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ABmRAcr 
Automated reasoning about database systems refers 
to using a program or programs to draw inferences 
about properties of systems and can be used by 
designers to analyxe system designs, by query 
processors to optimize queries, and by transaction 
compilers or interpreters to optimize the checking of 
integrity constraints. Automated reasoning can also 
be used as logic programming and combined with 
database pr ocessing in ways that promise to be very 
powerful in dealing with problems currently 
intractable. In these efforts, complexity will be a 
significant problem to be dealt with. We report on 
experience in dealing with complexity during efforts 
to mechanically prove properties of database systems. 

1. Jntrodllaioa 

Automated reasoning about database systems 
refers to using a program or programs to draw 
inferences about properties of systems and can be 
used by designers to analyze system designs, by 
query processors to optimize queries mg SI], and 
by transaction compilers or interpreters to optimii 
the checking of integrity constraints [Gardarin and 
Melkanoff 79, Walker and Salvctcr 81, Stemple and 
Sheard 841. Automated reasoning can also be used 
as logic programming and combined with database 
processing in ways that are currently being studied 
intensely, e. g., rYo&ota et al. I&4]. Automated 
reasoning about databases will be included in any 

attempt to adapt a specification-based software 
development paradigm, e. g., m et al. 831, to 
databases. Complexity is a problem which plagues, 
or will plague, all these uses of automated 
reasoning. In this paper, we report on some ways 
in which we have learned to cope with the 
complexity of the problem in the context of 
minimizing the integrity constraints which must be 
checked by transactions on highly constrained 
databases. 

Our inference engine is a Bayer-Moore style 
theorem prover IBoyez and Moore 791, and we have 
based our theory on axioms defining two abstract 
data types, finite sets and tuples. We have built .z 
theory by proving mechanically over two hundred 
theorems and have also proven mechanically the 
qfery, i. e., the property of respecting the integrity 
constraints on the database, of several non-trivial 
transactions on moderately constrained databases. In 
this paper, we first briefly present an outline of our 
theory and system specification technique and then 
discuss the sources of complexity and methods of 
dealing with it in the context of proving an example 
safety theorem. Though our example is from the 
problem of proving transaction safety, (that i.; the 
majority of our experience), we believe that the 
problems encountered and their solutions hxve 
significant similarity to those of the other 
applications of automated reasoning in database 
systems. 

2. A brkf overview of the theory and system 
ma- 
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We use types throughout the formalization and 
specification of database systems. Two abstract data 
types, axiomatically defined, constitute the formal 
basis of all OUI theory. A user specifies a database 
with a schema comprising a set of Pascal-like type 
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definitions: domain types, tuple types, finite set 
types (most of which are relation types), and a 
database type, the last normally consisting of a tuple 
type whose components are relations. Each type, at 
any level, can have arbitrary predicates specified as 
integrity constraints on objects of that type, and 
implicitly on any higher level type which contains it. 
The totality of these predicates forms a single 

Synrax (signature) 

emptyset: -> fsets 
rest: fsets --> fsets 
choose: fsets --> elements 
insert: elements X fsets -> fsets 
before: elements X elements --> boolean 
smaller: fsets X fsets --> boolean 

Basic axioms 

rest(insert(e, s)) = 
ifs= emptyset 

then emptyset 
else if e I choose(s) 

then if before(e, choose(s)) 
then s 

else insert(e, rest(s)) 
else rest(s) 

choose(insert(e, s)) = 
ifs= emptyset 

then e 
else if before(e, 

then e 
ch-(4) 

else choose(s) 

s I emptyset -> insert(choose(s), rest(s)) = s 

insert(e, s) f emptyset 

Order axioms (normally hidden) 

a = b -> not before(a, b) 

a # b -> before(a, b) or before(b, a) 

before(a, b) --> not before(b, a) 

before(a, b) and before(b, c) -> before(a, c) 

smaller is a well-founded relation and 
s f emptyset --> smaller(rest(s), s) 

(These two axioms restrict sets to finite sets.) 

Plgure2:PldtesetaxlollB& 

predicate stating the consistency Property of 
database states. See [Stemple and Sheard s4] for 
further discussion of our type specification 
technique. 

