
Local and Global Query Optimization Mechanisms for Relational Databases

Kazuhiro Satoh, Masashi Tsuchida, Fumio Nakamura, Kazuhiko Oomachi

Systems Development Laboratory, Hitachi, Ltd.

1099 Ohzenji, Asao-Ku, Kawasaki 215, JAPAN

ABSTRACT

In a relational database management system
(DBMS), query optimization is essential
since the DBMS must produce candidate
internal access strategies from a high
level query and select the optimal one. The
goals of inplementing a good optimization
mechanism at-2: (a) to maximize the
performance of selected access strategies
and (b) to minimize the optimization
overhead. We have developed an optimization
mechanisin, built it in a relational DBMS
product at Hitachi. The mechanism can
estimate precise tuple selectivity of
predicates in queries for optimal access
strategy selection, and employs a new
method, called the cascade method, for
optimization overhead reduction. This paper
also proposes a global optimization
mechanisn which executes optimization over
mtitiple database queries.

1. INTRODUCTION

One of the most important points of
relational database management systems
(DBMSS) is the prevention of performance
degradation due to supporting high-level
user interfaces. In order to use a DBMS
based on the network or hierarchical model,
the user must specify how to access to a
database (here we call it ” how-

representation") in detail using DML (Data
Manipulation Language) commands which

essentially provide navigational database
access to the user. In a relational DBMS,
on the other hand, the user only specifies
what to access to the database (here we
call it "what-representation"), set-level
access of database records, in other words,
using the query language without bothering
about the structural details of the
database. Therefore, the relational DBMS
must translate "what-representation" to
"how-representation" to execute database
access requests. In the translation
process, query optimization is needed since
there can be many "how-representation"s
corresponding to one "what-representation".
During query optimization, the DBMS selects
the most efficient "how-representation", as
shown in Figure 1.

ml--------;
ultiple access

strategies ‘,_ (multiple "how
re resentations"

b
Optimal access strategy

(optimal "how representation")

Fig.1 Role of query optimization

As described above, query optimization is
essential in a relational DBMS since the

Fermi&n to copy without fee all or part of this material is
DBMS must produce candidate internal access

grzulted provided t,hat the copies are not made or distributed for di.
strategies (i.e., "how-representation"s)

rect commercial advantage, the VLDB copyright notice and the title
from a high-level query (i.e., "what-

of the publication and its date appear, and notice is given that copy.
representation") and select the optimal

ing is by permission of the Very Large Dat,a Base Endowment. To
one. Therefore, the DBMS must provide (1

copy otherwise, or to republish, requires a fee and/or special per&.
good query optimization mechanism. The

sion from the Endowment.
goals of implementing the good optimization

Proceedings of VLDB 85, Stockholm 40;

mechanism are:
(a) to maximize the performance of selected
access strategies, and
(b) to minimize the optimization overhead.

There have been man
l

papers related to
query optimization(). We classify
optimization into two categories: local and
global optimization. Local optimization is
for a single query (i.e., intra-query),
while global optimization is for multiple
oueries (i.e., inter-query). Most research

(1,2,8,9,10,13,16) are based on the cost
evaluation method. (2) and (16) proposed
cost models for join operation in a two-
variable query. On the other hand,
(5,7,12,14) are based on the heuristic rule
method. (7) proposed a semantic query
processing method using artificial
intelligence type rules to generate
efficient "how-representation".

By the cost evaluation method, it is
possible to select the optimal "how-
representation" corresponding to
specified "what representation", but i"t
requires a high optimization overhead.
With the heuristic rule method, however,
the optimization overhead is low, but the
problem is the optimality of "how
representation" selected.

We have developed a hybrid mechanism which
combines the above two methods, have built
it in a relational DBMS product in Hitachi,
and have made an enhancement of the
mechanism. The mechanism can estimate
precise tuple selectivity of predicates in
queries for optimal access strategy
selection, and employs a new method, called
the cascade method, for optimization
overhead reduction.

There have not been many studies(3s6) in
global optimization . But global
optimization offers the potentiality of
ilnprovement their performance of DBMSs.
From this point, we propose a mechanism for
global optimization.

The paper is divided into six sections.
Section 2 describes the classification of
optimization for query processing and
presents outlines. Section 3 presents the
details of the local optimization method we
propose. In section 4, we describe a global
optimization method. Section 5 is a
discussion of the propositions and section
6 summarizes the paper.

2. OPTIMIZATION OF QUERY PROCESSING
IN RELATIONAL DATABASES

In this section, we classify query
optimization into two categories from the
view point of the number of database
commands involved in the process of

optimization (see Figure 2).

