
NetBook - a data model to support knowlcdrpe exploration

Dennis Shasha

Courant Xnstitute, New York University
251 Mercer street, NY, NY, 10012, USA.

(~WBnyu~.Arpa)

Abstract
Knowledge exploration is the activity of finding out what
other people have thought about. Normally, people explore
knowledge by reading books or articles or by talking to other
people. This paper discusses an alternative approach: a sys-
tem whose knowledge is in the form of text fragments plus a
query language to help users access appropriate fragments.
Drawing primary inspiration from database theory, hypertext
systems, knowledge representation, and a study of textual
fragments called fragment theory, the paper describes and
motivates a data model to support knowledge exploration.

1. Boa& vs. PeepIe
What is the difference between hiring a consultant and

reading his or her book? You can follow your own line of
inquiry in asking the consultant questions. The consultant will
answer you without telling you much irrelevant or redundant
material. The book may also answer the questions, but to
find the answers you have to be skilled and l&y in using the
in&x or you have to read a good part of the book.

The objective of the NetBook project is to replace books
and documents by a collection of text fragments,’ relations
among fragments, and a query hgUagC. An explorer uses
the query language to retrieve a text fragment or fragments.

The NetBook project does not attempt to break new
ground in natural language understanding by computer.
Therefore, the reader’s queries are in an artificial language,
and the system’s responses consist of text fragments that writ-
ers have entered as is. The challenge is to design a concise
data model that incorporates necessary facilities for such a
sy8tem.
1.1. Mouv8tloo and Related work

With numbing frequency, we hear about the ongo@ and
worsen@ ~knowledge explosion.” With so much knowledge

I’ermisGon to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
01 the publication and its date appear, and notice is given that copy.
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

around, a system to support knowledge exploration should
consider the explorer’s time and effort to be the primary
‘measure of cost.

Systems that address the knowledge exploration problem
come from the fields of information retrieval, database
management, natural language understanding, computer-aided
instruction, and non-linear text systems known as hypertext.

Information retrieval systems help users find documents
relevant to their interests. Increasingly, they depend on key
word search (possibly with automatic synonym generation) in
addition to standard library classification techniques. The
main attraction of such systems is that they do not require
special effort by the reader or writer. Specially trained pro-
fessionals (usually librarians) do the classification step and
keyword retrieval systems are widely available. However,
studies have shown that different indexers use different As-
sifications [ZD69]. This has led some studies to argue that
indexing may be worse than keyword retrieval [S70]. How-
ever, a recent experiment [BM85] shows that a state-of-the-art
keyword retrieval system retrieves less than 20 percent of the
documents relevant to a particular search (mostly because
people may refer to the same thing in different ways; one
person’s “accident” is another person’s “difficulty”). One
must conclude that neither manual indexing done by profes-
sional classifiers nor keyword searching nor even their combi-
nation are altogether satisfactory for retrieving relevant infor-
mation.

Database management systems also help explorers
retrieve information. They provide an important paradigm
for knowledge exploration systems. However, there are
several important differences between the two applications:
1) Database users can remember the elements of a database
management system schema that they are likely to run across.
Users of a knowledge exploration system by contrast may
have no prior knowledge of the schema. Moreover, the
schema may be hU8e.
2) Database entities (e.g. tuples) are quite small (say a few
hundred characters); in contrast, entities in a knowledge
exploration system which may be several paragraphs long and
may have attributes of that length as well.
3) Database tuples can be understood without referring to
other tuples; by contrast, a knowledge system must take into
account a prerequisite relationship between some text units
and others.

The goal of natural language understanding systems is to
build up automatically an internal representation of text in -

1 What we call ‘mxt’ in this document may in fact be a piaure, an ex-
f&mental simulation, or a live performance. We we the term text for the
die of concreteness.

Proreecling~ of VLDB 85, Stockholm 418

order to answer questions as a human would. Unfortunately,
the research is far from achieving this goal even for highly
restricted domains [GHF82, 881, 8A77, WH81]. Our project
does not assume even a partial solution to this problem,
though we do point to some areas where advances in natural
language understanding would be helpful. -

In contrast to natural language understanding and infor-
mation retrieval, intelligent computer aided instruction
requires the knowledge producer to tailor the knowledge to
the explorer (student) rather than merely to write an article
and depend on a computer and other people to act as inter-
mediaries. The best of these projects [BBB76, C76, %X378]
allow a student to test himself or herself on simulators and
comment on how reasonable the student’s hypotheses are.
Our project adopts the philosophy of tailoring information to
the explorer, but the tailoring rquires less expertise and
effort.