Transactions are functions, possibly recursive, 
which take typed input and a database state and 
return an updated database. Users write transactions 
in a high level language cal.led ADABTPL which is 
somewhat similar to Pascal R [S&n&It 77J 
Transactions in ADABTPL are translated into 
functional form expressed using the operations of 
the two abstract data types of the system. These 
operations are insert, choose, rest, and the tuple 
constructor and selector functions. The axioms for 
the tuple operations of a specific tuple type are 
given in figure 1, and for finite sets in figure 2. 
The reason for using recursive functions has been to 
allow the use of Boyer-Moore theorem proving 
techniques which are heuristics-based and rely on 
structural induction [BurstaIl 6!4]. 

The axioms for tuple type person with components 
name and age specifies the behavior of the 
constructor function person and selector functions 
name and age by the axioms: 

name(person(n, a)) = n 

age(person(n, a)) = a 

Pigure 1: Tuple axlomll. 

A safery rhcorem for a transaction states that 
if the transaction is given a consistent database and 
valid input it returns a consistent database. 
Formally, let T be a transaction function which 
takes as parameters a database state DB and some 
input I and returns a database state. Let P be the 
integrated constraint on the database and Q be a 
predicate on the legality of the parameters I. Then 
the safety theorem for T is 

P(DB) and Q(1) --> P( T(I,DB) ) 

A simple specification of a one relation database 
with a key constraint, a simple (unsafe) transaction, 
and its safety theorem is given in figure 3. 

3. Database schema and the database lntegrlty 
eoJlstralnt 



To illustrate our techniques we will 
concentrate on a single example speelfylng a pb 
agency database. The example comes from [Gerbart 
831 and the initial specification is as follows: 

“Here. persons apply for positions, companh 
suscribe by offering positions, and compahs hire 
candidates or fire employees. We impose tk following 
constraints: a person may apply only once, thus 
becoming a candidate, losing this status wkn hired by 
a company but regaining it if fired; a compmry may 
subscribe several times, tk positive number qf 
offerings king added up; finally, only persons that 
are currently candidates may be hired, and only by 
companies having vacant positions.” 

As discussed in section 2, we view the 
database as a single object, which can only be 
accessed through its transactions, much in the 
manner of an abstract data type. The object has 

person = [name: string, age: integer] 

persons-rel = set of person where Key(name) 

p-database = [persons: Persons] 

transaction hire (n, a, db) = 
pdatabase(irt(person(n, a), persons(d 

The Key constraint translates into a functional form 
with a relation as an explicit parameter r and a 
column list k. The function projI’ is the tuple 
version of the relational project. 

key(r, k) = 
if empty(r) 
then true 
else if member(projI’(choose(r), k), project(rest(r), k)) 

then false 
else key(rest(r), k) 

The safety theorem for hire is 

key(persons(db), name) and valid(n, a) -> 
key(persons(hire(n, a, db)), name) 

where valid simply states that n is a string and n 
an integer. 

Figure3:Simplespedfkatiooofdatabaseda 
transaetloo. 

structure, typically being composed of an aggregation 
of relations, each of which is a finite set of tuples. 
In addition the legal states that the database may 
attain are restricted by the integrity constraints. 
These constraints can he arbitrarily complex, and 
just stating them adds complexity. We describe 
both the structure and constraints in our system 
using a schema language. The language is multilevel 
in that types are composed of previously defined (or 
primitive) types and inherit the constraints of their 
constituent types. 

Schema of Job-agency 

Persons = get of 
[Pid: integer, Pname: string, 
Paddr: string, Placed: (‘yes’, ‘no’)] 

where Key(Pid); 

Jobrel = Set of [Jid: integer, Jdescription: string] 
where Key(Jid); 

Companyrel = get of 
[Cid: integer, Company-name: string, Cad& string] 
where Key(Cid) and Key(cOmpany~ame); 

Offer = [Cid: integer, Jid: integer, 
Number+&ions: integer, Comments: string] 

where Number,positions > 0; 

Offerings = Set of Offer where Key&id, Jid); 

Placementrel = get of 
[Pid: integer, Jid: integer, Cid: integer] 
where Key(Pid); 

Job-agency = 
[Persons: Persons, Jobs: Jobrel, Offering: Offerings, 
Companies: Companyrel, Placements: Placementrel] 

where 

Persons . Pid Contains Placements . Pid and 
Companies . Cid Contains Placements . Cid and 
Jobs . Jid Contains Placements . Jid and 
Jobs . Jid Contains Offering . Jid and 
Companies . Cid Contains Offering . Cid and 
For all P In Persons: 