(1) Local optimization of query processing
Local optimization is for single database

commands. The chief problem of this type
of optimization is how to translate a "what
representation" into an efficient "how
representation". There are several methods
for this optimization:

(a) the cost evaluation method .
(b) the heuristic rule method .
(c) the hybrid method ,
(a) is a method that selects the optimal

"how representation", which requires the
minimum cost i n respect with some
performance factors (e.g., cpu time,
input/output time for secondary storage,
storage spaces) among "how representation"s
for the given "what representation" throu h
the cost evaluation mechanism(I,8,9,IO,I3 3 .
In this cost evaluation, the following
characteristics are considered: data
characteristics (e.g., distribution of
attributes' values, selectivity of
predicates, access paths available,
relationships among attributes), database
characteristics
information,

daL;b~sk i:;ee;al scheme
system

characteristics (e.g., data ' processing
mechanisms that the DBMS can use, cpu
power, storage device power, buffer pool
size), and query characteristics (e.g.,
query pattern, query compl xit , System
R's optimization mechanism IsI is an 'i 61
example of the method (a). However, some
of the characteristics described above are
not considered in the system. One of the
disadvantages of this method '
optimization overhead, especially tE
generation of all candidate "how
representation"s and their cost evaluation.

(b) is a method that generates optimal
"how representation"s through the rules
(algebraic transformations, common sub-
expression recognition, etc.) which are set
up beforehand, based on mathematical
theorems, data characteristics an

$8
racteristics described i' 7

UgY

is *PRTv?5s1$J which is
An xam e that employs th"eb"m"e"thdd'(bj

experymental
system. One of the disadvi:tages of this
method is in the degree of accuracy for
optimal "how representation"s established.
Compared with the method (a), however, the
optimization overhead is small.

(c) is a method that combines (a) and (b).
Therefore, this method has both the cost
evaluation mechanism and the rule
application mechanism. The method reduces
the number of "how representation"s to be
generated by applying the rule application
mechanism, evaluates costs of remaining
"how representation"s using the cost
evaluation mechanism and decides the

4 a6

transaction 1 transaction i

:%,: 1)=,+=-J

command m

IIntra-transaction optimization1
c

pnter-transactions optimizationl

transaction n

-

(a) Classification of optimization

Classification
Global

optimization(l)

Global
optimization(2)

Object of each optimization Processing outlines 7

Transactions
(Inter-transaction optimization)

* Clustering of transactions
* Scheduling of transaction-

clusters
Commands

(Inter-commands optimization)
* Clustering of commands
* Scheduling of commands-

clusters
* Query imodification

ion (Boolean expression
optimization)

* Clustering of predicates
A

ion command
* Pruning of processing

optimization) (Intra-command
strategy with rules

* Cost evaluation of
optimization)

Local
processing strategy

optimization(2)
A predicate * Selection of a suitable
(Predicate evaluation method for
optimization) each predicate J

Local l-7 A
optimization(l) transact

(Intra-
transact

(b) Processing outlines of each optimization

Fig. 2 Classification of query optimization

I
[Access strategy generatorjt----m .- --~-------!A ccess

I

strategy pruner

+
[Optimal access strategy selected

Fig 3 Outline of local optimization

optima1 "how representation". Therefore,
(c) is a co'nplementary method that would
remedy the disadvantages of the methods (a)

(2) Globa 1 optimization of query processing
Global optimization is for multiple

databdse commands in a transaction or
multiple transactions. In this type of
optimizat on, database commands are
clustered and scheduled for execution by
estimatin 9 the overlapping degrees between
query results. In some cases, new database
commdnds are generated which provide query
results covering necessary information for
executing more thdn two database commands.
The aim of this optimization is the
improvement of DBMS performance by reducing
overhead of loading database data from
secondary storages. The mechanism for this
optimization is described in Section 4.

dnd (b).
mechanism

An outline of this optimization
is in Figure 3.

3. PROPOSAL FOR A LOCAL OPTIMIZATION
METHOD

This section describes the details of a
new optimization mechanism. It includes a
description of a new method, called the
cascade method, for an efficient
combination of the cost evaluation and
heuristic rule methods, accurate tuple
selectivity estimation, and statistical
information mdnagement.

3.1 Evaluation orders of predicates
in a retrieval condition

(1) General representations of a retrieval
condition

A retrieval condition is a boolean
expression, BE composed of a simple
predicate Pi (;=l, 2,..., n), i.e.,
database operation (selection, restriction,
join, set inclusion operation, set
membership operation, etc.), using logical
operator AND(A), OR\hys), NOT(1) and
parentheses, () .
condition can be representid

the retrieval
with either

form as described below:
(a) Disjunctive Normal Form : BED

BED = :7/ (Z' Pj') .
i=l j=i

(b) Conjunctive Normal Form : BEC

BEC =
?(TPj') .