Partly in reaction to the difficulty of natural language
understanding and partly because it seems to be an attractive
and liberating approach to exploring knowledge, non-linear
text forms have caught the imagination of researchers [B45,
B82, E84, EWN73, MM79, N79, Ne183, T83, WeySZ]. These
so-called hypertext systems consist of text fragments embed-
ded in a directed graph with labelled edges and instructions
allowing the user to traverse edges. They also allow users to
make commentaries on what they read [L85, T83]. Hypertext
systems often incorporate state of the art technology in their
user interfaces, such as high resolution graphics, sophisticated
pointing devices, and even pictorial simulations. However,
without a content-based query system, hypertext users must
wander through text units trying to find relevant information;
once they find it, they must figure out an order in which to
read it; and after they have finished reading, they have no
idea whether there is more. This may explain why such sys-
tems has few users despite the idea’s long history [B45].

Some database systems [CM, H80, SK82, F&l] have
adopted a hypertext approach in the sense of allowing users to
wander among the information in a database, but it is too
early to gauge the direction of this approach.

2. Fragment Theory for Retrieval
The system we envision consists of text fragments con-

taining one or more information units. Each information unit
is an idea or a fact. Different people may disagree about
what are information units, but the qualitative conclusions of
the model are independent of those differences.

2.1. Linaar text contalnr radundancy or irralcvancm
Consider the following text fragments:
1) When the red alarm rings, look around for fire.

Also, check for smoke, strange smells
2) When the blue alarm rings, see if there are any

thieves. Also check for forced locks, open doors
3) Leave the building. Take out the following docu-

ments:
4) [If the red alarm rang,] use the following route to tk

fire station.. . .
5) [If the blue alarm rang,] use the following route to

the police station.. . . .
This might be represented in linear text in basically two

ways (1, 2, 3, 4, 5) or ((1, 3, 4),(2, 3, 5)) -- where
parentheses imply sequence and curly brackets imply that

text: (1, 2, 3,4, 5); choice: (2, 3, 5); irrelevant: {1,4}

text:((l, 3,4),(2, 3,4)); choice:(l, 2, 3, 4,s); redundant:{31

Figure 1: There are choices for which most linear texG will
have redundancies or irrelevances.

either order is possible. A reader of this information might
be interested in the red alarm, the blue alarm, or both.
Readers interested in exactly one of the two alarms would be
well satisfied with the second representation, particularly if
the conditionals in 4 and 5 were removed. However readers
interested in both alarms would be displeased by the repeti-
tion of 3. similarly, readers interested in both alarms would
be happy with the fiit representation, but readers interested
in one alarm would be displeased by the irrelevant informa-
tion about the otha alarm.

The main lesson is that when different readers are
interested in distinct but overlapping pieces of information,
some of them will encounter irrelevance or redundancy when
reading linear text, unless there is a representation tailored to
every interest. This motivates our search for a system that
would permit us to store text in fragments, then present them
appropriately. For example, if the reader asks about the red
alarm, present (1, 3, 4), if the reader asks about both, present
(1,2,3,4,5).

2.2. MeawIng Redundwy and Irrelevance
Even when the text is stored as fragments which are

optimally chosen to answer explorer’s questions, explorers
may encounter redundancy or irrelevance. For example, the
route to the fire station and to the police station in items 4
and 5 may begin with common instructions, so the presenta-
tion (1, 2, 3, 4, 5) would contain some redundancy even for
the user who wants to know about both alarms. Let us call
the common route information c and the remaining informa-
tion in 4 and 5 is 4’ and 5’ respectively. Thus, presenting (1,
2, 3, 4, 5) really means presenting (1, 2, 3, (c, 4’), (c, 5’)).
The second c is redundant. Here, {1, 2, 3, c, 4’, 5’) are fun-
damental information units; {l), {2}, {3), {c, 43, and {c, 5’)
are groupings of information. The choices are subsets of the
information units: (1, 3, c, 49, (2, 3, c, S’}, (1, 2, 3, C, 4’,
S’}, representing units relevant to the red alarm, the blue
alarm, and both alarms.

In general, the redundancy and irrelevance of a set of
groupings Q that cover a choice S2 are &fined as follows:3

RedundancyQr= X-knSl- wl and

Irrekvancegp %I. -.
9aQ

2.3. CroPpIng rlect&~~ problem
Even in this idealized model the problem of choosing

groups to minimize the sum of the redundancy and irrelevance
(which together constitute unwanted material) is hard. This
Froblem might arise when a teacher wants to assemble groups

’ . COverin means that every element of s is a member of at leasr
one of the sets in Q.

’ - Common software engineering practices such as information hid-
ing and context-dependent help facilities reduce irrelevance as we define it
here. Relational selection and projedon reduce irrelevance by removing
unwanted attributes and tuples. Projection reduces redundancy by elim-
inating duplicates.

for presentation to a student. We frame this as a d&ion
problem.

Grouping Selcetion problem.
Instance: Let I bc a finite set (of “information” units). Let
Grouping be a collection Of subsets of I, (the ‘groupings” of
information units). Let S bc a subset of I, the “dmiec units.”
Let unwanred bc a positive intcgcr.
Question: Is there a subset Q of Grouping such that Q covers
S and redundontpg+irrel~~tgcrsunwont ?

Verifying a proposed solution is at worst quadratic in the
number of information units in the members of Q, so the
problem is clearly NP-easy [GJ79].