If P . Pid In Placements . Pid 
Then P . Placed = ‘yes’ 
Else P . Placed = ‘no’ 

FignreI:TheJob-ageneysehema. 
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The schema for our example is given in figure 
4. Consider the database object’s type declaration, 
the statement which starts with Job-agency. ‘Ihe 
database as a whole is constrained by the where 
clause. This clause expresses two types of 
interrelational constraints, referential integrity and 
constraints about redundant information integrity (in 
the For-all clause.) 

Of course, other types of constraints, such as 
relational key constraints could be part of the 
database type declaration, but we believe, and 
experience has borne out, that “factoring” out 
constraints and pushing them to the lowest level of 
the schema allows for the most efficient mechanical 
proof techniques. Thus, key constraints should be 
with their relation type declarations. (Note that it is 
meaningless to place them with tuple type 
declarations.) A key constraint limits the tuples in 
a relation such that at most one tuple is allowed in 
the relation for any value in the component beiig 
keyed. 

Constraints limit the states which the database 
object may legally assume. As illustrated, these 
constraints may be placed on any component of the 
database, specifying intra-tuple constraints, range 
constraints, constraints on a single relation such as 
key constraints, and interrelational constraints such 
as referential integrity. For purposes of proving 
properties of the system, these constraints are 
integrated into a single database predicate which 
specifies what it means for the database to be legal. 
If one were forced to place constraints only on the 
top level database object the correct formulation of 
the constraints would be more complex than it 
needs to be. By the use of the inheritance 
mechanism this complex constraint can be built up 
in easy stages. Thus the complete integrated integrity 
constraint of a database includes the interrelational 
constraints as well as the inherited constraints, 
possibly inherited through many levels. For the 
Job-agency example, this predicate, which we will 
call rhedbpred, is a function of one variable, of 
Job-agency type. It is given in figure 5. The 
predicates persons-p, jobs-p, offering-p, companies-p 
and placements-p are the inherited constraints from 
the types, Persons, Jobrel, Offerings, Companyrel, 
and Placementrel, respectively. The deftitions of 
persons-p and offering-p are: 

persons-p(r) = 
Key(r, Pid) and 
For-all P in r: Pqlaced = ’ 

P.plaed ‘_“~opr 

offering-p(r) = 
Key(r, Cid, Jid) and 
For all 0 in r: ONumber-positions > 0 

The others are defined similarly. Note that in the 
offering-p constraint the Number,positions constraint 
in the for-all clause is itself an inherited constraint 
from the Offerings’s constituent type offer. 

When types and constraints are defined in the 
schema, the system automatically adds their 
definitions to the theorem prover’s memory. This 
information describes differing strategies to be used 
to prove that some object meets a constraint or the 
where clause of a type. 

4. A transactIon and its snfety thcorcm 

Consi&r now the example of a transaction 
which hires a new employee. In the Job-agency 
context, such an action is only valid if the person 
being hired, the “H&e”, is registered with the 
Job-agency, the Job is offered, and the Hiree is 
currently unemployed. These conditions can be 
stated explicity in the precondition of a transaction. 
They should be tested before the transaction changes 
the three relations involved to reflect the hiring. A 
hire transaction in ADABTPL which we will use as 
the basis for a safety proof discussion is given in 
figure 6. 

thedbpred(x) = 

x . 
x . 

x . 
x . 
x . 

persons . Pid Contains x . placements . Pid and 
companies . Cid Contains x . placements . Cid 

and 
jobs . Jid Contains x . placements . Jid and 
jobs . Jid Contains x . offering . Jid and 
companies . Cid Contains x . offering . Cid and 

For all P In x . persons: 
If P . Pid In x . placements . Pid 

Then P . Placed = ‘yes’ 
Else P . Placed = ‘no’ and 

persons-p(x . persons) and 
jobs-p(x . jobs) and 
offering-p(x . offering) and 
companies-p(x . companies) and 
placements-p(x . placements) 

Figure 5: The Job-agency database integrity 
predicate thedbpmd. 