{='I j=l

where, logical NOTs are eliminated from a
BED or a BEC according to the De Morgan's
theorem.

(2) Processing cost and evaluation orders
of predicates

We discuss evaluation orders of predicates
in a retrieval condition and the processing
cost of the condition formed with a BED or
BEC .

(A) pefiniti0n.s

def!ned as fo lo=:
5.1 and t.'(PM) relating to a Pji

J1
are

(a) Sj' : ratio of the data that a
predicate P.1 is true, i.e.,
selectivity o $
(b) tj'(fi)

a predicate Pj'.
tuple

: processing cost for a unit
datum to get data satisfying a predicate
P.',

i*
with a data processing mechanism PM

w ich the DBMS can use. This cost includes
the preprocessing cost needed for
application of the PM. -

(B) A processing cpst
Using Sj' and tj'(PM), processing costs of

both conjunction and disjunction can be
represented as follows:

(a) JPji (conjunction)' cost:

T,i;(;M#l & (PM2f‘ '2 & . . . - - & (FV&)nimi)

m j
= gl

lli . j-l '
(tj'(PMj) J * T: SQ) .

l=l
(b) TPji (disjunction)' cost:

<Tl

Tdi~~iMl~il & (pM2)ni2 & . . . - - & (&,Yimi)

mi . ni .
= gl (tj’(yj)

j-l _ . *
J * iT '1') .

l=l
where, Z.li = 1 - sli.

(pMj)nij means to select ofie pM from tlyong
nij EMS for the 11'. ((PMl)'l & (PM2) '* &
. . . & (PM,.) mi) Zans
combinations ot- PMs

one of the
for the condition

formed by (a) or (bT
Now, if the condition formed by (a).or (b)

is evaluated with the order Pl', P2',

pmii 3 then there are more than .Tni. "how
representation"s for each J=l coidition
described abpve, considering PMs for each
predicate Pj'. Con.sidering theordering of
each predicate Pj', there are more than
Illi !* $:'i . " how

TherJ=fhref .
representationus.

optimal "ho:
order to determine the

representation", a large
number of "how representation"s have to be
generated for the specified condition and
computed for their costs and then selected,
which would give the minimal processing
cost. Similarly, the processing cost of a
BED or a BEC is described ds follows:

(c) BED's cost:

T(BED) = i,$tT&PM~) nil & (PMJ'2 & _

408

. . .
N

& (bi rimi) * j-/l TqC)

= >i((T (tji(&)n’.i
Q=l
*

i=l j=i.

;Q; qi)) _ * Fl z-q”,.

(d) BEC's cost:

In these cases, considering the' order of
each conjunction (or disjunction), there

are more than N!*, llij *...*

'"N
;" nNjN

II s .
jh=l
(Cie;;aluation,orders of predicates

relational expressions are shown
that iive the evaluation order for each
predicate, conjunction or disjunction in
the retrieval condition such that the
processing cost becomes minimum:

(a) a relational expression for a BED
When a BED is to be processed with such an.

order for each conjunction that the
relational expression described below is
satisfied, the BED's cost becomes minimum:

N ‘.

(b) a relational expression for a BEC
When a BEC is to be processed with such an

minimum:

tli(PMl)nil/?li (_ t2i(PJ!2) "i2jg2i
-

< ...<tm.i(&.)nimi/T,ii .
(d) a relationa expreslion far a

disjunction
When a disjunction is to be processed with

such an order for each predicate that a
relational expression described below is
satisfied, disjunction's cost becomes
minimum:

t+OylPl/sli 5 t2i(n42)ni+.2i

6 - ...<tmii(&i)nimi/smii .

Proceeding on the basis of the above
relational expressions and setting up an
appropriate processing mechanism
considering the results (i.e., size,
content's format) of the previous
predicate's processing, an efficient "how
representation" for a retrieval condition
can be determined. Next, an algorithm to
determine such an efficient "how
representation" is shown.

(3) Algorithm for determining an efficient
"how representation" (cascade method)

step l(generation of parsing tree)
This step generates a parsing tree using

syntax and semantics analyzers. At the same
time, wry transformation is executed
through wry modification, using view
resolution, knowledge-base information, and
detection or removal of inconsistency or
redundancy in a retrieval condition, and
removal of logical NOT operators by means
of De Morgan's theorem.
step 2(generation of retrieval-expression

tree)
order for each disjunction that the
relational expression described below is
satisfied, the BEC's cost becomes minimum:

Since these relational expressions are
obtained si:nply, we will omit proof.
Relational expressions for both
conjunctions and disjunctions which
construct BED’s or BEC's are similarly
obtained. They are described ds follows:

(c) a relational expression for a
conjunction

When a conjunction is to be processed with
such an order for each predicate that a
relational expression described below is
satisfied, the conjunction's cost becomes

Based on the above parsing tree, this step
generates a retrieval-expression tree, RET
as shown Figure 4. This time, detection of
common predicates or common predicate-
expressions and bookkeeping of the related
information for such oredicates are also
executed. A RET is composed of elements
described below:
* a root node:
This is a starting point of a RET and bar-

a pointer to a relation node.
* a relation node:
This describes a relation-id related to 6

RET and has pointers to other different
relation and to conjunction (or
disjunction) node relat:d to the relation.