Theorem Group Selection: Tke grouping s&&on prob-
lem is NE-hard [!85].

In spite of thir negative result, many heuristics can be
tried. For example, if the set8 in Grouping are all disjoint,
there is an optimal solution to the problem -- just pick the sets
in Grouping that intcrscet the choice set 5. More gcncrally, if
any clement in S is in only one group, then pick that group.
After that, pick groups in descending order bared on the ratio
of new/extra, where llcw is the number of new information
units found in a group and extra is the inercasc in redundancy
and irrelevance resulting from choosing that group.

Suppose WC have choices { {2,4), {3,4,5}} and groupings
A = {1,2,3}, B = {2,4,5), C = {1,4}, D = {3,5) , and E =
{2,5). The heuristics suggest that for {2,4) we ehoosc C and
E. For {3,4,5) we choose D and C.

2.4. Pradkmte Sakctlon Prohlem
The grouping selection problem arises when a person

wants to assemble a set of information groups for someone
else. However, an individual exploring on his own for a
choice c will use a query language offering a collection of
predicates (corresponding to selection, projection, and so on
in relational algebra) from which the user can chooac some
boolean combination.

The explorer should choose a boolean combination P
sudt that any’ information unit satisfying c will satisfy P.
Thus, the predicate selection problem is to s&et a prcdieatc
covering a choice that minimizes redundancy and irrelevance.
Here, rcdundaney and irrelevance arc measured with respect
to the set of groupings that satisfy P. The problem assumes
no knowledge of the entire set of groupings G, but only of the
predicates.

For example, suppose we want to know all the synduon-
ization mechanisms used in concurrent programming
languages. In the absence of special information about these
languages, we would have to look at the synchronization
mechanism used by every concurrent programming language.
Thus, the predicate would be “synchronization mcehanism of
a eoneurrent programming language.” The grouping selection
problem assumes information about the set of groupings G , so
an optimal set of groupings for this choice may indudc the
synchronization mechanisms for only a subset of the
languages. So, prcdieatc selection will in general yield more
redundancy and irrelevance than grouping selection, because
less information is available to the explorer. (The formal
similarity of the two problems, however, implies that prcdi-
eate selcebon is NP-complete.)

We model the construetion of a query as a predicate
selection. ‘Ihe question is: how can we design the information
groupings so commonly sclcetcd predicates will enanmtcr a
“reasonable” amount of redundancy or irrelevance?

3. Appliatkns of fhgment theory
Breaking up groups into component information units

reduces irrclevanec and rcdundaney but is difficult. Gur eri-
terion for choosing the groupings to break up (decompose) is
based on the ratio of unwanted to useful htformation gen-
erated by common prcdieatcs.

3.1. Dacoapmftlen
For example, suppose that each concurrent programming

language has properties design history and synchronization
mechanism. Suppose that questions about both are frequently
asked. The question is which of the two properties could be
kept with information specific to each language?

There is a one-to-one relationship between languages
and design histories, whereas there is a many-to-one relation-
ship between languages and synchronization mechanisms.
Suppose there arc m languages, m design histories, and II syn-
chronization techniques used by the languages n<m. Then
there are O(m) information units about the design histories of
the languages, but only O(n) about synchronization mcchan-
isms. Keeping either of thcsc with information spceific to
each language results in O(m) irrelevance and less redun-
dancv. Hcnee the ratio of unwanted information to desired

information is O(1) for design history and O(m/n) for syn-
chronization mcehanism. This suggests separating the syn-
chronization mechanism from the language description.

A misinterpretation of this example is that redundancy in
the information stored is always bad. In fact, redundancy is
bad only if the groups with the redundant information are
likely to be selected by the same prcdieate. For example, a
history of Germany and a biography of Bismark may both
contain sections on the role of Bismark in the unification of
Germany, but no single predicate will likely se&t them both.

The programming language example suggests that group-
ings should be decomposed so that often-ehoscn predicates
that return a multiset of information units, return instead a set
without duplicates. The Bismark example illustrates that
achieving this decomposition for predicates p and p’ doesn’t
guarantee that it will hold for p v p’ , because distinct infor-
mation groupings may have the same information units.
However, the rcdundaney grows slowly, as the following
observation states.

Observation about decomposition: Suppose every infor-
mation unit contained in any grouping satisfying predicate p is
in only one such grouping and similarly for p’ . Then the same
property holds for p A p’ and there are at most two such
groupings containing the same information unit in p v p’.
Moreover the irrelevance in p A p’ is bounded above by the
minimum of the irrelevance in p or p’ . The irrelevance in p
v p’ is bounded above by the sum of irrclcvanecs of p and
P’*[l

3.2. Soft Aggregates
A major difficulty facing the knowledge explorer is to

filter out information that is relevant, but more detailed than
necessary. Database management systems use aggregate func-
tions to handle this problem. Knowledge exploration entails
an additional mcdmnism which we illustrate below.

