
DYNAMICANDORDERPRESERVINGDATAPARTITIONINGM>R
DATABASEMACHLNES

EsenAOZSWAHAN MoharnedOUKSEL

Dept. of Computer Science, Arizona State University
Tempe, Arizona, 85287

The I/O bottleneck r
problem in architectures hat have b:enmp?oT T

esents

posed to zmplement hard database operatzons
such as join and
that solutions to t K

rejection. It is recognized
is problem cannot be based

on new database machine architectures alone
if satis actory
attaine d

performance
A case in point is * ?ii

oak are to be
u&rated b the

comparison ?u? a in-
stream

of cellular/associa.tive

t
ipeline based architectures. A metho-

dology ased on a global order pr;~~~in.g annd
dynamic partitioning is
relevance of this approach to tE solution of the
I/O bottleneck problem is demonstrated
through the eflicient parallel processin of the
join and proJection operations. FEna y, B this
m.ethooToLogy is incorpoTated into a s eci c
database machine architecture; name y, he iv
RAP.3 database machine. The Dartittinina
strateg has beenprevioustyproue;to be S-I&~-
rior to he other known methods. Y

1.OINTRODUCXON
Historically, the bottlenecks besetting the

Von-Neumann architectures were primarily
remedied by introducing parallelism and/or
pipelining to support decentralized
of both numeric and non-numeric %

recessing
ata How-

ever, the centralized processing nature of the
architecture was not the only cause of
bottlenecks. Indeed, other sources included the
semantic ga
hand and R

s existing between the problems at
t e architecture, which could not

handle high level programmi
the location based addressing. yin

concepts, and
is latter prob-

lem resulted in the maintenance of various
access paths to allow associative reference
which could not be supported directly other-
Wk.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rwt commercial advantage, the VLDB copyright notice and the title
of the publication and ita date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

In the area of database management sys-
tems, the roblems outlined above have finally
led to deve P opment of database machines based
on parallel architectures, the majority of which
are associative, These machines
level data languages geared towar CQ

rovide high
s direct sup-

port of one or more data models, and because
of their associativity, eliminate the access path
problems. These features help close the seman-
tic gap of the Von Neumann architecture.

The “Y?
research in database machines

has broug t orth a variety of architectures
and their performance assessments. The field
has finally matured to realize the importance of
the I/O bottleneck problem [Ozkarahan, 19831
which has so far plagued all the architectures
which implement hard database operations
such as the binary relational algebra operation
of join and the unary operation projection. At
first we have seen numerous proposals such as
in-stream pipelined processing, multiprocessor
architectures connected in a tree network
which offered sublinear communication paths,
and finally those based on the hi

f
h density of

FJGy PI desi ns found t e rescue in
bits an cf

and the Tll
/or circuits into a chip;

‘gher the crammability the higher
went the hopes for a solution.

After these efforts, the researchers have
come to recognize that there is no simple archi-
tecture solution to the problem of mapping an
arbitrary large memory space to a finite one

1
such as the memory of a database machine).
n other words, we are realizing that efficient

support of a virtual address space cannot
come through the brute force approach of
building larger and more clever architectures.
Clearly, the problem lies elsewhere. Indeed, the
effect of the I/O bottleneck

P
roblem can be

reduced through the design o efficient parti-
tioning of the data space in such a way as to
exploit both clustering and parallel processing.
In the rest of the paper we start. first by corn-
paring the basic database machine arclutec-
tures and their relative performance in join.
Then, we introduce a dynamic, order reserv-
ing partitioned file structure and show K ow one
can exploit such an or anization in database
machines. Finally, we 5 emonstrate how one
can utilize this partitioning in database opera-
tions by demonstrating the processing of hard

Proceedings of VLDB 85, Stockholm 358

operations of join and projection.

20 DATABASEl MACHINE ARCHl’TECT-

and therefore make them the topic of our dis-
cussions. In the former, we have parallel pro-
cessors (cells) that make up the database
machine whereas in the latter the architecture
is geared towards in-stream processing (e.g.,
searching, sorting) in pipeline. In the latter
cate
can %

ory although the sort and search engines
e connected in a network and operate con-

currently, the entire purpose is to achieve I/O
s nchronous
T-l

e.g., as high as 3 Mbytes/set
c annel speed f processing.

The ar ument in the in-stream architec-
tures has % een that they can bring down the
join complexity of the nested-loop based archi-
tectures from O(n2), for n data items or tuples
(i.e., relation cardinalit
portional to nlogn by t K

) to a scale that is pro-
e virtue of sorting. At

this point we can
5;

oint out the followin about
‘oin processing an
1

database machines. % ‘ested
oop ‘oin processing and sort-merge based join

(hijn w c can be the typical way how a join is pro-
cessed in a uniprocessor) are the two distmct
ways of performing join in database architec-
tures. In a resident database, that is if the
entire database can be kept m the database
machine memory, the ‘oin complexity can be
kept as low as O(L). This is due to
associative/parallel search within the database
machine. In nonresident databases however this
complexity reaches O(n2) due to I/O bottleneck
(i.e., the bottleneck caused by excessive and
repetitive paging/staging of data into the
database machine). This complexity cannot be
blamed on the t e of the database machine or
the nested loop a gorithm however. Despite the Yp
desi n of numerous architectures, the I/O
bott eneck f remains the major shortcoming.
Before we talk about the sort-merge based join
let us point out that the performance of join in

the cellular/associative systems with resident
database is su

L
‘oin due to O(n P

erior to the sort-merge based
complexity of the former which

enefits from parallelism and associativity. The
sort-merge jam, which is the typical way of
doing a join m a uniprocessor, has a theoretical
complexity of c.n.logn where the very lar e value
of the constant c makes such a join in easible.
The in-stream and pi