* a conjunction (or disjunction) node:
This describes a conjunction (or a

disjunction) related to the relation. This
node has three pointers, i.e., a pointer to
a next different conjunction (or

disjunction) applied to the same relation,
a pointer to other relation's sub-
conjunction (or sub-disjunction) included
within a same conjunction (or disjunction)
(this pointer is called a conjunction (or
disjunction) group chain), and a pointer to
a simole condition node.
* a si(nple condition node:
This describes a simple predicate(e.s.,

selection, restriction join, and others
concerning set operations) applied to a
relation. This node has three kinds of
pointers, i.e., a pointer to a different
simple predicate next in order, a pointer
to the same cross operation predicate in
another relation (this pointer is called a
cross operation condition chain), and
pointers to the same kind of predicates
which may concern other relations, (thesi
pointers are for random evaluation of the
same kind of predicates and so are called a
rdndom evaluation condition chain).
step 3(computation of simple predicate's

tuple selectivity)
This step computes tuple selectivity of

each simple predicate Pj' using statistical
information, relationships among predicates
(this concept is explained in Section 3.2),
and expressions for selectivity estimation.
At this time, the RET is updated based on
detection and reduction of 'always-true' or
'always-false' predicates or predicate-
expressions. This step is repeatedly
executed for each predicate in each
conjunction (or disjunction).
step 4(computation of conjunction

(or disjunction)'s selectivity)
Using results of step 3, this step

computes tuple selectivity for each
conjunction Ci (or disjunction Di). Similar
to step 3, detection and reduction of
'always-true' or 'always-false' predicate-
expressions, i.e.,Ci (or Di) is executed
and the RET may be updated if necessary.
This step is repeatedly executed for every
conjunction (or disjunction).
step S(setting of minimum cost processing

mechanism for each predicate)
This step computes the processing cost for

each predicate Pjl corresponding to each
processing mechanism PMj, which can be used
to execute the predicate; it then
determines an optimal processing mechanism
3 which will require minimum processing
cost among processing machanisms for the
predicate. At this time, tj'(Ij), which is
the processing cost for an unit datum, is
derived from this minimum processing cost.
On setting up this processing mechanism,
the system uses rules based on
characteristic information, e.g.,
processing data size, applicable access
path, and tuple selectivity. With these
rules, the system can prune processing

mechanisms which need not be considered for
the predicate. This step is repeatedly
executed for each predicate in each
conjunction (or disjunction).
step 6(determination of evaluation order

for each predicate in Ci (or D))
Using results of step. 5, this step

computes tj'(PMj)/sj'(or tj'(D)/Sj'), and
then determines an evaluation order for
each predicate in each conjunction (or
disjunction), based on the relational
expression described above (C). That is to
say, at first, the system determines a
predicate for evaluation first using
results of step 5 and the same relational
expression; then the predicate, which
should be evaluated next, is determined,
considering the result size of the previous
predicate, applicable processing
mechanisms, applicable access pathes, and
relationships of this predicate with other
predicates, for the remaining predicates.
This step, combined with step 5, is
repeatedly executed using the same
relational expression like the greedy
method until the evaluation order is
determined. . In this way, the evaluation
order for each predicate in each
conjunction (or disjunction) is determined.
This step is repeatedly executed for every
conjunction (or disjunction). At this
time, the RET is reconstructed according to
the evaluation order of each predicate,
i.e., the pointers described above will be
changed.
step 7(computation of conjunction

(or disjunction)'s processing cost)
Using the results of both step 5 and 6,

this step computes the processing cost for
each conjunction (or disjunction), tracing
conjunction (or disjunction) group chains
if they exist.
step 8(setting of processing order for each

conjunction (or disjunction))
Using results of steps 4 and 7, this step

computes the following value,

for each conjunction (or disjunction), and
then determines an evaluation order for
each conjunction (or disjunction), based on
;$ relational expression described above

thi;
as is similar to steps 5 and 6. At

point, the RET is reconstructed
according to the evaluation order for each
conjunction (or disjunction). In this way,
an efficient "how representation", i.e.,
access strategy for the retrieval condition
expression, is determined. As a result, the
RET structure obtained denotes the

410

efficient "how representation". Then the
SyjtelIl constructs intermediate language
codes and object codes for the retrieval
condition expression using this RET
structure.

