
CONCURRENCY CONTROL IN B+-TREES DATABASES 

USING PREPARATORY OPERATIONS 

Y. Mond and Y. Raz 

Technion - Israel Institute of Technology 
Haifa 32000, Israel 

ABSTRACT 

A simple concurrency control mechan- 
ism for B+-trees Databases is intro- 
duced. It is based on early split- 
ting and catenating of nodes during 
a process, which are candidates for 
such operations later on in that 
process. These early operations 
enable to lock only the current 
node in the process and its father 
node, and hence to increase the 
degree of concurrency relatively 
to other known mechanisms. 

1. INTRODUCTION 

B+-trees are considered standard organiza- 
tion for indexes in database systems. They en- 
able both random and sequential access, and 
thanks to their balancing mechanism, insert/ 
delete operations are not expensive to carry out. 

In a multi-user environment, where the data- 
base is maintainedas a tree in general, and a 
B+-tree in particular, several problems arise 
concerning simultaneous multi-access to the data- 
base. 

One of the solutions to the problem of con- 
currency control, particularly in trees, is the 
use of locking techniques. Samadi [SAMD76], Bayer 
and Schkolnick [BAYR77], Miller and Snyder 
[MILR78] and King and Collmeyer [KING731 intro- 
duced several locking mechanisms. When search 
trees are concerned, every process locks all or 
some of the nodes on his path in the tree, 
according to the concurrency control mechanism 
which exists in the system. 

Updaters, while inserting or deleting in a 
B+-tree might cause changes to the 
structure of the tree. Thus it is common to 
check the "safety" of every node on the path. 
A node is considered "safe" if inserting a key 
into it will not end in its splitting and if 
deleting a key from it will not cause its merging 
with its neighbor [BAYR77]. If the node is un- 
safe, it will be locked by the process. Thus a 
chain of locked nodes will have to be kept for 
every updater, and the level of concurrency in 

the system might get lower. 

The idea of guaranteeing a path of safe 
nodes for a simpler concurrency control is mention- 
ed in Guibas & Sedgewick [GUIB78]. Keshet [KESH81] 
suggested the idea of immediate splitting or merg- 
ing of unsafe nodes in order to avoid long chains 
of locks. By making these preparatory operations 
only a pair of locks has to be kept: on the cur- 
rent node and on its father node. Thus the por- 
tion of the tree locked by the process is getting 
smaller as the process advances. This idea was 
implemented and investigated by Y. Mond [MOND84]. 

In Section 2, the motivation behind the 
proposed mechanism is discussed. In Section 3 a 
modified B+-tree is introduced and its properties 
are examined. In Section 4 a simple concurrency 
control mechanism taking advantage of the propert- 
ies of the modified B+-tree is introduced. In 
Section 5 some conclusions are given. 

2. B+-TREES DATABASES IN A MULTI-USER TRANSACTION 
ORIENTED ENVIRONMENT 

A transaction is a collection of read or up- 
date processes, each accessing a data item. Read 
processes do not change the structure of the tree, 
while update processes do. Although it consists 
of different processes, the effect of the trans- 
action on the database state should be like that 
of an atomic operation. The concurrency control 
system should control the concurrent execution, 
so that the computer resources will be used as 
efficiently as possible while preserving the 
atomicity. In a system based on B+-trees (see 
[KNUTH73]) the data, the targets of the trans- 
action processes, which are identified by keys, 
lie in the leaves, while the internal nodes are 
used to direct the processes. Every process 
starts looking for its target in the tree root, 
and advances through a path of internal nodes. 

The B+-tree is kept balanced by using node 
splitting or catenating for the rebalancing needed 
due to operations of inserting new keys into the 
structure or deleting existing keys from it. 

