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ABSTRACT 

The Relational Data Model and Relational Calculus 
are extended with Unification and non-recursive Horn 
Clauses from Logic. The benefits gained include better 
versatility and a richer functionality for expressing 
complex Jack, deductive queries and rule-based inJer- 
ences. Applications include semantic data models for 
Databases, frames for Knowledge-based systems, and 
Complex Objects for CAD. An Extended Relational 
Algebra (ERA) is introduced that has the same expres- 
sive power as the new Calculus. The algorithm given 
for translating Jrom Calculus to ERA supplies a sound 
basis for the compilation of these Horn clauses, and 
their implementation using query optimization and 
other techniques currently used in database systems. 

1. Introduction 

A strong interest is emerging in combining Databases 
and Logic Programming [Gallaire 8-1, Jarke 84, Li 84, 

Parker 85, Ullman 851, for reasons of theoretical and 
practical import. From the theoretical viewpoint, 
there is a deep affinity between relational databases 
and logic programming, resulting from their common 
ancestry of mathematical logic. From the practical 
viewpoint, there is the realization that the two tech- 
nologies provide complementary benefits. Logic Pro- 
gramming (LP) entails an expressive power which 
greatly surpasses that of current database query 
languages, as demonstrated by its use in applications 
as varied as deductive retrieval, translator systems, 
CAD and expert systems. Databases, on the other 
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hand, provide the technology for storing, managing 
and processing efficiently very large data banks, in 
addition with amenities such as sharing, recovery and 
security. Therefore, it appears that a combination of 
the two technologies holds the promise for new data 
and knowledge base systems of great power and versa- 
tility. This paper contributes towards such an objec- 
tive by extending relational database techniques to 
support unification on databases of complex facts. 

2. Databases and Logic 

In a Logic Language, the following Facts can 1~ usctl 

to represent information aboul tllc first namca, the 
last names, the ages and the fathers of individu;lls. 

person(david, smith, 55, john) 
person(jane, smith, 22, david) 
person(frank, green, 23, travis) 

Figure 1: A persona Jact base. 

These simple facts can be represented in a relational 
database using a four-column relation person con- 
taining three tuples. 

Queries against a fact database can be exprcsscd in a 
style similar to a in-line version of QBE [Zloof 751. 
For instance, let us use initial lower case to denote 
constants, initial upper case for variables, and the 
symbol “-” for anonymous variables (i.e., don’t care). 
Then, we can express the query to find all persons 
with last name “Smith” as follows: 

{ <Nm, Ag> 1 person(Nm, smith, Ag, J} ? 

Figure 2. Find names and ages o/persons. 

Such a query, will cause our LP system to relllrn all 

the pairs satisfying it: 

<david, 55> 
< jane, 22> 

Applications, in a LP language are developed via 
extensive use of rules. For instance, a rule Lo define 
the paternal grandfather of a person can be written as 
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follows: 

grandpa(Young, LN, Old) t 
person(Young, LN, -, Middle) & 
person(Middle, LN, -, Old) 

Figure 3. The paternal grandfather is the father oj 
the father. 

Rules can be thought of as a generalization of the 
derived view mechanism found in relational systems, 
which provide for their efficient implementation via 
the usual mechanisms for query support. These 
mechanisms are often based upon the mapping of 
queries into equivalent Relational Algebra expressions 
[Ullman 801. For instance, our grandpa view can be 
translated into a join of the second and fourth column 
of person with the second and first column of person 
again, followed by a projection. Indeed, Codd’s 
fundamental result [Codd 711 states that any query of 
relational calculus can be translated into an 
equivalent expression of relational algebra. The impor- 
tance of this result cannot be overemphasized since, 
(i) it characterizes the expressive power of relational 
systems, and (ii) it supplies the foundation for efficient 
implementations of relational queries by compilation 
and optimization techniques or special hardware 
(database machines). 

No relational algebra equivalent is currently known 
for Horn Clause Logic, since this surpasses the expres- 
sive power of relational calculus in two main respects: 

(1) the availability of recursive rules, and 

(2) the availability of general unification. 

The subject of databases with recursive rules has 
received wide attention, particularly in relation to rule 
compilation, and replacement of recursion with itera- 
tion [Aho 79, Chandra 82, Henschen 84, hlcI<ay 81, 
Naqvi 83, Ullman 851. Comparatively less attention 
has been paid, until now, to the unification problem 
addressed in this paper. In the next section we illus- 
trate, by means of examples, the many useful applica- 
tions of unification in databases and knowledge-based 
systems. 

3. Complex Facts and their Applications 

The arguments of a logic predicate need not be sim- 
ple, but they may be complex- i.e., consist of a func- 
tor with possibly complex arguments. A great deal of 
power emanates from this flexibility. Say, for instance, 
that we want to store information about employees, 
including their last and first names, their job 
classification and their education. The information 
requirements for education depend on the education 
level. For instance, only the graduation year is stored 
for high school graduates, while a degree description, 
with major and graduation year, is kept for college 
graduates. For bachelor and higher degrees the school 
name is also required. A sample from our database is 
shown in Figure 4. 

