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Abstract 
Knowledge exploration is the activity of finding out what 
other people have thought about. Normally, people explore 
knowledge by reading books or articles or by talking to other 
people. This paper discusses an alternative approach: a sys- 
tem whose knowledge is in the form of text fragments plus a 
query language to help users access appropriate fragments. 
Drawing primary inspiration from database theory, hypertext 
systems, knowledge representation, and a study of textual 
fragments called fragment theory, the paper describes and 
motivates a data model to support knowledge exploration. 

1. Boa& vs. PeepIe 
What is the difference between hiring a consultant and 

reading his or her book? You can follow your own line of 
inquiry in asking the consultant questions. The consultant will 
answer you without telling you much irrelevant or redundant 
material. The book may also answer the questions, but to 
find the answers you have to be skilled and l&y in using the 
in&x or you have to read a good part of the book. 

The objective of the NetBook project is to replace books 
and documents by a collection of text fragments,’ relations 
among fragments, and a query hgUagC. An explorer uses 
the query language to retrieve a text fragment or fragments. 

The NetBook project does not attempt to break new 
ground in natural language understanding by computer. 
Therefore, the reader’s queries are in an artificial language, 
and the system’s responses consist of text fragments that writ- 
ers have entered as is. The challenge is to design a concise 
data model that incorporates necessary facilities for such a 
sy8tem. 
1.1. Mouv8tloo and Related work 

With numbing frequency, we hear about the ongo@ and 
worsen@ ~knowledge explosion.” With so much knowledge 
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around, a system to support knowledge exploration should 
consider the explorer’s time and effort to be the primary 
‘measure of cost. 

Systems that address the knowledge exploration problem 
come from the fields of information retrieval, database 
management, natural language understanding, computer-aided 
instruction, and non-linear text systems known as hypertext. 

Information retrieval systems help users find documents 
relevant to their interests. Increasingly, they depend on key 
word search (possibly with automatic synonym generation) in 
addition to standard library classification techniques. The 
main attraction of such systems is that they do not require 
special effort by the reader or writer. Specially trained pro- 
fessionals (usually librarians) do the classification step and 
keyword retrieval systems are widely available. However, 
studies have shown that different indexers use different As- 
sifications [ZD69]. This has led some studies to argue that 
indexing may be worse than keyword retrieval [S70]. How- 
ever, a recent experiment [BM85] shows that a state-of-the-art 
keyword retrieval system retrieves less than 20 percent of the 
documents relevant to a particular search (mostly because 
people may refer to the same thing in different ways; one 
person’s “accident” is another person’s “difficulty”). One 
must conclude that neither manual indexing done by profes- 
sional classifiers nor keyword searching nor even their combi- 
nation are altogether satisfactory for retrieving relevant infor- 
mation. 

Database management systems also help explorers 
retrieve information. They provide an important paradigm 
for knowledge exploration systems. However, there are 
several important differences between the two applications: 
1) Database users can remember the elements of a database 
management system schema that they are likely to run across. 
Users of a knowledge exploration system by contrast may 
have no prior knowledge of the schema. Moreover, the 
schema may be hU8e. 
2) Database entities (e.g. tuples) are quite small (say a few 
hundred characters); in contrast, entities in a knowledge 
exploration system which may be several paragraphs long and 
may have attributes of that length as well. 
3) Database tuples can be understood without referring to 
other tuples; by contrast, a knowledge system must take into 
account a prerequisite relationship between some text units 
and others. 

The goal of natural language understanding systems is to 
build up automatically an internal representation of text in - 

1 What we call ‘mxt’ in this document may in fact be a piaure, an ex- 
f&mental simulation, or a live performance. We we the term text for the 
die of concreteness. 
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order to answer questions as a human would. Unfortunately, 
the research is far from achieving this goal even for highly 
restricted domains [GHF82, 881, 8A77, WH81]. Our project 
does not assume even a partial solution to this problem, 
though we do point to some areas where advances in natural 
language understanding would be helpful. - 

In contrast to natural language understanding and infor- 
mation retrieval, intelligent computer aided instruction 
requires the knowledge producer to tailor the knowledge to 
the explorer (student) rather than merely to write an article 
and depend on a computer and other people to act as inter- 
mediaries. The best of these projects [BBB76, C76, %X378] 
allow a student to test himself or herself on simulators and 
comment on how reasonable the student’s hypotheses are. 
Our project adopts the philosophy of tailoring information to 
the explorer, but the tailoring rquires less expertise and 
effort. 

Partly in reaction to the difficulty of natural language 
understanding and partly because it seems to be an attractive 
and liberating approach to exploring knowledge, non-linear 
text forms have caught the imagination of researchers [B45, 
B82, E84, EWN73, MM79, N79, Ne183, T83, WeySZ]. These 
so-called hypertext systems consist of text fragments embed- 
ded in a directed graph with labelled edges and instructions 
allowing the user to traverse edges. They also allow users to 
make commentaries on what they read [L85, T83]. Hypertext 
systems often incorporate state of the art technology in their 
user interfaces, such as high resolution graphics, sophisticated 
pointing devices, and even pictorial simulations. However, 
without a content-based query system, hypertext users must 
wander through text units trying to find relevant information; 
once they find it, they must figure out an order in which to 
read it; and after they have finished reading, they have no 
idea whether there is more. This may explain why such sys- 
tems has few users despite the idea’s long history [B45]. 