3.2 Estimation of tuple selectivity

In local optimization, the evaluation cost
of each predicate and its selectivity are
very important factors, as described above
in 3.1. Here, at first, problems about the
conventional estimation method for tuple
selectivity are discussed, and then the
proposed method for solving them is
described.

(1)Problems of the conventional selectivity
estimation method of a predicate

(A) IJniform distribution assumption
One of the problems in conventional

estimation methods for tuple selectivity is
the assumption that distribution of the
attribute's values is uniform.

In general, this distribution is not
uniform. In conventional methods, as tuple
selectivity is estimated only according to
the following values, e.g., the number of
unique values, minimum and maximum value of
the attribute, the accuracy degree of tuple
selectivity estimation is not very high .
Therefore, in order to estimate tuple
selectivity more correctly, the system
needs to use sore detailed statistical
information.

(B) No consideration of relationship among
predicates

And as there are no considerations about
relationships among predicates, for
example, inclusion(or dependancy) or
exclusion relationship, the estimation of
tuple selectivity is not correct. Here,
insufficiency of the conventional
estimation method and its revised
estimation method are
simplicity, a single

describe,dnd (for
relation two

predicates, PI, P2, dre used and the
notation S(Pi) iS used for tuple
selectivity of the predicate Pi (i=l or
2)).

(a) tuple selectivity for logical AND/OR
among predicates related to the same
attribute :

(*l) case of logical AND, PI AND P2 :
- conventional estimation: s(P1)*s(P2).
- revised estimation:

- 0 (exclusive case).
- MIN(s(PI), s(P2)) (inclusive case).

s(P1)*s(~2) (obscure case).
(*2) case of logical OR, PI OR P2 :
- conventional estimation

- s(PI)+s(P2)-s(P1)*s(P2).

- revised estimation:
- s(P)+S(P2) (exclusive case).
- MAX s(PI), s(P2)) (inclusive case). t

1 (other case).
(b) tuple selectivity for logical AND/OR

among predicates related to different
attributes :

(*l) case of logical AND, PI AND P :
- conventional estimation: S(PI *s(P2). i;
- revised estimation:

- 0 (exclusive case).
- S(PI)*s(P2) (obscure case).
- MIN(s(PI), s(P2)) (inclusive case).

(*2) case of logical OR, PI OR P2 :
- conventional estimation:

- s(PI)+s(P2)-s(P1)*s(P2).
- revised estimation:

- S(PI)+s(P2) (exclusive case).
- MAX(s(P), s(P2)) (inclusive case).
- s(Pl)+s P2)-s(PI)*s(P2)(other case). t

In this way, by considering relationships
among the predicates, it is possible to
estimate tuple selectivity more correctly.

(2) Estimation methods of tuple selectivity
Based on the above discussion, new

estimation methods for tuple selectivity
are proposed here. And new notions of
tuple selectivity, i.e., logical
selectivity and physical selectivity are
introduced as follows:

(a) logical selectivity:
This selectivity is derived from data

based on logical frequency of the
attribute's values, without considering
their physical placement. We call this
selectivity L-selectivity. Conventional
selectivity is categorized into this L-
selectivitv.

(b) physical selectivity:
On the contrary, this selectivity is

derived from d consideration of physical
placement of the attribute's values: for
example, the number of physical pages which
contain the attribute's values. We call
this selectivity P-selectivity. Using this
P-selectivity, processing costs of
predicates can be estimated more
accurately.

(A) A method using frequency distribution
of attribute's values

This estimation method is based on
frequency distribution management of the
attribute's values; it also considers
physical placement of the attribute's
values. This management will be described
briefly later.

(B) A method using relationships among,
predicated;

As describe
above.

usina relationshios
among predicates, it is* possible t0

estimate tuple selectivity of predicates

sslectivity and cost evaluation.

4. PROPOSAL FOR A GLOBAL OPTIMIZATION
METHOO

In this section, a global optimization
mothod is proposed. This optimization is
for multiple database commands in a
transaction or for multiple transactions.
In this optimization, database commands or
transactions ar2 clustered and scheduled
for execution according to their meanings
or query patterns.

4.1 Mechanism of the global optimization
method

The proposed global optimization mechanism
comprises the following two managers:

(a) transactions clustering manager.
(b) commands clustering manager.

Here, we describe only the construction of
the manager (a). The manager (b) is
represented by replaceing the word
transaction in (a) to command, so we will
omit the descriptions.

