
coping with c4bmpk!sity In Aut8nDatal rteamhg about Database systenla

Tii sheard
David Stemple

Computer and Jnformation Science
University of Massachusetts, Amherst, Ma. 01003 USA

ABmRAcr
Automated reasoning about database systems refers
to using a program or programs to draw inferences
about properties of systems and can be used by
designers to analyxe system designs, by query
processors to optimize queries, and by transaction
compilers or interpreters to optimize the checking of
integrity constraints. Automated reasoning can also
be used as logic programming and combined with
database pr ocessing in ways that promise to be very
powerful in dealing with problems currently
intractable. In these efforts, complexity will be a
significant problem to be dealt with. We report on
experience in dealing with complexity during efforts
to mechanically prove properties of database systems.

1. Jntrodllaioa

Automated reasoning about database systems
refers to using a program or programs to draw
inferences about properties of systems and can be
used by designers to analyze system designs, by
query processors to optimize queries mg SI], and
by transaction compilers or interpreters to optimii
the checking of integrity constraints [Gardarin and
Melkanoff 79, Walker and Salvctcr 81, Stemple and
Sheard 841. Automated reasoning can also be used
as logic programming and combined with database
processing in ways that are currently being studied
intensely, e. g., rYo&ota et al. I&4]. Automated
reasoning about databases will be included in any

attempt to adapt a specification-based software
development paradigm, e. g., m et al. 831, to
databases. Complexity is a problem which plagues,
or will plague, all these uses of automated
reasoning. In this paper, we report on some ways
in which we have learned to cope with the
complexity of the problem in the context of
minimizing the integrity constraints which must be
checked by transactions on highly constrained
databases.

Our inference engine is a Bayer-Moore style
theorem prover IBoyez and Moore 791, and we have
based our theory on axioms defining two abstract
data types, finite sets and tuples. We have built .z
theory by proving mechanically over two hundred
theorems and have also proven mechanically the
qfery, i. e., the property of respecting the integrity
constraints on the database, of several non-trivial
transactions on moderately constrained databases. In
this paper, we first briefly present an outline of our
theory and system specification technique and then
discuss the sources of complexity and methods of
dealing with it in the context of proving an example
safety theorem. Though our example is from the
problem of proving transaction safety, (that i.; the
majority of our experience), we believe that the
problems encountered and their solutions hxve
significant similarity to those of the other
applications of automated reasoning in database
systems.

2. A brkf overview of the theory and system
ma-

Pen&ion t.o copy without fee all or Dart of this material is
granted provided that the copies are not mahc or distributed for di.
rect commercial advantage, the i’LDR copyright notice and t,he title
of the publication and its date appear, and notice is given that copy.
ing is hy permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

We use types throughout the formalization and
specification of database systems. Two abstract data
types, axiomatically defined, constitute the formal
basis of all OUI theory. A user specifies a database
with a schema comprising a set of Pascal-like type

Prorredings of VLDB 85, Stockholm 426

definitions: domain types, tuple types, finite set
types (most of which are relation types), and a
database type, the last normally consisting of a tuple
type whose components are relations. Each type, at
any level, can have arbitrary predicates specified as
integrity constraints on objects of that type, and
implicitly on any higher level type which contains it.
The totality of these predicates forms a single

Synrax (signature)

emptyset: -> fsets
rest: fsets --> fsets
choose: fsets --> elements
insert: elements X fsets -> fsets
before: elements X elements --> boolean
smaller: fsets X fsets --> boolean

Basic axioms

rest(insert(e, s)) =
ifs= emptyset

then emptyset
else if e I choose(s)

then if before(e, choose(s))
then s

else insert(e, rest(s))
else rest(s)

choose(insert(e, s)) =
ifs= emptyset

then e
else if before(e,

then e
ch-(4)

else choose(s)

s I emptyset -> insert(choose(s), rest(s)) = s

insert(e, s) f emptyset

Order axioms (normally hidden)

a = b -> not before(a, b)

a # b -> before(a, b) or before(b, a)

before(a, b) --> not before(b, a)

before(a, b) and before(b, c) -> before(a, c)

smaller is a well-founded relation and
s f emptyset --> smaller(rest(s), s)

(These two axioms restrict sets to finite sets.)