Transaction 
Hire (Company: integer, Hiree: integer, Jobdnteger); 

Preconditions 

Hiree In Persons . Pid; 
[Company, Job] ln Offering . [Cid, Jid]; 
For the P in Persons 

where P . Pid = Hiree: P . Placed = ‘no’; 

Begin {Hire body} 

For the Offer In Offering 
where Offer . [Cid, Jid] = [Company, Job] 

Do {Update offer} 
If Offer . Number-positions = 1 

then Delete Offer from Offering 
else Update Offer using 
[Number,positions = Number-positions - 11; 

{!Set Placed status for hiree to yes.} 
For the P In Persons where P . Pid = Hiree 

Update P using [Placed = ‘yes’]; 

{Add Placement relationship.} 
Insert [Hire+ Job, Company] into Placements; 

End {Hire transaction}. 

Fv 6: A Hire transactions for Job-agency. 

The safety theorem for the Hire transaction is 

thedbpred(db) and integer(c) and 
integer(h) and integer(j) 

--> thedbpred(Hire(c,hj,db)) 

This is quite a large theorem since both 
thedbpred and hire are complicated functions with 
multiline definitions touching several (if not all) of 
the relations making up the Job-agency database. 
One may be tempted to say that sheer bulk and 
complexity of this theorem was caused by our own 
folly in in&ting that the integrated database 
integrity constraint include all wnstraints. 
Unfortunately real databases are so constrained, and 
any system that hopes to solve large problems must 
address this problem. One of reasons for the lack 
of use of existing constraint checking systems is the 
sheer expense of checking the constraints. One states 

only the most important constraints, since only those 
can be afforded. After all, what is the use of 
formulating complex constraints if they art? not 
enforced. 

Ibis example was chosen since the structure of 
the hire function can be broken down into three 
parts each of which changes a single relation. This 
property enhances its value as an illustrative 
example, but is not required by the theorem prover. 
Let fixoffer be a function reflecting the change in 
the Offering relation and fix-person be a function 
reflecting the changes in the Persons relation. When 
we “open up” the definitions of Hire and thedbpred 
the safety theorem for transaction Hire is expanded 
to the form given in figure 7. 

The hypothesis of this theorem reflects both 
the assumption that the database was consistent to 
start with, and that the preconditions of the 
transaction are met. The conclusion of the 
implication reflects the constraints that must be true 
of the updated database. Note the use of the 
updating functions fix-person, fixoffer, and the 
primitive updating function insert to represent the 
changed database states. Each of the 11 conjuncts 
in the conclusion generates a subgoal to be proven 
from the whole hypothesis. Several of these subgoals 
are trivially true since they appear unchanged in 
both the hypothesis and the conclusion, the term 
jobs-p(db . jobs) for example. These trivial subgoals 
are produced when the transaction does not “touch” 
the object being constrained. This useful result is a 
byproduct of the way we state the constraints as a 
single unified predicate, and the way the safety 
theorem is formulated and expanded. The remaining 
subgoals are then considered one at a time. For 
each one we get to assume the whole hypothesis. 
In this example the predicates stating the correctness 
of the input values h (Hiree), c (Company), and j 
(Job) are not shown. 

5. Complexity in the proof process 

In the previous section we discussed how a 
theorem stating the safety of a complex transaction 
in a system with complex integrity constraints can 
be generated from a schema and a transaction 
specification and how the theorem can be broken 
down into smaller more manageable pieces amenable 
to automated proof techniques. In this section we 
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db.persons.PidContainsdb.pkcments.lYdaud 
db . companica . Cid Contains db . @cements . Cid and 
db . jobs . Jid Containa db . placcmcnt~ . Jid and 
db . jobs . Jid Contahu db . offering . Jid and 
db . companiu . Cid Contains db . offcxing . Cid and 
For all P In db . persons: 

If P . Pid In db . placements . Pid 
Then P . Placed = ‘yes’ 
Else P . Placed = ‘no’ and 

pcrsonep(db . persons) and 
jobs-p(db . jobs) and 
offering-p(db . offering) and 
companicq(db . companies) and 
placements-p(db . placements) and 
h in db . Pemons . Pid and 
[Company, Job] In db . Offering . [Cid, Jid] and 
For the P in db . Permnr 

where P . Pid = h: PPlaced = ho’ 