(1) Transactions clustering manager
This imanager comprises the following

components:
(A) Transaction analyzer
This analyzer analyzes each transaction

entered into the system and manages the
following tables:

(a) transaction management table.
This table manages the contents (i.e.,

source programs) of each transaction.
(b) transaction-relation relationship

Imanagement table.
This table Imanages relationships between

each transaction and relations which need
to be processed. In this table,
relationships between transaction and
relation's attributes are also maintained.
(B) Transaction clustering processor

This orocessor executes clustering of
transactions using above tables and manages
the following table:

(a) transaction-cluster management table.
(d).Transaction-cluster execution scheduler

This scheduler determines an execution-
order of each transaction-cluster using
above tables and manages the following
table:

(a) transaction-cluster
execution-order management table.

(D) Transaction-cluster analyzer
This analyzer anal.yzes each transaction-

cluster and obtains relationships among
transactions within each transaction-
cluster, and also executes estimation of
both result sizes and filtering
effectiveness. After this processing, the
analyzer produces and manages the following

table:
(a) transaction effectiveness estimation

table.
(E) Transaction execution scheduler

This scheduler determines the execution
order for each transaction within a
transaction-cluster according to the above
estimation table and manages the following
table:

(a) transaction execution-order management
table.

(F)T;;;nsaction modification processor
processor modifies an original

transaction into an efficient form
according to the specified execution order
and manages the following table:.

(a) modified transaction management table.

The configuration of the global
optimization mechanism is illustrated in
Figure 5.

4.2 The processing outline of the global
optimization method

The processing outline of the global
optimization method is as follows:

First of all, transactions entered into
the system are maintained in a queue for
processing by the system controller. The
transaction clustering manager, then if
possible, fetches a transaction one by one
from the queue and then the transaction is
analyzed by the transaction analyzing
processor. An this time, this processor
produces several tables as described above.

Then, using these tables, clustering
processing of transactions is executed by
the transaction clustering processor. In
this process, transactions which acquire
common relations to be processed are
grouped in clusters.

In turn, these clusters are given
individual execution orders determined by
the transaction-cluster execution scheduler
according to the entered order of each
transaction within a transaction-cluster
into the system, the access type (e.g.,
read, write) of each transaction, and the
number of distinct relations to be
processed.

Then transaction-clusters are fetched by
the transaction-cluster analyzer one by
one, based on an execution-order determined
in advance and are analyzed in order to
obtain relationships among transactions and
to estimate result sizes or filtering
effectiveness of transactions within each
transaction-cluster.

Next, using above results, an execution-
order for each transaction within each
transaction-cluster is determined by the
transaction execution scheduler according
to the entered order of each transaction

view. The following are introduced for this
purpose:

(a) setting a high threshold for the
distance value in order to lighten
partition management of attribute's values
without exercising an adverse influence on
a degree of accuracy for estimation of
tuple selectivity or processing cost.

(b) limiting the number of attributes that
the system can manage for the sake of
reducing the total size of statistical
information.

(c) managing statistical information for
the sampled data extracted from databases.

(d) not supporting dynamic maintenance of
statistical information in order to reduce
the performance degradation of the system.

(e) collecting monitored information in
other temporary files and then updating
statistical information using the above
information at the initiation/termination
or at the checkpoint/recovery of the
system.

5.2 The global optimization mechanism

The following topics are discussed in
regard to the proposed mechanisn:
- clustering of transactions (or commands).
- query modification of original queries.

(1) Clustering of transactions(or commands)
Clustering of transactions (or commands)

based on their meanings or query patterns
effective in

+Sherefore,
query processing.

it is a very important subject
how to determine the number of the
transactions (or commands) in a transaction
(or command)-cluster .

. .n order to cluster the transactions (or
commands), the system provides the timer to
calculate the queueing time of transactions
(or commands) and a counter to count up the
number of transactions (or commands)
entered into the system. Transactions to
be clustered are determined according to
comparisons with the threshold value of the
queueing time and the threshold number of
transactions which have been set in
advance.

However, it is difficult to determine
these thresholds. These values must be
determined by considering the running mode,
the running load, the database size, and so
on, of the system. For example, as for the
TSS type jobs, it may prefer to consider
the queueing time, and, as for the batch
type jobs, it may prefer to consider the
number of queueing transactions.

(2)Iyery modification of original queries
query modification for global

optimization, the must have
dynamic query (and alssrtt.o&porary relation:

definition and a management facility which
are likely to consume much compdting and
disk access time. Query modification is
worth the effort if the amount of common
data between two queries is large.
Therefore, whether to modify clustered
commands (or transactions) should be
determined by considering filtering factors
and query modification overhead.

6. SUMMARY

We have classified query optimization into
two categories: local and global
optimization, and proposed a new local
optimization method which improves both
efficiency of selected access strategies
and optimization overhead. We have also
proposed a global optimization method which
executes optimization over multiple
queries.

