set, finite differencing 
can be utilized to reduce the cost of validation. In par- 
ticular, no change can be made, via the operations we 
consider here, to those domains Ri, i E (1, . . ..n} whose 
Zi = mi. Updates to such relations could only be per- 
formed through a transaction mechanism which is be- 
yond the scope of this paper. Counter information can 
be maintained for those relations whose li < mi. 

Any operation may invalidate a cardinality cons- 
traint and therefore need to be validated before execu- 
tion. The transformation rules for inter-domain cardi- 
nality constraint validation are: 

rule DOMAIN-CONSTRAINT-PROPAGATION 
params (P: domain-constraint; f : D1 H Ds) 
transform 

P(D1) : f-’ = gA one-to-one(f) 
+ 

P’(D2) = PM&)) 

rule INTER-DOMAIN-CONNECTION 
params (M : Cmn(R1 : X1, . . . . R, : X,); 

P:cardinaIity-constraint) 
transform 

M : li < mi A i E {l,...,n} 
+ 



Conn(R1 : X1, . . . . R; : X; : Mi, . . . . R, : X,)A 

VAL = U~z1{uJ(3ri E Ri) A Ti[Xi] = V}A 
(VU E VAI/)(Mi(V) = site{rlr E Ri A r[Xi] = U) 

rule INTER-DOMAIN-INSERT 
params (M : Conn(R1 : X1, . . . . R, : X,); 

P:cardinality-constraint) 
transform 

inseTt(Ri,F) : Zi < WI; Ai E (l,...,n} 
4 

if Mi(vIXi]) < mi then 

Mi(T[xi]) + Mi(r[xi]) + 1 
insert(Ri,r) 

else REJECT 

6.3 Value Constraint Validation 

Inter-domain value constraint has the general form 
P(fl, .*., fm) where fi,i = 1, . . ..m are functions on do- 
mains Di,i = 1, . . . . n and P is a predicate on these 
function values. In order to evaluate P efficiently, infor- 
mation may be maintained about the current values of 
these functions. The transformation rules in the knowl- 
edge base can be applied to determine exactly what 
kind of auxiliary information are needed and how to 
synthesize the database operations to maintain such in- 
formation. 

The general strategy for inter-domain value cons- 
traint validation can be stated as the following steps: 
(1) Determine, for all fi,i = 1, . . ..m. whether fi is con- 
tinuous with respect to its parameters, i.e., to compute 
the set: 

S = {(fi,pii)ll 5 i 5 mA1 < j < Ii Acodinue(fi,pij)} 

where Ii is the number of parameters of fi, (2) Apply 
the rules in the knowledge base to remove discontinu- 
ity as much as possible, (3) Apply transformation rules 
to set up the auxiliary data structures, functions, etc. 
and synthesize operations, and (4) Whenever a change 
is made to a discontinuous parameter of a function, re- 
compute all the relevant auxiliary information. 

[Example lo] ‘I’r ans ormation rules for single operator f 
“mm” in function f = maz(S) where S is a set of 
elements on which maz is meaningful. 

rule MAX-FUNCTION 
params(S : set; f : function) 
transform 

f : element E S A f : S I+ element 
--+ 

f : tiMAX 

rule MAX-INSERT 
params( S : set; f : function) 
transform 

insert(S,s) : f = nbas(S) A f : S ++ element 
-i 

insert( S, 9) 

ifflMAX < s then #MAX t s 

rule MAX-DELETE 
purums(S : set; f : S H element) 
transform 

deZete(S,s) : f = maz(S) 
+ 

deZete( S, s) 
flMAXts’~s 
foreach s” E S do 

if s” > flMAX then gMAX t s” 

[Example 111 Tr ans f ormation rules for a function f over 
sets Si,i = 1 , . . . . n which is a composition of two oper- 
ators ma2 and U: f = maz(U~==, Si). 

rule MAX-OVER-UNION 
params( f : function; n : integer; &, . . . . S, : set) 
transform 

f : f = TTWZ(~)~==, Si) ATI > 1 
+ 

f : @IAX 

rule MAX-OVER-UNION-INSERT 
params( f : function; n : integer; SI, . . . . S, : set) 
transform 

inser’t(Si,8) : 15 i < n A f = TTI~z(U~==, Si) 
+ 

in.9ert(Si, S) 
if flMAX < s then tiMAX + s 

[Example 121 Tr ans f ormation rules for discontinuity re- 
moval of aug in function f = aug(S). 

rule AVG-CONTINUE 
params( f : function; S : set) 
transform 
f : f = uug(S) 

s;)um(S), size(S) : gwiv, ffsrm 
7 Conclusion and Future Work 

Experience has shown that the conventional ap- 
proach to integrity constraint enforcement is not suc- 
cessful even for simple static constraints and single up- 
date operations. Because of the very nature of integrity 
constraints, the richness of their specification in first 
order logic, and the essential demand for the efficient 
validation, a knowledge-based approach seems to be 
the most promising direction. In this paper, we have 
demonstrated the feasibility and power of such an ap- 
proach to the validation problem of static integrity cons- 
traint with repect to single update requests. It is our 
belief that the use of AI techniques will be very fruitful 
in this problem domain. 
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Clearly, this is only a proposal and much more work 
needs to be done to prove the concepts. We plan to im- 
plement a primitive set of transformation rules in the 
environment of KSYS, which is a frame-based knowl- 
edge base system, and test our ideas using a specific 
database of ships and ports. Rules for efficiency esti- 
mators, rule applications, functional operators, function 
composition, etc. need to be refined and the techniques 
for integrity constraint validation in the transaction en- 
vironment need to be developed. 
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