Thus, while Joe Cool has no degree, as indicated by 
“none”, Max Fax got his high school degree in 1976. 
Moreover, Joe Doe got a Master in English from Har- 
vard, MA, in 1981, and Fred Red got his Master in 
Business Administration from USC, CA, in 1983. 
(Note the use of a function symbol with different 
numbers of arguments. Although this is a departure 
from the textbooks on Logic, it is commonly done in 
Logic Programming.) 

In Logic, queries and rule-based deduction against a 
database of complex facts, such as that of Figure 4, 
can be expressed in a very simple fashion. For 
instance, to find all the MBA’s, with their schools, 
who graduated after 1981, one only needs to state the 
rule: 

new-mbas(LN, FN, Sch, Year) + 
emp(FN LN, -, degree(ms, ba, Sch, Year)) & 
Year >lQgl 

Figure 5. Name, School and Year for MBAs who 
graduated after 1981. 

Then the query: 

{<L,F,S,Y> ( new-mbas(L, F, S, Y)} 7 

Figure 6. Retrieving the MBAs of Figure 5. 

a relation ojjacts with complex fields: 
emp(FirstName, LastName, JobClass, Degree) 

emp(joe, cool, porter, none) 
emp(max, fax, guard, degree(hs, 1976)) 
emp(joe, doe, vp, 
emp(fred, red, staff, 

degree(ms, engl, school(harvard, ma), 1981)) 
degree(ms, ba, school(usc, ca), 1983)) 

Figure 4. A database of complex facts. 
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will return: 

<red, fred, 1983, school(usc, ca)>. 

These examples illustrate the flexibility and power of 
Logic Programming in dealing with complex facts, 
inasmuch as the subcomponents of a term can be 
qualified separately or treated as a unit (e.g., the 
argument Sch in degree). To come close to this kind 
of flexibility in a more conventional DBMS, the con- 
cept of generalization [Smith 771 will have to be SUP- 
ported; then two subtypes must be declared, one for 

employees with high school degree only, the other for 
employees with a college degree. As discussed in 
[Zaniolo 831 queries involving generalization can be 
handled by extensions of relational languages. These 
in turn can be implemented on top of relational sys- 
tems [Tsur 841, but not without additional complica- 
tions such as extensive use of null values. However, 
complex objects in a LP system provide the power of 
semantic data models in a simpler and more versatile 
framework - complex objects can either be made 
available to users directly, or can be used in the 
implementation of a semantic data model and 
language, such as that described in [Zaniolo 831. 

For a second example, let us assume that we have a 
list of names and states for Ivy League universities: 

% name and state of ivy leag,ue schools 
ivy (harvard, ma) 
ivy (Princeton, 4 
ivy (brown, ri) 
ivy (Yale, 4 
ivy (Cornell, nY) 
ivy (Pennsylvania, pa) 
ivy (Columbia, “Y) 
ivy (dartmouth, “h) 
Figure 7. The old Ivy League. 

A list of all Ivy League graduates, for the 80’s can be 
obtained as follows: 

% ivyup stands for Ivy-Yuppies 
ivyup(Ln, Fn, Yr) t 
emp(Fn, Ln, ,, degree(-, -, school(ScN, StN), Yr)) 
& ivy(ScN, StN) & Yr > 1979 & Yr < 1990 

Figure 8. Defining those Ivy League Yuppies. 

Another very useful application of complex objects is 
for knowledge primitives such as frames, whose 
representational power is based upon flexible mechan- 
isms for deriving values associated with arguments 
(slots) [Winston 791. For instance, values could be 
explicitly stored or derived via calculations or default 
assignments. The functionality of frames can be sup- 
ported using facts and rules with complex arguments 
[Zaniolo 84][Kowalski 841 as illustrated by the follow- 

ing example. 

We have flat CAD parts identified by a unique part 
number and described by their geometric shape. Thus 
circles are characterized by their diameter (one 
parameter), while rectangles are described by their 
base and height (two parameters) and triangles by 
their three sides (three parameters), and so on. There 
is also a third argument that defines the weight of the 
part. A sample database could for instance be the fol- 
lowing. 

% part(Pn0, Shape, Weight-Info) 
part(OO1l, rectangle(ll., 7.), value(140.)) 
part(1002, triangle(4., 3., 5.), negligible) 
part(1033, square(23.5), default) 
part(2000, circle(30.), table) 
part(2222, circle(30.), table(2000)) 

Figure 9. These are flat parts. 

The third arguments of these five facts illustrate live 
different schemes for deriving the weight of the part. 

value(140.): 

negligible: 

default: 

table: 

table(2000): 

The part’s measured weight is 140 
(onces); this value can thus be stored 
explicitly. 

The weight of the part is minimal (and 
can be regarded as zero in most situa- 
tions); 

The weight of the part has not been 
measured but it can be estimated by 
multiplying its surface area (known from 
its shape) by its specific weight. 

This is a prototypical part whose weight 
is kept in a table called w-table. 

The weight for this part is to be found 
by looking up the weight of the proto- 
typical part 3000. 

These five different schemes for computing the weight 
of a part can be implemented by the following five 
rules: 

weight(Pno, W) +- 
weight(Pno, 0) t 
weight(Pno, W) +- 

weight(Pno, W) c 

weight(Pno, W) t 

part(Pn0, -, value(W)) 
part(Pno, ,, negligible) 
part(Pno, Shape, default) 
& area(Shape, Area)& 
W = Area* 1.2 
part(Pno, -, table)& 
w-table(Pno, W) 
part(Pno, -, table(P2))& 
w-table(P2, W) 

Figure 10. Five ways to get the weight of a flat part. 