Plgure2:PldtesetaxlollB&

predicate stating the consistency Property of
database states. See [Stemple and Sheard s4] for
further discussion of our type specification
technique.

Transactions are functions, possibly recursive,
which take typed input and a database state and
return an updated database. Users write transactions
in a high level language cal.led ADABTPL which is
somewhat similar to Pascal R [S&n&It 77J
Transactions in ADABTPL are translated into
functional form expressed using the operations of
the two abstract data types of the system. These
operations are insert, choose, rest, and the tuple
constructor and selector functions. The axioms for
the tuple operations of a specific tuple type are
given in figure 1, and for finite sets in figure 2.
The reason for using recursive functions has been to
allow the use of Boyer-Moore theorem proving
techniques which are heuristics-based and rely on
structural induction [BurstaIl 6!4].

The axioms for tuple type person with components
name and age specifies the behavior of the
constructor function person and selector functions
name and age by the axioms:

name(person(n, a)) = n

age(person(n, a)) = a

Pigure 1: Tuple axlomll.

A safery rhcorem for a transaction states that
if the transaction is given a consistent database and
valid input it returns a consistent database.
Formally, let T be a transaction function which
takes as parameters a database state DB and some
input I and returns a database state. Let P be the
integrated constraint on the database and Q be a
predicate on the legality of the parameters I. Then
the safety theorem for T is

P(DB) and Q(1) --> P(T(I,DB))

A simple specification of a one relation database
with a key constraint, a simple (unsafe) transaction,
and its safety theorem is given in figure 3.

3. Database schema and the database lntegrlty
eoJlstralnt

To illustrate our techniques we will
concentrate on a single example speelfylng a pb
agency database. The example comes from [Gerbart
831 and the initial specification is as follows:

“Here. persons apply for positions, companh
suscribe by offering positions, and compahs hire
candidates or fire employees. We impose tk following
constraints: a person may apply only once, thus
becoming a candidate, losing this status wkn hired by
a company but regaining it if fired; a compmry may
subscribe several times, tk positive number qf
offerings king added up; finally, only persons that
are currently candidates may be hired, and only by
companies having vacant positions.”

As discussed in section 2, we view the
database as a single object, which can only be
accessed through its transactions, much in the
manner of an abstract data type. The object has

person = [name: string, age: integer]

persons-rel = set of person where Key(name)

p-database = [persons: Persons]

transaction hire (n, a, db) =
pdatabase(irt(person(n, a), persons(d

The Key constraint translates into a functional form
with a relation as an explicit parameter r and a
column list k. The function projI’ is the tuple
version of the relational project.

key(r, k) =
if empty(r)
then true
else if member(projI’(choose(r), k), project(rest(r), k))

then false
else key(rest(r), k)

The safety theorem for hire is

key(persons(db), name) and valid(n, a) ->
key(persons(hire(n, a, db)), name)

where valid simply states that n is a string and n
an integer.

Figure3:Simplespedfkatiooofdatabaseda
transaetloo.

structure, typically being composed of an aggregation
of relations, each of which is a finite set of tuples.
In addition the legal states that the database may
attain are restricted by the integrity constraints.
These constraints can he arbitrarily complex, and
just stating them adds complexity. We describe
both the structure and constraints in our system
using a schema language. The language is multilevel
in that types are composed of previously defined (or
primitive) types and inherit the constraints of their
constituent types.