Suppose WC want to know about some geographical
region, say the high Oregon desert, and the system has
detailed information about the municipalities in the area.
Reading about all the munieipalitics would be dull and redun-
dant. Therefore, we would want to use aggregates. Some of

&se we standard quantitative aggregates Such as the averalie
r&fall of he municipalities. Others entail a minor eaten-
sions of t&se aggregates such as the union of floral species in
the area. However others are “soft” aggregates, e.g. the
region has little rainfall, but a good deal of water flow@
from *e mountains to the west. We might Come to this gen-
eralization by reading about each municipality, but the ratio
of unwanted to useful information would be too high- puf
data model handles this situation by positing a partial order’
“subvalue” on the entities of each type. For example, the
municipalities of the high Oregon desert would be subvalues
of counties there. This allows explorers to discover quaMa-
tive generalizations without having to wade through much use-
less information.

4. Data Modal: Retriaval
Our data model follows the spirit of the functional data

model Daplex (Ship81, CDFR83] and some aspects of the
semantic data models of [LM79]. Other features seem
specific to the problem.

The basic information groupings are called c&rear
unirs. A coherent unit is understandable to a reader who
understands the terms it uses. Thus, a coherent unit may con-
tain proper nouns and technical terms, but no anaphoric refer-
ences (such as pronouns) to other text. We make this rquire-
ment so that a particularly knowledgeable reader may start at
any coherent unit.5 Each coherent unit is organized as a tree
of text fragments in which any path from the root text frag
ment to a descendant text fragment is coherent, but the non-
root nodes need not be coherent on their own.

The basic constructs of the query language are mdries,
rypes, and functions. Entities are normally entire coherent
units, though they may consist of the text fragments along the
path from the root of a coherent unit to an interior node. The
functions take entities as their domain and returns a single
value or a set of values. Such values may be entity identifiers
or may be drawn from scalar, vector, or character data types.
Thus, functions correspond to properties of entities (in gen-
eral, a function may have many entities as arguments but we
ignore this case for the sake of explanation). A type is a co1
lection of entities that all belong to the domains of the samt ,
functions.

The set of functions defined on a type induces a partial
order, called subtype, defined as follows: if the set of func-
tions defined on type r is a subset of the set defined on r’ ,
then r’ is a subtype of r. intuitively, entities of type r’ have
more properties than entities of type r.

‘The major structural difference between our model and
Daplex is the notion of a partial order subvalue on values.
Value 4 is a subvalue of b with respect to a type r if any
entity with value u of r also has value b. For example, if ask-
ing about shipments to Sweden we would be interested in
shipments to Stockholm, a subvalue of Sweden in a
geographical region type.

4.1. RctcLval Operations
In this model, types and functions as well as entities may

be targets of a query. These operations allow the explorer to

’ - A partial order s has the property that V a, a S a and V a, P,
and c, a f; b A b S c - a 5 c. The order is partial because every tW0 dw
tina elements need not be comparable.

’ Every tuple of a conventional database is coherent in this sense,
where the reader’s knowledge consists of undersranding the schema of the
relation containing the tuple.

discover the connections to an entity as in semantic data4
models [LM79].

A query is a calculus expression [US21 of the form {tar-
get : qualification].6 The target consists of two tokens, The
first is either typo or entity or fuaetloll. The second is a vari-
able, called the rurger variabfe. The qualification is a formula
whose only free term is the target variable. Variables may
represent types, entities, or functions.

The arums of a formula are:
1. { entity variable] entity constant} {is a subvahm of I=

] d 1 B } { entity variable] entity constant}, where one of the
entity arguments must not be a constant. The symbol 8
represents an arithmetic comparison operator (possible only if
the two entity arguments are comparable scalar values).

2. { entity variable I entity constant} is of type {type vari-
able 1 type constant}, where one of these must not be a con-
stant.

3. {type variable] type constant} {is a subtype of I =)
{type variable I type constant}, where one of these must not be
a constant.

4. {entity variable} {has keyword} {keyword expression,
some regular string expression}.

Formulas are made up of atoms as follows:
1. Every atom is a formula.
2. If form, and fwnr, are formulas then fmm, A form,,

form1 v form,, - formI, and (@ml) are formulas, with their
standard meanings.

3. If form is a formula with a free variable s, then (3 s
)(form) is a formula.

In addition, there are the usual rules for guaranteeing
that formulas are safe, i.e. that queries don’t ask for objects
that are not in the database.

