
Knowledge-based Integrity Constraint Validation

Xiaolei Qian and Gio Wiederhold

Department of Computer Science, Stanford University

Abstract

One of the important means of specifying the se-
mantics about data is via integrity constraints. Expe-
rience has shown that the conventional database ap-
proach to integrity constraint enforcement is not suc-
cessful. In this paper, we demonstrate the feasibility
and power of a knowledge-based approach to the effi-
ciency problem of constraint validation. We propose a
transformational mechanism which exploits knowledge
about the application domain and database organiza-
tion to reformulate integrity constraints into semanti-
cally equivalent ones from which efficient code can be
generated.

database. This verification process can be performed
using theorem proving techniques. However, integrity
constraints are intrinsically state-dependent and have
to be validated against the database extension when-
ever state transition happens. This leads to a third
validation function in which the key challenge is the ef-
ficiency of validation. Finally, the constraint manager
has to make decision on what to do when an invalid re-
quest for changing database state is encountered. This
may include either rejecting the request or making some
further state changes to get another valid state.

1 Introduction

The need for integration of knowledge and data
into knowledge base systems is widely recognized[l%,
15, 19, 201. Knowledge base systems should provide
uniform management of both data and knowledge. To
achieve integration we need to generalize, on one hand,
the database techniques to cope with the irregularity of
knowledge and, on the other hand, to expand the knowl-
edge processing techniques to deal with large amount
of data. One of the important means of specifying the
semantics of data in a database is via integrity con-
straints. The existence of a constraint management
component in an integrated knowledge base system is
essential for the consistency and integrity of data and
the validity of knowledge base system.

There are several functions in such a constraint

Research on constraint management in database or
knowledge base systems has mainly concentrated on the
first two functions[3,8,9]. Meanwhile, the efficient vali-
dation of constraints against specific database states has
been proved to be extremely difficult[l, 51. Most data-
base researchers have explored the validation problem
within the context of relational data model or its exten-
sions[%, 8,9,10,14, IS]. These approaches try to derive
efficient constraint validation algorithms from the syn-
tactic structure of the constraint, specification. Because
of the state-dependent nature of integrity constraints,
they can only obtain sub-optimal checking code. Most
AI researchers have simply ignored the efficiency issue
because they usually deal with a small amount of facts
and thus efficiency is of secondary importance.

manager. First, it must provide certain means for the
user to specify the integrity constraints in the data-
base. The specification capability is usually supplied
with some kind of declarative language. Second, the
set of constraints specified by the user must be verified
to be consistent or satisfiable. The verification of the
mutual consistency of constraints is applied once for all
possible extensions of the database because it only con-
cerns the static, content-independent properties of the

Permission to copy without fee ail or part of this material is
granted provided that the copies are not made or distributed for
direct commercial adoantu e, the VLDB copyright notice a& tk
title of the publication aA its date appear and notice is given
that copying is by permission of the Ve& Large Data Bage
Endowment. TO copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Stonebraker [lS] proposed a validation mechanism
in which a request for changing database state is mod-
ified at. the query language level to contain all the rel-
evant integrity constraints. The query processor will
take the responsibility of validation during query pro-
cessing. This method has been proved to be inefficient
because (1) constraints have to be validated as stated
by the user, (2) constraints have to be validated at the
query processing stage, and (3) constraint validation al-
gorithms do not make use of the knowledge about the
specific application domain. The constraint manager
has no means to reformulate the constraint checking
part of the query to reduce the cost of constraint en-
forcement,. Also the validation effort. may have to be
duplicated since the constraint manager has to do val-
idation on a query-by-query basis and no knowledge
about previous validation activity is maintained.

Bernstein, Blaustein, and Clarke gave an improved
scheme in [2] in which some very limited primitive infor-
mation (in forms of auxiliary aggregate data) is main-

Proceedings of the Twelfth International
Conference on Very Large Data Bases -3- Kyoto. August, 1986

tamed in order to improve the performance of cons-
traint enforcement. llowevttr, they only considered a
small class of database integrity constraints involving
arithmetic comparison operators. Pige applied finite
differencing technique to both query optimization and
constraint validation in [13]. Although the finite differ-
encing technique is very effective in reducing expensive
recomputations to incremental updates, blindly apply-
ing it without considering the usage of database some-
times leads to more costly operations.

In this paper, we try to investigate a different ap-
proach to integrity constraint validation, one that seeks
to exploit knowledge about the application domain to
transform user-specified integrity constraints into ones
which are syntactically different but semantically equiv-
alent in the sense that they enforce the same condi-
tion, and which are cheaper to enforce given the existing
database configuration. Rather than seeking the most
efficient way of evaluating a constraint as stated, we are
looking for methods to reformulate a more effective one.
Such reformulation is not simply a syntactic alterna-
tive to the original, but instead is a diierent statement
that is only equivalent to the original one under the
semantics of application. Hence the reformulation pro-
cess cannot be made on a purely syntactic basis, it de-
pends on the exploitation of a “knowledge base” about
the world of which the database is a model, about the
internal organization and access methods, and about
the changing state of the database. Conventionally, the
implementation of such transformations is beyond the
scope of DBMS functions and would have to be en-
coded by the database designer into triggering proce-
dures. Because of the difficulty of maintaining proce-
dural semantics and the desire for declarative specifi-
cation of integrity constraints, such a transformation
together with the evolution of the knowledge base must
be automated.