P

to alleviate this
elined architectures he1

8
rob em b P

of searchers an sorters t ic
utilizing a networ i:

at operate in pipe-
line. These architectures are also not immune
to the I/O bottleneck problem because, at best,
they have been demonstrated to keep pace with
the channel speed. This s
channel bandwidth, there ore, the performance P

eed is limited by the

of in-stream architectures is also limited unless
further parallelism is exploited. We can quote
the following relationships from [Ozkarahan,
19851:

O(ig- + t,~logN) : O((IscAN + tlo). ,” 2,
Ii

(1)

where
N = number of data items (i.e., tuples, relation
cardinalitv)
n = nu-tiber of pye;;;;ors (cells
cellular/associative
machine)

(i.e., dat2asZ

= time to process one data item in a serial
krocessor
hAN = time to complete processing (i.e., one
memory scan or cycle) in the
cellular/associative device
txo = paging time to load data in the
cellular/associative device
40 = channel bandwidth in the in-stream dev-
ices
p = number of parallel in-stream devices
RIO = read/write time a unit of data, includin
seek time, in a secondary rriemory device sue a
as disk
AC= average number of attributes (on which
fast access path structures are kept) updated
in an operation
S = average number of values updated in an
attribute update
WU = proportion of updates with respect to
overall transaction volume

In the above complexity expressions,
expression (1) represents an in-stream archi-
tecture on the left and a nonresident
cellular/associative architecture on the right
for a join operation. As can be noticed, the cel-
lular architecture is thrashing due to I/O
bottleneck. The assumed join model is the
nested-loop algorithm. In expression (2) w-e
show the needed duplication of in-stream archi-
tecture to build parallelism so that the left
side of the expression becomes less than 01

359

equal to the cellular counterpart on the right.
Expression (3) must be added to the previous
corn lexity expressions if any one or both of the
data ase g machines represented by these
expressions resort to access paths (as opposed
to full associativity) in their operations. In
other words for correct modeling of perfol-
mance we should not ignore the e ensive
operation of access ath maintenance. 2
sion (4) assumes arc %I ‘tee tural enhancem%ei?
the form of cache memory to provide staging to
be overla
ing. In t R

ped with database machine process-

overla
‘s case,. only the maximum of the

R
ped quantities in both sides will deter-

mine t e complexity.
As to the choice of architecture, the archi-

tect has to determine the cost of each architec-
ture in view of the variables that will remain
fixed in the above expressions and substituting
alternatives for the remainder and computing
the cost at the .desired level of the
E;i;e relationship between the left an z

erfor-
right

In the following, we will present an order
preserving d namic space partitionin

Ix 8
scheme

that can e ante the in-stream an cellular
architectures discussed above. More
specifically, the partitioning to be

rr
resented

will impact the values of p and n for the
respective architectures. The degree with which
p or Fis effected will not be the same however.
We will come back to this issue after we present
our partitioning scheme.

3.0 DYNAMIC AND ORDER PRESERVING PARI’I-
TIONING

Various partitioning methodologies ma be

g
m-sued to enhance the performance of B ata-
ase machines including semantic clustering,

sorting, hash based filtering, hash based clus-
tering, coarse indexing, in-stream filtering, file
segmentation, and staging/ a ing that exploits
locality of references I? Oz arahan, 19851.
Semantic clustering emphasizes the conceptual
modelin

fl
task. At this level, the concern is

about t e choice of attributes composing a
record type or the terms assigned to describe
documents in unformatted databases. The
other types of partitioning deal with the ph si-
cal partitioning of the data space. Unlike ot i er
schemes proposed so far to deal with data par-
titionin the method presented and also
referre 5 to as The Interpolation Based Grid .PiLe
[Ouksel, 1984a] is clearly a multidimensional
partitioning structure in the strict sense which
offers very efficient filtering, clustering, and
global sorting capabilities. In varyin
relates to extendible (dynamic) a

degrees, it
ashing, B-

trees, dynamic multipa in ,
B-trees, K-D-B trees, mu ti or uni) dimensional “1f

multidimensional

linear and /or dynamic hashing, interpolation
based index mamtenance, and the grid file--
refer to [Ouksel and Scheuermann, 19831 for
references and detailed comparisons. However,
;ger;artitioning methodology described below

sigmficant advantages. Logically, it

corresponds to a dynamically maintained and
order preserving direct file organization. Some
characteristics and advantages
g;tit.o;$ methodology are: (

rovided by this

ai
P rom this. pojnt

refer to it as DYOP Partitaonang
which stands for Dynamic Order Preserving Par-
titioning.)

