
The Representation and Deductive Retrieval
of Complex Objects

Carlo Zaniolo
MCC

Austin, Texas, U.S.A.

ABSTRACT

The Relational Data Model and Relational Calculus
are extended with Unification and non-recursive Horn
Clauses from Logic. The benefits gained include better
versatility and a richer functionality for expressing
complex Jack, deductive queries and rule-based inJer-
ences. Applications include semantic data models for
Databases, frames for Knowledge-based systems, and
Complex Objects for CAD. An Extended Relational
Algebra (ERA) is introduced that has the same expres-
sive power as the new Calculus. The algorithm given
for translating Jrom Calculus to ERA supplies a sound
basis for the compilation of these Horn clauses, and
their implementation using query optimization and
other techniques currently used in database systems.

1. Introduction

A strong interest is emerging in combining Databases
and Logic Programming [Gallaire 8-1, Jarke 84, Li 84,

Parker 85, Ullman 851, for reasons of theoretical and
practical import. From the theoretical viewpoint,
there is a deep affinity between relational databases
and logic programming, resulting from their common
ancestry of mathematical logic. From the practical
viewpoint, there is the realization that the two tech-
nologies provide complementary benefits. Logic Pro-
gramming (LP) entails an expressive power which
greatly surpasses that of current database query
languages, as demonstrated by its use in applications
as varied as deductive retrieval, translator systems,
CAD and expert systems. Databases, on the other

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyri&t notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. TO
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

hand, provide the technology for storing, managing
and processing efficiently very large data banks, in
addition with amenities such as sharing, recovery and
security. Therefore, it appears that a combination of
the two technologies holds the promise for new data
and knowledge base systems of great power and versa-
tility. This paper contributes towards such an objec-
tive by extending relational database techniques to
support unification on databases of complex facts.

2. Databases and Logic

In a Logic Language, the following Facts can 1~ usctl

to represent information aboul tllc first namca, the
last names, the ages and the fathers of individu;lls.

person(david, smith, 55, john)
person(jane, smith, 22, david)
person(frank, green, 23, travis)

Figure 1: A persona Jact base.

These simple facts can be represented in a relational
database using a four-column relation person con-
taining three tuples.

Queries against a fact database can be exprcsscd in a
style similar to a in-line version of QBE [Zloof 751.
For instance, let us use initial lower case to denote
constants, initial upper case for variables, and the
symbol “-” for anonymous variables (i.e., don’t care).
Then, we can express the query to find all persons
with last name “Smith” as follows:

{ <Nm, Ag> 1 person(Nm, smith, Ag, J} ?

Figure 2. Find names and ages o/persons.

Such a query, will cause our LP system to relllrn all

the pairs satisfying it:

<david, 55>
< jane, 22>

Applications, in a LP language are developed via
extensive use of rules. For instance, a rule Lo define
the paternal grandfather of a person can be written as

Proceedings of VLDB 85, Stockholm 458

follows:

grandpa(Young, LN, Old) t
person(Young, LN, -, Middle) &
person(Middle, LN, -, Old)

Figure 3. The paternal grandfather is the father oj
the father.

Rules can be thought of as a generalization of the
derived view mechanism found in relational systems,
which provide for their efficient implementation via
the usual mechanisms for query support. These
mechanisms are often based upon the mapping of
queries into equivalent Relational Algebra expressions
[Ullman 801. For instance, our grandpa view can be
translated into a join of the second and fourth column
of person with the second and first column of person
again, followed by a projection. Indeed, Codd’s
fundamental result [Codd 711 states that any query of
relational calculus can be translated into an
equivalent expression of relational algebra. The impor-
tance of this result cannot be overemphasized since,
(i) it characterizes the expressive power of relational
systems, and (ii) it supplies the foundation for efficient
implementations of relational queries by compilation
and optimization techniques or special hardware
(database machines).

No relational algebra equivalent is currently known
for Horn Clause Logic, since this surpasses the expres-
sive power of relational calculus in two main respects:

(1) the availability of recursive rules, and

(2) the availability of general unification.

The subject of databases with recursive rules has
received wide attention, particularly in relation to rule
compilation, and replacement of recursion with itera-
tion [Aho 79, Chandra 82, Henschen 84, hlcI<ay 81,
Naqvi 83, Ullman 851. Comparatively less attention
has been paid, until now, to the unification problem
addressed in this paper. In the next section we illus-
trate, by means of examples, the many useful applica-
tions of unification in databases and knowledge-based
systems.

3. Complex Facts and their Applications

The arguments of a logic predicate need not be sim-
ple, but they may be complex- i.e., consist of a func-
tor with possibly complex arguments. A great deal of
power emanates from this flexibility. Say, for instance,
that we want to store information about employees,
including their last and first names, their job
classification and their education. The information
requirements for education depend on the education
level. For instance, only the graduation year is stored
for high school graduates, while a degree description,
with major and graduation year, is kept for college
graduates. For bachelor and higher degrees the school
name is also required. A sample from our database is
shown in Figure 4.

Thus, while Joe Cool has no degree, as indicated by
“none”, Max Fax got his high school degree in 1976.
Moreover, Joe Doe got a Master in English from Har-
vard, MA, in 1981, and Fred Red got his Master in
Business Administration from USC, CA, in 1983.
(Note the use of a function symbol with different
numbers of arguments. Although this is a departure
from the textbooks on Logic, it is commonly done in
Logic Programming.)