The paper is organized as follows. In Section 2,
an overview is given about the knowledge-based ap-
proach we adopt here to the integrity constraint vali-
dation problem. In Section 3, we introduce the concept
of integrity constraints and briefly classify commonly
recognized types of constraints in the context of a rela-
tional database. in Section 4, various techniques are dis-
cussed to validate constraints more efficiently. An over-
all architecture of our knowledge base and constraint
manager is described in Section 5. Section 6 consists
of some example transformation rules used to reformu-
late constraints. We assume, in the rest of the paper,
that the underlying database system is based on rela-
tional model and the integrity constraints are expressed
in relational calculus, augmented with arithmetic, ag-
grcgate, set, and mapping operations. Throughout the
discussion, we will take example constraints from the

following database scheme about a company database:

EMP(name, birth-date, salary, edept, manager, job)
DEPT(code, name, location, manager, budget, sales)

2 A Knowledge-based Approach to Constraint
Validation

Our solution to the efficiency problem mentioned
in the previous section is to construct a knowledge base
of transformation rules which can be combined to syn-
thesize efficient code for constraint enforcement[6, 7,
111. Such a knowledge base will consist of a collection
of declaratively expressed meta-facts about the appli-
cation domain and the database implementation, to-
gether with a set of rules which transform expensive
constraints into cheaper ones. Many types of knowl-
edge can be explored by the constraint manager in or-
der to improve the efficiency, e.g., information about
inter-relationships between entities in the application,
the database structure and binding, the available ac-
cess methods and internal file organization, the statis-
tics of database utilization, and the applicability of spe-
cific transformation techniques. In this section, we illus-
trate our knowledge-based approach by examples which
explore these kinds of knowledge.

Consider the following example constraint which
specifies that none of the employees earn more than
their manager:

(Ve E EMP)(Vm E EMP)
(e.MANAGER = m.NAME --t
m.SALARY 2 e.SALARY)

A naive implementation of enforcement of this cons-
traint specification yields two nested enumerations over
the relation EMP. The time complexity is thus O(n’)
in the size of EMP relation n. With the knowledge that
each employee can have exactly one manager and the
manager of an employee is represented as a many-to-one
database connection MGR: EMP H EMP such that:

(Ve E EMP)(MGR(e) = e’ A e’ E EMPA
e’.NAME = e.MANAGER),

the above constraint can be synthesized into:

(Ve E EM.P)(MGR(e).SALARY 2 e-SALARY)

which leads to an implementation with time complex-
ity O(n). With the knowledge about the equivalence
between the above assertion and the statement:

(Vm E EMP)(m.SALARY 1
maz{e.SALARYle E EMP A MGR(e) = m})

we may choose to materialize an auxiliary partial map-
ping: M : EMP H REAL where

(Vm E EMP)(M(m) =

-4-
‘

maz{e.SALAAYje E EMP A MGR(e) = m}).

The availability of such kind of auxiliary information
about current database state reduces the cost of cons-
traint validation under insertion to constant O(1). The
decision of whether to maintain such information or not
can be made by comparing the time saved by not recom-
puting the maximum employee salary for each manager
at insertion time against the time overhead of maintain-
ing such redundant data when a deletion or an update
to the employee relation occur. The option of doing so
can be expressed in another single transformation rule
which takes into account the various update operation
frequencies.

Now consider another example, which states essen-
tially the referential integrity between employees and
their department, namely that each employee must be-
long to exactly one department. This constraint is de-
composed into two sub-constraints: each employee be-
longs to at least one department and each employee
belongs to at most one department (functional depen-
dency of EDEPT on NAME). The constraint is ex-
pressed explicitly as:

(Ve E EMP)((3d E DEPT) (e.EDEPT=d.NAME) A
(Ve’ E EMP)(e’.NAME = e.NAME --t

e’.EDEPT = e.EDEPT))

which takes time O(n x (n + m)) where n is the size
of EMP relation and m is the size of DEPT relation.
Suppose user supplies another constraint saying that
the NAME attribute of EMP relation is the key:

(Ve,e’ E EMP)(e’.NAME = e-NAME --t e’ = e).

This key constraint subsumes the second part of the
previous constraint. The first part of the previous cons-
traint now becomes:

(‘de E EMP)((% E DEPT)(e.EDEPT = d.NAME))

and takes time O(n x m). Furthermore, if there is an
inverse mapping or index M: EMP --) DEPT where
(Ve E EMP)(M(e).NAME = e.EDEPT), our cons-
traint can be reformulated into:

(Ve E EMP)(M(e) # NULL)

which, with the assumption that index access takes time
O(logm), takes 0(n x log m). In fact, we can do even
better. If EMP relation is clustered with DEPT rela-
tion in one file, the constraint is automatically enforced
by file organization. The cost of validation is O!

3 Integrity Constraints

A database is a collection of objects or tuples. Ob-
jects are classified into different types. Objects of the
same type draw their values from the same domain. An

-5-

In the rest of the paper, we’ll concentrate on the
validation problem of those application-dependent con-
straints which have to be validated explicitly by the
constraint manager, i.e., the set C, - (C, U Ci).