Some database systems [CM, H80, SK82, F&l] have 
adopted a hypertext approach in the sense of allowing users to 
wander among the information in a database, but it is too 
early to gauge the direction of this approach. 

2. Fragment Theory for Retrieval 
The system we envision consists of text fragments con- 

taining one or more information units. Each information unit 
is an idea or a fact. Different people may disagree about 
what are information units, but the qualitative conclusions of 
the model are independent of those differences. 

2.1. Linaar text contalnr radundancy or irralcvancm 
Consider the following text fragments: 
1) When the red alarm rings, look around for fire. 

Also, check for smoke, strange smells . . . . 
2) When the blue alarm rings, see if there are any 

thieves. Also check for forced locks, open doors . . . . 
3) Leave the building. Take out the following docu- 

ments: . . . . 
4) [If the red alarm rang,] use the following route to tk 

fire station.. . . 
5) [If the blue alarm rang,] use the following route to 

the police station.. . . . 
This might be represented in linear text in basically two 

ways (1, 2, 3, 4, 5) or ((1, 3, 4),( 2, 3, 5)) -- where 
parentheses imply sequence and curly brackets imply that 

text: (1, 2, 3,4, 5); choice: (2, 3, 5); irrelevant: {1,4} 

text:((l, 3,4),(2, 3,4)); choice:(l, 2, 3, 4,s); redundant:{31 

Figure 1: There are choices for which most linear texG will 
have redundancies or irrelevances. 

either order is possible. A reader of this information might 
be interested in the red alarm, the blue alarm, or both. 
Readers interested in exactly one of the two alarms would be 
well satisfied with the second representation, particularly if 
the conditionals in 4 and 5 were removed. However readers 
interested in both alarms would be displeased by the repeti- 
tion of 3. similarly, readers interested in both alarms would 
be happy with the fiit representation, but readers interested 
in one alarm would be displeased by the irrelevant informa- 
tion about the otha alarm. 

The main lesson is that when different readers are 
interested in distinct but overlapping pieces of information, 
some of them will encounter irrelevance or redundancy when 
reading linear text, unless there is a representation tailored to 
every interest. This motivates our search for a system that 
would permit us to store text in fragments, then present them 
appropriately. For example, if the reader asks about the red 
alarm, present (1, 3, 4), if the reader asks about both, present 
(1,2,3,4,5). 

2.2. MeawIng Redundwy and Irrelevance 
Even when the text is stored as fragments which are 

optimally chosen to answer explorer’s questions, explorers 
may encounter redundancy or irrelevance. For example, the 
route to the fire station and to the police station in items 4 
and 5 may begin with common instructions, so the presenta- 
tion (1, 2, 3, 4, 5) would contain some redundancy even for 
the user who wants to know about both alarms. Let us call 
the common route information c and the remaining informa- 
tion in 4 and 5 is 4’ and 5’ respectively. Thus, presenting (1, 
2, 3, 4, 5) really means presenting (1, 2, 3, (c, 4’), (c, 5’)). 
The second c is redundant. Here, {1, 2, 3, c, 4’, 5’) are fun- 
damental information units; {l), {2}, {3), {c, 43, and {c, 5’) 
are groupings of information. The choices are subsets of the 
information units: (1, 3, c, 49, (2, 3, c, S’}, (1, 2, 3, C, 4’, 
S’}, representing units relevant to the red alarm, the blue 
alarm, and both alarms. 

In general, the redundancy and irrelevance of a set of 
groupings Q that cover a choice S2 are &fined as follows:3 

RedundancyQr= X-knSl- wl and 

Irrekvancegp %I. -. 
9aQ 

2.3. CroPpIng rlect&~~ problem 
Even in this idealized model the problem of choosing 

groups to minimize the sum of the redundancy and irrelevance 
(which together constitute unwanted material) is hard. This 
Froblem might arise when a teacher wants to assemble groups 

’ . COverin means that every element of s is a member of at leasr 
one of the sets in Q. 

’ - Common software engineering practices such as information hid- 
ing and context-dependent help facilities reduce irrelevance as we define it 
here. Relational selection and projedon reduce irrelevance by removing 
unwanted attributes and tuples. Projection reduces redundancy by elim- 
inating duplicates. 



for presentation to a student. We frame this as a d&ion 
problem. 

Grouping Selcetion problem. 
Instance: Let I bc a finite set (of “information” units). Let 
Grouping be a collection Of subsets of I, (the ‘groupings” of 
information units). Let S bc a subset of I, the “dmiec units.” 
Let unwanred bc a positive intcgcr. 
Question: Is there a subset Q of Grouping such that Q covers 
S and redundontpg+irrel~~tgcrsunwont ? 

Verifying a proposed solution is at worst quadratic in the 
number of information units in the members of Q, so the 
problem is clearly NP-easy [GJ79]. 

Theorem Group Selection: Tke grouping s&&on prob- 
lem is NE-hard [!85]. 