ACKNOWLEDGEMENTS

We would like to thank Dr. Jun Kawasaki
and Mr. Kohichiroh Ishihara of Hitachi
Systems Development Laboratory for giving
us an opportunity to do the research. We
also thank our colleagues for their
fruitful suggestions and discussions for
the content of this paper.

REFERENCES
(l)Astrahan,M.M.,Blasgen,M.W.,Chamberlin,D.D.,
Eswaran,K.P .,Gray,J.N.,Griffith,P.P.,King,W.F.
Lorie,R.A.,Mcjones,P.R.,Mehl,J.W.,Putzolu,G.R.
Traiger,I.L.,Wade, and Watson,V., "System
R: A Relational Approach to Data Base
Management", ACM Trans. Database syst. 1,
2 (June 1976).
(E)Blagen,M.W., and Eswaran,K.P., "Storage
and Access in relational databases", IBM
Syst. J. 16(1976), 363-377.
(3)Finkelstein,S., "Common expression
analysis in database applications", Proc.
ACM-SIGMOD Inter. Conf. (Orlando,JUNE.
1982), 235-245.
(4)Hanani,M.Z., "An Optimal Evaluation of
Boolean Expressions in an Online Query
System", Comm. ACM 20, 5 (May 1977), 344-
347.
(5)Hall,P.A.V., "Optimization of single
expressions in a relational data base
system", IBM J. R. p1 D. 20, 3(March 1976),
244-257.
(6)Jarke,M. and Koch,J., "Query
Optimization in Database Systems", ACM
Computing Surveys 16, 2(Jun. 1984), ill-
152.
(7)King,J.J., "QUIST: A system for semantic
query optimization .
databases", Proc. 7th 1d.k.

relational
Conf. VLDB

(Cannes,Sept. 1981), 510-517.
(8)Makinouchi,A.,Tezuka,M.,Kitakami,H., and

Adachi,S., "The Optimization Strategy for
Query Evaluation in RDB/Vl", Proc. 7th
Inter. Conf. VLDB (Cannes,Sept. 1981), 518-
529.
(g)Rosenthal,A.,and Reiner,D., Ii An
architecture for query optimization", Proc.
;$SIGMOD Conf. (Orland,June 1982), 246-

(lOjSelinger,P.G.,Astrahan,M.M.,Chamberl;;~~.D.
Lorie,R.A.,and Price,T.G., "Access
selection in a relational database
management system", Proc. ACM-SIGMOD Conf.
(Boston,May 1979), 23-34.
(ll)Shapiro,G.P., and C~~nmnbeel;C.~~~'IAc~~~~~~
Estimation of the
Satisfying a condition", Proc. ACM-SIGMOD
Conf. (Boston,June 1984), 256-296.
(12)Smith,J.M., and Chang,P.Y.T.,
"Optimizing the performance of a relational
al ebra database interface", Comm. ACM 18,
10 Oct. 9 1975), 568-579.
(13)Stonebraker,M., Wong,E., Kreps,P., and
Held,G., "The design and implementation of
INGRES", ACM Trans. Database Syst. 1,
3(Sept. 1976), 189-222.
(14)Todd,S.J.P., "The Peterlee Relational
Test Vehicle - A system overview", IBM Sys.
J. 15, 4(Apri. 1976).
(lS)Ullman,J.D., "Principles of Da;;tx;;e

Computer
$%%k,Md. (1982).

Science 9

(16)Yao,S.B., "Optimization of query
evaluation algorithms", ACM Trans.
Database Syst. 4, 2(June 1979), 133-155.

Root node

Relation node

Conjunction
/Disjunction

node

Simple
condition
node

Tranmctions clusteri~,~~~~~,_._._ i’-‘~-‘-.-‘-‘-‘-‘-‘--‘--.
I

1 lrmuction *n*lyzinr proceI*oI‘ I

L-.-.-._._._._._._._. .-. .~~_- .--I
r’-‘-‘-‘-.-‘-‘N-‘-‘-’ I.~.-.:.-.-.-.-.~.-.-,
, Irmmaction clusterine Procem80r

!
I (
!.-.-.-.-.-._._.-._.-.