3.1 Domain Constraints

integrity constraint is an abstraction of a logical restric-
tion that objects in the database must obey. The set of
integrity constraints specifies the semantics of data in
the database and represents knowledge about data.

However, not all constraints in a database repre-
sent application semantics. An application has a set
of integrity constraints C, which specify application-
dependent semantics. In order to model the application
in a database it must be mapped into a fixed set of
database structures called a data model, During this
mapping process, an additional set of constraints C, is
introduced which are due to the limitations of the types
of structures available in a specific data model. Finally,
the set of structures has to be implemented on a spe-
cific computer with specific implementation techniques.
This may introduce further constraints Ci. Thus the
set of constraints C in a database is a combination of
all the 3 types of constraints: C = C,, U C, U C’i.

Since some application-dependent constraints can
be mapped directly to certain database structure or
implementation constraints, C,, n (C, U Ci) # 8. On the
other hand, it is usually the case that C, g (C. U Ci).
The set C, U Ci is called inherent constraints in [3, 171
while the rest of C,: C,, - (C, U Ci) is called explicit
constraints. Because the structures in a data model are
built into the database system, it is obvious that the
structure-dependent and implementation-dependent in-
tegrity constraints in C, fl (C, U Ci) are efficiently en-
forced. On the other hand, explicit constraints have to
be specified explicitly by user, either as logical asser-
tions or in a particular constraint language, and val--
idated by constraint manager. The more powerful a
data model is, the larger the set C,, n (C, U Ci) is.

In database systems that are based on relational
model, we can think of three types of constraints: (1)
domain constraints specify conditions on the values of
attributes; (2) connection constraints specify conditions
on inter-relation links; and (3) value constraints repre-
sent restrictions on the combination of attribute val-
ues of a relation, of which dependency constraints are
special cases. Only a subset of these kinds of con-
straints are in C. U Ci. For example, constraints about
the single-valueness of attributes are enforced by fist-
normal form relations; functional dependencies are en-
forced by the uniqueness of keys condition in Boyce-
Codd normal form relations; and certain many-to-one
connections can be mapped to clustered file implemen-
tations. There are still large amount of integrity con-
straints in C,, that are not enforced by the model.

Domains are sets of values that attributes can take
in forming tuples. Donmin constraints apply to values
of a single type, i.e., values in a single domain. Do-
main constraints are often used in the definition of a
domain to represent the membership condition of the
domain. It is actually the means to specify “instance-
of” abstractions or classifications. The general form of
domain constraints are (VT E R)(r.A E D A P(r.A)),
where P is a predicate stating the qualification of the
values in domain D of attribute A of relation R. It
is equivalent to say that the domain D is defined as
D = {ZIP(Z)). Tl 1c example below shows a domain
definition which contains domain constraints.

[Example l] Th e d omain “DATE” defines a set of struc-
tured values each of which consists of three subfields:
year, month, and day. There are constraints on both
the ranges of values of subfields and the possible com-
binations of these values.

DOMAIN Date
DESCRIPTION

Day : integer
Month : integer
Year : integer

CONSTRAINT
(Day 2 1) A (Day < 31) A (Month 2 l)A
(Month 5 12) A (Year 2 0) A (Year 5 9999)A
(Month E {4,6,9,11} --) Day 5 30)h
(Month = 2 -+ Day 5 29)

END Date

3.2 Connection Constraints

Connection constraints denote relationships among
objects of one or more compound domains (relations).
These constraints restrict the way that objects in these
domains can be connected together. A connection cons-
traint P(D1, D2, Dn) which relates relations or com-
posite domains Di, i = 1, n specifies that only a sub-
set of the Cartesian product D1 x Ds x . . . x D,:

{dl...d,l dl E D1 A . . . A d, E D, A P(dl, d,)}

can be part of a valid database extension. In other
words, the following statement is always true:

(Vdl E Dl)...(Vd, E D,)(P(dl,..., d,)).

Connection constraints can also be further subdi-
vided into cardinality constraints[4, 181 and value con-
straints. A cardinnlity constraint constrains the num-
ber of tuples in an inter-relation connection. The cons-
traint specifies a range of allowable numbers for each
type of tuples in the connection. In relational model,
connections are represented by matching domains of re-
lations. We can characterize a connection among at-
tributes Xi,2 = l,..., n of relations Ri,i = l,..., n by

Conn(Ri : X1, R, : X,). A cardinality constraint
on this connection can be expressed as:

Let VAL = Uy=, {V](3ri E Ri) A ri[Xi] = v), then

(Vi E (1, . ..) n})(b E VAL)
(si~~{rlr E Ri A T[Xi] = V} E (Ziyaeeymi})

where Ii 5 mi E N, (; = 1,2, n) and N is the set of
non-negative integers.

A cardinality constraint is called total with respect
to a domain D if every object in the domain must be as-
sociated with at least one connection. This means that
the cardinality of domain D in the constraint specifica-
tion must be greater than 0. Otherwise the constraint
is called partial with respect to D, in the sense that an
object may have no associations with others.