Search time is constant (typically two,
one for the directory and one for the
data file).
Directory and data file have identical
structures and search characteristics.
i;e;;vrflow buckets or chaining are

Directory and data file partitions can be
stored anywhere because their file
addresses are kept in the directory
(directories can expand into a multi
level hierarchy).
No distributed free space needs to be
kept in the directory and the data file.

b)

4

4

4

to [Ouksel, 19&a], [Ouksel, 1985b]. 4%e’%%
The DYOP artitioning methodolo ’

partitioning methodology is illustrated below by
exhibiting the behavior of the data file and the
directory through repeated insertions of data
records.

3.1 DYOP Data File
The data file can be envisioned as an n-

dimensional space where each dimension
corresponds to an attribute A, (~i<n-1, n being
the number of attributes (fields) in a tuple
(record). This means that search space
corresponding to the relation (file) will be the
carteslan product of the domains underlying
the attributes. For clarity we shall restrict our
structure to the two dimensional case (i.e.,
DOxDl, not necessarily distinct, for the attri-
butes A0 and A,). A record r will correspond to a
vector r = (vo, v1) in the search s ace where vo,
1/I are the values taken from t e K
domains

respective
D and D The data file is the set of

partitions P or but ets) t obtained through the
repeated subdivision of the search space. Again,
for simplicity, we shall assume a partition size
of 2 records. Let us start with a data file con-
taini only two records hence a si
tion. Yhl

le parti-
‘s is shown in Figure l(a) w ere % the

number of the only partition zero is indicated in
the lower left corner. In the file the partitions
are numbered in the order in which they are
created. In the figure the axes correspond to
domains and the su erscripted domain vari-
ables (0:) represent t K e current set of possible
coordinates which are later used to build the
directory. As will be shown later, the file system
can be considered as a hierarchy of directories
since the data file and the directory have the
same structure. The data file is considered as
the lowest level directory and thereby explain-
ing the superscript zero.

Now if we insert a third record into the file
an overflow will occur and the partition must be
split along one of the dimensions (or inter-

360

0 1

04

DO
U’8)

VOl 0 vcz Do
CD:)

(4

I
I* .
I

13
4

-- - - ---
I . I
I l

0 I 1
I *

Do
(D:)

Do
(D8)

td)

b
(DR. I

l I l

I. 1 l

1 I I
I

I3
t-- _'---.
I

0 I
’ . . . ' .

0 0 11 11 . .
I I I l t

00 01 00 01 10 10 11 11
(Lg) (Lg)

(0 (0

(3
1

0

* ‘. ’ 1 it.’ ,
*- I ::I ,

I

I l
I l

I

2 16 I3 : 7 ---•-----------
I I

I
I

I
I

I 0.
I 4 I ;

. I

1 1 5 ($1

00 01 10 11
-
6%)

(4
Fgure 1. The data file

changeably, along one axis or coordinate). We
shall adopt a cyclic order
the splitting axis (others w

olicy for choosing
R ‘ch permit a ran-

dom choice are discussed in
Hence, we will split partition # L

Ouksel, 19831).
along Do. This

s
r

lit will be made by halving the ordered range
o D,, values hence maintaining the linear order
within each resulting half. At this point since a
single partition corres
of domain Do the sp it will occur at 1 DoI / r

onds to the entire ran e
5 .

According1 ,
5

all those records whose v. is less
than I DoI / will remain in partition #0 while all
those up I DoI 12 will be assigned to a new parti-
tion, partition #l. Figure l(b) shows the split.
The partitions are numbered 0 and 1 and so are
the coordinates of the partitions (i.e., while
they were both 0 in Figure l(a), after the split,
the Do subranges are numbered 0 and 1). As
shown in Figure l(c), another insertion into par-

tition #1 will cause it to split, but this time
along D1 according to the cyclic order of split
axes. We must emphasize here that a split of a
given partition along a given axis trig

B
ers the

implicit splits alon the same axis o all the
other partitions. T k ‘s type of s lit is termed
implicit because no physical P sp its occur. The
pur ose of this strategy is to
uni ormity that will permit P E

rovide logical
t e systematic

numbering of partitions presented later. That is
a unique mapping will exist between the coordi-
nates of a
The split ta R

artition and its assigned number.
es place in a linear order where all

partitions are split in the order they are impli-
citly or e
numbering T

licitly created. Apart from their
owever, there is no other effect on

the im licitly split (i.e., unconcerned) parti-
tions. & ey will only be identified as implicit
partitions and stored in (i.e., physically

361

assigned to) a common e
referred to as the embed “a

licit partition. This is
ing of implicit parti-

tions in explicit ones. While Figure l(c) shows
implicit splitting and linear numberin
tit and explicit partitions, Figure
only the explicit partitions.

1 d) shows 4
of imp&

I!
2,

Consider adding a fifth record into partition
Partition #2 will still remain implicit

ecause the insertion did not cause partition

in
0, in which partition #2 is embedded, to split.

other insertion into the same partition re
it

ion
will make partition #2 explicit. And this will ap-
pen without triggering another round of splits
m the search s ace
a previous P $ sp it).

i.e., it will only account for

increase in the ma
his prevents unnecessar

8
nitude of coordinates whit ic

in turn keeps the irectory simple and smaller.
If we continue with insertions some partitions
will require splittin ,
tion #3 in Fi ure 1

as is the case with parti-

time the f
f e). In the cyclic order, this

sp it occurs along D,,. However, the
split will occur either at l&,1 /4 for those
records whose voclDol /2 or at 31Do /4 for those
records whose v+)Dol 12. Figurznld 1 e) shows the
linear artition

s
s litting

igure l(f) s R
numbering

whereas ows only the explicit par-
titions. As can be seen in Figure l(e), the split
along a dimension is propagated to all the
other partitions along the dimension even
though only
creates the a cf

artition #3 has overflown. This
ditional implicit partitions of 4, 5,

and 6. Note also that the linear numbering of
partition numbers is satisfied within the split
axis as the major order and then within the
other axis as the minor order (i.e., the order of
partitions is 4, 5, and then 6).