Schema of Job-agency

Persons = get of
[Pid: integer, Pname: string,
Paddr: string, Placed: (‘yes’, ‘no’)]

where Key(Pid);

Jobrel = Set of [Jid: integer, Jdescription: string]
where Key(Jid);

Companyrel = get of
[Cid: integer, Company-name: string, Cad& string]
where Key(Cid) and Key(cOmpany~ame);

Offer = [Cid: integer, Jid: integer,
Number+&ions: integer, Comments: string]

where Number,positions > 0;

Offerings = Set of Offer where Key&id, Jid);

Placementrel = get of
[Pid: integer, Jid: integer, Cid: integer]
where Key(Pid);

Job-agency =
[Persons: Persons, Jobs: Jobrel, Offering: Offerings,
Companies: Companyrel, Placements: Placementrel]

where

Persons . Pid Contains Placements . Pid and
Companies . Cid Contains Placements . Cid and
Jobs . Jid Contains Placements . Jid and
Jobs . Jid Contains Offering . Jid and
Companies . Cid Contains Offering . Cid and
For all P In Persons:

If P . Pid In Placements . Pid
Then P . Placed = ‘yes’
Else P . Placed = ‘no’

FignreI:TheJob-ageneysehema.

428

The schema for our example is given in figure
4. Consider the database object’s type declaration,
the statement which starts with Job-agency. ‘Ihe
database as a whole is constrained by the where
clause. This clause expresses two types of
interrelational constraints, referential integrity and
constraints about redundant information integrity (in
the For-all clause.)

Of course, other types of constraints, such as
relational key constraints could be part of the
database type declaration, but we believe, and
experience has borne out, that “factoring” out
constraints and pushing them to the lowest level of
the schema allows for the most efficient mechanical
proof techniques. Thus, key constraints should be
with their relation type declarations. (Note that it is
meaningless to place them with tuple type
declarations.) A key constraint limits the tuples in
a relation such that at most one tuple is allowed in
the relation for any value in the component beiig
keyed.

Constraints limit the states which the database
object may legally assume. As illustrated, these
constraints may be placed on any component of the
database, specifying intra-tuple constraints, range
constraints, constraints on a single relation such as
key constraints, and interrelational constraints such
as referential integrity. For purposes of proving
properties of the system, these constraints are
integrated into a single database predicate which
specifies what it means for the database to be legal.
If one were forced to place constraints only on the
top level database object the correct formulation of
the constraints would be more complex than it
needs to be. By the use of the inheritance
mechanism this complex constraint can be built up
in easy stages. Thus the complete integrated integrity
constraint of a database includes the interrelational
constraints as well as the inherited constraints,
possibly inherited through many levels. For the
Job-agency example, this predicate, which we will
call rhedbpred, is a function of one variable, of
Job-agency type. It is given in figure 5. The
predicates persons-p, jobs-p, offering-p, companies-p
and placements-p are the inherited constraints from
the types, Persons, Jobrel, Offerings, Companyrel,
and Placementrel, respectively. The deftitions of
persons-p and offering-p are:

persons-p(r) =
Key(r, Pid) and
For-all P in r: Pqlaced = ’

P.plaed ‘_“~opr

offering-p(r) =
Key(r, Cid, Jid) and
For all 0 in r: ONumber-positions > 0

The others are defined similarly. Note that in the
offering-p constraint the Number,positions constraint
in the for-all clause is itself an inherited constraint
from the Offerings’s constituent type offer.

When types and constraints are defined in the
schema, the system automatically adds their
definitions to the theorem prover’s memory. This
information describes differing strategies to be used
to prove that some object meets a constraint or the
where clause of a type.

4. A transactIon and its snfety thcorcm

Consi&r now the example of a transaction
which hires a new employee. In the Job-agency
context, such an action is only valid if the person
being hired, the “H&e”, is registered with the
Job-agency, the Job is offered, and the Hiree is
currently unemployed. These conditions can be
stated explicity in the precondition of a transaction.
They should be tested before the transaction changes
the three relations involved to reflect the hiring. A
hire transaction in ADABTPL which we will use as
the basis for a safety proof discussion is given in
figure 6.

thedbpred(x) =

x .
x .

x .
x .
x .

persons . Pid Contains x . placements . Pid and
companies . Cid Contains x . placements . Cid

and
jobs . Jid Contains x . placements . Jid and
jobs . Jid Contains x . offering . Jid and
companies . Cid Contains x . offering . Cid and

For all P In x . persons:
If P . Pid In x . placements . Pid

Then P . Placed = ‘yes’
Else P . Placed = ‘no’ and

persons-p(x . persons) and
jobs-p(x . jobs) and
offering-p(x . offering) and
companies-p(x . companies) and
placements-p(x . placements)

Figure 5: The Job-agency database integrity
predicate thedbpmd.