These rules in turn, refer to other rules for computing 
areas, 
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area(rectangle(Base, Height), Ar) t 
Ar = Base * Height 

area(square(Base), Ar) + Ar = Base * Base 

Figure 11. Area rules for geometric shapes. 

and to a list of prototypical weights, such as: 

w-table(1221, 12.5) 
w-table(1136, 131.6) 
w-table(2000, 25.6) 

Figure 12. The weight table. 

Thus complex arguments and associated rules deliver 
the functionality of frames (not shown here, is the 
support for the ISA inheritance which can be 
obtained with the techniques described in [Zaniolo 
841). Applications may either use rules and complex 
facts directly, or through an additional layer that sup- 
ports frames as a high level construct - internally 
implemented by suitable rules on complex objects. 

Another very important use of unification and com- 
plex arguments is in the representation and handling 
of recursive data structures, such as trees and lists. It 
is also well-known that functions symbols cannot be 
removed from recursive predicates by the introduction 
of additional predicates. Now, while the operators 
described in the next sections are extremely useful in 
processing efficiently these recursive data structures as 
well, a discussion of this topic is not to be found in 
this paper, since treating it would force us into the 
difficult problem of recursive rule compilation, which 
is orthogonal to the scope of this manuscript that is 

primarily concerned with unification. 

4. An Extended Relational Algebra 

The execution strategies for queries in Logic Program- 
ming system are very different from those of a data- 
base system. In the current implementations of a 
logic based language, e.g., Prolog’s interpreters and 
compilers [Campbell 841, the processing of rules is 
intertwined with the accessing of facts. Moreover, the 
results of successful unifications are kept as variable 
bindings in the environment. Alternative solutions are 
produced through backtracking. In relational database 
systems however, a query on either base relations 01 
on derived views, would be compiled into sequences of 
relational algebra-like operators, that are later exe- 
cuted against the fact database. For instance the 
query, 

{<Gc, Lst, Gp> ) grandpa(Gc, Lst, GP)}? 

can be translated into an equivalent relational algebra 
tree: 

per&n \ person 

Figure 13. Relational Algebra tree for of Figure 9. 

Such a tree is commonly used by a query optimizer to 
generate the actual program that implements the 
query. In addition, it outlines a conceptual execution 
model for compiled database queries. In this model, 
data is viewed as flowing upwards from the leaf nodes 
toward the top, a.nd being transformed in the 11ro~~ss 
by the operators associated with the nodes. In con- 
tradistinction with Prolog’s execution model, this exe- 
cution paradigm is denoted by 

i) the absence of explicit variable bindings since all 
inter-rule unification work is done at compile 
time (intra-rule unifications, i.e., joins, are still 
performed at execution time). 

ii) the absence of backtracking, since an explicit set 
of tuples (partial results) is now associated with 
each node. These partial results are then passed 
to the ancestor nodes, possibly as they are being 
generated - on the fly - for select and project 
nodes, or after some off-line storing and process- 
ing in the case of joins. 

As realized by various researchers [Reiter 78, Ullman 
851, the database execution strategy offers many 
advantages in terms of efficiency, particularly when 
large fact bases are involved, since much of the 
unification work is done at compile time, and a set- 
oriented processing is used rather than a tuple-at-a 
time processing with backtracking. Thus, a number of 
optimization and special-purpose techniques can be 
applied to speed up execution. For instance, sort-joins 
can replace the looping-join strategy to which Prolog’s 
compilers are restricted. (Our arguments are couched 
here in terms of software implementations but similar 
considerations can be made for hardware.) 

Therefore, we want to provide database-like tcch- 
niques for compiling logic queries involving 
unification, such as that of Figure 4, where we have 
conditions involving subcomponents of complex argu- 
ments. Since the standard relational algebra is inade- 
quate to the task, we introduce an Extended Rela- 
tional Algebra (ERA) that will do the job. This alge- 
bra contains the usual set union, and Cartesian pro- 
duct, plus extended select and project operators and a. 
new operator called the combine. 
Extended Select: When operating on traditional 
simple arguments, the new select operator reduces to 
the old relational one. For complex arguments, how- 
ever the new operator can select on the basis of the 
value of both functors and subarguments. We use 



Dewey’s decimal notation, to denote the subargu- 
ments in a complex 0bject.l Thus the operator: 

applied to emp will return 

a[4=none ] 

and 

c7[4.1=ms ,4.4X981] 

will respectively select from emp those with no degree 
and with an MS degree after 1981. Note that complex 
objects can either be used as a unit or addressed by 
individual subcomponents. Thus, 

a[4.3=school (harvard ,ma )] 

and 

a[4.3.0=school, 4.3.1=harvard, 4.3.2=ma] 

represent two legal ways to retrieve Harvard’s alumni 
from the emp relation. We can also select on the 
value of the functor of a complex argument, which 
will be denoted by a zero suffix. Thus, 

<joe, doe, ms, school(harvard, ma)> 
< fred, red, 1119, school(usc, ca)> 

thus eliminating the first two’ tuples for which the 
component 4.3 is not defined. 