--> 

fix-pcrsoa(db . pcrmas,h) . Pid Containm 
inscrt(placement@&c)e), db . placements) . pid and 

db . companicr . Cid Contains 
inscrt(placcment(h,j,c),db . placements . Cid and 

db . jobs . Jid Contti 
ituert(placcment(hj,c), db . placements) . Jid end 

db . jobs . Jid Contains fixMer(db . offer&Q . Jid and 
db . wnqanica . Cid Contains fkoffec(db . offecing&,j~ . Cid 

and 
For all P In f-ii-per#m(db . pcrao@): 

If P . Pid In inscrt(placement(h,j,c)). db . placements) . pid 
Then P . Placed = ‘yu’ Else P . Placed = ‘no’ and 

pcrsowp(fii-pctxon(db . pcmons,h)) and 
jobs-p(db . jobs) and 
offering-p(fix+ffer(db . offering~,j~) and 
companiu-p(db . companies) and 
placements-p(insert(placement@jn. db . placements)) 

Figprr7:ThedctytkuemfortrammctioaHin 
on Job-8~. 

discuss methods of reducing and dealing with the 
remaining complexity. 

The sixe and complexity of safety theorems 
flows from two causes. First, the integration of the 
database predicate into a single predicate causes a 
large number of hypotheses to appear in the 
theorem. Unfortunately this is a necessary 
complication. The simple approach of showing for 
each conjunct, Pi, of the integrated predicate that 
Pi(db) -> Pi(T(DB)) works for only the simplest 
constraints. For example, consider trying to show 
that if the Placements relation is keyed, then the 
relation insert(placement(h, j, c), placements) is also 
keyed. 

Here placement(h, j, c) is the construction of 
a placement tuple from the values h for pid, j for 
jid, and c for cid. A proof of this follows from the 
precondition that the Placed attribute of h is ‘no’ 
and from the completely unrelated hypothesis that 
every Person who is also in Placements has his 
Placed attribute set to ‘yes’. Thus, throwing away 
all’ hypotheses but the particular one the conclusion 
stems from is not a viable alternative. On the 
other hand, keeping all of the hypotheses around 
can mire the proof mechanism in great amounts of 
detail, much of which is unnecessary. 

The second reason for the complexity of the 
theorem is that the changes to the database are not 
just simple inserts and deletes, but can be arbitrary 
changes to particular tuples meeting complex 
conditions, (like the fix-offer, and fit-person 
functions). In this section we discuss three methods 
we have used to reduce the amount of complexity 
arising from these causes and discuss the effects of 
this on obtaining proofs. The three methods are 
building the theory with safety proofs as a goal, 
stereotyping the translation of transactions, and 
reducing irrelevancy in theorem clauses. 

5.1 Goal- themy 

The key to handling complexity by building 
the “right” theory is to stereotype the common 
constraints and to supply the theorem prover with 
thorough knowledge of the interaction between the 
constraints and update functions. This knowledge is 
stored in a database of proven theorems which we 
refer to as “the lemmas”. 
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Definitions; 

project(r, &clist) = 
if empty(r) then emptyset 

else insert(projI’(choose(r), Mist), 
project(rest(r), Mist)) 

contains(x, y) = 
if empty(y) true 

else if member(choose(y), x) 
then contains(x, rest(y)) 
else false 

contains-insert-rewrites: 

contains(x, insert(a, y)) = 
contains(x, y) and member(a, x) 

pull-insert-from-project: 

project(insert(a, x), Mist) = 
insert(proJT(a, &list), project(x, Mist)) 

Figun 8: Sample constniat FmctiomandImunas. 

For example, in our system referential 
integrity is specified as the containment of the 
projection on two relations. We have defied both 
containment and projection as recursive functions in 
our system. We have then instructed the theorem 
prover to prove and “remember” relevant facts 
about these functions. Such relevant facts involve 
how containment behaves under insertions, deletions, 
and updates, which are the very functions we expect 
to find in the conclusion of our safety theorems. 
Let us look at the definition of these two predicates 
and some of the “lemmas” we have proven shown 
in figure 8. In this definition profl is a tuple 
projection function, and &t&t is a list of attribute 
names. Remember that choose selects an arbitrary 
element from a set, and rest is what remains once 
the choose is removed. 