In our partition assignment scheme we
assign the lowest number to an explicit parti-
tion which may contain multiple implicit parti-
tions (e.g., Pi,, Pi,, ,.., 4) so that the assignment
can be shown as Pi,& Pi , Pi,, . , Pi. where esm.
and m is the total nurnger of partitions in the
data file. We say that the implicit partitions Pizv
f+ Pi. are embedded in the explicit partition
pil,

3.2 DYOP Directory
As we mentioned earlier DOD and 0: indicate

*

x(10.1)

r(ll.1)

the sets of coordinates along the axes of the
data file. Accordi
represents the coor Y

ly, the vector rO=(@,dp)
inates, in binary form, of

partitions in the data file. For example, in Fig-
ure l(f) (10,l) represents the two coordinates of
partition #3 while the one associated with parti-
tion #0 is (00,O). The directory is made up of
records which store coordinates of the data file

E
artitions. The length of any ,O is determined
y the number of splits taken p ace 4 along 0,". In

the following we show the construction of the
directory for the data file example illustrated
above. As we already know the data and direc-
tory file structures are identical; however,
since we can store more directory records in a

constitute the basis for the 2nd level directory
in the same wa the first level direct0
from the data x x

is built
e. We stop building hig er level

directories when the number of partitions in
the hi
ing at B

hest level directory is e ual to one. Look-
igure 2(a) we see that t Ti e directory par-

titian #0 needs to be split because the partition
size is 3. The split starts al0

“a
the D&' axis. The

linear order in the range of t e split axis must
be preserved in the same way as in the data file.
Therefore, when we split alon 000, those
records whose coordinate i.e., Db prefixes are

6 t a 1 (i.e., 10, 11 correspon ing to ‘gher values
in the range are moved to a new partition. This
is illustrate d in Figure 2(b) where the new parti-
tion is numbered 1.
According to our directory structure, the direc-
tory record (10, 1
f?le partition #l wil 1

which represents the data
itself be addressed as (l,O),

i.e., directory partition #l, in the higher level
directory. In general ~~=(dt, d:, @-,)
represents the coordinate vector of the hth
level where o&<mazh and #=p(@-l.hh) for %i~n,
where n is the number of dimensions, and

Figure 2. The directory

362

(b)

~z%mazh where p(s,l) denotes the prefix of
length z of binary string S. Note that no records
are kept in the directory for the implicit data
8le partitions because as we will show later we
can determine the explicit partitions embed-
ding the implicit ones without additional direc-
tory accesses.

The DYOP partitioning scheme is inspired
from the Inter

A
Burkhard, 19 31 iii

olation Based Index Maintenance
or the Grid File [Nievergelt,

interberger, and Sevcik, 19841. However, the
structure that ultimately emerged is different.
This is becauife DWFh CO;~~JES atv~d~esu-able
properties their
shortcomings. In the Interpolation-Based Index
Maintenance no directory is needed and splits
in the data file are delayed by adding overflow
chains to file partitions. And when splitting
becomes necessary, all partitions are s lit
including those non-overflowing ones. In t ‘s R
scheme the space growth is worse than that of
DYOP partitioning and furthermore overflow
chaining deteriorates search time. In the rid
file, the directory space requirement is at % est
a super-linear function and at worst an
exponential function of the number of records.
In DYOP however, the restriction to split only
overflowing partitions uarantees a linear func-
tion. The differences % etween the DYOP parti-
tioning and the other related organizations we
have mentioned at the be
damental and documente 8

inning are more fun-
in detail in Ouksel,

L 1983a-J. It is important to note that unli e mul-
tike structures such as K-D trees or K-D tries,
DYO$ is symmetric with respect to any of the
attributes. Moreover, the directory structure
has the same organizational pro erties as the
data file; hence it also takes a CQ vantage of all
the benefits.

3.3 Storage Addressing of DYOP Partitions
Due to the linear order of splittin of the

implicit and ex
a

licit partitions in the D ItI P files,
we are able to
unique number-i

educe a mapping which allows a

a record 7’s (r= Y
of partitions. In the data fle,

vD, vl, v,-,)) ith component
vi will have a relative position zi = vi / 10% ; in the
correspondi

3
ordered set 0,. As we know, this

record 7 will e represented in the director b
the coordinate vector dC=
gives us the coordinates o !

d$, dp, &L1) wl2cX
the partition storing

the data record 7. These coordinates are given
by :

4” = b,.2Lp] for 0535X-l (5)

To compute &“, it suffices to know the number
of splits ho, occurred along the 0," axis. This in
turn can be determined as follows: Let 1 be the
number of times the whole search space has
been split. If the splitting order was c clic \fay
it can be expressed as ~O,n+rn imp yin Y
&O=LO + 1 s
LKilm an l?