In spite of thir negative result, many heuristics can be 
tried. For example, if the set8 in Grouping are all disjoint, 
there is an optimal solution to the problem -- just pick the sets 
in Grouping that intcrscet the choice set 5. More gcncrally, if 
any clement in S is in only one group, then pick that group. 
After that, pick groups in descending order bared on the ratio 
of new/extra, where llcw is the number of new information 
units found in a group and extra is the inercasc in redundancy 
and irrelevance resulting from choosing that group. 

Suppose WC have choices { {2,4), {3,4,5}} and groupings 
A = {1,2,3}, B = {2,4,5), C = {1,4}, D = {3,5) , and E = 
{2,5). The heuristics suggest that for {2,4) we ehoosc C and 
E. For {3,4,5) we choose D and C. 

2.4. Pradkmte Sakctlon Prohlem 
The grouping selection problem arises when a person 

wants to assemble a set of information groups for someone 
else. However, an individual exploring on his own for a 
choice c will use a query language offering a collection of 
predicates (corresponding to selection, projection, and so on 
in relational algebra) from which the user can chooac some 
boolean combination. 

The explorer should choose a boolean combination P 
sudt that any’ information unit satisfying c will satisfy P. 
Thus, the predicate selection problem is to s&et a prcdieatc 
covering a choice that minimizes redundancy and irrelevance. 
Here, rcdundaney and irrelevance arc measured with respect 
to the set of groupings that satisfy P. The problem assumes 
no knowledge of the entire set of groupings G, but only of the 
predicates. 

For example, suppose we want to know all the synduon- 
ization mechanisms used in concurrent programming 
languages. In the absence of special information about these 
languages, we would have to look at the synchronization 
mechanism used by every concurrent programming language. 
Thus, the predicate would be “synchronization mcehanism of 
a eoneurrent programming language.” The grouping selection 
problem assumes information about the set of groupings G , so 
an optimal set of groupings for this choice may indudc the 
synchronization mechanisms for only a subset of the 
languages. So, prcdieatc selection will in general yield more 
redundancy and irrelevance than grouping selection, because 
less information is available to the explorer. (The formal 
similarity of the two problems, however, implies that prcdi- 
eate selcebon is NP-complete.) 

We model the construetion of a query as a predicate 
selection. ‘Ihe question is: how can we design the information 
groupings so commonly sclcetcd predicates will enanmtcr a 
“reasonable” amount of redundancy or irrelevance? 

3. Appliatkns of fhgment theory 
Breaking up groups into component information units 

reduces irrclevanec and rcdundaney but is difficult. Gur eri- 
terion for choosing the groupings to break up (decompose) is 
based on the ratio of unwanted to useful htformation gen- 
erated by common prcdieatcs. 

3.1. Dacoapmftlen 
For example, suppose that each concurrent programming 

language has properties design history and synchronization 
mechanism. Suppose that questions about both are frequently 
asked. The question is which of the two properties could be 
kept with information specific to each language? 

There is a one-to-one relationship between languages 
and design histories, whereas there is a many-to-one relation- 
ship between languages and synchronization mechanisms. 
Suppose there arc m languages, m design histories, and II syn- 
chronization techniques used by the languages n<m. Then 
there are O(m) information units about the design histories of 
the languages, but only O(n) about synchronization mcchan- 
isms. Keeping either of thcsc with information spceific to 
each language results in O(m) irrelevance and less redun- 
dancv. Hcnee the ratio of unwanted information to desired 

information is O(1) for design history and O(m/n) for syn- 
chronization mcehanism. This suggests separating the syn- 
chronization mechanism from the language description. 

A misinterpretation of this example is that redundancy in 
the information stored is always bad. In fact, redundancy is 
bad only if the groups with the redundant information are 
likely to be selected by the same prcdieate. For example, a 
history of Germany and a biography of Bismark may both 
contain sections on the role of Bismark in the unification of 
Germany, but no single predicate will likely se&t them both. 

The programming language example suggests that group- 
ings should be decomposed so that often-ehoscn predicates 
that return a multiset of information units, return instead a set 
without duplicates. The Bismark example illustrates that 
achieving this decomposition for predicates p and p’ doesn’t 
guarantee that it will hold for p v p’ , because distinct infor- 
mation groupings may have the same information units. 
However, the rcdundaney grows slowly, as the following 
observation states. 

Observation about decomposition: Suppose every infor- 
mation unit contained in any grouping satisfying predicate p is 
in only one such grouping and similarly for p’ . Then the same 
property holds for p A p’ and there are at most two such 
groupings containing the same information unit in p v p’. 
Moreover the irrelevance in p A p’ is bounded above by the 
minimum of the irrelevance in p or p’ . The irrelevance in p 
v p’ is bounded above by the sum of irrclcvanecs of p and 
P’*[l 

3.2. Soft Aggregates 
A major difficulty facing the knowledge explorer is to 

filter out information that is relevant, but more detailed than 
necessary. Database management systems use aggregate func- 
tions to handle this problem. Knowledge exploration entails 
an additional mcdmnism which we illustrate below. 