I.:--
~-.-.-.--.u._I

r.-.__~-.-.-.~~__-. ~__~-.-.~-.-.-._)
I I
I Transaction-clurter sxecution mchsduler 1
I
L.-.--.-.-.-_-.-.w-.
.-__. - ._.-. - ._._._.-.-. I:---‘-‘- - - -.-.-! _(~~-.-.-.-.-.-.-

I I
I Transaction-cluster analyzer ,
i.-.--.--_.-.-._.-. .__._._.~~__~_I
r’-.-‘-.-.-‘-.-.-.-.-. I ._._. -._.-.-.-.-.-.-)
I

Iransaction emcution scheduler

t ._.-._._. - ._.___._.__ I’ -.-. -.-.-.- .-.-.-.- i
~~-.-.-.-.--~-.~~ __~~__-_-.-.~-.-,
I 1
! Transaction modification processor 1
I
L.-.-.~-.-.-.__-.__~-.~~-.-.-.-.-.~~-I

1

Commands clustsrins.-a2nsE __.___._ _(-.-.-.-.-.-.-.-_-.~-.~.
I ,
I
I Command .snalyzer I

I
L.--.-.-.-.-._.-.-._. .~~-.~-.-.-._.-._I

r’~-‘-.-.-.--.-‘-.-’ I.-.-.-.-.-.-.- .-._-,

!
Cownd clustering ~roceswr

I ____._,_,_.___,___,__ I_‘-‘-.-‘-.-‘- .-.-.- i _.-.-. - .--. - ._.-. -._.
~__-.~__-.-.-_-.-,

1 I
I Camand-clwter execution scheduler I
I
i.--.- .-.-. - ._.-.-.-.

I I
I Command-cluster analyzer
L.-.-.-.-.-.-.-.-.-.-. .-_.-_--- -I
r’-~~-‘-‘-‘-‘-‘-‘-’ I.-.-.-.-.,:-:::z:::-,
I
I Command execution l chedular
I i-.-.-.-.-.-.__-.-.-.
v-‘-.-‘-’

_,___,___.__ I:-‘-.-.- .--.-.-.- i
-.-.-.-.-.-.-.-.-.-,

I I
I Command modification processor I
!-,---.--- __.__._._.____._ -.-I

Lo4 optimizer

F I G. 5 Configuration of the global optimization F I G. 5 Configuration of the rlobal optimization

where -.-. a Conjunction/Disjunction group chain
._._. -> __.. Cross operation condition chain

- __. A Random evaluation condition chain

method

FIG. 4 structure of t h e RET (Retrieval Expression Tree)

416

TABLE 1 L-(P-)selectivity estiaation expressions

predicate type L-(P-)selectivity estimation expression

L-: (Cj,/Dj,)/ZCj
attr=“val”

P-: (Pj,/Dj,)/ZPj
L-:): (UIN(Cj,,/Dj,l,Cjla/Dj12))/CCj

attr,=attr,
P-: Z (IIIN(Pj,l/Dj~l,Pj,,/Djzl))/ZPj
L-: (((lax-“val”)/(~x-sin))8Cj~/Dj,+CCj.)/ZCj (for h,>)
L-: (((“val”-min)/(xax-xin))*Cjl/Dj~+ECjO)/ZCj (for S,<)

attr 8 “val”

6=(<.s,r,>) P-: (((max-“val”)/(xax-ein))*Pjz/Dj,+ZPjO)/CPj (for h,>)
P-: (((“val”-dn)/(~x-sin))*Pj,/DjZ+ZPjo)/ZPj (for S,<)
L-: (((wax,-“val,“)/(Mx~-sinl))*Cjal/Djal+CCjo

+ ((“valz “-minZ)/(aax,-sin,))*Cj,,/Dj,a)/ZCj
attr BETWEEN val, AND val.

P-: (((ox,-“val,“)/(aax,-•in,))*Pj,,/Dj,,+ZPjO
+ ((“valz”-ainz)/(sax~-•in,))+Pj,,/oj,,)/ CPJ

L-: I: (Cj,o/Djlo)/ZCj
attr IN (val-list)

P-: L: (Pj,,/Dj,,)/ZPj
L-: OZJDX)+E/ZCj

attr IN subquery
P-: (pj,)*E/ZPj

s (wed,) +s (pred,) (for exclusion)
pred, OR pred, UAX (s (pred,) . s (pre4)) (for inclusion)

s(pred,)+s(pred,)-s(pred,)*s(pred,) (for other case)
0 (for exclusion)

pred, AND pred, UIN (s (pred,) . s (pred,)) (for inclusion)

s (pred,) +s (pred,) (for other case)

NOT pred 1-s(pred)

Ci : frequency of a specified attribute’s value within a specified partition

P.L : number of pages including a specified attribute’s value within a specified partition

Dj, : distinct attribute’s values within a specified partition

Dj, : distinct page number within a specified partition
XCj : total frequency of values in a specified attribute(i.e., total number of tuples)
ZPj : total number of pages including values of a specified attribute
ZCj. : total frequency of values within partitions satisfy a specified condition
ZPjO: total number of pages vithin partitions satisfy a specified condition
E : expected number of attribute’s values satisfy a specified subquery

(CjJDj,),(Pj,/Djl): average of (Cj,/Dj,),(Pj,/Dj,) vithin appropriate partitions