[Example 21 A b inar cardinality constraint is a special y
case and has been discussed in great detail in litera-
ture[4]. Followed is a table of.commonly recognized
types of cardinality constraints on binary connections
Conn(RI : Xl,& : X2):

Total (wrt RI) Partial (wrt RI)
One-to-One: h= ml = 1 zi=o,mr=1
Many-to-One: II = 1,mi = 00 Ii = 0,mi = 00

3.3 Value Constraints

Inter-domain value constraints specify value depen-
dencies among objects in several domains. The value
dependency is usually expressed as logical relationships
among functions of object values. A value constraint on
objects of domains D1, Dz, D, has the general form:

Ptf,(D,,..., Dn),fz(D~, -,Dn),-, fmtDl,...,Dn))

where P is a predicate and fi,i = l,...,m are func-
tions. The functions can be either system-defined or
user-defined, numerical- or non-numerical-valued, and
intra- or inter-domain functions.

An important special case of the inter-domain value
constraints is functional constraints which completely
determine the value of the object being constrained. In
a functional constraint, P is the identity predicate ‘=’
and.has the general form: D = f(Dl, OS,..., Dn). Vari-
ous functional constraints can be established among do-
mains. The functions used to represent the functional
constraints are actually mappings among domains. New
concepts (domains) may be defined which are arbitrary
functions of existing concepts (domains). A lot of prop-
erties of these mappings can be examined to obtain
knowledge. Distinctions can be made between total ver-
sus partial mappings, onto versus into mappings, or one-
to-one versus many-to-one mappings, etc. The knowl-
edge about these properties can be used in domain cons-
traint propagation as well as inter-domain constraint
enfor,cement .

-6-

Those non-functional constraints are called rela-
tional constraints. Relational constraints describe value
relationships among object values. However, these ob-
ject values cannot be determined completely from the
constraints.

Such a “small” change to a parameter off often results
in a corresponding “small” change to the value off. Fi-
nite differrncing refers to the detection and exploitation
of this situation.

[Example 3] Derived Attributes. We may want to have
an attribute for each department to represent the total
number of employees in that department:

[Example 51 Suppose that x is equal to the set of em-
ployees in the department whose manager is Smith:

x = f (EMP, MANAGER, Smith)

(tld E DEPT)(d.#EMP =
aize{ele E EMP A e.EDEPT = d.NAME})

#EMP is a derived attribute. Whether it is material-
ized in the database or not, the constraint manager has
to keep consistency between it and the EMP relation.

[Example 4] Virtual Attributes. Suppose the company
has several departments in Europe and the staff in those
departments would prefer using pound instead of amer-
ican dollar as the unit of departmental sales attribute.
Now we can define a view V-DEPT with a virtual at-
tribute SALES on top of the real relation DEPT such
that:

(Vd’ E V-DEPT)@d E DEPT)
(d’.SALES = d.SALES x tateh
d’[U - {SALES}] = d[U - {SALES}])

Here EMP, MANAGER, and Smith are the parameters
of the constraint; MANAGER is a mapping whose do-
main is a subset of EMP. Smith is an element of the
range of MANAGER. Suppose EMP is updated by the
insertion of a tuple for Brown. The naive validation of
x would recompute the set former. However the value
of x can be updated simply by inserting the tuple for
Brown into z if and only if Brown’s manager is Smith.
In such a situation we say that f is continuous with
respect to the operation of tuple insertion to EMP. It
is easy to see that f is continuous with respect to tuple
deletion to EMP, or a redefinition of MANAGER on a
single tupb in EMP. However f is not continuous with
respect to any changes to Smith or to MANAGER as a
whole.

where ‘U is the set of attributes of DEPT and rate is
the exchange rate between pound and dollar. Only one
relation is materialized and the other one must always
be computed according to the above constraint.

4.2 Store versus Compute

Even for relational constraints where the value of

4 Validation Techniques

Various techniques can be explored to reduce the
cost of constraint validation. In this section, we illus-
trate several common techniques used by our constraint
manager to reformulate constraint.

4.1 Finite Differencing

As we pointed out earlier in the paper, no improve-
ment on validation efficiency can be achieved for in-
tegrity constraints which relate single objects together.
It is those constraints relating groups of objects in their
entirety that give the potential of improvement. Gener-
ally the validation of such type of constraints is costly,
i.e., at least G(n) where n is the size of the group. Finite
differencing is a technique in which costly recomputa-
tions are replaced by incremental updates, which can
often be done in constant time[l3].

-7-

f is not explicitly required in the database, naive im-
plementations of inter-domain constraint validation re-
quire accessing groups of tuples to evaluate the con-
straints at each time the tuples in a connection are
changed. By keeping some relevant information (e.g.,
the value of f) in the database, it is possible to trans-
form the access operation of groups of tuples to an ac-
cess operation to single piece of information. In order
for this transformation to be cost-effective during the
constraint validation process, the maintenance cost of
the extra information must be lower than the cost of
actually evaluating the constraint for each update.

Suppose that there is a functional constraint z =

f(Y i, y,). One method of maintaining this cons-
traint is to recompute x whenever any of the param-
eters yi,i = l,..., n changes. The change to any of
y;,i = 1 , n is actually due to object-wise operations
such as insertions or deletions of single objects into re-
lations or redefinitions of connections for single objects.

Such “store versus compute” decision is closely re-
lated to the access pattern of the database as well as
the cost of recomputation. For expensive computation
such as reduction operations of groups of tuples, good
candidates for the “store” strategy are those which are
continuous with respect to tuple-wise changes in param-
eters because small changes in parameters are reflected
to incremental changes to the stored values.