Transaction
Hire (Company: integer, Hiree: integer, Jobdnteger);

Preconditions

Hiree In Persons . Pid;
[Company, Job] ln Offering . [Cid, Jid];
For the P in Persons

where P . Pid = Hiree: P . Placed = ‘no’;

Begin {Hire body}

For the Offer In Offering
where Offer . [Cid, Jid] = [Company, Job]

Do {Update offer}
If Offer . Number-positions = 1

then Delete Offer from Offering
else Update Offer using
[Number,positions = Number-positions - 11;

{!Set Placed status for hiree to yes.}
For the P In Persons where P . Pid = Hiree

Update P using [Placed = ‘yes’];

{Add Placement relationship.}
Insert [Hire+ Job, Company] into Placements;

End {Hire transaction}.

Fv 6: A Hire transactions for Job-agency.

The safety theorem for the Hire transaction is

thedbpred(db) and integer(c) and
integer(h) and integer(j)

--> thedbpred(Hire(c,hj,db))

This is quite a large theorem since both
thedbpred and hire are complicated functions with
multiline definitions touching several (if not all) of
the relations making up the Job-agency database.
One may be tempted to say that sheer bulk and
complexity of this theorem was caused by our own
folly in in&ting that the integrated database
integrity constraint include all wnstraints.
Unfortunately real databases are so constrained, and
any system that hopes to solve large problems must
address this problem. One of reasons for the lack
of use of existing constraint checking systems is the
sheer expense of checking the constraints. One states

only the most important constraints, since only those
can be afforded. After all, what is the use of
formulating complex constraints if they art? not
enforced.

Ibis example was chosen since the structure of
the hire function can be broken down into three
parts each of which changes a single relation. This
property enhances its value as an illustrative
example, but is not required by the theorem prover.
Let fixoffer be a function reflecting the change in
the Offering relation and fix-person be a function
reflecting the changes in the Persons relation. When
we “open up” the definitions of Hire and thedbpred
the safety theorem for transaction Hire is expanded
to the form given in figure 7.

The hypothesis of this theorem reflects both
the assumption that the database was consistent to
start with, and that the preconditions of the
transaction are met. The conclusion of the
implication reflects the constraints that must be true
of the updated database. Note the use of the
updating functions fix-person, fixoffer, and the
primitive updating function insert to represent the
changed database states. Each of the 11 conjuncts
in the conclusion generates a subgoal to be proven
from the whole hypothesis. Several of these subgoals
are trivially true since they appear unchanged in
both the hypothesis and the conclusion, the term
jobs-p(db . jobs) for example. These trivial subgoals
are produced when the transaction does not “touch”
the object being constrained. This useful result is a
byproduct of the way we state the constraints as a
single unified predicate, and the way the safety
theorem is formulated and expanded. The remaining
subgoals are then considered one at a time. For
each one we get to assume the whole hypothesis.
In this example the predicates stating the correctness
of the input values h (Hiree), c (Company), and j
(Job) are not shown.

5. Complexity in the proof process

In the previous section we discussed how a
theorem stating the safety of a complex transaction
in a system with complex integrity constraints can
be generated from a schema and a transaction
specification and how the theorem can be broken
down into smaller more manageable pieces amenable
to automated proof techniques. In this section we

430

db.persons.PidContainsdb.pkcments.lYdaud
db . companica . Cid Contains db . @cements . Cid and
db . jobs . Jid Containa db . placcmcnt~ . Jid and
db . jobs . Jid Contahu db . offering . Jid and
db . companiu . Cid Contains db . offcxing . Cid and
For all P In db . persons:

If P . Pid In db . placements . Pid
Then P . Placed = ‘yes’
Else P . Placed = ‘no’ and

pcrsonep(db . persons) and
jobs-p(db . jobs) and
offering-p(db . offering) and
companicq(db . companies) and
placements-p(db . placements) and
h in db . Pemons . Pid and
[Company, Job] In db . Offering . [Cid, Jid] and
For the P in db . Permnr

where P . Pid = h: PPlaced = ho’