Suppose WC want to know about some geographical 
region, say the high Oregon desert, and the system has 
detailed information about the municipalities in the area. 
Reading about all the munieipalitics would be dull and redun- 
dant. Therefore, we would want to use aggregates. Some of 



&se we standard quantitative aggregates Such as the averalie 
r&fall of he municipalities. Others entail a minor eaten- 
sions of t&se aggregates such as the union of floral species in 
the area. However others are “soft” aggregates, e.g. the 
region has little rainfall, but a good deal of water flow@ 
from *e mountains to the west. We might Come to this gen- 
eralization by reading about each municipality, but the ratio 
of unwanted to useful information would be too high- puf 
data model handles this situation by positing a partial order’ 
“subvalue” on the entities of each type. For example, the 
municipalities of the high Oregon desert would be subvalues 
of counties there. This allows explorers to discover quaMa- 
tive generalizations without having to wade through much use- 
less information. 

4. Data Modal: Retriaval 
Our data model follows the spirit of the functional data 

model Daplex (Ship81, CDFR83] and some aspects of the 
semantic data models of [LM79]. Other features seem 
specific to the problem. 

The basic information groupings are called c&rear 
unirs. A coherent unit is understandable to a reader who 
understands the terms it uses. Thus, a coherent unit may con- 
tain proper nouns and technical terms, but no anaphoric refer- 
ences (such as pronouns) to other text. We make this rquire- 
ment so that a particularly knowledgeable reader may start at 
any coherent unit.5 Each coherent unit is organized as a tree 
of text fragments in which any path from the root text frag 
ment to a descendant text fragment is coherent, but the non- 
root nodes need not be coherent on their own. 

The basic constructs of the query language are mdries, 
rypes, and functions. Entities are normally entire coherent 
units, though they may consist of the text fragments along the 
path from the root of a coherent unit to an interior node. The 
functions take entities as their domain and returns a single 
value or a set of values. Such values may be entity identifiers 
or may be drawn from scalar, vector, or character data types. 
Thus, functions correspond to properties of entities (in gen- 
eral, a function may have many entities as arguments but we 
ignore this case for the sake of explanation). A type is a co1 
lection of entities that all belong to the domains of the samt , 
functions. 

The set of functions defined on a type induces a partial 
order, called subtype, defined as follows: if the set of func- 
tions defined on type r is a subset of the set defined on r’ , 
then r’ is a subtype of r. intuitively, entities of type r’ have 
more properties than entities of type r. 

‘The major structural difference between our model and 
Daplex is the notion of a partial order subvalue on values. 
Value 4 is a subvalue of b with respect to a type r if any 
entity with value u of r also has value b. For example, if ask- 
ing about shipments to Sweden we would be interested in 
shipments to Stockholm, a subvalue of Sweden in a 
geographical region type. 

4.1. RctcLval Operations 
In this model, types and functions as well as entities may 

be targets of a query. These operations allow the explorer to 

’ - A partial order s has the property that V a, a S a and V a, P, 
and c, a f; b A b S c - a 5 c. The order is partial because every tW0 dw 
tina elements need not be comparable. 

’ Every tuple of a conventional database is coherent in this sense, 
where the reader’s knowledge consists of undersranding the schema of the 
relation containing the tuple. 

discover the connections to an entity as in semantic data4 
models [LM79]. 

A query is a calculus expression [US21 of the form {tar- 
get : qualification].6 The target consists of two tokens, The 
first is either typo or entity or fuaetloll. The second is a vari- 
able, called the rurger variabfe. The qualification is a formula 
whose only free term is the target variable. Variables may 
represent types, entities, or functions. 

The arums of a formula are: 
1. { entity variable ] entity constant} {is a subvahm of I= 

] d 1 B } { entity variable ] entity constant}, where one of the 
entity arguments must not be a constant. The symbol 8 
represents an arithmetic comparison operator (possible only if 
the two entity arguments are comparable scalar values). 

2. { entity variable I entity constant} is of type {type vari- 
able 1 type constant}, where one of these must not be a con- 
stant. 

3. {type variable ] type constant} {is a subtype of I = ) 
{type variable I type constant}, where one of these must not be 
a constant. 

4. {entity variable} {has keyword} {keyword expression, 
some regular string expression}. 

Formulas are made up of atoms as follows: 
1. Every atom is a formula. 
2. If form, and fwnr, are formulas then fmm, A form,, 

form1 v form,, - formI, and (@ml) are formulas, with their 
standard meanings. 

3. If form is a formula with a free variable s, then (3 s 
)(form) is a formula. 

In addition, there are the usual rules for guaranteeing 
that formulas are safe, i.e. that queries don’t ask for objects 
that are not in the database. 

4.2. Examples of Qmcrlaa 
Query 1: Find shipments of gasoline to Stockholm whose 

ship report says “No whale sighted.” 
{entity u : u is of type Shipment A dest(u) is of type geograph- 
ical region h &St(u) = Stockholm h cargo(u) = gasoline h 
report(u) has keyword “No whale sighted.“} 

Query 2: Find shipments of petroleum products to 
Sweden. (Note that this should return entities found in the 
first query.) 
{entity u : u iS Of type Shipment A dest(u) is Of type geograph- 
ical region A dest(u) iS a subvalue of Sweden A cargo(u) is a 
subvahte of petroleum product} 

Query 3: What has Sweden as a property7 
{entity u : 3 f A f(u) = Sweden} 

Query 4: What types does Sweden belong to? 
{type t : Sweden is of type t} 

4.3. Utm Interface for Retrieval 
Since the explorer may have no knowledge of the 

shema, he or she builds up a query as a boolean combination 
of probes, each built by stepwise specialization. 

me environment of a given probe is a triple a=isung 
of a type r and a set of function-value pairs fi-.- 

We also allow aggregate querler of the form agg unique ((target : 
qdif;idon)) or agg ali ((target : qualification}), where unique.tmd aLI in- 
diate removal and non-removal of duplicates from the WlfCCtIOn of tap 
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(fpvJ9 . . . ,cfJ,v,) of functions for which some values have 
been defined, and a set of entities E of type r that have heen 
defined byfi. We denote this triple by (tJL,E). 