The split and catenate operations may propag- 
ate from the leaves up to the root. In order that 
processes executing concurrently with changes be- 
ing done in the tree (splitting or catenating) 

Proceedings of VLDB 85, Stockholm 
331 



do not loose their way to the target, mechanisms 
of locking are common for nodes that may be chang- 
ed due to split or catenate operations. A process 
cannot access a node which is blocked for him. 
Using such mechanisms, all the nodes, from the 
leaf and up to the highest point, the "critical 
point" [MILR78], where propagation of the changes 
can reach, should be locked. In the worst case, 
the whole tree may be blocked, even though the 
changes take place only in part of the tree, i.e., 
the degree of concurrency gets much lower even 
where this is not really necessary. Thus, it is 
clear why a solution which locks a smaller number 
of nodes and lower nodes in the tree is desired. 

The idea of preparatory operations appears 
in [GUIB78], where new algorithms are introduced 
which update and re-balance a search tree in one 
pass, on their way down to the leaf. Thus, when 
the desired data item is found, the appropriate 
operation can be immediately completed. 

A possible disadvantage of the preparatory 
operations mechanism is that a certain amount of 
overhead will be needed due to the preparatory 
split/catenate. On the other hand, it seems 
that the level of concurrency achieved by such a 
mechanism is rather high. In a transaction 
driven system, where operations on the actual 
data at the leaves level of the B+-tree may be 
delayed for a considerable amount of time by the 
concurrency control protocol, this advantage may 
be even bigger. 

3. THE PO-B+-TREE 

In order to carry out the idea of prepar- 
atory operations, a minor modification in the 
definition of the B+-tree is necessary. In the 
modified B+-tree called "preparatory operations 
B+-tree" (PO-B+-tree) the number of keys in a 
node may be between n-l and 2n+l rather than 
n and 2n in the usual B+-tree, where n is 
the rate of the tree. The reason for this is the 
following: If n is the threshold for merging, 
then by merging an n-size internal node with a 
neighbour which also has size n, we get a 2n+l 
size node, since by the usual merging algorithm 
the separating key of the two merged nodes is 
also contained in the resulting node. By split- 
ting a Zn-size internal node (2n is the thres- 
hold for splitting), we get n and n-l size 
nodes, while one key is moved to the father of 
the splitted node. 

Thus, let us define a PO-B+-tree as 
follows: 

Definition 1: PO-B+-tree of rate n is a tree 
satisfying the following properties: 
(a) Every node contains 2n+l keys at the most 

(has 2n+2 sons at the most); 
(b) Every node, except for the root, contains at 

least n-l keys (has at least n sons); 
(c) The root contains at least one key; 
(d) All the leaves lie on the same level, and 

contain all the keyed data; 

(e) A node which is not a leaf and contains k 
keys will have k+l sons. 

Acgordingly, the definition of the operations 
on PO-B -trees will be the following: 

Definition 2: PO-insert and PO-delete are the 
usual insert and delete operations for B+-tree 
with the addition of preparatory splitting or 
catenating while passing during the operation a 
node with not less than 2n or not more than n 
keys respectively. (The root is an exception and 
it is left unchanged while being the current node 
in the case of PO-delete.) 

Note, that a node is unsafe for insertion or 
for deletion if it has n-l or 2n+l keys 
respectively. 

Using the known properties and the usual 
transformations (for insertion and deletion) of 
Bt-trees, we can summarize now the relationship 
between the structure and operations by the 
following theorem. 

Theorem 1: PO-B+-tree properties are preserved 
under PO-insert and PO-delete. 

The concurrency control mechanism is based 
on a property of the PO-insert and PO-delete 
described as follows: 

Theorem 2: During a PO-insert or PO-delete 
operation, while accessing a node on the path to 
the desired leaf, there is no unsafe node among 
the nodes already passed. 

Proof: It is proved by showing, using induction 
on the node location on the path, that the father 
node of the accessed one can gain a key in the 
case of PO-insert or loose a key in the case of 
PO-delete, remaining safe. 

Case 1: PO-insert. 

If the root has 2n or 2n+l keys it is 
split into n-l and n key nodes or into two n 
key nodes respectively. A new root with one key 
is then created. Whenever a 2n or 2n+l key 
node is encountered, a preparatory splitting is 
invoked. Thus, when the current node is an intern- 
al node which contains 2n or 2n+l keys, it is 
split, creating two nodes, one with n keys and 
the other with n-l or n respectively. 