[Example 61 Suppose that a relational constraint re-
stricts the sum of employee salaries in any department
to be less than the department budget:

(Vd E DEPT)(d.BUDGET > aum{e.SALARYI
e E EMP A e.EDEPT = d.NAME}).

A direct validation of it would be to recompute

= {e E EMPfe.MANAGER = “Smith” }.

f(d) = sum{e.SALARYI
e E EMP A e.EDEPT = d.NAME}

each time a change is made to EMP. Since f(d) is con-
tinuous with respect to changes in EMP, sturing the
value of f as a mapping f : DEPT t--+ REAL and in-
crementally updating it by finite differencing will often
results in an asymptotic improvement in performance.

[Example 8] Supp ose the company entity has a derived
attribute flE which is the total number of employees in
the company. The EMP domain has been specialized
into several sub-domains: ENGINEER, MANAGER,
and SALESMAN. The constraint is that

flE = sum(size(ENGINEER),size(MANAGER),
size(SALESMAN))

When x is not scalar-valued, the cost of maintain-
ing 2 = f (yl , y,) increases dramatically such that it
may outweigh the cost of evaluating f. In such cases,
storing z is beneficial only when yi,i = 1, n are rarely
changed and z is accessed frequently. Generally, the
“store versus compute” decision depends on the cost of
both constraint validation and query processing.

4.3 Discontinuity Removal

Now suppose that finite differencing is not possi-
ble since discontinuous changes to a parameter occur.
Another alternative would be to remove discontinuity,
in which, by the introduction of auxiliary knowledge,
changes to a parameter of a function formerly discon-
tinuous becomes continuous. Such auxiliary knowledge
could be some internal parameters, functions, or ‘data
structures.

[Example 7] Consider the integrity constraint that the
number of employees in administrative departments are
restricted to be no more than 200:

ADM = (PERSONNEL,PAYROLL)
size{e E EMPle.EDEPT E ADM) 5 200.

The constraint is continuous with respect to object-wise
changes in EMP and redefinition of EDEPT for single
element in EMP but is not continuous with respect to
changes in ADM, e.g., adding a new department to
it. This can be remedied by introducing as auxiliary
information a mapping f : DEPT t-+ INTEGER where

(t’d E DEPT)(f(d) =
ai.ze{ele E EMP A e.EDEPT = &NAME)).

If y is inserted or deleted from ADM, f(y) is added
or subtracted accordingly from the stored size value.
Of course this is correct only when an employee can
work in at most one department. Otherwise an auxil-
iary mapping M: DEPT A set of EMP would have to
be introduced.

4.4 Algebraic Properties

Applying the techniques discussed before, we would
have three pieces of information for the current sizes of
the three subsets. Realize that the above assertion is
equivalent to:

tfE = size(ENGINEER U MANAGER U SALESMAN)

we could maintain only one piece of data for the current
size of EMP and synthesize the tuple-wise operations to
all the subsets in such a way that the value of that piece
of data is consistently updated.

We have discussed how various techniques can be
applied to save constraint validation cost. For complex
constraints, application of multiple transformation rules
may be necessary before the constraints are actually
synthesized into efficient code. A transformation may
not be beneficial by itself but can introduce opportunity
of optimization.

5 General Model of Constraint Validation

The problem of integrity constraint validation can
be stated as follows. Let C be the set of integrity con-
straints, E be the set of all possible database extensions,
E’ 2 E be the set of all valid database extensions such
that the constraints in C are satisfied, 0 be the set of
database operations, 0’ E 0 be the set of database op-
erations that change the database state, and a special
operation or E 0 be the identity operation which, when
applied to a database, does not result in any state tran-
sition. Given C, a particular database extension e E E’,
and an operation o E 0’, find out a sequence of database
operations in 0 which, when applied to e E E’ together
with o, leads to another valid database state e’ E E’. To
express it more formally, let o(e,d) denote the resulting
database extension by applying operation o to object d
in database extension e and 02 (01 (e, dl), dz) denote the
composition of operation 01 followed by 02 applied to
extension e, the task of the integrity constraint manager
is to prove or disprove the statement

Lets reconsider the constraint z = f(yl,...,y,).
The function f may be a composition of several opera-
tors. The properties of these operators can help improve
the performance of the constraint validation. The cons-
traint manager can apply the knowledge about these
properties, such as distributivity, commutativity, and
associativity to reformulate f such that it is more effi-
ciently evaluated.

(301, *-*, o, E O)(e E E’ A o E O’A
on((...ol(o(e,d),dl),...),d,) E E’)

and if the statement is true, the constraint manager
is also responsible for actually finding the sequence of
operations. In this paper, our set of operations 0’ will
only include insert/dclcte/update of single objects.

5.1 Knowledge in the Knowledge Base

-8-

Various kinds of knowledge are needed in order to
make the validation process efficient. Fist, the cons-
traint manager must have knowledge about the way
constraints are specified and how they constrain objects
in an application. The situation is made complicated by
the fact that syntactically different constraints might
define semantically equivalent conditions. For exam-
ple, if we want to isolate managers from employees as a
separate relation, the subset constraint between EMP
and MANAGER which states that MANAGER is a
subset of EiUP can be expressed in at least two ways:

{m.NAMElm E MANAGER} C
{e.NAMEle E EMP}, or

(Vm E MANAGER)(Se E EMP)
(m.NAME = e.NAME)

Second, the constraint manager should know the
types of structures that are available in the database
and how objects in the application are represented or
mapped into these structures. With such information,
it is possible to map certain constraints directly to the
database structure and enforce them without extra u-
ecution cost. For example, if the database supports
network data model, most of the many-t+one cardi-
nality constraints can be implemented as DBTGset
stmctures.