4.2. Examples of Qmcrlaa
Query 1: Find shipments of gasoline to Stockholm whose

ship report says “No whale sighted.”
{entity u : u is of type Shipment A dest(u) is of type geograph-
ical region h &St(u) = Stockholm h cargo(u) = gasoline h
report(u) has keyword “No whale sighted.“}

Query 2: Find shipments of petroleum products to
Sweden. (Note that this should return entities found in the
first query.)
{entity u : u iS Of type Shipment A dest(u) is Of type geograph-
ical region A dest(u) iS a subvalue of Sweden A cargo(u) is a
subvahte of petroleum product}

Query 3: What has Sweden as a property7
{entity u : 3 f A f(u) = Sweden}

Query 4: What types does Sweden belong to?
{type t : Sweden is of type t}

4.3. Utm Interface for Retrieval
Since the explorer may have no knowledge of the

shema, he or she builds up a query as a boolean combination
of probes, each built by stepwise specialization.

me environment of a given probe is a triple a=isung
of a type r and a set of function-value pairs fi-.-

We also allow aggregate querler of the form agg unique ((target :
qdif;idon)) or agg ali ((target : qualification}), where unique.tmd aLI in-
diate removal and non-removal of duplicates from the WlfCCtIOn of tap

421

(fpvJ9 . . . ,cfJ,v,) of functions for which some values have
been defined, and a set of entities E of type r that have heen
defined byfi. We denote this triple by (tJL,E).

The commands all refer to this environment. For exam-
ple, one command causes the system to present the subtypes
of the current type t. Another presents the functions applka-
ble to t.

In response to each command, the system constructs a
menu dynamically. The construction strategy maker use of
the subvalue and subtype partial orders. For example, if the
explorer partially spe4ifies the destination fun&n, dest(u) =
Europe, then asks to specify the destination further, the sys-
tem presents the maximal subvalues of Europe, {British Jsles,
Scandinavia, . . . }. The system presents disjoint maximal sub-
values to avoid redundancy. go, it wouldn’t present {British
Isles, Scandinavia, Sweden . . .}.

5. Data Modal: Praantatlon
Most database management systems provide fedlities to

order sets of tuples. These sorting facilities are not of much
research interest. They are, however, of intereat to a
knowledge exploration system for two reasons:
1) coherent units and their properties may contain a lot of text
(by contrast, tuples contain little text);
2) an explorer may have to read and understand background
(prerequisite) information to understand a given coherent unit
(by contrast, tuples such as (John smith, 20000 dollars) are
understandable in isolation of other tuples).

The first point implies that remembering a coherent unit
takes effort. The second implies that there are relationships
r*raong the entities retrieved by a query that the explorer may
not know about. The system should use these relationships in
its presentation strategy. Our strategy is based on the ideal-
ized assumption that a person’s effort is proportional to the
number of coherent units he or she must remember.
5.1. kagment Theory for Praaantatbn

This part of fragment theory is concerned with the effort
required to understand a presentation. We motivate our
effort measure through two examples.

Suppose the explorer wants to compare entities A and B
(say two concurrent programming languages) based on func-
tions f, g, and h. Consider the presentation orders P =
(f(A), f(B), g(A), g(B), h(A), h(B)) and P’ = (f(A), g(A),
h(A), f(B), g(B), h(B)). Jn the first presentation, the user
must remember f(A) only as long as it takes to read f(B). Jn
the second, the user must remember f(A) while reading g(A),
h(A), and f(B). Thus, P’ rquires the user to remember four
coherent units, whereas P only requires the user to remember
only two at a time.

As a second example, consider the prerequisite relation-
s&s (SW figure 2) WW, @,F), (W9, UW), OW,
(F,H), (G,H)}. Consider the two presentations: P = (A, B,
C, D, E, F, G, H) and P’ = (A, B, C, F, D, E, G, H).
Assuming that an explorer cannot understand a coherent unit
without remembering all its immediate prerequisites, the
presentation P requires the user to remember A through E
while reading F, whereas P’ rquires the user to remember
only A, B, and C while reading F, then only F, D and E while
G is read. This time, P requires more effort than P’.

5.1.1. Mansnm of Bfrort
Weighted pebbling problem - We construct a (possibly

cyclic) dir& graph called a pre~entatibn grqh G=O’sE) m

. c

Figure 2: Prerequisite graph. Prerequisite edges directed from
left to right. Presentation (A, B, C, D, E, F, G, H) requires
six pebbles, whereas (A, B, C, F, D, E, G, H) requires only
four.

follows: the vertices are the coherent units retrieved by a
query. There is a directed edge from v to v’ if either v is a
prerequisite of v’ or the explorer has established some order-
ing or grouping relationship between v and V’ .

Treat each maximal strongly connected s&component as
a supernode whose weight is the number of nodes in that sub-
component. This yields a reduced graph on the supernodes,
G’ = (V’ ,E’), where we denote the weight of supernode n as
w(n). (The reduced graph is acyclic, because the prerequisite
relation is acyclic.) A supernode n is jidiy pebbled if it has
w(n) pebbles on it. A pebble may only be placed on a super-
node if all the supernode’s immediate predecessors are fully
pebbled. No pebble may be placed on a supernode after a
pebble is removed from it.

Suppose G is a presentation graph with associated
reduced graph G’ . A presentation P has cost k for graph G if
it legally pebbles G’ with no more than b pebbles under the
interpretation that when node n appears in P, a pebble is
placed on the supernode associated with n in G’ and pebbles
are removed when they are no longer needed.