In Logic, queries and rule-based deduction against a
database of complex facts, such as that of Figure 4,
can be expressed in a very simple fashion. For
instance, to find all the MBA’s, with their schools,
who graduated after 1981, one only needs to state the
rule:

new-mbas(LN, FN, Sch, Year) +
emp(FN LN, -, degree(ms, ba, Sch, Year)) &
Year >lQgl

Figure 5. Name, School and Year for MBAs who
graduated after 1981.

Then the query:

{<L,F,S,Y> (new-mbas(L, F, S, Y)} 7

Figure 6. Retrieving the MBAs of Figure 5.

a relation ojjacts with complex fields:
emp(FirstName, LastName, JobClass, Degree)

emp(joe, cool, porter, none)
emp(max, fax, guard, degree(hs, 1976))
emp(joe, doe, vp,
emp(fred, red, staff,

degree(ms, engl, school(harvard, ma), 1981))
degree(ms, ba, school(usc, ca), 1983))

Figure 4. A database of complex facts.

453

will return:

<red, fred, 1983, school(usc, ca)>.

These examples illustrate the flexibility and power of
Logic Programming in dealing with complex facts,
inasmuch as the subcomponents of a term can be
qualified separately or treated as a unit (e.g., the
argument Sch in degree). To come close to this kind
of flexibility in a more conventional DBMS, the con-
cept of generalization [Smith 771 will have to be SUP-
ported; then two subtypes must be declared, one for

employees with high school degree only, the other for
employees with a college degree. As discussed in
[Zaniolo 831 queries involving generalization can be
handled by extensions of relational languages. These
in turn can be implemented on top of relational sys-
tems [Tsur 841, but not without additional complica-
tions such as extensive use of null values. However,
complex objects in a LP system provide the power of
semantic data models in a simpler and more versatile
framework - complex objects can either be made
available to users directly, or can be used in the
implementation of a semantic data model and
language, such as that described in [Zaniolo 831.

For a second example, let us assume that we have a
list of names and states for Ivy League universities:

% name and state of ivy leag,ue schools
ivy (harvard, ma)
ivy (Princeton, 4
ivy (brown, ri)
ivy (Yale, 4
ivy (Cornell, nY)
ivy (Pennsylvania, pa)
ivy (Columbia, “Y)
ivy (dartmouth, “h)
Figure 7. The old Ivy League.

A list of all Ivy League graduates, for the 80’s can be
obtained as follows:

% ivyup stands for Ivy-Yuppies
ivyup(Ln, Fn, Yr) t
emp(Fn, Ln, ,, degree(-, -, school(ScN, StN), Yr))
& ivy(ScN, StN) & Yr > 1979 & Yr < 1990

Figure 8. Defining those Ivy League Yuppies.

Another very useful application of complex objects is
for knowledge primitives such as frames, whose
representational power is based upon flexible mechan-
isms for deriving values associated with arguments
(slots) [Winston 791. For instance, values could be
explicitly stored or derived via calculations or default
assignments. The functionality of frames can be sup-
ported using facts and rules with complex arguments
[Zaniolo 84][Kowalski 841 as illustrated by the follow-

ing example.

We have flat CAD parts identified by a unique part
number and described by their geometric shape. Thus
circles are characterized by their diameter (one
parameter), while rectangles are described by their
base and height (two parameters) and triangles by
their three sides (three parameters), and so on. There
is also a third argument that defines the weight of the
part. A sample database could for instance be the fol-
lowing.

% part(Pn0, Shape, Weight-Info)
part(OO1l, rectangle(ll., 7.), value(140.))
part(1002, triangle(4., 3., 5.), negligible)
part(1033, square(23.5), default)
part(2000, circle(30.), table)
part(2222, circle(30.), table(2000))

Figure 9. These are flat parts.

The third arguments of these five facts illustrate live
different schemes for deriving the weight of the part.

value(140.):

negligible:

default:

table:

table(2000):

The part’s measured weight is 140
(onces); this value can thus be stored
explicitly.

The weight of the part is minimal (and
can be regarded as zero in most situa-
tions);

The weight of the part has not been
measured but it can be estimated by
multiplying its surface area (known from
its shape) by its specific weight.

This is a prototypical part whose weight
is kept in a table called w-table.

The weight for this part is to be found
by looking up the weight of the proto-
typical part 3000.

These five different schemes for computing the weight
of a part can be implemented by the following five
rules:

weight(Pno, W) +-
weight(Pno, 0) t
weight(Pno, W) +-

weight(Pno, W) c

weight(Pno, W) t

part(Pn0, -, value(W))
part(Pno, ,, negligible)
part(Pno, Shape, default)
& area(Shape, Area)&
W = Area* 1.2
part(Pno, -, table)&
w-table(Pno, W)
part(Pno, -, table(P2))&
w-table(P2, W)

Figure 10. Five ways to get the weight of a flat part.

These rules in turn, refer to other rules for computing
areas,

460

area(rectangle(Base, Height), Ar) t
Ar = Base * Height

area(square(Base), Ar) + Ar = Base * Base

Figure 11. Area rules for geometric shapes.

and to a list of prototypical weights, such as:

w-table(1221, 12.5)
w-table(1136, 131.6)
w-table(2000, 25.6)

Figure 12. The weight table.

Thus complex arguments and associated rules deliver
the functionality of frames (not shown here, is the
support for the ISA inheritance which can be
obtained with the techniques described in [Zaniolo
841). Applications may either use rules and complex
facts directly, or through an additional layer that sup-
ports frames as a high level construct - internally
implemented by suitable rules on complex objects.