Finally, the constraint manager must have knowl-
edge about the particular internal structures used to
implement these database structures and r&te them
to objects in the application. The particular file orga-
nization and access methods supported by the underly-
ing file system, the cost of each kind of operation, and
the current state of the database (e.g., the available in-
dexes, the image sizes of attributes, the sines of Sles, and
clustering information) should all be taken into consid-
eration to effectively synthesize the constraints.

6.2 Transformation Rules

The constraint manager processes the constraint
specifications and synthesizes them into efficient code
according to the transformation rules in the knowledge
base. A transformation rule is of form “X : C + Y”.
X is the expression to be transformed, C is a set of con-
ditions which specifies the class of situations in which
the transformation rule can be applied. Y describes the
result from applying the rule.

Two categories of transformation rules exist. One
category consists of the rules that synthesire the prim-
itive operations into efficient code. Another consists of
the rules that transform object specifications by adding
internal properties, functions, or data structures. In ad-
dition, rules can also be used to derive facts which can
be used later in validation, to express knowledge about
efficiency characteristics of various usage patterns, or

even to govern the order and focus of the rule appli-
cation process itself.

5.3 Architecture of Constraint Manager

The constraint manager performs two major time-
tions: (1) knowledge acquisition and management, and
(2) constraint transformation. _ It extracts knowledge
from the database schema definition, from user-specified
constraints, and from the results of continuous monitor-
ing of the database state. Constraint synthesis is done
by applying the transformation rules iu the knowledge
base. The set of rules to be applied depends on the
meta-facts available in the knowledge base. The amount
of knowledge must be relatively small compared to the
database in order to make the constraint validation pm
cess efficient. Thus we are not interested in knowledge
about individual objects - it is maintained in the data-
base itself. Instead, we are interested in utii knowl-
edge about groups of objects, either about some com-
mon properties that objects in a group share or about,
the properties of a group as a whole.

constraint specification
1 I 1

Constraint Compiler

1
Intend Representation

1
Assertion Synthesiaer -) IKnowledge

1
Weak Equivalent Assertion

+I

1
LISP code

Fig.1 Architecture of Constraint Manager

Three types of actions are possible for the cons-
traint manager to take to validate an integrity cons-
traint. In the simplest situation, the constraint manager
does not need to do anything more than checking the
update request. The validation of domain constraints
is such a case. The constraint manager may have to re-
trieve further information from the database to validate
a constraint. In the most complex case, the constraint
manager has to retrieve some data and update some
objects in order to .obtain another valid database ex-
tension. It is the improvement on the last two types of
actions that are most benellcial.

The overall organisation of the constraint man-
ager is as shown in Fig. 1. It consists of three compo-
nents. The Constraint Compiler takes as input the wer-

supplied constraint specifications and compiles them

-9-

into some internal representations with cost information
associated with each of the sub-expressions. The As-
sertion Synthesizer takes the internal representation of
constraints and reformulate them into weak-equivalent
assertions when necessary using the knowledge in the
knowledge base such that the cost is reduced. Finally
the Assertion Compiler compiles these assertions into
LISP code which are associated with database manipu-
lation operations.

6 Example Transformation Rules

In this section, we present example transformation
rules which cover all types of integrity constraints men-
tioned before. These rules are intended to be stored in
the knowledge base and used by the constraint manager
to reformulate constraint assertions into efficient code.

6.1 Domain Constraint Validation

The validation of domain constraint happens when-
ever an object is INSERTed or an attribute is UP-
DATEd. The constraint manager evaluates the cons-
traint for each domain involved against the input data
and performs the operation only when the constraint
is satisfied. No extra information need to be accessed
to validate the constraint. The tiansformation rules for
domain constraint validation are:

inserted objects of the virtual domains can be validated
against the “virtual” constraints.

[Example 91 Let D 1 and 02 be two domains and f be an
inter-domain functional constraint on Dz: 02 = f(D1).
Assume there is a domain constraint defined on D1:
(Vz E D,)(P(z)). A d irec validation of operation t
INSERT(D2,d) would be to validate the operation
INSERT(DI, f-‘(d)), i.e., to prove .P(f-l(d)). A bet-
ter approach would be to first find out an equivalent
domain constraint defined on Dz : (Vz E Dz)(P’(z))
such that (Vz E D,)(P’(z) G P(f-l(z))), which will
save the evaluation of f-‘(d) if the request is invalid.
This argument is sound only when f is a one-to-one
mapping, i.e., when f-’ exists. Although it is possible
to propagate domain constraints through many-to-one
functional mappings, it usually does not make sense to
update a virtual domain which is the result of a many-
to-one mapping because such update cannot be mapped
to any specific database state transitions.