(Remark: When the current node is a leaf node 
which contains 2n keys, it is split, and the two 
resulting nodes contain n keys each.) 
The father node gains one key and can have 2n 
keys at most, since by the induction hypothesis, 
after the previous step, it had 2n-1 keys at most. 

If the current node does not split it has 
Zn-1 keys at most. 

Thus, the father node of the next step (the 
current of this step) can gain a key remaining 
safe. 

Case 2: PO-delete 

If the current node has no more than n keys 

332 



and it is a son of the root which has only one 
key there are two possibilities: If the other son 
of the root has more than n keys, keys are 
shifted without catenation. If it has no more 
than n keys, the sons are merged becoming the 
new root with 2n-1 or 2n or 2n+l keys. 
Whenever an n or n-l key node (which is not 
the root) is encountered, a preparatory catenat- 
ing is invoked. Thus, when the current node is 
an internal node which contains n or n-l keys, 
it is catenated with its neighbour if the latter 
has n keys or n-l keys. The resulting node 
has 2n+l or 2n or 2n-1 keys. (One key is 
coming from the father node.) If the neighbour 
has more than n keys, keys are transferred from 
the neighbour without catenating. 

(Remark: When the current node is a leaf node 
which contains n keys, it is catenated with its 
neighbour if the latter has n keys, and the 
resulting node contains 2n keys. If the neigh- 
bour has more than n keys, keys are shifted 
without catenating.) 

In case of catenating, the father node looses one 
key and has at least n keys, since by the 
induction hypothesis, after the previous step, 
it had at least n+l keys. 

If catenating does not occur the current 
node has at least n+l keys. 

Thus, the father node of the next step (the 
current of this step) can lose a key remaining 
safe. 

From the two cases above, we conclude that 
each node already passed was either safe in the 
first place or was made safe by the appropriate 
preparatory operation. 0 

The implications concerning the tree update 
operations are the following: 

Corollary: During PO-insert or PO-delete, after 
updating the appropriate leaf the operation has 
been completed. (There is no need to update any 
other node as can happen during the usual insert 
or delete.) 

4. A CONCURRENCY CONTROL MECHANISM FOR THE 
PO-B+-TREE 

The concurrency control mechanism is based 
on two kinds of locks - a lock for operations 
which do not change the database structure (read 
process andin-placeupdate process) and a lock 
for operations which do change the structure 
(PO-insert and PO-delete). These locks will be 
referred to as a "read-lock" and "update-lock" 
respectively. 

A read-lock blocks update-lock processes, but 
enables read-lock processes to access the node. 
An update-lock blocks any other process. 

For each process the locks are applied according 
to the following rules: 

1. Any process starts by locking the root with 

2. 

of 

the appropriate lock (read-lock for update- 
lock) and accessing it (provided the process 
is not blocked by a lock already on the root). 
During any process, while accessing a node on 
the path to the desired leaf, the node and its 
father are locked by the appropriate lock; 
before accessing the next node on the path, 
the father is unlocked. 

The following theorem states the correctness 
the described mechanism referred to as the 

Preparatory Operation Mechanism (POM). 

Theorem 3: The POM preserves the PO-B+-tree 
structure while running processes concurrently, 
for any time when no node update operation is 
being performed; every process "sees" a consist- 
ent tree. 

Proof: It is sufficient to show that: 
(1) when a node is being changed it is accessed 

by the changing process only, and 
(2) any node change preserves the PO-B+-tree 

constraints. 

During an interaction of two read-lock 
processes no blocking is necessary, since there 
is no change in the structure. 
A read-lock blocks update-locks processes, and 
hence no node change can occur. 
An update-lock process blocks any other process 
from accessing the current node or its father. 
Hence, while changing them that process is the 
only process which can access them. A neighbour 
of the current node may also be changed. 
Before the process accesses the neighbour it 
should be free of any lock (possibly of another 
process). However, after it has been accessed by 
the process, no other process can access it, since 
its common father with the current node is locked. 
The upper nodes on the path are safe by Theorem 2, 
and may not be changed by that process. Before 
accessing the next node on the path, all the 
possible changes in the neighbour and the father 
have been completed for that process and hence 
the father can be unlocked. 