Another very important use of unification and com-
plex arguments is in the representation and handling
of recursive data structures, such as trees and lists. It
is also well-known that functions symbols cannot be
removed from recursive predicates by the introduction
of additional predicates. Now, while the operators
described in the next sections are extremely useful in
processing efficiently these recursive data structures as
well, a discussion of this topic is not to be found in
this paper, since treating it would force us into the
difficult problem of recursive rule compilation, which
is orthogonal to the scope of this manuscript that is

primarily concerned with unification.

4. An Extended Relational Algebra

The execution strategies for queries in Logic Program-
ming system are very different from those of a data-
base system. In the current implementations of a
logic based language, e.g., Prolog’s interpreters and
compilers [Campbell 841, the processing of rules is
intertwined with the accessing of facts. Moreover, the
results of successful unifications are kept as variable
bindings in the environment. Alternative solutions are
produced through backtracking. In relational database
systems however, a query on either base relations 01
on derived views, would be compiled into sequences of
relational algebra-like operators, that are later exe-
cuted against the fact database. For instance the
query,

{<Gc, Lst, Gp>) grandpa(Gc, Lst, GP)}?

can be translated into an equivalent relational algebra
tree:

per&n \ person

Figure 13. Relational Algebra tree for of Figure 9.

Such a tree is commonly used by a query optimizer to
generate the actual program that implements the
query. In addition, it outlines a conceptual execution
model for compiled database queries. In this model,
data is viewed as flowing upwards from the leaf nodes
toward the top, a.nd being transformed in the 11ro~~ss
by the operators associated with the nodes. In con-
tradistinction with Prolog’s execution model, this exe-
cution paradigm is denoted by

i) the absence of explicit variable bindings since all
inter-rule unification work is done at compile
time (intra-rule unifications, i.e., joins, are still
performed at execution time).

ii) the absence of backtracking, since an explicit set
of tuples (partial results) is now associated with
each node. These partial results are then passed
to the ancestor nodes, possibly as they are being
generated - on the fly - for select and project
nodes, or after some off-line storing and process-
ing in the case of joins.

As realized by various researchers [Reiter 78, Ullman
851, the database execution strategy offers many
advantages in terms of efficiency, particularly when
large fact bases are involved, since much of the
unification work is done at compile time, and a set-
oriented processing is used rather than a tuple-at-a
time processing with backtracking. Thus, a number of
optimization and special-purpose techniques can be
applied to speed up execution. For instance, sort-joins
can replace the looping-join strategy to which Prolog’s
compilers are restricted. (Our arguments are couched
here in terms of software implementations but similar
considerations can be made for hardware.)

Therefore, we want to provide database-like tcch-
niques for compiling logic queries involving
unification, such as that of Figure 4, where we have
conditions involving subcomponents of complex argu-
ments. Since the standard relational algebra is inade-
quate to the task, we introduce an Extended Rela-
tional Algebra (ERA) that will do the job. This alge-
bra contains the usual set union, and Cartesian pro-
duct, plus extended select and project operators and a.
new operator called the combine.
Extended Select: When operating on traditional
simple arguments, the new select operator reduces to
the old relational one. For complex arguments, how-
ever the new operator can select on the basis of the
value of both functors and subarguments. We use

Dewey’s decimal notation, to denote the subargu-
ments in a complex 0bject.l Thus the operator:

applied to emp will return

a[4=none]

and

c7[4.1=ms ,4.4X981]

will respectively select from emp those with no degree
and with an MS degree after 1981. Note that complex
objects can either be used as a unit or addressed by
individual subcomponents. Thus,

a[4.3=school (harvard ,ma)]

and

a[4.3.0=school, 4.3.1=harvard, 4.3.2=ma]

represent two legal ways to retrieve Harvard’s alumni
from the emp relation. We can also select on the
value of the functor of a complex argument, which
will be denoted by a zero suffix. Thus,

<joe, doe, ms, school(harvard, ma)>
< fred, red, 1119, school(usc, ca)>

thus eliminating the first two’ tuples for which the
component 4.3 is not defined.

For convenience, we also define two additional opera-
tors. The first is the traditional (equi)join, that can be
defined as a Cartesian product followed by equality
restrictions. We follow here the convention of not
repeating the join columns; thus, in Figure 3, two
instances of person, that has arity four, joined by
equating two pairs of columns, yield a relation of arity
six. We also follow the convention of considering the
Cartesian product a degenerate type of join. The
second derived operator is the Extended
Select/Project (ESP), described next.

Extended Select/Project (ESP): This operator is
defined as the composition of an extended select fol-
lowed by an extended project. For instance, the com-
position of

a[4.0=degree] a[4.3.1=harvard ,4.3.2=ma]

may be used to select from emp all those employees
who have a degree. The argument count in a complex
term T will be denoted by T.count . This allow us to
express selection on the number of arguments of T
(see next, section for a formal definition of the number
of arguments in a term). For instance, a query to find
a tuple in emp where the fourth argument contains
exactly 2 subarguments, can be as follows:

with

n[1,2,4.1,4.3]

is denoted by,

p[4.3.1=harvard ,4.3.2=ma /1,2,4.1,4.3]

a[4.count =2]

Thus, only the second tuple in Figure 4 satisfies this
condition. This kind of condition will be called an
arity condition.

We will refer to the lists to the left and right of the
slash as the u-list and the n-list, respectively.