The transformation rule for domain constraint pro-
pagation through an inter-domain one-to-one functional
constraint is:

rule DOMAIN-INSERT-VALIDATION
params (P: domain-constraint; D: domain)
transform

insert(D, OBJECT)
+

if P(OBJECT) then insert(D, OBJECT)
else REJECT

rule DOMAIN- UPDATE-VALIDATION
params (P: domain-constraint; D: domain)
transform

update@, OBJECTl, OBJECT2)
4

if P(OBJECT2) then
update(OBJECTI, OBJECT2)

else REJECT

-lO-

The propagation of domain integrity constraints
through inter-domain functional constraints may make
the validation of domain constraints more effective. Be-
cause a domain constraint is validated against the input
data object, it is most efficient if this validation can be
done directly without any transformation on the input
object. Such a situation occurs when multiple views
are integrated into the database hence many virtual do-
mains are defined as functions of several other domains
and the constraints on these domains can be mapped to
certain constraints on the virtual domains. Now newly

6.2 Cardinality Constraint Validation

The important information necessary to validate
a cardinality constraint for an inter-domain connection
Conn(R1 : Xl,..., R, : Xn) is the number of tuples of
each relation involved in the connection. Notice that
the size function of a set is continuous with respect to
the object-wise changes to the set, finite differencing
can be utilized to reduce the cost of validation. In par-
ticular, no change can be made, via the operations we
consider here, to those domains Ri, i E (1,n} whose
Zi = mi. Updates to such relations could only be per-
formed through a transaction mechanism which is be-
yond the scope of this paper. Counter information can
be maintained for those relations whose li < mi.

Any operation may invalidate a cardinality cons-
traint and therefore need to be validated before execu-
tion. The transformation rules for inter-domain cardi-
nality constraint validation are:

rule DOMAIN-CONSTRAINT-PROPAGATION
params (P: domain-constraint; f : D1 H Ds)
transform

P(D1) : f-’ = gA one-to-one(f)
+

P’(D2) = PM&))

rule INTER-DOMAIN-CONNECTION
params (M : Cmn(R1 : X1, R, : X,);

P:cardinaIity-constraint)
transform

M : li < mi A i E {l,...,n}
+

Conn(R1 : X1, R; : X; : Mi, R, : X,)A

VAL = U~z1{uJ(3ri E Ri) A Ti[Xi] = V}A
(VU E VAI/)(Mi(V) = site{rlr E Ri A r[Xi] = U)

rule INTER-DOMAIN-INSERT
params (M : Conn(R1 : X1, R, : X,);

P:cardinality-constraint)
transform

inseTt(Ri,F) : Zi < WI; Ai E (l,...,n}
4

if Mi(vIXi]) < mi then

Mi(T[xi]) + Mi(r[xi]) + 1
insert(Ri,r)

else REJECT

6.3 Value Constraint Validation

Inter-domain value constraint has the general form
P(fl, .*., fm) where fi,i = 1,m are functions on do-
mains Di,i = 1, n and P is a predicate on these
function values. In order to evaluate P efficiently, infor-
mation may be maintained about the current values of
these functions. The transformation rules in the knowl-
edge base can be applied to determine exactly what
kind of auxiliary information are needed and how to
synthesize the database operations to maintain such in-
formation.

The general strategy for inter-domain value cons-
traint validation can be stated as the following steps:
(1) Determine, for all fi,i = 1,m. whether fi is con-
tinuous with respect to its parameters, i.e., to compute
the set:

S = {(fi,pii)ll 5 i 5 mA1 < j < Ii Acodinue(fi,pij)}

where Ii is the number of parameters of fi, (2) Apply
the rules in the knowledge base to remove discontinu-
ity as much as possible, (3) Apply transformation rules
to set up the auxiliary data structures, functions, etc.
and synthesize operations, and (4) Whenever a change
is made to a discontinuous parameter of a function, re-
compute all the relevant auxiliary information.

[Example lo] ‘I’r ans ormation rules for single operator f
“mm” in function f = maz(S) where S is a set of
elements on which maz is meaningful.

rule MAX-FUNCTION
params(S : set; f : function)
transform

f : element E S A f : S I+ element
--+

f : tiMAX

rule MAX-INSERT
params(S : set; f : function)
transform

insert(S,s) : f = nbas(S) A f : S ++ element
-i

insert(S, 9)

ifflMAX < s then #MAX t s

rule MAX-DELETE
purums(S : set; f : S H element)
transform

deZete(S,s) : f = maz(S)
+

deZete(S, s)
flMAXts’~s
foreach s” E S do

if s” > flMAX then gMAX t s”

[Example 111 Tr ans f ormation rules for a function f over
sets Si,i = 1 , n which is a composition of two oper-
ators ma2 and U: f = maz(U~==, Si).

rule MAX-OVER-UNION
params(f : function; n : integer; &, S, : set)
transform

f : f = TTWZ(~)~==, Si) ATI > 1
+

f : @IAX

rule MAX-OVER-UNION-INSERT
params(f : function; n : integer; SI, S, : set)
transform

inser’t(Si,8) : 15 i < n A f = TTI~z(U~==, Si)
+

in.9ert(Si, S)
if flMAX < s then tiMAX + s

[Example 121 Tr ans f ormation rules for discontinuity re-
moval of aug in function f = aug(S).