The commands all refer to this environment. For exam- 
ple, one command causes the system to present the subtypes 
of the current type t. Another presents the functions applka- 
ble to t. 

In response to each command, the system constructs a 
menu dynamically. The construction strategy maker use of 
the subvalue and subtype partial orders. For example, if the 
explorer partially spe4ifies the destination fun&n, dest(u) = 
Europe, then asks to specify the destination further, the sys- 
tem presents the maximal subvalues of Europe, {British Jsles, 
Scandinavia, . . . }. The system presents disjoint maximal sub- 
values to avoid redundancy. go, it wouldn’t present {British 
Isles, Scandinavia, Sweden . . .}. 

5. Data Modal: Praantatlon 
Most database management systems provide fedlities to 

order sets of tuples. These sorting facilities are not of much 
research interest. They are, however, of intereat to a 
knowledge exploration system for two reasons: 
1) coherent units and their properties may contain a lot of text 
(by contrast, tuples contain little text); 
2) an explorer may have to read and understand background 
(prerequisite) information to understand a given coherent unit 
(by contrast, tuples such as (John smith, 20000 dollars) are 
understandable in isolation of other tuples). 

The first point implies that remembering a coherent unit 
takes effort. The second implies that there are relationships 
r*raong the entities retrieved by a query that the explorer may 
not know about. The system should use these relationships in 
its presentation strategy. Our strategy is based on the ideal- 
ized assumption that a person’s effort is proportional to the 
number of coherent units he or she must remember. 
5.1. kagment Theory for Praaantatbn 

This part of fragment theory is concerned with the effort 
required to understand a presentation. We motivate our 
effort measure through two examples. 

Suppose the explorer wants to compare entities A and B 
(say two concurrent programming languages) based on func- 
tions f, g, and h. Consider the presentation orders P = 
(f(A), f(B), g(A), g(B), h(A), h(B)) and P’ = (f(A), g(A), 
h(A), f(B), g(B), h(B)). Jn the first presentation, the user 
must remember f(A) only as long as it takes to read f(B). Jn 
the second, the user must remember f(A) while reading g(A), 
h(A), and f(B). Thus, P’ rquires the user to remember four 
coherent units, whereas P only requires the user to remember 
only two at a time. 

As a second example, consider the prerequisite relation- 
s&s (SW figure 2) WW, @,F), (W9, UW), OW, 
(F,H), (G,H)}. Consider the two presentations: P = (A, B, 
C, D, E, F, G, H) and P’ = (A, B, C, F, D, E, G, H). 
Assuming that an explorer cannot understand a coherent unit 
without remembering all its immediate prerequisites, the 
presentation P requires the user to remember A through E 
while reading F, whereas P’ rquires the user to remember 
only A, B, and C while reading F, then only F, D and E while 
G is read. This time, P requires more effort than P’. 

5.1.1. Mansnm of Bfrort 
Weighted pebbling problem - We construct a (possibly 

cyclic) dir& graph called a pre~entatibn grqh G=O’sE) m 

. c 

Figure 2: Prerequisite graph. Prerequisite edges directed from 
left to right. Presentation (A, B, C, D, E, F, G, H) requires 
six pebbles, whereas (A, B, C, F, D, E, G, H) requires only 
four. 

follows: the vertices are the coherent units retrieved by a 
query. There is a directed edge from v to v’ if either v is a 
prerequisite of v’ or the explorer has established some order- 
ing or grouping relationship between v and V’ . 

Treat each maximal strongly connected s&component as 
a supernode whose weight is the number of nodes in that sub- 
component. This yields a reduced graph on the supernodes, 
G’ = (V’ ,E’), where we denote the weight of supernode n as 
w(n). (The reduced graph is acyclic, because the prerequisite 
relation is acyclic.) A supernode n is jidiy pebbled if it has 
w(n) pebbles on it. A pebble may only be placed on a super- 
node if all the supernode’s immediate predecessors are fully 
pebbled. No pebble may be placed on a supernode after a 
pebble is removed from it. 

Suppose G is a presentation graph with associated 
reduced graph G’ . A presentation P has cost k for graph G if 
it legally pebbles G’ with no more than b pebbles under the 
interpretation that when node n appears in P, a pebble is 
placed on the supernode associated with n in G’ and pebbles 
are removed when they are no longer needed. 

In the first example, P had cost two whereas P’ had cost 
four. Jn the second example, P had cost six, whereas P’ had 
mat four. 