-->

fix-pcrsoa(db . pcrmas,h) . Pid Containm
inscrt(placement@&c)e), db . placements) . pid and

db . companicr . Cid Contains
inscrt(placcment(h,j,c),db . placements . Cid and

db . jobs . Jid Contti
ituert(placcment(hj,c), db . placements) . Jid end

db . jobs . Jid Contains fixMer(db . offer&Q . Jid and
db . wnqanica . Cid Contains fkoffec(db . offecing&,j~ . Cid

and
For all P In f-ii-per#m(db . pcrao@):

If P . Pid In inscrt(placement(h,j,c)). db . placements) . pid
Then P . Placed = ‘yu’ Else P . Placed = ‘no’ and

pcrsowp(fii-pctxon(db . pcmons,h)) and
jobs-p(db . jobs) and
offering-p(fix+ffer(db . offering~,j~) and
companiu-p(db . companies) and
placements-p(insert(placement@jn. db . placements))

Figprr7:ThedctytkuemfortrammctioaHin
on Job-8~.

discuss methods of reducing and dealing with the
remaining complexity.

The sixe and complexity of safety theorems
flows from two causes. First, the integration of the
database predicate into a single predicate causes a
large number of hypotheses to appear in the
theorem. Unfortunately this is a necessary
complication. The simple approach of showing for
each conjunct, Pi, of the integrated predicate that
Pi(db) -> Pi(T(DB)) works for only the simplest
constraints. For example, consider trying to show
that if the Placements relation is keyed, then the
relation insert(placement(h, j, c), placements) is also
keyed.

Here placement(h, j, c) is the construction of
a placement tuple from the values h for pid, j for
jid, and c for cid. A proof of this follows from the
precondition that the Placed attribute of h is ‘no’
and from the completely unrelated hypothesis that
every Person who is also in Placements has his
Placed attribute set to ‘yes’. Thus, throwing away
all’ hypotheses but the particular one the conclusion
stems from is not a viable alternative. On the
other hand, keeping all of the hypotheses around
can mire the proof mechanism in great amounts of
detail, much of which is unnecessary.

The second reason for the complexity of the
theorem is that the changes to the database are not
just simple inserts and deletes, but can be arbitrary
changes to particular tuples meeting complex
conditions, (like the fix-offer, and fit-person
functions). In this section we discuss three methods
we have used to reduce the amount of complexity
arising from these causes and discuss the effects of
this on obtaining proofs. The three methods are
building the theory with safety proofs as a goal,
stereotyping the translation of transactions, and
reducing irrelevancy in theorem clauses.

5.1 Goal- themy

The key to handling complexity by building
the “right” theory is to stereotype the common
constraints and to supply the theorem prover with
thorough knowledge of the interaction between the
constraints and update functions. This knowledge is
stored in a database of proven theorems which we
refer to as “the lemmas”.

431

Definitions;

project(r, &clist) =
if empty(r) then emptyset

else insert(projI’(choose(r), Mist),
project(rest(r), Mist))

contains(x, y) =
if empty(y) true

else if member(choose(y), x)
then contains(x, rest(y))
else false

contains-insert-rewrites:

contains(x, insert(a, y)) =
contains(x, y) and member(a, x)

pull-insert-from-project:

project(insert(a, x), Mist) =
insert(proJT(a, &list), project(x, Mist))

Figun 8: Sample constniat FmctiomandImunas.

For example, in our system referential
integrity is specified as the containment of the
projection on two relations. We have defied both
containment and projection as recursive functions in
our system. We have then instructed the theorem
prover to prove and “remember” relevant facts
about these functions. Such relevant facts involve
how containment behaves under insertions, deletions,
and updates, which are the very functions we expect
to find in the conclusion of our safety theorems.
Let us look at the definition of these two predicates
and some of the “lemmas” we have proven shown
in figure 8. In this definition profl is a tuple
projection function, and &t&t is a list of attribute
names. Remember that choose selects an arbitrary
element from a set, and rest is what remains once
the choose is removed.