Combine Operator: The combine operator com-
bines the various arguments of a predicate into one 01
more complex arguments. It will be denoted by
gamma. For instance,

Extended Project: The extended project operator
also refers to arguments and subarguments using
Dewey’s notation. For instance,

~[school(l,state (2))]

applied to the ivy relation, produces tuples of the
form:

7+,2,4]

will retrieve all emp tuples, with the third argument
omitted, much as in the traditional relational style.
However, the operatot

<school(harvard, state(ma))>

Thus, the expression in the brackets of a combine is
basically a complex fact, where integers are used to
denote arguments by their position number (if the

number exceeds the argument count in the relation,
the result is undefined). Thus:

1 Take, for instance, the last fact in Figure 4. Argument #
3 denotes “star, while 4 denotes “degree(ms, ba, school(usc,
ca), 1983)“. Thus 4.1 and 4.2 respectively denote “ms” and
‘ban, while 4.3 and 4.4 respectively denote “school(usc, ca)n
and 1983. Thus, 4.3.1 and 4.3.2 denote “USC” and ‘ca”,
respectively.

q[a(1,2),b (3)] p[l.O=a ,2.O=b /1.1,1.2,2.1]

reduces to the identity operator for any relation wit11
three or more arguments.

462

For convenience, we also allow the
to reorder and repeat its arguments.

-Y[%LW]

also represents a valid combine.

combine operator
Thus

In summary, we have defined an Extended Relational
Algebra (ERA) containing the following operators:
ESP, join, combine and union. The importance of
these operators follow from the following observations:

A) Non-recursive, safe Horn Clauses can be compiled
into ERA expressions, and

B) ERA expressions can be supported efficiently
using relational database implementation tech-
niques.

Before we enter a formal discussion, let us illustrate
these points with some examples. The query of Figure
G can be translated into either of the following trees:

72,1,3,4 72.1,3,4

I P4>1981/1,2,3,4

t

P’

P4,0=degree ,4.1=ms ,4.2=ba /1.2,4.3,4.4

Jemp hemp

Figure 14. Two equivalent ERA trees for the query
of Figure I;, where p’ denotes:
P4,0=degree ,4 l=ms ,4 ?=ba ,4.4> 1981/1,?,4 3.4 4

On the right, the two ESP operators were combined
into one - the composition of two ESP operators is
always another ESP operator. The translation for the
rule of Figure 8 is instead:

1 72,1,3

t
P5>1979,5<1990/1,2,5

L 4 O=degree $4.3 O=school/1,2,4 3 1,4.3.2,4.4

1 em L ivy

Figure 15. An ERA tree /or the rule of Figure 8

This example uses the combine operator in the simpler
form, where only a reordering of arguments takes
place.

5. Non Recursive Safe Formulas

Let us formalize the previous examples by defining a
Horn Clause Logic containing only non-recursive, safe
formulas.
We can start with the definition of our basic tokens
(different conventions are possible here).

Tokens: any string without reserved characters:
space, comma, parentheses, braces,
ampersand, left arrow, question mark.

Numbers: The usual integer, floating point, and
scientific notations will be supported.

Variables: Tokens which begin with an upper case
letter denote variables.

Terms: A term is either a token or has the form

f (arg l,...,awn)

where:

f , that syntactically must be a token
other than a number or a variable, is
called a functor, and
arg l,...,avn are terms, called the argu-
ments of 1 (arg I,...,arg,~.

A term will be called simple when all its
arguments are tokens; it will be called
complex otherwise. A variable of a term
is one that appears as one of its argu-
ments, or as a variable in some argu-
ment of the term.

Predicates: Predicates are top-level terms - i.e.,
terms that are not arguments of any
other term.

There is a number of built-in comparison predicates.
These have the form: X@Y, where @ denotes a com-

parison operator: =, f, >, <, 2, 5, and X and Y
are tokens. (The > and < test always fails if X or Y
is not a number).

Facts: A (simple/complex) predicate without vari-
ables is called a (simple/ complex) fact.

Tuples: The vector of the arguments of a
(simple/complex) fact will be called a
(simple/complex) tuple.

Rules: A rule has the form:

QcP,& . &fP, (5.1)

Where Q, P, ,..., Pk denote predicates. Q
is called the left side, or the head, of the
rule, while the conjunction P,B BPk
is called its right side, or tail.

In a database of rules, the notion of predecessors of a
predicate can be characterized as follows:

463

(i) Q is the predecessor of P if Q is the head of the
rule while P appears on the right side.

(ii) The predecessor relation is reflezive and transi-
tive.

Non-Recursive Rules:
A rule where the predicate on the left
side is not a predecessor of any predicate
on the right is called non-recursive.

Given a database of facts and rules we can define the
notion of safety as follows:

Safety: A predicate that only unifies with data-
base facts is safe.
A rule is safe when all its variables
appear in some safe predicate (safe vari-
ables).
A predicate that only unifies with safe
rules is also safe.

Queries: Queries have the form:

{<Xl ,..., X, > 1 Q,8...8Qk}? (5.2)

The result of such a query is defined as
the set of all m-vectors of values that
satisfy Q 1 6.. H&k in the usual logic
sense.

Query (5.2) will be called safe when Q1, ,Qk only
unify with either facts or safe rules.

A set of facts, non-recursive safe rules, and safe
queries will be called a NRS Database. It will be pro-
ven later that the safety conditions above do in fact
guarantee that answers to queries in a NRS database
are finite. We will use the term relation to denote the
set of facts having the same functor and the same
number of arguments.

The intensional information in a NRS Database can
be represented by a predicate connection graph
[Kowalski 75, McKay 811. For notational conveni-
ence, queries in this graph, will be assimilated to rules
derived as follows. A query, such as (5.2), will be
represented by a rule

QuerYj(X~,...J,,)+Q lb...@&k (5.3)

Where queryj is the unique name assigned to this par-
ticular query.

