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ABSTRACT 

Database views are traditionally described as unmaterialized 
queries, which may be coincidentally updatable according to 
some fixed criteria. One of the problems in updating 
through views lies in determining whether a given view 
modification can be correctly translated by the system. To 
define an updatable view, a view designer must be aware of 
how an update request in the view will be mapped into 
updates of the underlying relations. Furthermore, because 
of side effects, the view designer must also be made aware 
of the effects of underlying updates back into the view. 

To address this problem, we present a general algorithm 
that predicts the effects of arbitrary mapping policies. 
Given an update policy, this algorithm indicates whether a 
desired update will, in fact, occur in the view and describes 
all possible side effects it may have, documenting the condi- 
tions under which they occur. The algorithm subsumes the 
results obtained by other view design tools, and generalizes 
their use to encompass a larger class of views. 

1. Introduction 

In the relational model, views are defined as 
single-relation images of queries. When updating 
through views, the updates must be mapped into the 
underlying database, preserving the database con- 
sistency, and reflecting the desired change in the 
view. Researchers have proposed ways of choosing 
the “appropriate” update mapping, having thereby 
restricted the domain of updatable views. Consider- 
able effort has been spent on defining general view 
update translators (e.g., by treating views according to 
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their complements [BAN81], or as components of a 
boolean algebra [HEG84]), and on defining views 
together with the updates they support (e.g., by treat- 
ing them as abstract data types [TUC83]). The need 
for fast update processing motivates research on the 
complexity of update algorithms [COS83], efficient 
methods of checking integrity constraints [SIM84], or 
maintenance of materialized updatable views 
[SHM84]. In other related research, update seman- 
tics have been analyzed independently of the 
existence of views [NIC82, FAG83]. 

The so-called view updare problem [e.g., CAR79, 
FUR79, DAY82, KEL82, HEG84, KEL85] centers 
around characterizing underlying updates that 
correctly reflect a change in the view . However, the 
definition of a “correct” translation may vary with the 
users’ intentions, and even depend on the database’s 
state at update time. This has forced researchers to 
restrict the set of views that can be updated to those 
where only unambiguous changes can be specified. 
As a consequence, only a limited set of updates 
through views have traditionally been supported. 

This paper presents a design tool for handling 
the update translation problem. It can be used to 
process both general update translators and specific 
view update policies, therefore unifying previous view 
design approaches. It consists of an algorithm which 
allows a view designer to analyze and document the 
meaning of any update request by indicating the asso- 
ciated update translation. As a result, most update 
requests lose their ambiguity, since the update’s effect 
is stated by means of the associated translation. By 
taking into consideration all possible valid database 
states, this algorithm predicts whether the desired 
update does, in fact, occur in the view, and whether it 
will result in additional modifications to the view. 
Determination of view interference (i.e., when updates 
to a view modify other views) is achieved by a simple 
extension of the algorithm. 

Unlike all other approaches, the aim of the 
method presented here is to allow database system 
implementers to liberalize the translation policies, 
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rather than to remain restricted to a small set of valid 
interpretations. Among other things, the designer can 
specify several types of actions to be taken when 
exceptions occur, treat underlying changes as atomic 
operations distinct from the transaction <single inser- 
tion, single deletion>, and correctly process both 
traditional and non-standard relational views (such as 
lossy views). Furthermore, whereas most update vali- 
dation tools restrict themselves to dealing exclusively 
with functional dependencies [e.g., LIN78, ARO78, 
DAY82, KEL82, KEL85], the algorithm proposed 
also extends the set of constraints manipulated to 
encompass join dependencies. These liberalizations 
come as a consequence of the algorithm taking into 
account factors which are considered unacceptable by 
most update validation tools (e.g., the contribution to 
the view of “dangling tuples” or of attributes that 
have been eliminated by means of projections). Some 
of these factors have been previously suggested as 
necessary for a more complete analysis, but they are 
consistently ignored, since it is claimed that they add 
too many degrees of freedom to the problem, and are 
not amenable to efficient analysis [e.g., CAR79, 
KEL82]. 

The reader is assumed to be familiar with basic 
relational database terminology, as described for 
example in Ullman’s textbook [ULL82]. Only static 
update analysis will be considered (i.e., database state 
transitions are not discussed), and it is assumed that 
view access mechanisms (such as authorization and 
serialization of operations) are handled elsewhere by 
the system. 

This paper is organized as follows: Section 2 con- 
tains basic concepts, notation and assumptions; Sec- 
tion 3 describes the validation algorithm proposed; 
Section 4 describes the rules for forming the tableau 
used by the algorithm to predict side effects; Section 
5 summarizes results about the algorithm’s correct- 
ness and complexity; Section 6 contains two examples 
of policy validation; and Section 7 presents the con- 
clusions. 

2. Notation and assumptions 

Let R = (Ri <(Ai,),(Ci,j>} be a relational 
database scheme, where {Ai, 1 and { Ci, } represent the 
attributes and constraints of Ri. In this paper, { Ci,) 
is considered to be composed of a set of minimal keys 
(representing key functional dependencies) and at 
most one join dependency, which will be represented 
by a simple, full, typed template dependency. 