There is a natural optimization problem associated with 
presentation graphs. The progressive pebbling prablem is, 
given a presentation graph G, to find the presentation having 
the lowest cost for G. Sethi [Seth751 has shown this problem 
to be NP-complete for directed acyclic graphs with nodes of 
uniform weight. 

5.2. Praantation lh our Data Model 
Since different presentations may entail different effort, 

we want the explorer to state his or her preferences. since 
the relationships may not specify a total order, the system 
should then try to optimize the presentation to minimize 
effort. 

5.2.1. Llnpbtlc fndlltlas 
The system allows the user to specify a partial ordering 

on a set of coherent units of the same type. There are two 
possibilities. ‘Ike first is to specify a sequence, thus a total 
ordering. The second is to specify the partial order as a 
directed graph. For example, 
Order E by {(x,y) : (dest(x) is a subvalue of Sweden and 
dest(y) is not a subvalue of Sweden)] puts the coherent units 
with destination Sweden before any others. 



The system also allows the explorer to group entities 
into equivalence classes. Different quivalence classes may be 
displayed in any order, but the entities in a single class should 
be displayed together. For example, 
Group E by {(x,y} : dest(x) = dest(y)}. 

The second group of facilities allows the user to juxta- 
pose entities and their functions in various ways. 

Compare (partial order or grouping on entities, sequence 
of functions). This statement causes the system to list the 
values of the entities function by function according to the 
function sequence. For example, compare((Ada, Concurrent 
Pascal, Simula), (synchronixation mechanism, concurrency 
expression)) would list the synchronixation mechanism of each 
language, then the method of expressing ameurrency of each 
language. 

Display(partial order or grouping on entities, sequence 
of functions) This causes the system to list each entity 
together with the values of the functions associated with it. 

5.2.2. Syrtem optlmlxatlons 
The system constructs a presentation graph from the ord- 

ering information.: Then the system adds prerquisite edges 
that don’t contradict the ordering information (i.e. don’t add 
A - B if B - A was specified in the ordering). Finally, the 
system tries to find the lowest cost presentation. 

Since the optimization problem is NP-hard, we look for 
heuristics based on subproblem with optimum solutions. One 
such subproblem is a tree (e.g. figure 2) whose prerequisite 
edges point towards the root. 

The recursive strategy for such a struchue T is to call 
pebble on the root: 

procedure pebble(T,r) 
begin 
if c has at least one child 

then 
pebble the subtrees rooted at the children of 

r from the most expensive to the least expensive, 
leaving pebbles only on the roots of the subtrees; 

pebble r 
end 

TO calculate the cost of pebbling a root, use the follow- 
ing recursive function. 

function cost(T,r) 
begin 
if r has at least one child 
then 
begin 
let c 1, . . . , ck be the children, 
such that cost(T,cl)-w(c,) a . . . 2 cost(T,c,)-w(q); 

return w(r) + max(cost(T,c,), cost(T,d) + w(c3, 
. . . , cost(T,c& + w(cl) + . . . + w(ct-& 

end 
else return w(r) {the weight of node r} 

end 

In the example of figure 2, the subtree rooted at F 
should be pebbled first, because it has cost four, whereas the 
subtree rooted at G has cost three. The cost of pebbling the 
entire tree is also four. 

7. Different nodes of this graph may be the same coherent unit. For 
example, two languages being compared according to their synciuoniration 
mechanism may have the same one. 

The heuristic we use is expressed in the following pro- 
cedure, (here, G is a reduced graph): 

procedure heurpebble(G) 
begin 

for each sink s in the reduced graph, 
dobegin 

consider the subgraph consisting of s and 
its predecessors; 
remove edges randomly from that subgraph until e 
tree T(s) remains containing all predecessors; 

end; 
Pebble each tree according to procedure pebble, 
but don’t remove pebbles from nodes that are sources 
of non-tree edges whose sinks are not fully pebbled. 
Also, don’t add pebbles to fully pebbled nodes 
or nodes corresponding to the same coherent unit 
as some pebbled node. 

end 

For example, if there were an edge from A to G in the 
graph of figure 2, we would pebble F’s subtree before G’s 
subtree as before, except that we wouldn’t remove the pebble 
from A even after F was pebbled. This would increase the 
cost to four. 

6. Hourlstlc cohenccmrets from ~rtifklal lntelllgewe 
Our data model assumes that manipulating or processing 

text within a coherent unit is impossible. We make that 
assumption to remain independent of the natural language 
understanding problem. However, certain manipulations may 
be possible. 

For example, coherent units may not normally contain 
anaphoric references (such as pronouns) to other coherent 
units. This is to avoid having an explorer read a coherent unit 
containing “He did X.” and not know whom “He” refers to. 
In certain cases, the explorer would know, say, that the 
referent of “He” is “John Smith”. Jn those cases, the system 
should substitute “He” for “John Smith”. To implement this, 
one might use rule-driven system of the form: (if user came 
from any one of these coherent units . . . . then replace “John 
Smith” by “He” in these coherent units . . .). 

A second enhancement is to have the system try to 
acquire a model of the explorer and then to present coherent 
units at an appropriate level of difficulty for him or her. To 
do this, there would have to be a specially treated function 
conveying level of difficulty, which the system would use. 
Another possibility is to include a summarixation relation in 
the data model, thus permitting an explorer to get either a 
long or a short explanation of a topic. 