lits occurred along axis i sue ?I that
LO splits along axis i such that

m<i<n-1. That is, at a given time we may not
have completed the full round of splits along all
the axes involved and some axes will remain
unsplit for the current cycle. Let also 6; for
~j<ll (where 1’ also corresponds to the binary

string le th of the prefix of the ith coordinate)
be the jt binary digit of dp. Then the number Y%
of the partition storing the data record 7 can be
obtained from :

where Go =
Lo+1 if [KiS;n
Lo othmwise (6)

The
f:

artition number M does not
&TX;ntia e between explicit and. implicit par-

. Because implicit partitions are not
represented directly in the directory we must
have a way of mapping coordinates of implicit
partitions to the same directory partition
representing the explicit partition in which the
given im licit one is embedded. Only in this way
can the irectory search be resolved by a si B le
access. This is accomplished by the use of t “a e
same M function. This time, it is used to find the
directory artition which contains the coordi-
nates of t R e exnlicit data fle nartition embed-
ding the implicfi target partitions. The following
relationshios have been shown to hold for the
DYOP partiiioning:

If II represents a partition number then all
the partition numbers for the partitions that
may possibly contain partition II is given by:

&&., . l&, is the binary representation of n

If we re resent the coordinates of an impli-
cit and exp icit partition at the hth level direc- P
tory, res ectively,

cf
by ~-~l and rhz, then there

exists an integer k such that:

p(~~,Lf")=p(~~,Lf+~) for h<k<m.uzh andSign-1

This is a consequence of the previous rela-
tionship. The explicit artition number M(rheJh)
is stored at the (h+l P th level directory whose
partition number can also be obtained by rhl.

3.4 A Retrlevel Example
Given a record r = (vo, vl, . . . , v,-,) and the

number of times the entire search space has
been split (i.e., r=~.(n-l)+m) we must determine
the address a0 where the record r is stored. To
do that we must determine the following:
a)
b)

c)

d)

Compute r.
Compute T*, r2, r”-‘, stop when you
obtain a directory consisting of a single
partition (i.e., ri = (0,O)) which corresponds
to the top directory.

number is M (rmarh- ,
Search top directory p?$)ion whose

u-i mam
memory to obtain the address =,-h-z of the
partition whose number is M (rmnzhm2, I~-*)
or the one it is embedded in.
Search lower level directories from k =
maxh - 2 to 1. In each search, search the
partition at the address a, for the address
associated with partition M(rk-l,lk-‘) or the
one it is embedded in.

363

1).
The number of file accesses will be O(maxh-

Let US assume that we want to retrieve
record r =
Dl=80, 1°=3, 1 t

37500,lO)
~2,

and that Do = 50000,
and 12=0. Our search s ace is

two dimensional, maxh=3, and the level 3 direc-

After this we determine the partition
number M(r2,12) of the to level dg;tory which
comes out as M(O,g)=O. ’ number
corresponds to a 2 in main memory. At this
address we determine al, the address of the

artition Y(rl,Z1) or the
!ii (7l.Z’) evaluates to 1. R

artition embedding it.
the lower level direc-

tory we search the partition at the address a,
for the partition whose number is calculated to
be ~.f(rO,1O)=5, or the one it is embedded in. The
address a0 found at this oint corresponds to
the address of the data le partition in which R
the record r=(37500,10) is stored. The trees
shown in Figure 3 abstract the s lits that took
place al0
see the sp its in the lower directory and in Fig- T

the dimensions. In P igure 3(a) we

ure 3
data iii

b) we see the splits that took place in the
e. Each level in the trees corresponds to

a split along an axis. If the splits, which
preserve order, are labeled with 0 and 1 along
the branches of an ordered binary tree, then
the binary string formed by concatenating the
branches along the path from the leaf associ-
ated with a partition to the root would give US
partition number(s) we have determined by
using M in expression (6). ln the figures, those
partitions are circled at the leaves and the
paths are indicated in bold.
4.0 PARTITIONING F’OR DATABASE MACHINES

Although DYOP partitioning is used for
direct addressed files, we can adapt it for space
partitioning in database machines. The only
parameter to vary will be the partition size

which will be very large in the case of database
machines. To give an example, consider RAP.3
database machine which is a cellular associative
device. Each cell of RAP.3 machine has a cell
memory capacity of 1 to 2 me abytes. There-
fore each load of a 16 cell I&& .3 device will
require database chunks of 16 to 32 megabytes.
Each chunk will be a DYOP partition.

If we consider an in-stream architecture we
need not make partition size that large. How-
ever, a small artition size will have adverse
effect on data s andwidth provided by archive
stora e
disk %

(e.g., disk(s)). In the case of a singIe
rive, the larger the partition the higher

will be the bandwidth because of continuous
read out from contiguous disk locations. The
smaller the partition the lower is the bandwidth
because of frequently intervening disk seeks
between partition accesses. To overcome that
we may devise an interleavin p a d

lexin scheme b using multi e disks. There-
; and/or multi-

ore, t e type of atabase mat ine architecture
will determine the partitioning strategy; how-
ever, multiple disks will be preferable regard-
less of the type of architecture.

We can compare DYOP partitioning with the
other similar methodolo ies. S

fl P
eciflcally, if we

take the
the GRAC

artitioning by ash c ustering used in
t architecture the following comparis-

ons can be made. First let us describe the
GRACE method. Figure 4 shows this method.