For convenience, we also define two additional opera- 
tors. The first is the traditional (equi)join, that can be 
defined as a Cartesian product followed by equality 
restrictions. We follow here the convention of not 
repeating the join columns; thus, in Figure 3, two 
instances of person, that has arity four, joined by 
equating two pairs of columns, yield a relation of arity 
six. We also follow the convention of considering the 
Cartesian product a degenerate type of join. The 
second derived operator is the Extended 
Select/Project (ESP), described next. 

Extended Select/Project (ESP): This operator is 
defined as the composition of an extended select fol- 
lowed by an extended project. For instance, the com- 
position of 

a[4.0=degree ] a[4.3.1=harvard ,4.3.2=ma ] 

may be used to select from emp all those employees 
who have a degree. The argument count in a complex 
term T will be denoted by T.count . This allow us to 
express selection on the number of arguments of T 
(see next, section for a formal definition of the number 
of arguments in a term). For instance, a query to find 
a tuple in emp where the fourth argument contains 
exactly 2 subarguments, can be as follows: 

with 

n[1,2,4.1,4.3] 

is denoted by, 

p[4.3.1=harvard ,4.3.2=ma /1,2,4.1,4.3] 

a[4.count =2] 

Thus, only the second tuple in Figure 4 satisfies this 
condition. This kind of condition will be called an 
arity condition. 

We will refer to the lists to the left and right of the 
slash as the u-list and the n-list, respectively. 

Combine Operator: The combine operator com- 
bines the various arguments of a predicate into one 01 
more complex arguments. It will be denoted by 
gamma. For instance, 

Extended Project: The extended project operator 
also refers to arguments and subarguments using 
Dewey’s notation. For instance, 

~[school(l,state (2))] 

applied to the ivy relation, produces tuples of the 
form: 

7+,2,4] 

will retrieve all emp tuples, with the third argument 
omitted, much as in the traditional relational style. 
However, the operatot 

<school(harvard, state(ma))> 

Thus, the expression in the brackets of a combine is 
basically a complex fact, where integers are used to 
denote arguments by their position number (if the 

number exceeds the argument count in the relation, 
the result is undefined). Thus: 

1 Take, for instance, the last fact in Figure 4. Argument # 
3 denotes “star, while 4 denotes “degree(ms, ba, school(usc, 
ca), 1983)“. Thus 4.1 and 4.2 respectively denote “ms” and 
‘ban, while 4.3 and 4.4 respectively denote “school(usc, ca)n 
and 1983. Thus, 4.3.1 and 4.3.2 denote “USC” and ‘ca”, 
respectively. 

q[a(1,2),b (3)] p[l.O=a ,2.O=b /1.1,1.2,2.1] 

reduces to the identity operator for any relation wit11 
three or more arguments. 
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For convenience, we also allow the 
to reorder and repeat its arguments. 

-Y[%LW] 

also represents a valid combine. 

combine operator 
Thus 

In summary, we have defined an Extended Relational 
Algebra (ERA) containing the following operators: 
ESP, join, combine and union. The importance of 
these operators follow from the following observations: 

A) Non-recursive, safe Horn Clauses can be compiled 
into ERA expressions, and 

B) ERA expressions can be supported efficiently 
using relational database implementation tech- 
niques. 

Before we enter a formal discussion, let us illustrate 
these points with some examples. The query of Figure 
G can be translated into either of the following trees: 

72,1,3,4 72.1,3,4 

I P4>1981/1,2,3,4 

t 

P’ 

P4,0=degree ,4.1=ms ,4.2=ba /1.2,4.3,4.4 

Jemp hemp 

Figure 14. Two equivalent ERA trees for the query 
of Figure I;, where p’ denotes: 
P4,0=degree ,4 l=ms ,4 ?=ba ,4.4> 1981/1,?,4 3.4 4 

On the right, the two ESP operators were combined 
into one - the composition of two ESP operators is 
always another ESP operator. The translation for the 
rule of Figure 8 is instead: 

1 72,1,3 

t 
P5>1979,5<1990/1,2,5 

L 4 O=degree $4.3 O=school/1,2,4 3 1,4.3.2,4.4 

1 em L ivy 

Figure 15. An ERA tree /or the rule of Figure 8 

This example uses the combine operator in the simpler 
form, where only a reordering of arguments takes 
place. 

5. Non Recursive Safe Formulas 

Let us formalize the previous examples by defining a 
Horn Clause Logic containing only non-recursive, safe 
formulas. 
We can start with the definition of our basic tokens 
(different conventions are possible here). 

Tokens: any string without reserved characters: 
space, comma, parentheses, braces, 
ampersand, left arrow, question mark. 

Numbers: The usual integer, floating point, and 
scientific notations will be supported. 

Variables: Tokens which begin with an upper case 
letter denote variables. 

Terms: A term is either a token or has the form 

f (arg l,...,awn ) 

where: 

f , that syntactically must be a token 
other than a number or a variable, is 
called a functor, and 
arg l,...,avn are terms, called the argu- 
ments of 1 (arg I,...,arg,~. 

A term will be called simple when all its 
arguments are tokens; it will be called 
complex otherwise. A variable of a term 
is one that appears as one of its argu- 
ments, or as a variable in some argu- 
ment of the term. 