The two lemmas shown are both useful in 
proving invariants when the database is changed by 
inserts. Suppose we are trying to prove 

contains@roject(x, n), project(insert(t, y), m)) 

This is quite common if we have a referential 
integrity constraint between the ‘31” attribute of x 

and the “m” attribute of y. Using the lemma 
pull-insert-from-project the prover transforms the 
clause to: 

contains@roject(x, n), 
~~(Projt(t, 4, proiect0, m))) 

and then by the lemma containsmsert-rewrites we 
get the two terms: 

contains(project(x, n), project(y, m)) and 
member(projt(t, m), project(x, n)) 

the first of which is probably in the hypothesis, 
since it represents referential integrity in the 
unchanged database, and the second is a membership 
test. Since membership is a simpler function than 
contains (remember contains was defined in terms of 
membership) we have reduced the complexity of 
what we are trying to prove, and the function insert 
no longer even appears in the term. 

We have found that by identifying, proving, 
and instructing the theorem prover to remember the 
right set of such lemmas, complexity in safety 
theorems is reduced and that common types of 
transactions can be proven safe mechanically. 

52 stereotyped translation of transactions 

In addition to simple inserts and deletes we 
must be able to handle more general updates. For 
example, both fix-offer and fix-person are general 
update functions which change particular tuples in a 
relation which meet a nontrivial test. Although they 
are very different, they are also specific cases of a 
generic update function with the following 
definition: 

up~te(r, P, 9, f, flry) = 

For the x in r where p(x, &y): 
if q(x, &y) then delete(x, r) 

else insert( f(x, %y), delete(x, r)) 

BY changing the particular function 
parameteters p, q, and f we can model very 
different specifc updates with this temf53te. for 
example in fix-person, the q function is always false 
and thus never deletes the tuple meeting the p 
predicate. By proving general properties of update, 
then by defining fixoffer, and fix-person in text-Is 

432 



of update, the two defined functions inherit these 
properties. This is a major method of reducing the 
complexity of the theorem prover’s problem of 
accessing the appropriate knowledge when attempting 
to prove safety theorems. 

This method of defining generic functions as 
templates which take other functions as parameters 
causes some problems since the particular functions 
passed as parameters are often quite different 
sometimes having different numbers of parameters in 
different instantiations. The notation which includes 
an ampersand (8~) before a variable name stands for 
an indeterminate number of parameters. Thus in 
the definition of Project, &cl& stands for an 
arbitrary number of attributes to project on. In the 
definition of update, the &y stands for a list of 
auxiliary parameters of indeterminate length which 
must be instantiated when a function is defined as 
an update. Consider the ftx-person function defined 
as an update function. 

fix-person(r h) = 
update(r, ‘named, ‘falsehood, ‘markemployed, h) 

where 
named(x, h) = @id(x) = h) 

and 
falsehood(&) = false 

and 
markemployed(x, dummy) = 
person(pid(x), pname(x), Paddr(x), ‘yes’) 

The &y parameter of the update function is 
instantiated in this function to the single variable h, 
which is used as an input to the call of the named 
function. The function falsehood returns false 
regardless of the number of parameters it is passed, 
and the function mark-employed ignores its second 
argument which is there only to match the number 
of parameters the parameter function f takes. 

Now it is a theorem about update, that if the 
output of function parameter f is the same on the 
“x” attribute as on the “x” attribute of its input and 
the q function is always false, then the projection 
of the update function on the “x” attribute remains 
unchtiged. Formally this is stated as: 

if x(W) = x(a) is a theorem then 

(project(update(r, p, ‘falsehood, f, &y), x) = 
proiect(r, 4 

is also a theorem. 

We call this a meta-lemma since it is a 
lemma about lemmas. Whenever a function is 
defied in terms of update and its function 
parameters meet the preconditions of a theorem like 
the one above, then it inherits the theorem. When 
the fix-person function is defined, it is noted that 
the conclusion of the meta-lemma instantiated for 
fix-person is as follows 

project(fix-person(r, h), x) = project(r, x) 

this may be used as a lemma if 

x(markemployed(y, dummy)) = x(y) 

is a theorem. At Definition time we have no value 
yet for the component selector x, so we cannot 
decide which functions x to test the hypothesis of 
the meta-lemma on. Once the safety theorem is 
produced, we scan the theorem (figure 7 for 
example) for instances of the conclusion 
fix-pcrson(r, h) . x (using the dot notation for 
project) and note that Pid is a candidate value for 
x. The system proves that 