The Predicate Connection Graph [Kowalski 75,
McKay 811 is the (directed) and/or graph constructed
as follows:

Rule nodes : The head of each rule is denoted by
an and-node.

Goal nodes : Each predicate in the tail of each rule
is denoted by an or-node.

R&r tion nodes : Each relation is denoted by an
and-node.

Example 5.1 defines an NRS Database with a predi-
cate connection graph given in Figure 17. In our
predicate connection graph, edges are implicitly
assumed to point downwards. Note that each rule
node is labeled by a left arrow. Goal nodes are their
parents or children. Leaf nodes that are also goal
nodes denote comparison predicates, and leaf nodes
that are not goal nodes denote relations. Each edge
from a goal node to a rule node defines a unification
for the corresponding arguments of the two nodes.
Unlike in the Rule/Goal Trees described in [Ullman
851 however, the unification results are not propagated
throughout the tree. The following property follows
directly from the definitions:

Lemma 5.1. The predicate connection graph for a
NRS database is acyclic.

% QUERIES
{<L,F,S,Y> 1 new-mbas(L, F, S, Y)} ?

{<L, F, Grad> 1 wsj(L, F, Grad)} ?

% RULES
% wsj stands jor Wall-Street Journal subscribes
wsj(Last, First, mba(Yr)) +

464

new-mbas(Last, First, -,Yr)
wsj(Last, First, ivylg(Yr)) +- ivy(Last, First, Yr)

new-mbas(LN, FN, Sch, Year) +-
emp(FN LN, -, degree(ms, ba, Sch, Year)) &

Year >1981

ivyup(Ln, Fn, Yr) +
emp(Fn, Ln,-, degree(-,-, school(ScN, StN), Yr))

& ivy(ScN, StN) & Yr>1979 & Yr<1900

% FACTS
% the emp relation of Figure 4 and the
% Old Ivy Leauge binary relation oj Figure 8

Figure 16. A sample database.

Edges in our directed graph are constructed as fol-
lows. From each rule node, there are edges to all
predicates (goal nodes) in the tail of the rule. More-
over, for each goal node G , either there are edges
from G to every rule node that unifies with it, or
there is an edge from G to a relation node R , where
R has the same functor and number of argument,s as
G.

Example 5.1: This consists of (i) the relations emp
and ivy of Figures 4 and 7, and of the rules and
queries given in Figure 16. Observe, that in addition
to the rules and queries of Figures 5,G and 8, we now
have two new rules defining the procedure wsj, and a
query on this.

query 1@4’;Y,s) +
I

query n(L,F,Grad) +-

new-mbas(L, F, S, Y)
I

, WSJ F, Grad)

First, mba(Yr))+ wsj(Last, First, ivylg(Yr)) +-

new-mbas(Last,First, ,Yr)
I

ivyup(Last,First, Yr)

Year>1981

Figure 17. The predicate connection graph jor Example 5.1 (Figure 16).

6. Compilation of NRS Formulas

Each rule, say

Q +-PI&’ .‘. BP,,, (6.1)

undergoes four transformation steps. For notational
simplicity, we can assume that the comparison predi-
cates are all collected at the end of the rule (no gen-
erality is lost here since the order of predicates is
immaterial).

The first step, called the rtransformation, replaces
(6.1) by following two rules:

Q + Q’V1,. X,) (6.2)

Q+‘(X,;~.,X,)+P,B . ..EIP. (6.3)

where XI, . ,X, denote the variables of Q listed in
the very order in which they first appear in the tail oj
(6.1). We will refer to a rule such as (6.2) as a yrule.
This rule reorders and (possibly) combine the vari-
ables of the simpfe predicate which constitutes the tail
into the (possibly) complex head predicate.

The second step, called an-transformation, factors out
the comparison predicates of (6.3), if any of these are
present, and projects out any tail variable not appear-
ing in the head. Since comparison predicates are at
the end of the tail, they can be denoted by
Pk +r ,..., P, , with 1 <k <m . Then (6.3) is replaced
by the pair of rules:

Qr(&, 3,) +

QuR(Yl, ,I’-,,) bPk+,8 . bP, (6.4)

Q““(Yl,. ,Y,) + P,t? BP, (6.5)

Where Y r,...,Y,, is the list of variables in the tail of
(6.3) in the order of their first appearance (thus,
X r, ,X, is a sublist of Y r,. .., Y,). A rule such as
(6.4) will be called a or-rule.

The third step transforms each ESP predicate in the
tail of (6.5). An ESP predicate is defined as one
where some argument is not a variable (i.e., such an
argument is a constant or a complex term). Say that
Pj is an ESP predicate in the tail of (6.5). Then Pi
is replaced by P’j (Z 1, ,Z,,,) with Z,, . ,Z,
denoting the non-anonymous variables of Pi. Thud
rule (6.5) is replaced by:

Q”‘(Y1,. ,Y,) + P’ ,d &P’ k (6.6)

where P’ j stands for Pj if this is not an ESP predi-
cate, and for Ppj (Z,, . . ,Z,,), defined above, oth-
erwise.

A rule such a (6.6), consisting of a simple predicate,
with only variables as arguments, and where the list
of the head variables is identical to that of the tail
variables, will be called a J-rule.

Finally, we have the p-transformation step. For each
PPj predicate defined above, we have to add

P’j(Z1, ,Z*,) c Pj (6.7)

A rule such as (6.7), where the variables in the tail’s
complex predicate appear as simple variables in the
head, will be called a p-rule.