Since each such node change preserves the 
PO-B+-tree constraints by definition, and since 
update-lock processes do not mix on any node 
because of the locks, the constraints are preserv- 
ed and each process "sees" a portion of the tree 
which gives the correct information to navigate it 
to the target data item. 0 

The overall concurrency control mechanism is 
a combination of the above mechanism and a protocol 
for synchronizing transactions in the system. 
Such a protocol should be applied only for the 
leaves of the PO-B+-tree (the data level), and 
since it is independent of the above mechanism 
any protocol can be used. 

The above mechanism by itself cannot intro- 
duce a deadlock, because it treates different 
processes independently, and since the tree 
structure induces a partial order on the blocked 
processes. However, the protocol for the trans- 

333 



actions may cause deadlocks (if it is not dead- 
lock-free) which should be taken care of. 

5. CONCLUSION 

The concurrency control mechanism described 
enables a higher degree of concurrency relatively 
to mechanisms keeping longer chains of locks for 
processes which change the structure of the tree, 
since the longer the chain kept is, the larger is 
the blocked portion of the tree. 

The preparatory operations introduce some 
overhead by increasing the number of operations 
performed upon the tree, but as the rate of the 
tree increases the relative number of unsafe 
nodes in the tree is reduced, and hence this 
overhead becomes small. 

The intuitive advantages of the mechanism 
were verified by an implementation in a simulation 
system for a PO-B+- tree database system with a 
single CPU and multiple I/O channels [MOND84]. 
The mechanism was also implemented successfully 
together with the ZPL-protocol in a database 
management system by J. Navon [NAVN84]. 

[BAYR77] 

[GUIB78] 

[KESH81] 

[KING731 

[KNUT73] 

[MILR78] 

[MOND84] 

[NAVN84] 

[SAMD76] 

REFERENCES 

Bayer, R. and Schkolnick, M.: 
"Concurrency of Operations on B-Trees", 
Acta Informatica, 9, pp. 1-21 (1977). 

Guibas, L. and Sedgewick, R.: 
"A Dichromatic Framework for Balanced 

Trees", in Proc. of the 19th Symp. on 
Foundation of Computer Science, pp. 8- 
21, (1978). 

Keshet, Y.: "Concurrency Control 
Problems in B+-Tree Databases", The 
Technion-IIT, M.Sc. thesis (1981). 

King, P.F. and Collmeyer, A.J.: "Data- 
base Sharing - An Efficient Mechanism 
for Supporting Concurrent Processes", 
AFPIS National Computer Conference, pp. 
271-275 (1973) . 

Knuth, D.: "The Art of Computer Program- 
ming", B-Trees, Vol. 3, pp. 473-480 
(1973). 

Miller, R.E. and Snyder, L.: "Multiple 
Access to B-Trees" (preliminary version), 
Proc. of the 1978 Conf. on Information 
Sciences and Systems, J. Hopkins Univ., 
Baltimore, Maryland (1978). 

Mond, Y.: "Concurrency Control in B+- 
Trees Databases Based on Preparation 
Operations", The Technion-IIT, M.Sc. 
thesis (1984). 

Navon, 3.: "Concurrency and Recovery 
for a Simple Database System", The 
Technion-IIT, M.Sc. thesis (1984). 
Samadi, B.: "B-Trees in Systems with 
Multiple Users", Infor. Processing 
Letters, 5,4 pp. 107-112 (1976). 

Permission to copy without fee ah or part of this material is 
granted provided that the copies are not made or distributed for di- 
rect commercial advantage, the VLDB copyright notice and the title 
of the publication and its date appear, and notice is given that copy. 
ing is by permission of the Very Large Data Base Endowment. To 
copy otherwise, or to republish, requires a kc and/or special permis- 
sion loom the Endowment. 

334 