As can be seen from the figure, in GRACE
the data are not filtered but tagged with hash
codes which scatter in space. Afterwards, com-
patible codes are gathered and distributed to
various modules to absorb the nonuniform vari-
ation in the generation of hash codes.

In DYOP partitioning, because the global
order is
Figure 4 a), P

reserved the space reduction shown in
which is a logical picture, is also

preserved physically. This allows us to filter off
the outer incompatible regions of the data
space and therefore greatly alleviates the
problems of insufficient bandwidth and/or
memory space eithe
More specifically, the

sions (1) through (4)

to the linearing effect of join space reduction
and order preservin
words, because of or cf

partitioning. In other
er a partition will not be

joined with incompatible partitions. We will
show how to utilize DYOP partitioning in join

0 4 2610 37

(4 (b)

Figure 3. Split directions and partition numbers

364

Relation S

A

Relation HASH

El-
(a) Join space reduction

MEMORY
UODCLES

4. Hash based
and rejection after we take a brief look at the
RAP.5 architecture.

5.0 RAP.3 ARCHITECTURE
The RAP.3 database machine [Ozkarahan,

1982, 19851 has evolved from its
which were called RAP.1 and R A?

redecessors
.2. Basically,

RAP.3 adapted controllable memories (latest
version of It used RAM’s) to be used in the cell
memory and mapped its cellular structure into
a two dimensional parallelism. The result was
to bring the parallelism of the cellular struc-
ture down to a modest value by compensatin
the decrease in cell parallelism with intra-ce ff
parallelism. In other words, each cell is made
up of arallel subcells where each subcell has
the f L!i 1 functionality of a cell.This intra-cell

E
arallelism enabled us to replace the specially
ardwired logic with commercial microproces-

sors and firmware based uery execution. The
net effect was not a slow 8 own, because of the
two dimensional parallelism, but corn lete elim-
ination of all ossible rigidities and imitations

R
P

imaginable wit the RAP. 1 or RAP.2 designs. Fig-
ure 5(a) shows the overail RAP.3 system archi-
Eyecgd Fi

.Ti
ure 5(b) shows the internals of a
e following concepts should be

noted: The RAP.3 system does not believe in
the “backend slave” concept, but rather
believes in GPNV (general purpose nonnumeric

a network of com-
indirect database

alternative to it in
and therefore the need for space par-

titioning, in-stream filteri
processmg) staging by t ‘e use of cache “a

overlapped (with

memories and processor-memory swap switch.
That is, the cell processors must be able to
switch between active and cache memories.
While an active memory is processed, the cache
must be staged in at the background and at the
swapping point the roles of active and cache
memories must be interchanged. In Figure

~0 yxo
* p 0

b)

clustering in GRACE
5(b), each subcell has enough local memory (8~
bytes) to hold a tu

B
le,

such as the sorte
the query code, and data

contents of a batched tran-
saction operands or source relation ‘oin attri-
bute values in a semi-join (CROSS-MA l4K) opera-
tion. The DMA is a specially built hardware that
eliminates I/O polling by the subcell micropro-
cessors so that these processors either process
their tuple contents or sit in a wait state until
awakened by the DMA to continue processing in

h actuality the wait state seldom occurs with t e
exce tion of start-up)

R
The RAP.3 database

mat ‘ne has a universal instruction set and also
“hardware macros” for some operations such as
projection, cross-mark (semi-join) execution,
and batched transaction processing. In the next
section we will demonstrate the use of DYOP
partitioning in conjunction with the RAP.3
architecture and its hardware macros for doing
join and projection operations.
6.0 JOIN AND PROJECTION WlTH PARTITIONING

Below, we describe the use of DYOP to
implement the join and projection operations.
More elaborate algorithms concerning these
binary relational database operations and oth-
ers such as the ine ualit join and the m-way
join are treated in [&se{ 1985b]. In the sank

;k,$ h
the inherent parallel properties of the
sc eme is demonstrated through the

design of parallel algorithms to execute these
relational database operations independently of
any specific architecture.

6.1 Equijoin
The join methodology we will describe here

is
f

eneral i.e., can be used both for semi-join
an join. The difference comes in the wa parti-
tions are processed in the database mat x ine. If
we assume two relations R and S with cardinali-
ties N and M to be joined and if b, represents
partition size, then it is shown in [Ouksel,
1985a] that R and S will be mapped into approx-

365

DB

-

VLSI
Filter I_=1 CELLULAR

CACHE J-----l ARRAY

DB -
VLSI
Filter

(a) RAP.3 system architecture

Tupla m Tuplc m+l Schsma ti Tuplc Structuru

30 prmnor

8 q
HARD= DMACONTROLLER

GPC

LAN .-.

OUTSIDE WORLD

S
rnLL

(b) A RAP.3 cell
E
R

Figure 5. R.&P.3 database machine

111
110
101
100
011
OiO
001
000

0

11

10

01

00
-Bt?