In the first example, P had cost two whereas P’ had cost
four. Jn the second example, P had cost six, whereas P’ had
mat four.

There is a natural optimization problem associated with
presentation graphs. The progressive pebbling prablem is,
given a presentation graph G, to find the presentation having
the lowest cost for G. Sethi [Seth751 has shown this problem
to be NP-complete for directed acyclic graphs with nodes of
uniform weight.

5.2. Praantation lh our Data Model
Since different presentations may entail different effort,

we want the explorer to state his or her preferences. since
the relationships may not specify a total order, the system
should then try to optimize the presentation to minimize
effort.

5.2.1. Llnpbtlc fndlltlas
The system allows the user to specify a partial ordering

on a set of coherent units of the same type. There are two
possibilities. ‘Ike first is to specify a sequence, thus a total
ordering. The second is to specify the partial order as a
directed graph. For example,
Order E by {(x,y) : (dest(x) is a subvalue of Sweden and
dest(y) is not a subvalue of Sweden)] puts the coherent units
with destination Sweden before any others.

The system also allows the explorer to group entities
into equivalence classes. Different quivalence classes may be
displayed in any order, but the entities in a single class should
be displayed together. For example,
Group E by {(x,y} : dest(x) = dest(y)}.

The second group of facilities allows the user to juxta-
pose entities and their functions in various ways.

Compare (partial order or grouping on entities, sequence
of functions). This statement causes the system to list the
values of the entities function by function according to the
function sequence. For example, compare((Ada, Concurrent
Pascal, Simula), (synchronixation mechanism, concurrency
expression)) would list the synchronixation mechanism of each
language, then the method of expressing ameurrency of each
language.

Display(partial order or grouping on entities, sequence
of functions) This causes the system to list each entity
together with the values of the functions associated with it.

5.2.2. Syrtem optlmlxatlons
The system constructs a presentation graph from the ord-

ering information.: Then the system adds prerquisite edges
that don’t contradict the ordering information (i.e. don’t add
A - B if B - A was specified in the ordering). Finally, the
system tries to find the lowest cost presentation.

Since the optimization problem is NP-hard, we look for
heuristics based on subproblem with optimum solutions. One
such subproblem is a tree (e.g. figure 2) whose prerequisite
edges point towards the root.

The recursive strategy for such a struchue T is to call
pebble on the root:

procedure pebble(T,r)
begin
if c has at least one child

then
pebble the subtrees rooted at the children of

r from the most expensive to the least expensive,
leaving pebbles only on the roots of the subtrees;

pebble r
end

TO calculate the cost of pebbling a root, use the follow-
ing recursive function.

function cost(T,r)
begin
if r has at least one child
then
begin
let c 1, . . . , ck be the children,
such that cost(T,cl)-w(c,) a . . . 2 cost(T,c,)-w(q);

return w(r) + max(cost(T,c,), cost(T,d) + w(c3,
. . . , cost(T,c& + w(cl) + . . . + w(ct-&

end
else return w(r) {the weight of node r}

end

In the example of figure 2, the subtree rooted at F
should be pebbled first, because it has cost four, whereas the
subtree rooted at G has cost three. The cost of pebbling the
entire tree is also four.

7. Different nodes of this graph may be the same coherent unit. For
example, two languages being compared according to their synciuoniration
mechanism may have the same one.

The heuristic we use is expressed in the following pro-
cedure, (here, G is a reduced graph):

procedure heurpebble(G)
begin

for each sink s in the reduced graph,
dobegin

consider the subgraph consisting of s and
its predecessors;
remove edges randomly from that subgraph until e
tree T(s) remains containing all predecessors;

end;
Pebble each tree according to procedure pebble,
but don’t remove pebbles from nodes that are sources
of non-tree edges whose sinks are not fully pebbled.
Also, don’t add pebbles to fully pebbled nodes
or nodes corresponding to the same coherent unit
as some pebbled node.

end

For example, if there were an edge from A to G in the
graph of figure 2, we would pebble F’s subtree before G’s
subtree as before, except that we wouldn’t remove the pebble
from A even after F was pebbled. This would increase the
cost to four.

6. Hourlstlc cohenccmrets from ~rtifklal lntelllgewe
Our data model assumes that manipulating or processing

text within a coherent unit is impossible. We make that
assumption to remain independent of the natural language
understanding problem. However, certain manipulations may
be possible.

For example, coherent units may not normally contain
anaphoric references (such as pronouns) to other coherent
units. This is to avoid having an explorer read a coherent unit
containing “He did X.” and not know whom “He” refers to.
In certain cases, the explorer would know, say, that the
referent of “He” is “John Smith”. Jn those cases, the system
should substitute “He” for “John Smith”. To implement this,
one might use rule-driven system of the form: (if user came
from any one of these coherent units then replace “John
Smith” by “He” in these coherent units . . .).

A second enhancement is to have the system try to
acquire a model of the explorer and then to present coherent
units at an appropriate level of difficulty for him or her. To
do this, there would have to be a specially treated function
conveying level of difficulty, which the system would use.
Another possibility is to include a summarixation relation in
the data model, thus permitting an explorer to get either a
long or a short explanation of a topic.