In summary, because of these transformations, the
original rule (6.1) was then replaced by the following
rules:

1) A y-rule (6.2),

2) a a7r-rule (6.4),
3) a J-rule (6.5),
4) and a bunch of p-rules, such as (6.7).

The complete transformation will therefore be called a
~-on-J-p mapping.

Example 6.1: The 7-w-J-p mapping applied to the
rule of Figure 8 yields:

4 6 5

ivyup(Ln, Fn, Yr) + ivyup (Fn, Ln, Yr)

ivyup (Fn, Ln, Yr) t
ivyupax (Fn, Ln, Yr) &
Yr > 1979 & Yr < 1990

ivyupux (Fn, Ln, Yr) +-
empP(Fn, Ln, ScN, StN, Yr) &
ivy(ScN, StN)

empJ’(Fn,Ln,ScN,StN,Yr)t
emp(Fn,Ln,-,degree(-,-,school(ScN,StN),Yr))

Figure 18. The result of the 747r-J-p mapping on
the rule of Figure 8.

DeJinition 6.1: A set of queries, rules and facts is said
to be equivalent to another, when for each query in
the first set there exists one in the second set that
produces exactly the same result, and vice-versa.

Then we have the following Lemmas:

Lemma 6.1: Given an arbitrary set of facts, rules, and
queries on these, the 7-a?r-J-p transformation on
rules produces an equivalent set.

Proof: This property holds for all four steps, hence for
their composition.

A rule defines a mapping from sets of m -tuples to sets
of n-tuples, where m denotes the sum of the argu-
ment counts for the predicates in the tail, and n is
the argument count for the head. An ERA operator
(or operator expression) that defines the same map-
ping will be said to implement the rule.

Lemma 6.2: Every y-rule can be implemented by a
combine operator.

Prooj: In a T-rule, such as (6.2) the simple variables in
the tail all appear, possibly reordered and combined,
in the head.

Lemma 6.9: Every an-rule can be implemented by an
ESP operator.

Proof: In a an-rule, the simple variables in the Q””
predicate in (6.4) - the Y’s may be subject to some
selection conditions; moreover, some of them may not
be present in the head. This mapping can be imple-
mented by a selection followed by a projection, which,
in turn, can be replaced by an ESP operation.

Lemma 6.4: Every J-rule can be implemented by a
Join operator.

Proof: In a rule such as (6.6) all the arguments in the
tail are simple and they are all contained, without
reordering, in the head. Such a rule can then be
implemented by a sequence of (equi)join operators as
per the usual Domain Calculus to Relational Algebra
mapping [Ullman 801.
Lemma 6.5: Every p-rule can be implemented by an
ESP operator.
Proof: We have now a rule such as the last rule in

Figure 18, where there is a single complex predicate
on the right, having as arguments complex terms or
constants, and a head having as simple arguments all
variables in the tail, with no change in their order.
This transformation can be implemented by the ESP
operator constructed by applying the following recur-
sive procedure to the tail predicate and its subterms.

Translation of p-Rules into ESPs : For each argu-
ment j of the term, do:

(1) if j denotes a constant, say C , add the condition
3 =C to the u list,

(2) if j denotes a non-anonymous variable, add j to
the r-list,

(3) if j denotes an anonymous variable followed by
a right parenthesis - the last argument in the
term- then add the corresponding arity condi-
tion,

(4) if j denotes a complex term with functor 1 ,
then add the condition j.O=f to the a-list and
recursively apply this procedure to its subargu-
ments.

It is then easy to show, by induction on the depth of
the tree representing the term, that this transforma-
tion yields a p operator that contains all conditions
expressed by the p rule, thus it .implements the rule
itself.
We can connect in a tree the various operators imple-
menting the 7-or-J-p subrules. This tree, will be
called the yew-J-p tree, for the rule. It thus follows
that:

Lemma 6.6: Every rule can be implemented by a
7-m-J-p expression.

Example 6.1: The 7-a~--J-p tree for the rule of Figure
7 - i.e., the rules of Figure 18 - is given in Figure
15.

Example 6.2: The -y-an-J-p tree for the rule of Fig-
ure 6 is given in Figure 14. Observe that, we have
omitted a trivial (unary join) operator.

Example 6.3: The translation of the first wsj rule in
Figure 16, yields an operator p[count =4/1,2,3] fol-
lowed by a 7[1,2,mba (3)]; the ESP and join produced
by the 7-y-a7r-J-p mapping define trivial identities and
have been omitted. The arity condition count =A is,
strictly speaking, unnecessary, since the arity of these
tuples is already guaranteed by the context; our policy
is to include the arity condition anyway, to ensure a.
more direct correspondence to the original predicate
connection graph, and to the filter-based implementa-
tion discussed in the next section. The second wsj
rule in Figure 16, map into one non-trivial operator:
7[WWg (3)].

ERA DAG for an NRS Database: This graph is
constructed from the predicate connection graph as
follows:

466

Rule nodes : For each such a node, the comparison
predicates hanging from the node are
first eliminated and then the node
itself is replaced by the yun-J-p tree
implementing the rule.

Goal nodes : Each such a node is replaced by an
union operator (that reduces to the
identity operator when the node has
only one child).

The ERA DAG for Example 5.1 is given in Figure 20.

We can thus state the following theorem:

Theorem 6.1: Queries and rules in a NRS Database
can be implemented by ERA expres-
sions.

Proof: Every rule or query corresponds to a node in
the ERA DAG. Thus, we only need to extract the
subgraph hanging from that node, and then by node-
splitting transform it into a tree, which represents the
desired ERA expression.