Predicates: Predicates are top-level terms - i.e., 
terms that are not arguments of any 
other term. 

There is a number of built-in comparison predicates. 
These have the form: X@Y, where @ denotes a com- 

parison operator: =, f, >, <, 2, 5, and X and Y 
are tokens. (The > and < test always fails if X or Y 
is not a number). 

Facts: A (simple/complex) predicate without vari- 
ables is called a (simple/ complex) fact. 

Tuples: The vector of the arguments of a 
(simple/complex) fact will be called a 
(simple/complex) tuple. 

Rules: A rule has the form: 

QcP,& . &fP, (5.1) 

Where Q, P, ,..., Pk denote predicates. Q 
is called the left side, or the head, of the 
rule, while the conjunction P,B BPk 
is called its right side, or tail. 

In a database of rules, the notion of predecessors of a 
predicate can be characterized as follows: 
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(i) Q is the predecessor of P if Q is the head of the 
rule while P appears on the right side. 

(ii) The predecessor relation is reflezive and transi- 
tive. 

Non-Recursive Rules: 
A rule where the predicate on the left 
side is not a predecessor of any predicate 
on the right is called non-recursive. 

Given a database of facts and rules we can define the 
notion of safety as follows: 

Safety: A predicate that only unifies with data- 
base facts is safe. 
A rule is safe when all its variables 
appear in some safe predicate (safe vari- 
ables). 
A predicate that only unifies with safe 
rules is also safe. 

Queries: Queries have the form: 

{<Xl ,..., X, > 1 Q,8...8Qk}? (5.2) 

The result of such a query is defined as 
the set of all m-vectors of values that 
satisfy Q 1 6.. H&k in the usual logic 
sense. 

Query (5.2) will be called safe when Q1, ,Qk only 
unify with either facts or safe rules. 

A set of facts, non-recursive safe rules, and safe 
queries will be called a NRS Database. It will be pro- 
ven later that the safety conditions above do in fact 
guarantee that answers to queries in a NRS database 
are finite. We will use the term relation to denote the 
set of facts having the same functor and the same 
number of arguments. 

The intensional information in a NRS Database can 
be represented by a predicate connection graph 
[Kowalski 75, McKay 811. For notational conveni- 
ence, queries in this graph, will be assimilated to rules 
derived as follows. A query, such as (5.2), will be 
represented by a rule 

QuerYj(X~,...J,, )+Q lb...@&k (5.3) 

Where queryj is the unique name assigned to this par- 
ticular query. 

The Predicate Connection Graph [Kowalski 75, 
McKay 811 is the (directed) and/or graph constructed 
as follows: 

Rule nodes : The head of each rule is denoted by 
an and-node. 

Goal nodes : Each predicate in the tail of each rule 
is denoted by an or-node. 

R&r tion nodes : Each relation is denoted by an 
and-node. 

Example 5.1 defines an NRS Database with a predi- 
cate connection graph given in Figure 17. In our 
predicate connection graph, edges are implicitly 
assumed to point downwards. Note that each rule 
node is labeled by a left arrow. Goal nodes are their 
parents or children. Leaf nodes that are also goal 
nodes denote comparison predicates, and leaf nodes 
that are not goal nodes denote relations. Each edge 
from a goal node to a rule node defines a unification 
for the corresponding arguments of the two nodes. 
Unlike in the Rule/Goal Trees described in [Ullman 
851 however, the unification results are not propagated 
throughout the tree. The following property follows 
directly from the definitions: 

Lemma 5.1. The predicate connection graph for a 
NRS database is acyclic. 

% QUERIES 
{<L,F,S,Y> 1 new-mbas(L, F, S, Y)} ? 

{<L, F, Grad> 1 wsj(L, F, Grad)} ? 

% RULES 
% wsj stands jor Wall-Street Journal subscribes 
wsj(Last, First, mba(Yr)) + 
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new-mbas(Last, First, -,Yr) 
wsj(Last, First, ivylg(Yr)) +- ivy(Last, First, Yr) 

new-mbas(LN, FN, Sch, Year) +- 
emp(FN LN, -, degree(ms, ba, Sch, Year)) & 

Year >1981 

ivyup(Ln, Fn, Yr) + 
emp(Fn, Ln,-, degree( -,-, school(ScN, StN), Yr)) 

& ivy(ScN, StN) & Yr>1979 & Yr<1900 

% FACTS 
% the emp relation of Figure 4 and the 
% Old Ivy Leauge binary relation oj Figure 8 

Figure 16. A sample database. 

Edges in our directed graph are constructed as fol- 
lows. From each rule node, there are edges to all 
predicates (goal nodes) in the tail of the rule. More- 
over, for each goal node G , either there are edges 
from G to every rule node that unifies with it, or 
there is an edge from G to a relation node R , where 
R has the same functor and number of argument,s as 
G. 