rule AVG-CONTINUE
params(f : function; S : set)
transform
f : f = uug(S)

s;)um(S), size(S) : gwiv, ffsrm
7 Conclusion and Future Work

Experience has shown that the conventional ap-
proach to integrity constraint enforcement is not suc-
cessful even for simple static constraints and single up-
date operations. Because of the very nature of integrity
constraints, the richness of their specification in first
order logic, and the essential demand for the efficient
validation, a knowledge-based approach seems to be
the most promising direction. In this paper, we have
demonstrated the feasibility and power of such an ap-
proach to the validation problem of static integrity cons-
traint with repect to single update requests. It is our
belief that the use of AI techniques will be very fruitful
in this problem domain.

ll-

Clearly, this is only a proposal and much more work
needs to be done to prove the concepts. We plan to im-
plement a primitive set of transformation rules in the
environment of KSYS, which is a frame-based knowl-
edge base system, and test our ideas using a specific
database of ships and ports. Rules for efficiency esti-
mators, rule applications, functional operators, function
composition, etc. need to be refined and the techniques
for integrity constraint validation in the transaction en-
vironment need to be developed.

8 Acknowledgement

The authors are grateful to the colleagues in the
KSYS group, especially Waqar Hasan, for helpful dis-
cussions. Suggestions from Prof. Shixuan Sa of the
People’s University of China are also appreciated. This
work was supported by DARPA contract N39-84-C-211
for Knowledge Based Management Systems,

9 References

[l] Badal, D. and Popek, G., “Cost performance analy-
sis of semantic integrity validation methods;” Proc.
AC&l SIGMOD, 1979,109-115.

[2] Bernstein, P., Blaustein, B., and Clarke, E., “Fast
maintenance of semantic integrity assertions us-
ing redundant aggregate data;” Proc.Gth Int.Conf.
VLDB, 1980, 126-136.

[3] Brodie, M., “Specification and Verification of Data-
base Semantic Integrity;” PhD. Dissertation, Tech.
Report CSRG-91, Univ. Toronto, April 1978.

[4] El-Masri, R. and Wiederhold, G., “Properties of Re-
lationships and their Representation;” Proc. of the
1979 NCC, AFIPS vo1.49, Aug. 1979, 319-326.

[5] Furtado, A., dos Santos, D., and de Castilho, J.,
“Dynamic modelling of a simple existence cons-
traint;” Inf. Syst. 6, 1981, ‘73-80.

[S] Goldberg, A. and Kotik, G., “Knowledge-Based Pro-
gramming: An Overview of Data Structure Selec-
tion and Control Structure Refinement;” Kestrel
Inst./Univ. of CA, Santa Cruz report, Kes.U.83.7,
1983.

[7] Green, C. and Westfold, S., “Knowledge-based pro-
gramming self-applied;” Artificial Intelligence IO,
Ellis Forward Sr Halsted Press (John Wiley), 1982.

[S] Hammer, M. and McLeod, D., “Semantic Integrity in
a R.elational Database;” Proc.lst Int.Conf. VLDB,
Framingham, Mass., 1975.

[9] Hammer, M. and McLeod, D., “A Framework for
Database Semantic Integrity;” Proc. 2nd I.nt.Conf.
on Software Engineering, San Francisco, 1976.

[lo] Keller, A.M. and Wiederhold, G., “Validation of
Updates Against the Structural Database Model;”
Proc. of Symposium on Beleability in Distributed

Software and Database Systems, Pittsburgh, July
1981.

[ll] Kotik, G., “K nowledge-based compilation of high-
level data types;” Kestrel Inst./Univ. of CA, Santa
Cruz report, 1983.

[12] Morgenstern, M., “The Role of Constraints in Data-
bases, Expert Systems, and Knowledge Represen-
tation;” Proc.lst workshop on Expert Database
Systems, Oct. 1984.

[13] Paige, R., “Applications of finite differencing to
database integrity control and query/transaction
optimization;” Advances in database theory, Vo1.2,
ed. H. Gallaire, J. Minker and J. Nicolas, Plenum
Press, New York.

[14] Shepherd,A. and Kerschberg,L., “PRISM:A Know-
ledge-Based System for Semantic Integrity Spec-
ification and Enforcement in Database System;”
Proc.ACi’vf SIGMOD Conf., Boston, 1984,140-173.

[15] Shepherd, A. and Kerschberg, L., “Constraint Man-
agement in Expert Database Systems;” Proc.lst
workshop on Expert Database Systems, Ott: 1984.

[lS] Stonebraker, M., “Implementation of Integrity Con-
straints and Views by Query Modification;” Proc.
of the 1975 SIGMOD Conference, ACM SIGMOD,
San Jose, June 1975.

[17] Tsichritzis, D. and Lochovsky, F., Data Models;
Prentice-Hall, NJ, 1982.

[18] Wiederhold,G. and El-Masri,R., “Structural Model
for Database Systems;” Stanford University, Com-
puter Science Department report CS-79-722, April
1979.

[19] Wiederhold,G., “Knowledge and Database Manage-
ment;” IEEE Software Premier Issue, vol.1 no.1,
Jan. 1984,63-73.

[20] Wiederhold, G., “Knowledge versus Data;” to ap-
pear in On Knowledge Base Management Systems:
Integrating AI and Database Technologies, ed. M.
Brodie, 1986.

-12-