The two lemmas shown are both useful in
proving invariants when the database is changed by
inserts. Suppose we are trying to prove

contains@roject(x, n), project(insert(t, y), m))

This is quite common if we have a referential
integrity constraint between the ‘31” attribute of x

and the “m” attribute of y. Using the lemma
pull-insert-from-project the prover transforms the
clause to:

contains@roject(x, n),
~~(Projt(t, 4, proiect0, m)))

and then by the lemma containsmsert-rewrites we
get the two terms:

contains(project(x, n), project(y, m)) and
member(projt(t, m), project(x, n))

the first of which is probably in the hypothesis,
since it represents referential integrity in the
unchanged database, and the second is a membership
test. Since membership is a simpler function than
contains (remember contains was defined in terms of
membership) we have reduced the complexity of
what we are trying to prove, and the function insert
no longer even appears in the term.

We have found that by identifying, proving,
and instructing the theorem prover to remember the
right set of such lemmas, complexity in safety
theorems is reduced and that common types of
transactions can be proven safe mechanically.

52 stereotyped translation of transactions

In addition to simple inserts and deletes we
must be able to handle more general updates. For
example, both fix-offer and fix-person are general
update functions which change particular tuples in a
relation which meet a nontrivial test. Although they
are very different, they are also specific cases of a
generic update function with the following
definition:

up~te(r, P, 9, f, flry) =

For the x in r where p(x, &y):
if q(x, &y) then delete(x, r)

else insert(f(x, %y), delete(x, r))

BY changing the particular function
parameteters p, q, and f we can model very
different specifc updates with this temf53te. for
example in fix-person, the q function is always false
and thus never deletes the tuple meeting the p
predicate. By proving general properties of update,
then by defining fixoffer, and fix-person in text-Is

432

of update, the two defined functions inherit these
properties. This is a major method of reducing the
complexity of the theorem prover’s problem of
accessing the appropriate knowledge when attempting
to prove safety theorems.

This method of defining generic functions as
templates which take other functions as parameters
causes some problems since the particular functions
passed as parameters are often quite different
sometimes having different numbers of parameters in
different instantiations. The notation which includes
an ampersand (8~) before a variable name stands for
an indeterminate number of parameters. Thus in
the definition of Project, &cl& stands for an
arbitrary number of attributes to project on. In the
definition of update, the &y stands for a list of
auxiliary parameters of indeterminate length which
must be instantiated when a function is defined as
an update. Consider the ftx-person function defined
as an update function.

fix-person(r h) =
update(r, ‘named, ‘falsehood, ‘markemployed, h)

where
named(x, h) = @id(x) = h)

and
falsehood(&) = false

and
markemployed(x, dummy) =
person(pid(x), pname(x), Paddr(x), ‘yes’)

The &y parameter of the update function is
instantiated in this function to the single variable h,
which is used as an input to the call of the named
function. The function falsehood returns false
regardless of the number of parameters it is passed,
and the function mark-employed ignores its second
argument which is there only to match the number
of parameters the parameter function f takes.

Now it is a theorem about update, that if the
output of function parameter f is the same on the
“x” attribute as on the “x” attribute of its input and
the q function is always false, then the projection
of the update function on the “x” attribute remains
unchtiged. Formally this is stated as:

if x(W) = x(a) is a theorem then

(project(update(r, p, ‘falsehood, f, &y), x) =
proiect(r, 4

is also a theorem.

We call this a meta-lemma since it is a
lemma about lemmas. Whenever a function is
defied in terms of update and its function
parameters meet the preconditions of a theorem like
the one above, then it inherits the theorem. When
the fix-person function is defined, it is noted that
the conclusion of the meta-lemma instantiated for
fix-person is as follows

project(fix-person(r, h), x) = project(r, x)

this may be used as a lemma if

x(markemployed(y, dummy)) = x(y)

is a theorem. At Definition time we have no value
yet for the component selector x, so we cannot
decide which functions x to test the hypothesis of
the meta-lemma on. Once the safety theorem is
produced, we scan the theorem (figure 7 for
example) for instances of the conclusion
fix-pcrson(r, h) . x (using the dot notation for
project) and note that Pid is a candidate value for
x. The system proves that