Example 5.1: This consists of (i) the relations emp 
and ivy of Figures 4 and 7, and of the rules and 
queries given in Figure 16. Observe, that in addition 
to the rules and queries of Figures 5,G and 8, we now 
have two new rules defining the procedure wsj, and a 
query on this. 



query 1@4’;Y,s) + 
I 

query n(L,F,Grad) +- 

new-mbas(L, F, S, Y) 
I 

, WSJ F, Grad) 

First, mba(Yr))+ wsj(Last, First, ivylg(Yr)) +- 

new-mbas(Last,First, ,Yr) 
I 

ivyup(Last,First, Yr) 

Year>1981 

Figure 17. The predicate connection graph jor Example 5.1 (Figure 16). 

6. Compilation of NRS Formulas 

Each rule, say 

Q +-PI&’ .‘. BP,,, (6.1) 

undergoes four transformation steps. For notational 
simplicity, we can assume that the comparison predi- 
cates are all collected at the end of the rule (no gen- 
erality is lost here since the order of predicates is 
immaterial). 

The first step, called the rtransformation, replaces 
(6.1) by following two rules: 

Q + Q’V1,. X,) (6.2) 

Q+‘(X,;~.,X,)+P,B . ..EIP. (6.3) 

where XI, . ,X, denote the variables of Q listed in 
the very order in which they first appear in the tail oj 
(6.1). We will refer to a rule such as (6.2) as a yrule. 
This rule reorders and (possibly) combine the vari- 
ables of the simpfe predicate which constitutes the tail 
into the (possibly) complex head predicate. 

The second step, called an-transformation, factors out 
the comparison predicates of (6.3), if any of these are 
present, and projects out any tail variable not appear- 
ing in the head. Since comparison predicates are at 
the end of the tail, they can be denoted by 
Pk +r ,..., P, , with 1 <k <m . Then (6.3) is replaced 
by the pair of rules: 

Qr(&, 3,) + 

QuR(Yl, ,I’-,,) bPk+,8 . bP, (6.4) 

Q““(Yl,. ,Y,) + P,t? BP, (6.5) 

Where Y r,...,Y,, is the list of variables in the tail of 
(6.3) in the order of their first appearance (thus, 
X r, ,X, is a sublist of Y r,. .., Y, ). A rule such as 
(6.4) will be called a or-rule. 

The third step transforms each ESP predicate in the 
tail of (6.5). An ESP predicate is defined as one 
where some argument is not a variable (i.e., such an 
argument is a constant or a complex term). Say that 
Pj is an ESP predicate in the tail of (6.5). Then Pi 
is replaced by P’j (Z 1, ,Z,,, ) with Z,, . ,Z, 
denoting the non-anonymous variables of Pi. Thud 
rule (6.5) is replaced by: 

Q”‘(Y1,. ,Y,) + P’ ,d &P’ k (6.6) 

where P’ j stands for Pj if this is not an ESP predi- 
cate, and for Ppj (Z,, . . ,Z,,), defined above, oth- 
erwise. 

A rule such a (6.6), consisting of a simple predicate, 
with only variables as arguments, and where the list 
of the head variables is identical to that of the tail 
variables, will be called a J-rule. 

Finally, we have the p-transformation step. For each 
PPj predicate defined above, we have to add 

P’j(Z1, ,Z*,) c Pj (6.7) 

A rule such as (6.7), where the variables in the tail’s 
complex predicate appear as simple variables in the 
head, will be called a p-rule. 

In summary, because of these transformations, the 
original rule (6.1) was then replaced by the following 
rules: 

1) A y-rule (6.2), 

2) a a7r-rule (6.4), 
3) a J-rule (6.5), 
4) and a bunch of p-rules, such as (6.7). 

The complete transformation will therefore be called a 
~-on-J-p mapping. 

Example 6.1: The 7-w-J-p mapping applied to the 
rule of Figure 8 yields: 
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ivyup(Ln, Fn, Yr) + ivyup (Fn, Ln, Yr) 

ivyup (Fn, Ln, Yr) t 
ivyupax (Fn, Ln, Yr) & 
Yr > 1979 & Yr < 1990 

ivyupux (Fn, Ln, Yr) +- 
empP(Fn, Ln, ScN, StN, Yr) & 
ivy(ScN, StN) 

empJ’(Fn,Ln,ScN,StN,Yr)t 
emp(Fn,Ln,-,degree(-,-,school(ScN,StN),Yr)) 

Figure 18. The result of the 747r-J-p mapping on 
the rule of Figure 8. 

DeJinition 6.1: A set of queries, rules and facts is said 
to be equivalent to another, when for each query in 
the first set there exists one in the second set that 
produces exactly the same result, and vice-versa. 

Then we have the following Lemmas: 

Lemma 6.1: Given an arbitrary set of facts, rules, and 
queries on these, the 7-a?r-J-p transformation on 
rules produces an equivalent set. 

Proof: This property holds for all four steps, hence for 
their composition. 

A rule defines a mapping from sets of m -tuples to sets 
of n-tuples, where m denotes the sum of the argu- 
ment counts for the predicates in the tail, and n is 
the argument count for the head. An ERA operator 
(or operator expression) that defines the same map- 
ping will be said to implement the rule. 

Lemma 6.2: Every y-rule can be implemented by a 
combine operator. 

Prooj: In a T-rule, such as (6.2) the simple variables in 
the tail all appear, possibly reordered and combined, 
in the head. 

Lemma 6.9: Every an-rule can be implemented by an 
ESP operator. 