A third enhancement is to try to infer connections 
between coherent units unforeseen by authors. Robert 
Amsler and Donald Walker in an unpublished study have 
found that by assembling the possible topics corresponding to 
each keyword,in a paragraph of a New York Times article, a 
program that chooses the topic most frquentJy mentioned 
usually arrives at the topic of the article. Besides helping 
authors, this inference mechanism may help explorers find 
coherent units related to ones they have already explored. 

7. Example: tblm w4lde WI a NetBeok 
A recipe for constructing a NetBook from a standard 

article is first to construct an outline (figure 3) of the major 
points. The headings become the function names whose 
domain is the coherent unit containing the main idea of the 
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article. Second, construct other groupings from the same 
coherent units if that seems appropriate. These may become 
other function names. For example, new facilities is an added 
function whose range is decomposition, subvalue, autonomous 
ordering based on prerequisites, and linguistic support for 
presentation. Third, add connections. There are prerequisite 
connections due to definitions: information unit, coherent 
unit, irrelevance, redundancy, pebbling model. There are 
motivational connections: from the subvalue facility in data 
model to the soft aggregate section, from the compare con- 
struct to the example of comparison, and from the prere- 
quisite algorithm to the example of figure 2. 

Using these connections, we can directly answer ques- 
tions such as “Why is there a subvalue facility?” or “Tell me 
about the new facilities.” We could also answer broader 
questions such as “What is the redundancy concept and how 
does it influence the rest of the paper?” To answer this ques- 
tion, we would form a query that considered the connections 
to the redundancy concept: the example of redundancy in 
linear text, the grouping and predicate selection problems, 
decomposition, and soft aggregates. If this article were part 
of a larger collection, we might want to compare aspects of 
this data model with other models. In that case, we would 
have to break up the retrieval portion of the data model into 
smaller coherent units. 

8. c0uc1urlon 
The knowledge explosion suggests a need to build and 

study systems that make the job of the knowledge explorer 
easier. Historically, the designers of information retrieval 
and natural language understanding systems have assumed 
that the writing process is separate from the exploration pro- 
cess and have designed systems to bridge the gap using elec- 
tronic and human intermediaries. Hypertext, database 
management, and computer-aided instruction systems provide 
an alternative model in which the knowledge creator tries to 
put data into a form that is convenient to explorers. The Net- 
Book data model follows this alternative approach. 

The novel facilities of our data model are a decomposi- 
tion criterion, the subvalue partial order, linguistic facilities 
for ordering coherent units, and an autonomous presentation 
strategy based on prerequisites. Fragment theory provides the 
rationale for these facilities. Its usefulness stems from its 
simplicity. Our confidence in it (despite its seeming arbitrari- 
ness) stems from its ability to model rhetorical paradigms 
used by journalists for ordering information and software 
engineering paradigms sudr as information hiding. It is not 
yet a design theory for knowledge exploration systems, but 
we think it will be. 

We are constructing a prototype to support the NetBook 
data model. We expect it to help us study aspects of the user 
interface such as the effect of screen resolution, heuristic 
enhancements such as those of section 6, and facilities for sup 
porting authors. This last problem is particularly important 
for psychological reasons; people have been so well trained as 
writers to put ideas in a linear order that we think it’s easier. 

netbook as idea (netbook entity) 
abstract, conchrsion 
books vs. people 

motivation 

related work 
information retrieval 
database 
natural language processing 
intelligent computer aided instruction 
hyper-t 

fragment theory for retrieval 
information unit 
linear text 
measures of redundancy 
grouping selection 

formahzation as a problem 
predicate selection 

fragment theory for presentation 
comparison example 
prerequisite problem 
presentation graph formulation 

data model 
retrieval - structures, operations, interface 
presentation - ordering, compare, prerequisite 

new facilities 
decomposition 
subvalue 
autonomous ordering based on prerequisites 
linguistic support for presentation 

ai heuristics 

example 
the present section. 

Figure 3: The coherent units of this article. 

References 

B82 - J. S. Brown, “Notes Concerning Desired Func- 
tionality, Issues and Philosophy for an AuthoringLand” CIS 
working paper, Xerox Part, July, 1982. 

BM8S - D. C. Blair and M. E. Muon, “An Evaluation 
of Retrieval Effectiveness for a Full-text Docnment-Retrieval 
System,” Communications of the ACM March 1985 vol. 28, 
no. 3 pp. 289-299 

BRB76 - J. S. Brown, IL Rubinstein, and R. Burton, 
“Reactive Learning Environment for Computer-Assisted 
Instruction” BBN Report No. 3314, Bolt Beranek and New- 
man, Inc. Cambridge, Mass. 1976. 

B45 - V. Bush, “As we may think” Atlantic Monthly, 
176, 101-108. July, 1945 

C76 - A. Collins, “Processes in Acquiring Knowledge” in 
Schooling and the Acquisition of Knowledge R. C. Anderson et 
al. (Eds.) Hillsdale, N.J.: Lawrence Erlbaum, pp. 339-363. 

424 



C80 - R. G. G. Cattell, “An Entity-based Database User 
Interface” Proc. of 1980 ACM-SIGMOD Conference on 
Management of Data, May, 1980. 