OOOOOiO~OOii1OO :01 IlOlli 00 0: 10 il
R s

imately ER and Es pages where
Figure 6. Join processing

plished at once on the two attributes composing

ER=$oge and Es=$ge (e =2.718)
the relations. In the figure, rectangles in boid
enclose the results of selections and the second
narrow rectangle in the S relation indicates

Let us further assume that R and S were region of space that is corn atibie with that of
previously reduced by selection operations the selected area in R. We s R ould only compare
whose results are enclosed in the space del- partitions of compatible regions between the
ineated by the rectangles shown in Figure 6 for relations to do the join operation. In the follow-
both R and S. The area enclosing the results of ing, we enumerate the possibilities in join pro-
a selection is rectangular because the relations cessing.
are assumed to be binar

?
in this exam le and

the key is corn osite.
R

he area wo up d have
been a hypercu if the relations were com-

CASE 1: A partition is fully contained in the
e

posed of more than two attributes. In this
example, both join and intersection are accom-

selected region of the relation. An example to
this is partition 0 in relation S and its
corresponding (compatible) partitions o,, o,, o,,

and o9 in R. As can be noticed in the
coordinates, partition 0 in S covers a lar er
region which is e uivalent to the sum of t
fbeuLopartitions in ifi

gh e
. The approach in join would

a) Subdivide larger partition (here parti-
tion 0 in S) into smaller partitions that
are equal in size to the size of partitions
in the other relation with finer partition
size (here R relation).

b) S?;“,,;mrn atible partition pairs (i.e.,
Ff and one from S) to database

machine to be joined. Here we assume
that artition sizes are chosen such
that t R ey can both fit in the database
machine memory. This join will be
accomplished in one pass because DYOP
partitioning preserves order so that
compatible tuples will net be scattered
in space.

C) Repeat the operation until all compati-
ble partition pairs from the relations
are sent to be joined in the database
machine.

In (a) we mentioned subdividing partition 0
in S into ~OJO:,O~~,Ogl
{o~.o~.o~,o~{ in R. Again t h

to be joined with
e join will be between

compatible pairs (i.e., Otf*& , 04~~). Here we
will assume that the VLSI filter in the RAP.3
architecture will identify 0,’ through Od in 0 in
the data stream during staging by looki
the high order bits of attribute values and p IT

at
ace

them in their respective places in the cache
memory prior to processing.

CASE 2: The
tained in the

artitions are not entirely con-
se ected regions of the relations. P

Example of this partition #l in S which
corresponds to partitions lo, I,, 12, and l3 in R.
Here in both relations the tuples falling out of
the selected re
be filtered out %

ions in the partitions must first
efore they are sent for join in

the database machine. A ain as indicated
above, duri
decompose t “a

staging, the lfi SI filter can both
e larger partition #l from S and

filter out the irrelevant tuples from the decom-
posed partitions on the way to the cache, ivin
us first the set l ld, I:, lb, 1,1{ and then [I f B 1, 1:
Q’, lS’{ on the fl 7. The single primes indicate
decomposition w ‘le A double primes indicate
subsequent filtering that are both accomplished
~t;~h,eenVLSI filter. Therefore;. 1°F join lrill be

1g1y.
the pairs: 10* Id’, , 12* l2 , and

At the end of each join dispatch, the RAP.3
machine will perforrn its parallel join according
to its algorithm, described in the related refer-
ences, which will not be re
ever, we will discuss the RAJ

eated here. How-
.3 parallel projec-

tion macro following the projection example
due to its natural compatibility with DYOP par-
titioning.

6- 2 Projection
Projection operation re uires sorted rela-

tion for efficient processing.. t should be noted P
that while DYOP partitioning preserves global
order among partitions in the multidimensional

search s
sorted. Pp

ace, data within a partition are not
lso m cases where implicit partitions

are embedded in an explicit partition the expli-
cit partition will be unordered both within and
between implicit partitions. Consider Figure 7.
If we want values of A0 ordered within A,, then

ti
ulling out explicit

P
artition #O, indicated by

old rectangle, will fa 1 out of sequence because
we should scan coordinate 00 of A, along A~ fist
before we can pull coordinate 01 (i.e., implicit
partitions 8, and 20). This means we need sort-
mg within a partition whether or not it contains
implicit partitions. There is no difference. in the
case of having implicit partitions, however, sim-

PK
1 because an explicit partition’s size is fixed
t at is the partition has not grown enough to

be split).
Let us show projection b

ure i’. Projection on A0 of i(
referring to Fig-
means that the

duplicates must be searched in the following
groupings:

?I,
0,8,2,10], [16,20,18,22], i25,29,27,31]
e addresses in each group are computed by

using the two nested loops:
Al 9

Figure 7. Projection of R(Ao, A,) on A0
one varying along axis A0
the other varying along axis A, (within AO)
Due to global order (i.e., intersection of

%
roups is empty relative to AO) projection can
e processed in parallel among grou f s.

projection can be processed in paralle
Also,

within a
group if partitions are processed as single
units. The dispatching of partitions of a group
to the RAP.3 cells

!
or to the cache first) will be

done by the VLSI fi ter by examining the higher
order bits of the attribute values on the fly.

The followi
RAP. 3 projection “a

algorithm summarizes the
ardware macro:

Algorithm Project
(4

(1)

(2)

Pointer sort (i.e., without moving
tuples) the tuples in cell memory wit
respect to the attribute to be ro’ected.
This sort is performed by the ?b IM U and
takes place in parallel among the cells.
Eliminate du licates in the sorted list of
(a.1) by mar R ing the tuples with uni ue
attribute values directly by the CIM % U
in cell memory.