markemployed(y, dummy) . Pid = y.Pid

and the conclusion, with x instantiated by Pid is
added as a lemma to the system. since
markemployed never alters the pname or Paddr
attributes of its input, if the terms with Pname or
Paddr had been mentioned in the safety theorem,
the lemmas

fix-person(r, h) . pname = r . pname
fii-person(r, h) . Pad& = r . Paddr

would also be added to the system. The theorem
prover makes use of the Pid theorem when
attempting to prove the subgoal in figure 7
concluding in:

fix-person(db . persons, h) . pid contains
insert(placements(h, j, c), db . placements) . pid

Using this theorem the goal is simpliiied to:

433

db . persons . pid contains
insert(placements(h, j, c), db . placements) . pid

Then by the contains-insert and project-insert lemmas
we get:

h in db . persons . pid

Which is again one of the hypotheses and the
subgoal is proven.

53 Reducing irrelevance in dauses

Even though many lemmas in the knowledge
base reduce the complexity of the theorems being
proven, theorems often contain large numbers of
irrelevant terms which add nothing to a successful
proof but often lead the theorem prover down blind
alleys. Removing these irrelevant terms is essential
to an efficient proof procedure. Consider the
subgoal of the Hire transaction safety theorem
which states:

db . persons . Pid Contains db . placements . Pid and
db . companies . Cid Contains db . placementa . Cid and
db . jobs . Jid Contains db . placements . Jid and
db . jobs . Jid Contains db . offering . Jid and
db . companica . Cid Contains db . offering . Cid and
For all P In db . pusons:

If P . Pid In db . placements . Pid
Then P . Placed = ‘yes’
Else P . Placed = ‘no’ and

pemons-p(db . persons) and
jobs-p(db . jobs) and
offering-p(db . offering) and
companic+db . companies) and
placementa-p(db . placements) and
h in db . Persons . Pid and
[Company, Job] In db . Offering . [Cid, Jid] and
For the F in db . Petsons

where P . Pid = h: P.Placed = ‘no’
-->

placements-p(inscrt(a~ment(h. j, c), db . placements))

The hypothesis of the clause contains 14 terms
only 4 of which are relevant. The conclusion
involving placements-p is just that the placements
relation is keyed on the pid attribute. The term we
are trying to prove is then

key(insert(placement(h, j, c), db . placements), pid)

By applying a lemma which relates key to insert,
the term is rewritten to:

key(db . placements, pid) and
if placement(h, j, c) in db . placements

then true
else projT(placement(h, j, c), pid)

not in db . placements . pid

Since the first conjunct in the term above is in the
hypothesis (in the guise of placements-p), we get
two subgoals, one for each branch of the if
statement. The then branch corresponds to the tuple
placement(h, j, c) already being in the placements
relation, in which case the insert adds nothing,
(inserting a duplicate in the set does not change the
set) and the placements relation remains keyed. The
else branch is the interesting case. Here we must
show that the pid attribute of the inserted tuple
(which is just h) is not a member of the projection
of the placements relation. We have reduced the
clause to:

h not in db . placements . pid

At this point in the proof the theorem prover needs
to do a proof by induction. Unfortunately, the
correct recursive function to induct upon is obscured
by the many irrelevant terms in the hypothesis. By
throwing away all terms except the following:

For all P In db . persons:
If P . Pid In db . placements . Pid

Then P . Placed = ‘yes’ Else P . Placed = ‘no’ and
h in db . Persons . tid and
For the P in db . Persons

where P . Pid = h: P.Placed = ‘no’
-->

not h in db . Placements . pid

The correct induction can be chosen. The course of
action is to do an induction on the For-all function.
Throwing away the corect terms is a difficult choice
for which we have as yet only the most
rudimentary heuristics. If the correct irreievant terms
are not thrown away it may lead the theorem
prover to attempt the wrong induction and hence
miss proving the theorem. A heuristic is proposed
in myer & Moore 791 which is useful but far from
complete in these circumstances. They propose