A third enhancement is to try to infer connections
between coherent units unforeseen by authors. Robert
Amsler and Donald Walker in an unpublished study have
found that by assembling the possible topics corresponding to
each keyword,in a paragraph of a New York Times article, a
program that chooses the topic most frquentJy mentioned
usually arrives at the topic of the article. Besides helping
authors, this inference mechanism may help explorers find
coherent units related to ones they have already explored.

7. Example: tblm w4lde WI a NetBeok
A recipe for constructing a NetBook from a standard

article is first to construct an outline (figure 3) of the major
points. The headings become the function names whose
domain is the coherent unit containing the main idea of the

423

article. Second, construct other groupings from the same
coherent units if that seems appropriate. These may become
other function names. For example, new facilities is an added
function whose range is decomposition, subvalue, autonomous
ordering based on prerequisites, and linguistic support for
presentation. Third, add connections. There are prerequisite
connections due to definitions: information unit, coherent
unit, irrelevance, redundancy, pebbling model. There are
motivational connections: from the subvalue facility in data
model to the soft aggregate section, from the compare con-
struct to the example of comparison, and from the prere-
quisite algorithm to the example of figure 2.

Using these connections, we can directly answer ques-
tions such as “Why is there a subvalue facility?” or “Tell me
about the new facilities.” We could also answer broader
questions such as “What is the redundancy concept and how
does it influence the rest of the paper?” To answer this ques-
tion, we would form a query that considered the connections
to the redundancy concept: the example of redundancy in
linear text, the grouping and predicate selection problems,
decomposition, and soft aggregates. If this article were part
of a larger collection, we might want to compare aspects of
this data model with other models. In that case, we would
have to break up the retrieval portion of the data model into
smaller coherent units.

8. c0uc1urlon
The knowledge explosion suggests a need to build and

study systems that make the job of the knowledge explorer
easier. Historically, the designers of information retrieval
and natural language understanding systems have assumed
that the writing process is separate from the exploration pro-
cess and have designed systems to bridge the gap using elec-
tronic and human intermediaries. Hypertext, database
management, and computer-aided instruction systems provide
an alternative model in which the knowledge creator tries to
put data into a form that is convenient to explorers. The Net-
Book data model follows this alternative approach.

The novel facilities of our data model are a decomposi-
tion criterion, the subvalue partial order, linguistic facilities
for ordering coherent units, and an autonomous presentation
strategy based on prerequisites. Fragment theory provides the
rationale for these facilities. Its usefulness stems from its
simplicity. Our confidence in it (despite its seeming arbitrari-
ness) stems from its ability to model rhetorical paradigms
used by journalists for ordering information and software
engineering paradigms sudr as information hiding. It is not
yet a design theory for knowledge exploration systems, but
we think it will be.

We are constructing a prototype to support the NetBook
data model. We expect it to help us study aspects of the user
interface such as the effect of screen resolution, heuristic
enhancements such as those of section 6, and facilities for sup
porting authors. This last problem is particularly important
for psychological reasons; people have been so well trained as
writers to put ideas in a linear order that we think it’s easier.

netbook as idea (netbook entity)
abstract, conchrsion
books vs. people

motivation

related work
information retrieval
database
natural language processing
intelligent computer aided instruction
hyper-t

fragment theory for retrieval
information unit
linear text
measures of redundancy
grouping selection

formahzation as a problem
predicate selection

fragment theory for presentation
comparison example
prerequisite problem
presentation graph formulation

data model
retrieval - structures, operations, interface
presentation - ordering, compare, prerequisite

new facilities
decomposition
subvalue
autonomous ordering based on prerequisites
linguistic support for presentation

ai heuristics

example
the present section.

Figure 3: The coherent units of this article.

References

B82 - J. S. Brown, “Notes Concerning Desired Func-
tionality, Issues and Philosophy for an AuthoringLand” CIS
working paper, Xerox Part, July, 1982.

BM8S - D. C. Blair and M. E. Muon, “An Evaluation
of Retrieval Effectiveness for a Full-text Docnment-Retrieval
System,” Communications of the ACM March 1985 vol. 28,
no. 3 pp. 289-299

BRB76 - J. S. Brown, IL Rubinstein, and R. Burton,
“Reactive Learning Environment for Computer-Assisted
Instruction” BBN Report No. 3314, Bolt Beranek and New-
man, Inc. Cambridge, Mass. 1976.

B45 - V. Bush, “As we may think” Atlantic Monthly,
176, 101-108. July, 1945

C76 - A. Collins, “Processes in Acquiring Knowledge” in
Schooling and the Acquisition of Knowledge R. C. Anderson et
al. (Eds.) Hillsdale, N.J.: Lawrence Erlbaum, pp. 339-363.

424

C80 - R. G. G. Cattell, “An Entity-based Database User
Interface” Proc. of 1980 ACM-SIGMOD Conference on
Management of Data, May, 1980.