1
query 1

1
query 2

Yl.2,iuylg (3)

‘I 72,1,3

t
P4> 1981/1.2,3,4

t

&>1979,5< 1990/1,2,5

mi”y
Figure &O. ERA DAG for Example 5.1 (Fig. 16), with:

PI = P4,0==degree ,4 l=ms ,4 2=bo /1,2,4.3.4 4

P2 = P4.0=degree ,4 3.0=school/1,2,4.3.1.4 3.2.4 4

7. Implementation

ERA DAGs and trees lend themselves to efficient
implementations via well-established database tech-
niques for query optimization and support by special-
purpose hardware.

ERA graph improvements represent the first obvious
step towards efficient implementation. All trivial
nodes can be eliminated and identical operators can
be merged, as it was done in Figure 14. Moreover,
combine and ESP operators should be migrated down-

wards when possible, to cut down on the cardinality
of intermediate results and the number of components
in each tuple. The applicability of these transforma-
tions is limited by join nodes, and also by multiple
parent nodes when conflicting conditions are passed
down from the ancestors. A solution consists in split-
ting multiple parent nodes, and supporting different
queries by different subtrees defining specialized
subexpressions.

The Rule/Goal Tree approach proposed in [Ullman
851 can be viewed as a radical application of the spe-
cialized subexpression approach. Such a tree differs
from a predicate connection graph inasmuch as there
is only one query node, and all unification bindings
are propagated across the whole tree. Rule/Goal Trees
can also be transformed into equivalent ERA expres-
sions using the mapping described in the last section.
As it will be discussed in future reports, the end result
is equivalent to that obtained by starting from the
ERA DAG, passing unary operators down and split-
ting the multiple ancestor nodes. Since both the ERA
DAG and the ERA tree approach offer certain advan-
tages and drawbacks, it is expected that designers
may want to use one or the other, or intermediate
solutions, according to the situation at hand.

The new ERA operations introduced can be supported
with existing technology. A very useful device that
has emerged from database technology is the filter
[Bancilhon 801. Filters are capable of performing pro-
jections and selections “on-the-fly”, and they have
been used as the building block of various database
machines.2
In their more advanced realizations filters are imple-

mented as Finite-State Automata. Similar techniques
can be used to realize the ESP and combine operators
of ERA. For instance the finite state analog of the
operator p[4.0=degree ,4.1=ms ,4.2=ba /1,2,4.3,4.4]
of Figure 15 is given in Figure 21.

The mapping from an ESP operator a to the finite-
state equivalent is simple. In addition to start, end,
pass and fail, we need states for each element in the
o/n lists, plus their siblings, their ancestors, and the
siblings of their ancestors (e.g, if 4.3 is present then
we also need 4.1, 4.2, 4.4 and 1, 2 and 3). Then we
connect these states in the natural order (3 after 2
and 4.1 after 3), and we derive the input/output pat-
terns from the CJ/YT lists.

The finite-state filter operates as follows. Tuples are
processed as they stream along, with the help of a

2 Possible duplicates resulting from projections can not be
eliminated on-the-fly. If users do not want duplicates, then
union operators will also have to eliminate duplicates. Thus,
duplicate elimination can simply be obtained by leaving
unary union operators in our ERA DAG.

Figure 2~. The jinite state machine jor p[4.0=degree ,4.1=ms ,42=ba /1,2,4.3,4.4]

temporary buffer. If a tuple fails some input pattern
test, the machine is set to the fail state and the buffer
is disposed of. Otherwise, the pass state is eventually
reached and the tuple is accepted. In either case the
process resumes with the next tuple.

Actually, our filters are more powerful than the regu-
lar finite state automata, since they can process com-
plex fields as indivisible units. For instance, state 4.3
must be able to extract and return the term
school(usc,ca) from the last fact in Figure 4, disre-
garding the comma. that, normally, represents a token
separator, but here must be ignored because it
appears inside parentheses. A simple mechanism to
implement this policy is to use a parenthesis count.er.

As discussed in future reports, simple devices are also
available to implement the combine operators.

8. Conclusion

In this paper we have taken a first, but significant,
step towards efficient implementations of Horn Clause

Logic using database techniques. We have studied the
unification problem, which is at the core of every LP
system, and provided a simple estension of relational
algebra that implements it efficiently. This result may
be of surprise to readers who are familiar with the
work presented in [Dwork 841, on the computational
complexity of unification. In our approach however,
we process Horn Clauses that normally require full
unification in two stages. Full unification is only used
for the first stage - the compilation stage- where
either the predicate connection graph, or the rule/goal
tree, is built. During the second stage, i.e., at execu-
tion time, all that is left to do is matching, which is
defined as the unification of two terms where only one
contains variables. Now, since matching is amenable
to parallel execution [Dwork 841, our results are are in
agreement with those described in [Dwork 841.

The approach presented in this paper proposes a new
framework for exploiting the and/or parallelism that

is implicit in pure Horn Clauses. The task of support-
ing Horn Clauses via one-way unification (ma,tching) is
performed by operators of two kinds. The first kind of
operators include ESP and Combine operators. There
is little to be gained by using parallelism to imple-
ment these operators, since they operate “on-the-fly”,
i.e., the process is dominated by the rate of flow of
data from storage. Operators of the second kind,
which include unions and joins, offer great opportuni-
ties for speedup through parallelism. These are the
sort of problems with which all implementors of
DBMS and database machines are well-acquaint,ed.
The techniques used range from careful selection of
join sequences and join algorithms (query optimiza-
tion) to the use of parallel hardware.