(b) c <-- # of relation Ceh

Repeat
(1) Pick the first unprocessed cell and read

367

A.11 Other Pages

(2)

(3)

(4)

into the controller the sorted attribute
values taken out of the marked tuples
in cell memory.
The controller writes these values in cell
interface processor memories of all the
remaining cells that store the relation,
simultaneously at each iteration.
By a merge-like operation between the
sorted attribute values in cell memory
and the sorted values in cell interface
processor memory, all remaining cells
compute the set difference of fczLrrent
cell va~!uesj - {vaLue.s in

Y
t by the con-

troUerj simultaneously. his is done by
resetting the mark bits of the tuples
containing values identical to those of
the subtrahend.
c <-- c-l

until c=o
At the end of each iteration (1) through (4), the

i
recessed cell at step (1) contains unique attri-
ute values within the relation. And at the end,

all the cells are left with marked tuples
corresponding to unique attribute values.
6.3 More General Join Cases

As indicated earlier, an n-degree relation
would corres
cube in the f;

ond to an n-dimensional hyper-
YOP search s

) and &
type R A0 = B~]S between re ations R P

ace. A ‘oin of the
i A~,A ,,..., A,,+

B~,B~,...,~~-,) would be processed by parti-
tions fetched in the value order, as shown in the

ercubes as dictated b

ble subhypercubes would conveniently be
reduced to the intersection of m data spaces.
7. CONCLUSION

We have argued that an efficient solution to
the I/O bottleneck problem- which results in
binary and projection operation complexity of
O(n*) in relational databases--cannot be easily
found if one reduces the problem to that of
designing yet another architecture. The solu-
tion lies in efficient, dynamic, and order
preserving data space partitioning techni ues
such as the DYOP. It has been shown that D 9(OP
partitioning is superior to that of the GRACE
architecture and can exploit parallelism. An
example of compatible marriage between the
DYOP partitioning and the RAP.3 architecture is
demonstrated through the join and projection.

Once such a partitioning strategy is chosen
we can concentrate on the choice of a specific
database machine architecture based on the
knowledge of our archival storage system (i.e.,
number of disks and channels). Because then
we will able to know, in detail, our bandwidth
and partition sizes (actually this desi n is an
iterative en s). 5 The
knowle

%

process between the two
e of these parameters will enable us to

choose t e desired architecture. A guideline to
weigh the alternatives is discussed at the begin-
ning of our article.
RIFEFENCES
BANARJEE, J., HSIAO, D.K., KANNAN, K. [19791
fB&;A,,Database Computer for Very Large Data-

lEEE Transactions on Computers, Vol.
C-28, ho. 6, pp. 414-429.
BURKHARD, W. A. [19831. Interpolation-Based
Index Maintenance, Proc. of ACM SIGMOD-
SIGACT Symposium, pp. 76-85.

19791. DIRECT-A Multiprocessor
Supporting Relational Data-
Systems, IEEE Transactions
C-28, No. 6, pp. 395-406.

IUgT;tREGAWA, M:, TANAKA, H., MOTO-OKA, T.

b 3
Application of Hash to Database

achine and its Architecture, New Generation
Computing, Vol. 1, No. 1, pp. 63-74.
K-UNG, H. T., LEHMAN, P. L.

La
VUI) Arrays for Relational 6

19801. Systolic
atabase @era-

ns , F’roc. of ACM SIGMOD Conf.. pp. 105116.
NIEV-ERGELT, J., HINTERBERGER, J., SEVCIK, K.
C. 1984

I hi m.Q ric
The &id Pile: An Ada table,

ultikey FXle Structure, 1
Sym-

CM Transac-
tions on Database Systems, $&No. I, pp.38- 71.
OUKSEL, M. [1983a]. Oro!.er-Preserving
H-hang Schemes for Associative Searc i~grn~~
Database S stems,

T
.

Electrical k
Ph.D. Dissertation, Dept. of

Northwestern YJ
ineering and Computer Science,
niversity, Illinois.

Mappings
GUKSEL, M., SCFEUERMANN, P. [!983b]. Storage

Multidimensional Lane ar
Dyaamac Hashi
symposiunl, pp. 33

Proc. of ACM SIGMOD-SIGACT
b-105.

OUKSEL, M. [1985a]. The Inte elation-Based
ck-icl File Proc. of ACM SIGMOD- 3
shun, pp. 20-27.

GACT Sympo-

OUKSEL, M. [1985b]. Data Strut tures and Paral-
lel Algorithms for the Execution of Relational
Database Operations, in preparation.
OZKARAHAN, E. A. [19821. Implementations of
the Relational Associative Processor (RAP) and
its System ConfSgzLrations, Dept. of Computer
Science, TR82-005, Arizona State University.
OZKARAHAN, E. A.
ties of Database d

19831. Desirable Functionali-
rchitectures, Proc. of IF’IP63

World Congress, pp. 357-362.
OZKARAHAN, E. [1985.1 I] Database Machines
and Database Man
Englewood Cliffs, N. “$

ement. Prentice-Hall Inc.,

TANAKA, Y. [19831. A Data-Stream Database
Machine with Large Capacity, in Advanced Data-
base yachine Architectures, Ed. D. K. HSIAO,
~r-;nt~2e-Hall Inc., Englewood Cliffs, N. J., pp.

368