markemployed(y, dummy) . Pid = y.Pid 

and the conclusion, with x instantiated by Pid is 
added as a lemma to the system. since 
markemployed never alters the pname or Paddr 
attributes of its input, if the terms with Pname or 
Paddr had been mentioned in the safety theorem, 
the lemmas 

fix-person(r, h) . pname = r . pname 
fii-person(r, h) . Pad& = r . Paddr 

would also be added to the system. The theorem 
prover makes use of the Pid theorem when 
attempting to prove the subgoal in figure 7 
concluding in: 

fix-person(db . persons, h) . pid contains 
insert(placements(h, j, c), db . placements) . pid 

Using this theorem the goal is simpliiied to: 
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db . persons . pid contains 
insert(placements(h, j, c), db . placements) . pid 

Then by the contains-insert and project-insert lemmas 
we get: 

h in db . persons . pid 

Which is again one of the hypotheses and the 
subgoal is proven. 

53 Reducing irrelevance in dauses 

Even though many lemmas in the knowledge 
base reduce the complexity of the theorems being 
proven, theorems often contain large numbers of 
irrelevant terms which add nothing to a successful 
proof but often lead the theorem prover down blind 
alleys. Removing these irrelevant terms is essential 
to an efficient proof procedure. Consider the 
subgoal of the Hire transaction safety theorem 
which states: 

db . persons . Pid Contains db . placements . Pid and 
db . companies . Cid Contains db . placementa . Cid and 
db . jobs . Jid Contains db . placements . Jid and 
db . jobs . Jid Contains db . offering . Jid and 
db . companica . Cid Contains db . offering . Cid and 
For all P In db . pusons: 

If P . Pid In db . placements . Pid 
Then P . Placed = ‘yes’ 
Else P . Placed = ‘no’ and 

pemons-p(db . persons) and 
jobs-p(db . jobs) and 
offering-p(db . offering) and 
companic+db . companies) and 
placementa-p(db . placements) and 
h in db . Persons . Pid and 
[Company, Job] In db . Offering . [Cid, Jid] and 
For the F in db . Petsons 

where P . Pid = h: P.Placed = ‘no’ 
--> 

placements-p(inscrt(a~ment(h. j, c), db . placements)) 

The hypothesis of the clause contains 14 terms 
only 4 of which are relevant. The conclusion 
involving placements-p is just that the placements 
relation is keyed on the pid attribute. The term we 
are trying to prove is then 

key(insert(placement(h, j, c), db . placements), pid) 

By applying a lemma which relates key to insert, 
the term is rewritten to: 

key(db . placements, pid) and 
if placement(h, j, c) in db . placements 

then true 
else projT(placement(h, j, c), pid) 

not in db . placements . pid 

Since the first conjunct in the term above is in the 
hypothesis (in the guise of placements-p), we get 
two subgoals, one for each branch of the if 
statement. The then branch corresponds to the tuple 
placement(h, j, c) already being in the placements 
relation, in which case the insert adds nothing, 
(inserting a duplicate in the set does not change the 
set) and the placements relation remains keyed. The 
else branch is the interesting case. Here we must 
show that the pid attribute of the inserted tuple 
(which is just h) is not a member of the projection 
of the placements relation. We have reduced the 
clause to: 

h not in db . placements . pid 

At this point in the proof the theorem prover needs 
to do a proof by induction. Unfortunately, the 
correct recursive function to induct upon is obscured 
by the many irrelevant terms in the hypothesis. By 
throwing away all terms except the following: 

For all P In db . persons: 
If P . Pid In db . placements . Pid 

Then P . Placed = ‘yes’ Else P . Placed = ‘no’ and 
h in db . Persons . tid and 
For the P in db . Persons 