CDFR83 - A. chart, U. Dayal, S. Fox, and D. Ries,
“Supporting a Semantic Data Model in a Distributed Database
System” Proceedings of the Very Large Data Base conference
1983, pp. 354-363.

D83 - U. Dayal, “Processing Queries over generalization
hierarchies in a multidatabase system,” Proceedings of the
Very Large Database conference pp. 342-353 1983

E84 - D. C. Engelbart, ‘Collaboration Support Provi-
sions in AUGMENT” AFIPS 1984 Office Automation Confer-
ence, Los Angeles.

EWN73 - D. C. Engelbart, R. W. Watson, and J. C.
Norton, “The Augmented Knowledge Workshop” Proceedings
AFIPS National Computer Conference, 42 (Arlington, Vir-
ginia), pp. 9-21, 1973.

F84 - D. Fogg, “Lessons from a ‘Living in a Database’
Graphical Query Interface,” ACM-SIGMOD Conference on
Management of Data, 1984, pp. 100-106.

GHF%2 - R. Grishman, L. Hirschmann, and C. Fried-
man, “Natural Language Interfaces Using Limited Semantic
Information,” COLING 82: Proceedings of the Ninth Interna.
tional Conference on Computation Linguistics (J. Horecky,
ed.) pp. 89-94, North-Holland, Amsterdam.

GJ79 - M. R. Garey and D. S. Johnson, Cempurers and
Intractability -- a guide to the theory of NP-completeness W. H.
Freeman and Company, 1979.

H80 - C. F. Herot, “Spatial Management of Data” ACM
Transactions on Database Systems 5 (4), December 1980.

LM79 - H. Levesque and J. Mylopoulos, "A Procedure.
Semantics for Semantic Networks” in Associurive Ne#works N.
V. Findler (ed). Academic Press, New York.

L85 - D. Lowe, “Cooperative Structuring of Information:
the Representation of Reasoning and Debate” International
Journal of Man-Machine Studies (to appear in 1985).

MM79 - M. M. Mantei and D. L. McCracken, “Issue
Analysis with ZOG, a Highly Interactive Man-machine Inter-
face” First International Symposium on Policy Analysis and
Information Systems, June 1979.

N79 - N. Negroponte, “Books Without Pages”, 1979
IEEE International Conference on Communications IV, Bos-
ton, Massachusetts.

Ne183 - T. H. Nelson, Literary Machines Box 128
Swarthmore, Pennsylvania, 1983.

S70 - G. Salton, “Automatic text analysis” Science 168,
3929 April 1970, pp. 335-343

S81 - N. Sager, Natural Language Information Processing:
A Computer Grammar of English and its Applications Addison-
Wesley, Reading, Mass.

S85 - D. Shasha, “Netbook -- a data model to support
knowledge exploration” Technical Report, Courant Institute,
New York University, 1985.

SA77 - R. C. Schank and R. P. Abelson, Scripts. Plans,
Goals and Understanding Hillsdale, N. J. : Lawrence Erlbaum,
1977.

s75 - R. Sethi, “Complete Register Allocation Prob-
lems,” SIAM Journal on Computing 4, 1975, pp. 226.248.

Ship81 - D. Shipman, “‘Ihe functional data model and
data language Daplex” ACM Transactions on Database Sys-
tems, vol. 6, no. 1, March 1981.

So84 - J. F. Sowa, Conceptual Structures: Information
Processing in Mind and Machine Addison-Wesley, Reading
Mass, 1984.

SCG78 - A. L. Stevens, A. Collins, and S. Goldin,
“Diagnosing Students’ Misconceptions in Causal Models,”
BBN Report No. 3786, Bolt Beranek and Newman Inc. Cam-
bridge Mass., 1978.

SK82 - M. Stonebraker and J. Knlash, “TIMBER: A
Sophisticated Relational Browser” Technical Report, Univer-
sity of California Electronics Research Laboratory, May,
1982.

T83 - R. H. Trigg, A Network-Based Approach to Text
Handling for the Online Scient#c Communiry Ph.D. Disserta-
tion, Department of Computer sdence, University of Mary-
land, 1983.

US2 - I. D. Ullman, Principles qf Database Systems
Computer Science Press. Rockville Maryland, 1982.

VJ84 - Y. Vassiliou and M. Jarke, “Query Languages --
a taxonomy,” in Human Factors and Interactive Computer Sys-
tems Y. Vassiliou, Ed. Abler, Norwood, N.J. 1984.

WH81- D. E. Walker and J. R. Hobbs, “Natural
Language Access to Medical Text,” Technical Note 240, SRI
International, March, 1981.

Wey82 - S. A. Weyer, Dynamic Book for Information
Search” International Journal of Man-Machine Studies, vol.
17, pp. 87-107, 1982.

ZD69 - P. Zunde and M. E. Dexter, “Indexing con-
sistency and quality,” Americant Documentation 20, 3, July
1969, pp. 259-264

A25