This is only a preliminary result and much work
remains to be done. We have been successful in
reducing the implementation problem for Logic to a
database implementation problem for non-recursive
safe Horn Clauses, but not for the general case. Our
frame example of Figures 9 and 10, for instance, can-
not be compiled with our technique since the third
rule in Figure 10 is not safe. To handle this rule we
need to allow arithmetic expressions and recognize as
safe, variables that are derived from other safe vari-
ables via calculations. Also one needs to follow more
closely the order of bindings of variables to values, as
with the capture rules described in [Ullman 851. Com-
pilation techniques for this case are given in [Zaniolo
851. .Finally, we need to investigate how the ERA
operators can be used in conjunction with the recur-
sive rule compilation techniques proposed by various
authors [Chang 81, Ullman 851.

Acknowledgments

I am grateful to Charles Kellogg, Roger Nasr, Rolf
Stachowitz and the referees for many helpful com-
ments on an early draft of this manuscript, and to
Francois Bancilhon and Dick Tsur for stimulating dis-
cussions.

468

References

[Aho 791 A. Aho and J. Ullman, “Universality of
Data Retrieval Languages”, Proceed-
ings of 6th POPL, 1979.

[Bancilhon 801 F. Bancilhon and M. School, “On

[Campbell 841

]Chandra 82)

[Chang 811

[Codd 72)

[Dwork 841

[Gallaire ,841

[Henschen 841

[Jarke 841

[Kow alski 751

[Kowalski 841

[McKay Sl]

(Naqvi 831

Designing an I/O Processor for a Rela-
tional Database Machine”, Proc.
ACM-SIGMOD on Management of
Data, pp. 93-93g, 1984.

J. A. Campbell, “Implementations of
Prolog,” Ellis Horwood Ltd., 1984.

A. Chandra and D. Harel, “Structure
and Complexity of Relational Queries”,
JCSS es, 99-l 28 (198.2)

C. Chang, “On evaluation of Queries
Containing Derived Relations in Rela-
tional Database” In Advances in Data
Base Theory, Vol. 1, H. Gallaire, J.
Minker and J.M. Nicolas (eds.), Plenum
Press, New York, 235-260, 1981.

Codd E. F., n Relational Completeness
of Data Base Sublanguages,” Courant
Computer Science Symp., Prentice
Hall, 1972.

C. Dwork, P. Kanellakis and J.
Mitchell, “On the Sequential Nature oj
Uni~cation”, Journal of Logic Pro-
gramming, Vol. 1, pp 35-50, 1984.

H. Gallaire, J. Minker and J.-M. Nico-
has, “Logic and Data Bases: A Deduc-
tive Approach”, Computing Surveys,
Vol. 16, No 9, June 1984.

L. Henschen and S. Naqvi, “On Com-
piling Queries in Recursive First-Order
Data Bases”, JACM, Vol 31, pp. 47-85,
January 1984.

Jarke M., J. Clifford and Y. Vassiliou,
“An Optimizing Prolog Front-end to a
Relational Query,” Proc. ACM SIG-
MOD Conjerence on Management oj
Data, 1984.

R. Kowalski, “A Proof Procedure Using
Connection Graphs”, JACM, 31:1, pp.
4785, 1975.

R. Kowalski, personal communication,
April 1984.

D. McKay and S. Shapiro, “Using
Active Connection Graphs for Reason-
ing with Recursive Rules”, Proceedings
7th IJCAI, pp. 368-374, 1981.

S. Naqvi and L. Henschen, “Synthesiz-
ing Least Fixed Point Queries into

[Li 841

[Parker 851

[Reiter 781

[Smith 771

[Tsur 84)

[Ullman SO]

(Ullman 851

[Winston 791

[Zaniolo 831

[Zaniolo 841

[Zaniolo 85)

[Zloof 851

Non-recursive Iterative
Proceedings IJCAI 83, 1983.

Programs”,

Li D., “A Prolog Database System,”
Research Institute Press, Letchworth,
Hertfordshire, England, 1984.

D. S. Parker et al. “Logic Program-
ming and Databases” Proc. First Inter-
national Workshop on Rxpert Database
Systems, Kiawah Island, S.C., Oct.
1984.

R. Reiter, “Deductive Question
Answering on Relational Data Base”, In
Logic and Data Bases, H. Gallaire and
J. Minker (eds.), Plenum Press, New
York, pp. 149-177, 1978.

Smith, J.M. and D.C.P. Smith, “Data-
base Abstractions: Aggregation and
Generalization,” ACM Trans. Database
Systems, 2, 2, pp. 105-133, 1977.

Tsur S. and C. Zaniolo, “On the Imple-
mentation of GEM: supporting a
semantic data model on a relational
back-end,” Proc. ACM-SIGMOD
Conjerence on Management of Data,
1984.

Ullman, J., “Principles of Database
Systems,” Computer Science Press,
1980.

J. Ullman, “Implementation of Logical
Query Languages for Databases” Proc.
ACM-SIGMOD Conjerence on Manage-
ment oj Data, 1985.

P. H. Winston, “Artificial Intelligence,”
Addison Wesley, 1979.

C. Zaniolo, “The Database Language
GEM”, Proc. ACM-SIGMOD

Conjerence on Management of Data,
1983.

Zaniolo C., “Object-Oriented Program-
ming in Prolog,” Proc. Int. Logic Pro-
gramming Symposium, IEEE, 1984.

‘Zaniolo C., “The Compilation of Horn
Clauses into Extended Relational Alge-
bra,” manuscript in preparation.

Zloof M.M., “Query by Example,”
Proc. AFIPS NCC 44, pp. 431-438,
1975.

469