where P . Pid = h: P.Placed = ‘no’ 
--> 

not h in db . Placements . pid 

The correct induction can be chosen. The course of 
action is to do an induction on the For-all function. 
Throwing away the corect terms is a difficult choice 
for which we have as yet only the most 
rudimentary heuristics. If the correct irreievant terms 
are not thrown away it may lead the theorem 
prover to attempt the wrong induction and hence 
miss proving the theorem. A heuristic is proposed 
in myer & Moore 791 which is useful but far from 
complete in these circumstances. They propose 
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partitioning the terms such that each partition 
contains terms which have variables mentioned in no 
other partition. Then, all partitions other than the 
one containing the conclusion term are discarded. 
while this works in many cases, it still leaves many 
irrelevant terms in the resulting clause. Duowing 
away irrelevant terms remains an open problem. 
After examining many clauses in theorems which 
have been intractable, we have developed intuition 
which allows us to select relevant clauses for use in 
lemmas which can be proven and then used to 
prove the problematic theorem. We are studying the 
significant problem of building at least some of our 
intuition (which is perhaps only effective in the 
domain of databases axiomatized in our style) into 
the theorem prover. Another approach to this 
problem in our context is to build an appropriate 
interface between the prover, which uses a purely 
functional form of the transactions and constraints, 
and the system designer who writes and thinks in 
higher level non-functional terms. Then a system 
designer could develop intuition and provide aid to 
the theorem prover in difficult situations. This too is 
being studied. 

Using the techniques discussed in this section 
we have mechanically proven the safety theorem for 
Hire using our version of the Boyer-Moore theorem 
prover. 

6. Summary 

We have discussed the problems of dealing 
with complexity in mechanical proofs of properties 
of database systems. The partial solutions which we 
have obtained during our experience involve tailoring 
the theory used by the prover to the kinds of 
theorems which are of interest, as well as 
stereotyping the expression of both invariant and 
dynamic properties of the systems being analyzed. In 
our problem domain, complex transactions on highly 
constrained databases, large amounts of irrelevant 
information sometimes obscure the problem for the 
inference engine, and we have discussed the way in 
which we have had to deal with this problem, 
partially mechanized and partially “by hand”. 
Though our experience is almost entirely in the 
domain of safety properties of database transactions 
and a powerful, heuristics-based prover, we believe 
that other domains, including logic programming 
with resolution-based techniques, will encounter 
many of the same problems and can benefit from 
our experince in coping with the unavoidable 
complexity of the problem. 

Reference3 

lBalzer et al. 831 B&er,R., Cheatham, T. E., Jr., 
and Green, C., “Software Technology in 1990’s: 
Using a New Paradigm.” Computer, vol. 16, no. 16, 
November, 1983. 

[Boy= and Moore 791 Boyer, R. S. and Moore, J. S. 
A Computational Logic, Academic Press, New York, 
1979. 

[Burstall 6!)] Butstall, R. “Proving Properties of 
Programs by Structural Induction.” Computer 
Journal, Vol. 12, No. 1, February, 1969, pp. 414. 

[Gardarin and lbfdkmoff 791 Gardarin, G. and 
Melkanoff, M., “Proving Consistency of Database 
Transactions”, Proceeding of the 5th International 
Conf. on Very Large Databases, 1979, pp291-298. 

[Gerlwt 831 Gerhart, S. “Formal Validation of a 
Simple Database Application.” Proceedings of the 
Sixteenth Hawaii International Conference on System 
Sciences, 1983, pp. 102-111. 

mg 811 King, J. J. “QUISR A System for 
Semantic Optimization in Relational Data Bases”, 
Proceedings of the Seventh International Conference 
on Very Large Data Bases, 1981, pp. X0-517. 

[Schmidt 77J Schmidt, J. “Some High Level 
Constructs for Data of Type Relation.” ACM 
Transactions on Database Systems. Vol. 2, No. 3, 
September 1977. pp. 247261. 

[Stem@ and Sheud t?4] Stemple, D. and Sheard, T., 
“Specification and Verification of Abstract Database 
Types.” Third Symposium on the Principles of 
Database Systems, Waterloo, Ontario, April, 1984. 

[Walker and Salve&r 811 Walker, A. and Salveter, 
S. C. “Automatic Modification of Transactions to 
Preserve Data Base Integrity Without Undoing 
Updates.” State University of New York, Stony 
Brook, New York: Tech. Report 8MI26 (June 
1981). 

[yekota 841 Yokota, H., Kunifuji, S., Kakuta, T., 
Miyaxaki, N., Shibayama, S. and Murakami, K. “An 
Enhanced Inference Mechanism for Generating 
Relational Algebra Gueries”, Proce&ngs of the 
Third ACM SIGACT-SIGMOD Symposium on 
Principles of Database Systems, April, 1984, pp. 
229-238. 

435 