434

partitioning the terms such that each partition
contains terms which have variables mentioned in no
other partition. Then, all partitions other than the
one containing the conclusion term are discarded.
while this works in many cases, it still leaves many
irrelevant terms in the resulting clause. Duowing
away irrelevant terms remains an open problem.
After examining many clauses in theorems which
have been intractable, we have developed intuition
which allows us to select relevant clauses for use in
lemmas which can be proven and then used to
prove the problematic theorem. We are studying the
significant problem of building at least some of our
intuition (which is perhaps only effective in the
domain of databases axiomatized in our style) into
the theorem prover. Another approach to this
problem in our context is to build an appropriate
interface between the prover, which uses a purely
functional form of the transactions and constraints,
and the system designer who writes and thinks in
higher level non-functional terms. Then a system
designer could develop intuition and provide aid to
the theorem prover in difficult situations. This too is
being studied.

Using the techniques discussed in this section
we have mechanically proven the safety theorem for
Hire using our version of the Boyer-Moore theorem
prover.

6. Summary

We have discussed the problems of dealing
with complexity in mechanical proofs of properties
of database systems. The partial solutions which we
have obtained during our experience involve tailoring
the theory used by the prover to the kinds of
theorems which are of interest, as well as
stereotyping the expression of both invariant and
dynamic properties of the systems being analyzed. In
our problem domain, complex transactions on highly
constrained databases, large amounts of irrelevant
information sometimes obscure the problem for the
inference engine, and we have discussed the way in
which we have had to deal with this problem,
partially mechanized and partially “by hand”.
Though our experience is almost entirely in the
domain of safety properties of database transactions
and a powerful, heuristics-based prover, we believe
that other domains, including logic programming
with resolution-based techniques, will encounter
many of the same problems and can benefit from
our experince in coping with the unavoidable
complexity of the problem.

Reference3

lBalzer et al. 831 B&er,R., Cheatham, T. E., Jr.,
and Green, C., “Software Technology in 1990’s:
Using a New Paradigm.” Computer, vol. 16, no. 16,
November, 1983.

[Boy= and Moore 791 Boyer, R. S. and Moore, J. S.
A Computational Logic, Academic Press, New York,
1979.

[Burstall 6!)] Butstall, R. “Proving Properties of
Programs by Structural Induction.” Computer
Journal, Vol. 12, No. 1, February, 1969, pp. 414.

[Gardarin and lbfdkmoff 791 Gardarin, G. and
Melkanoff, M., “Proving Consistency of Database
Transactions”, Proceeding of the 5th International
Conf. on Very Large Databases, 1979, pp291-298.

[Gerlwt 831 Gerhart, S. “Formal Validation of a
Simple Database Application.” Proceedings of the
Sixteenth Hawaii International Conference on System
Sciences, 1983, pp. 102-111.

mg 811 King, J. J. “QUISR A System for
Semantic Optimization in Relational Data Bases”,
Proceedings of the Seventh International Conference
on Very Large Data Bases, 1981, pp. X0-517.

[Schmidt 77J Schmidt, J. “Some High Level
Constructs for Data of Type Relation.” ACM
Transactions on Database Systems. Vol. 2, No. 3,
September 1977. pp. 247261.

[Stem@ and Sheud t?4] Stemple, D. and Sheard, T.,
“Specification and Verification of Abstract Database
Types.” Third Symposium on the Principles of
Database Systems, Waterloo, Ontario, April, 1984.

[Walker and Salve&r 811 Walker, A. and Salveter,
S. C. “Automatic Modification of Transactions to
Preserve Data Base Integrity Without Undoing
Updates.” State University of New York, Stony
Brook, New York: Tech. Report 8MI26 (June
1981).

[yekota 841 Yokota, H., Kunifuji, S., Kakuta, T.,
Miyaxaki, N., Shibayama, S. and Murakami, K. “An
Enhanced Inference Mechanism for Generating
Relational Algebra Gueries”, Proce&ngs of the
Third ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, April, 1984, pp.
229-238.

435