Proof: In a an-rule, the simple variables in the Q”” 
predicate in (6.4) - the Y’s may be subject to some 
selection conditions; moreover, some of them may not 
be present in the head. This mapping can be imple- 
mented by a selection followed by a projection, which, 
in turn, can be replaced by an ESP operation. 

Lemma 6.4: Every J-rule can be implemented by a 
Join operator. 

Proof: In a rule such as (6.6) all the arguments in the 
tail are simple and they are all contained, without 
reordering, in the head. Such a rule can then be 
implemented by a sequence of (equi)join operators as 
per the usual Domain Calculus to Relational Algebra 
mapping [Ullman 801. 
Lemma 6.5: Every p-rule can be implemented by an 
ESP operator. 
Proof: We have now a rule such as the last rule in 

Figure 18, where there is a single complex predicate 
on the right, having as arguments complex terms or 
constants, and a head having as simple arguments all 
variables in the tail, with no change in their order. 
This transformation can be implemented by the ESP 
operator constructed by applying the following recur- 
sive procedure to the tail predicate and its subterms. 

Translation of p-Rules into ESPs : For each argu- 
ment j of the term, do: 

(1) if j denotes a constant, say C , add the condition 
3 =C to the u list, 

(2) if j denotes a non-anonymous variable, add j to 
the r-list, 

(3) if j denotes an anonymous variable followed by 
a right parenthesis - the last argument in the 
term- then add the corresponding arity condi- 
tion, 

(4) if j denotes a complex term with functor 1 , 
then add the condition j.O=f to the a-list and 
recursively apply this procedure to its subargu- 
ments. 

It is then easy to show, by induction on the depth of 
the tree representing the term, that this transforma- 
tion yields a p operator that contains all conditions 
expressed by the p rule, thus it .implements the rule 
itself. 
We can connect in a tree the various operators imple- 
menting the 7-or-J-p subrules. This tree, will be 
called the yew-J-p tree, for the rule. It thus follows 
that: 

Lemma 6.6: Every rule can be implemented by a 
7-m-J-p expression. 

Example 6.1: The 7-a~--J-p tree for the rule of Figure 
7 - i.e., the rules of Figure 18 - is given in Figure 
15. 

Example 6.2: The -y-an-J-p tree for the rule of Fig- 
ure 6 is given in Figure 14. Observe that, we have 
omitted a trivial (unary join) operator. 

Example 6.3: The translation of the first wsj rule in 
Figure 16, yields an operator p[count =4/1,2,3] fol- 
lowed by a 7[1,2,mba (3)]; the ESP and join produced 
by the 7-y-a7r-J-p mapping define trivial identities and 
have been omitted. The arity condition count =A is, 
strictly speaking, unnecessary, since the arity of these 
tuples is already guaranteed by the context; our policy 
is to include the arity condition anyway, to ensure a. 
more direct correspondence to the original predicate 
connection graph, and to the filter-based implementa- 
tion discussed in the next section. The second wsj 
rule in Figure 16, map into one non-trivial operator: 
7[WWg (3)]. 

ERA DAG for an NRS Database: This graph is 
constructed from the predicate connection graph as 
follows: 
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Rule nodes : For each such a node, the comparison 
predicates hanging from the node are 
first eliminated and then the node 
itself is replaced by the yun-J-p tree 
implementing the rule. 

Goal nodes : Each such a node is replaced by an 
union operator (that reduces to the 
identity operator when the node has 
only one child). 

The ERA DAG for Example 5.1 is given in Figure 20. 

We can thus state the following theorem: 

Theorem 6.1: Queries and rules in a NRS Database 
can be implemented by ERA expres- 
sions. 

Proof: Every rule or query corresponds to a node in 
the ERA DAG. Thus, we only need to extract the 
subgraph hanging from that node, and then by node- 
splitting transform it into a tree, which represents the 
desired ERA expression. 

1 
query 1 

1 
query 2 

Yl.2,iuylg (3) 

‘I 72,1,3 

t 
P4> 1981/1.2,3,4 

t 

&>1979,5< 1990/1,2,5 

mi”y 
Figure &O. ERA DAG for Example 5.1 (Fig. 16), with: 

PI = P4,0==degree ,4 l=ms ,4 2=bo /1,2,4.3.4 4 

P2 = P4.0=degree ,4 3.0=school/1,2,4.3.1.4 3.2.4 4 

7. Implementation 

ERA DAGs and trees lend themselves to efficient 
implementations via well-established database tech- 
niques for query optimization and support by special- 
purpose hardware. 

ERA graph improvements represent the first obvious 
step towards efficient implementation. All trivial 
nodes can be eliminated and identical operators can 
be merged, as it was done in Figure 14. Moreover, 
combine and ESP operators should be migrated down- 

wards when possible, to cut down on the cardinality 
of intermediate results and the number of components 
in each tuple. The applicability of these transforma- 
tions is limited by join nodes, and also by multiple 
parent nodes when conflicting conditions are passed 
down from the ancestors. A solution consists in split- 
ting multiple parent nodes, and supporting different 
queries by different subtrees defining specialized 
subexpressions. 