CDFR83 - A. chart, U. Dayal, S. Fox, and D. Ries, 
“Supporting a Semantic Data Model in a Distributed Database 
System” Proceedings of the Very Large Data Base conference 
1983, pp. 354-363. 

D83 - U. Dayal, “Processing Queries over generalization 
hierarchies in a multidatabase system,” Proceedings of the 
Very Large Database conference pp. 342-353 1983 

E84 - D. C. Engelbart, ‘Collaboration Support Provi- 
sions in AUGMENT” AFIPS 1984 Office Automation Confer- 
ence, Los Angeles. 

EWN73 - D. C. Engelbart, R. W. Watson, and J. C. 
Norton, “The Augmented Knowledge Workshop” Proceedings 
AFIPS National Computer Conference, 42 (Arlington, Vir- 
ginia), pp. 9-21, 1973. 

F84 - D. Fogg, “Lessons from a ‘Living in a Database’ 
Graphical Query Interface,” ACM-SIGMOD Conference on 
Management of Data, 1984, pp. 100-106. 

GHF%2 - R. Grishman, L. Hirschmann, and C. Fried- 
man, “Natural Language Interfaces Using Limited Semantic 
Information,” COLING 82: Proceedings of the Ninth Interna. 
tional Conference on Computation Linguistics (J. Horecky, 
ed.) pp. 89-94, North-Holland, Amsterdam. 

GJ79 - M. R. Garey and D. S. Johnson, Cempurers and 
Intractability -- a guide to the theory of NP-completeness W. H. 
Freeman and Company, 1979. 

H80 - C. F. Herot, “Spatial Management of Data” ACM 
Transactions on Database Systems 5 (4), December 1980. 

LM79 - H. Levesque and J. Mylopoulos, "A Procedure. 
Semantics for Semantic Networks” in Associurive Ne#works N. 
V. Findler (ed). Academic Press, New York. 

L85 - D. Lowe, “Cooperative Structuring of Information: 
the Representation of Reasoning and Debate” International 
Journal of Man-Machine Studies (to appear in 1985). 

MM79 - M. M. Mantei and D. L. McCracken, “Issue 
Analysis with ZOG, a Highly Interactive Man-machine Inter- 
face” First International Symposium on Policy Analysis and 
Information Systems, June 1979. 

N79 - N. Negroponte, “Books Without Pages”, 1979 
IEEE International Conference on Communications IV, Bos- 
ton, Massachusetts. 

Ne183 - T. H. Nelson, Literary Machines Box 128 
Swarthmore, Pennsylvania, 1983. 

S70 - G. Salton, “Automatic text analysis” Science 168, 
3929 April 1970, pp. 335-343 

S81 - N. Sager, Natural Language Information Processing: 
A Computer Grammar of English and its Applications Addison- 
Wesley, Reading, Mass. 

S85 - D. Shasha, “Netbook -- a data model to support 
knowledge exploration” Technical Report, Courant Institute, 
New York University, 1985. 

SA77 - R. C. Schank and R. P. Abelson, Scripts. Plans, 
Goals and Understanding Hillsdale, N. J. : Lawrence Erlbaum, 
1977. 

s75 - R. Sethi, “Complete Register Allocation Prob- 
lems,” SIAM Journal on Computing 4, 1975, pp. 226.248. 

Ship81 - D. Shipman, “‘Ihe functional data model and 
data language Daplex” ACM Transactions on Database Sys- 
tems, vol. 6, no. 1, March 1981. 

So84 - J. F. Sowa, Conceptual Structures: Information 
Processing in Mind and Machine Addison-Wesley, Reading 
Mass, 1984. 

SCG78 - A. L. Stevens, A. Collins, and S. Goldin, 
“Diagnosing Students’ Misconceptions in Causal Models,” 
BBN Report No. 3786, Bolt Beranek and Newman Inc. Cam- 
bridge Mass., 1978. 

SK82 - M. Stonebraker and J. Knlash, “TIMBER: A 
Sophisticated Relational Browser” Technical Report, Univer- 
sity of California Electronics Research Laboratory, May, 
1982. 

T83 - R. H. Trigg, A Network-Based Approach to Text 
Handling for the Online Scient#c Communiry Ph.D. Disserta- 
tion, Department of Computer sdence, University of Mary- 
land, 1983. 

US2 - I. D. Ullman, Principles qf Database Systems 
Computer Science Press. Rockville Maryland, 1982. 

VJ84 - Y. Vassiliou and M. Jarke, “Query Languages -- 
a taxonomy,” in Human Factors and Interactive Computer Sys- 
tems Y. Vassiliou, Ed. Abler, Norwood, N.J. 1984. 

WH81- D. E. Walker and J. R. Hobbs, “Natural 
Language Access to Medical Text,” Technical Note 240, SRI 
International, March, 1981. 

Wey82 - S. A. Weyer, Dynamic Book for Information 
Search” International Journal of Man-Machine Studies, vol. 
17, pp. 87-107, 1982. 

ZD69 - P. Zunde and M. E. Dexter, “Indexing con- 
sistency and quality,” Americant Documentation 20, 3, July 
1969, pp. 259-264 

A25 