The Rule/Goal Tree approach proposed in [Ullman 
851 can be viewed as a radical application of the spe- 
cialized subexpression approach. Such a tree differs 
from a predicate connection graph inasmuch as there 
is only one query node, and all unification bindings 
are propagated across the whole tree. Rule/Goal Trees 
can also be transformed into equivalent ERA expres- 
sions using the mapping described in the last section. 
As it will be discussed in future reports, the end result 
is equivalent to that obtained by starting from the 
ERA DAG, passing unary operators down and split- 
ting the multiple ancestor nodes. Since both the ERA 
DAG and the ERA tree approach offer certain advan- 
tages and drawbacks, it is expected that designers 
may want to use one or the other, or intermediate 
solutions, according to the situation at hand. 

The new ERA operations introduced can be supported 
with existing technology. A very useful device that 
has emerged from database technology is the filter 
[Bancilhon 801. Filters are capable of performing pro- 
jections and selections “on-the-fly”, and they have 
been used as the building block of various database 
machines.2 
In their more advanced realizations filters are imple- 

mented as Finite-State Automata. Similar techniques 
can be used to realize the ESP and combine operators 
of ERA. For instance the finite state analog of the 
operator p[4.0=degree ,4.1=ms ,4.2=ba /1,2,4.3,4.4] 
of Figure 15 is given in Figure 21. 

The mapping from an ESP operator a to the finite- 
state equivalent is simple. In addition to start, end, 
pass and fail, we need states for each element in the 
o/n lists, plus their siblings, their ancestors, and the 
siblings of their ancestors (e.g, if 4.3 is present then 
we also need 4.1, 4.2, 4.4 and 1, 2 and 3). Then we 
connect these states in the natural order (3 after 2 
and 4.1 after 3), and we derive the input/output pat- 
terns from the CJ/YT lists. 

The finite-state filter operates as follows. Tuples are 
processed as they stream along, with the help of a 

2 Possible duplicates resulting from projections can not be 
eliminated on-the-fly. If users do not want duplicates, then 
union operators will also have to eliminate duplicates. Thus, 
duplicate elimination can simply be obtained by leaving 
unary union operators in our ERA DAG. 



Figure 2~. The jinite state machine jor p[4.0=degree ,4.1=ms ,42=ba /1,2,4.3,4.4] 

temporary buffer. If a tuple fails some input pattern 
test, the machine is set to the fail state and the buffer 
is disposed of. Otherwise, the pass state is eventually 
reached and the tuple is accepted. In either case the 
process resumes with the next tuple. 

Actually, our filters are more powerful than the regu- 
lar finite state automata, since they can process com- 
plex fields as indivisible units. For instance, state 4.3 
must be able to extract and return the term 
school(usc,ca) from the last fact in Figure 4, disre- 
garding the comma. that, normally, represents a token 
separator, but here must be ignored because it 
appears inside parentheses. A simple mechanism to 
implement this policy is to use a parenthesis count.er. 

As discussed in future reports, simple devices are also 
available to implement the combine operators. 

8. Conclusion 

In this paper we have taken a first, but significant, 
step towards efficient implementations of Horn Clause 

Logic using database techniques. We have studied the 
unification problem, which is at the core of every LP 
system, and provided a simple estension of relational 
algebra that implements it efficiently. This result may 
be of surprise to readers who are familiar with the 
work presented in [Dwork 841, on the computational 
complexity of unification. In our approach however, 
we process Horn Clauses that normally require full 
unification in two stages. Full unification is only used 
for the first stage - the compilation stage- where 
either the predicate connection graph, or the rule/goal 
tree, is built. During the second stage, i.e., at execu- 
tion time, all that is left to do is matching, which is 
defined as the unification of two terms where only one 
contains variables. Now, since matching is amenable 
to parallel execution [Dwork 841, our results are are in 
agreement with those described in [Dwork 841. 

The approach presented in this paper proposes a new 
framework for exploiting the and/or parallelism that 

is implicit in pure Horn Clauses. The task of support- 
ing Horn Clauses via one-way unification (ma,tching) is 
performed by operators of two kinds. The first kind of 
operators include ESP and Combine operators. There 
is little to be gained by using parallelism to imple- 
ment these operators, since they operate “on-the-fly”, 
i.e., the process is dominated by the rate of flow of 
data from storage. Operators of the second kind, 
which include unions and joins, offer great opportuni- 
ties for speedup through parallelism. These are the 
sort of problems with which all implementors of 
DBMS and database machines are well-acquaint,ed. 
The techniques used range from careful selection of 
join sequences and join algorithms (query optimiza- 
tion) to the use of parallel hardware. 

This is only a preliminary result and much work 
remains to be done. We have been successful in 
reducing the implementation problem for Logic to a 
database implementation problem for non-recursive 
safe Horn Clauses, but not for the general case. Our 
frame example of Figures 9 and 10, for instance, can- 
not be compiled with our technique since the third 
rule in Figure 10 is not safe. To handle this rule we 
need to allow arithmetic expressions and recognize as 
safe, variables that are derived from other safe vari- 
ables via calculations. Also one needs to follow more 
closely the order of bindings of variables to values, as 
with the capture rules described in [Ullman 851. Com- 
pilation techniques for this case are given in [Zaniolo 
851. .Finally, we need to investigate how the ERA 
operators can be used in conjunction with the recur- 
sive rule compilation techniques proposed by various 
authors [Chang 81, Ullman 851. 
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