Template dependencies [SAD821 consist of a 
template with a set of hypothesis rows (WI . W) 
and a conclusion row (ws+l). Each row is composed 
of a set of symbols representing attribute values. A 
template dependency can be considered as a logic 
clause WI A /\wsgws+ 1. This is interpreted as 

indicating that if all hypotheses hold (i.e., the tuples 
they represent exist in the relation), then the relation 
must also contain the tuple(s) described by the con- 
clusion row. A dependency is typed if no symbol 
appears in more than a column; a dependency is fill 
if every symbol in the conclusion row also appears in 
some hypothesis. A dependency is simple if at most 
one symbol is repeated for any column. Sagiv 
[SAG851 has shown that simple full typed template 
dependencies correspond to join dependencies. 

Because of the complexity inherent in addressing 
inference problems for template dependencies (such 
as described by Fagin er al. [FAG83a]), it is assumed 
that templates cannot span relation schemes, and that 
there is at most one simple template dependency for 
any underlying relation scheme. There is, however, 
no limitation on the number of keys allowed. 

A view V is defined as a pair V = (R, +) and a 
set of update rules {u, ). qv is the view generating 
function, which, applied to R, will present the desired 
query image. It is assumed that qv is restricted to 
projections, selections and natural joins over R. Thus, 
for example, views formed by aggregation operations 
will not be considered. 

Instead of actual tuples, the validation algorithm 
manipulates symbolic expressions describing sets of 
tuples in a relation. Each expression consists of a 
string of parametric and placeholder variables, where 
each variable stands for an attribute in the 
corresponding scheme. Parametric variables (denoted 
by uppercase characters) stand for specific attribute 
values at execution time, and placeholder variables (in 
lowercase characters) represent all other attribute 
values. The symbol (t )i denotes a set of tuples in 
scheme Ri. 

Example: 

Let RI = (Parent, Child, Dept) have as one instance 
((John,Mark,CS), (John,Sue,CS), (Mary,Paul,Math)). 
Let (John.*,CS) refer to the first two tuples of this 
instance. The related symbolic expression is 
{tj~=(PcD), i.e., the set of tuples with specific 
(parametric) attribute values for attributes Parent and 
Department to be given at execution time. (Note that 
this expression also describes the tuple 
(Martin,*,English), etc.) 

For brevity, all references to the updating or the 
existence of a template row actually refer to the 
updating or the existence of the tuples described by 
that row. For instance, the statement “(ABC) is 
inserted if (ABc2) exists” means that “given a relation 
r with attributes A, B and C, the tuple described by 
(ABC) is inserted if this relation contains tuples 
described by 3 c2 1 (ABc2) E r”. 
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3. Description of the validation algorithm 

The algorithm can be used to validate single 
insertions, deletions, and changes. Usually, requests 
for tuple replacement are considered to be equivalent 
to a transaction of type <single deletion, single inser- 
tion> [e.g., NIC82], but as remarked by Keller 
[KEL82] this is not always realistic. Since one of the 
aims of the approach presented here is that of placing 
as few restrictions as possible on the set of policies a 
user can implement and analyze, flexibility is 
increased by treating change requests as yet another 
type of atomic operation. 

The input to the algorithm is a pair <R,q”>, 
representing view formation and consistency informa- 
tion, and a single update rule uv to be validated. 
Each update rule can be considered to be a procedure 
of the form <view update desired, {underlying 
transformations) >, which is activated at execution 
time by an update request. View update desired 
describes the update operation to be performed and 
plays the role of procedure header. The set underly- 
ing transformations is the executable body, defining 
how to translate the update operation into underlying 
updates. 

Each underlying transformation is specified as 
the 4-tuple 

Cop, tuples affected, Ri, exception action>. 
Op is the type of underlying operation: De (dele- 

tion), In (insertion), or Ch (change); 
tuples affected is denoted by (t )i or { (t,t’)i) (the 

latter format is used when the operation is a 
change: {t ]i replaces (t’ Ii). For underlying 
insertions, the user can only check the results of 
inserting a tuple at a time, i.e., (t ]i is an expres- 
sion with parametric variables only. For dele- 
tions and changes, the user can specify operations 
over sets of tuples. 

Ri is the underlying relation being updated; 
exception action indicates the type of action to be 

taken if the operation violates a constraint, and 
may be “force” or “cond”(conditional), which is 
the default. 

Conditional updates are performed only if no 
other modifications to the underlying database are 
needed; this is the action implicitly meant by most 
mapping analyses when specifying the set of views 
where an update can occur. For example, 
<De,(PcD),Ri,cond> means that all tuples in Ri 
that match the expression (PcD) for the values in P 
and D should be deleted, as long as this does not 
cause deletion of further tuples. Forcing updates is 
accomplished by adding, deleting or changing addi- 
tional tuples so as to maintain the database con- 
sistency. 

Previous researchers have assumed that valid 
view deletions are those that are translated into dele- 

tions of the underlying relation tuples, and valid view 
insertions are those that are translated into either 
underlying insertions, or replacements of null by non- 
null values in some underlying tuples [e.g., LlN78, 
DAY82]. These assumptions are again liberalized, by 
allowing any combination of underlying updates, as 
long as only one type of operation is specified for 
each relation. Thus it is possible to effect a deletion 
or a replacement by an underlying set of insertions. 

Example: 

If R 1 = <(Name,Dept), {NameADept) > contains 
the tuple (Jones,CS), a request for conditional inser- 
tion of (Jones,Math) is rejected, since it cannot be 
performed without deleting the tuple (Jones,(X). A 
request for forced insertion of the same tuple, how- 
ever, can be accepted under the assumption that it 
provides information on the real world which is “more 
correct” than the database’s contents. The result of 
such an insertion would then be the replacement of 
the existing tuple by (Jones,Math). This type of 
interpretation was first suggested by Fagin, Vardi and 
Ullman [FAG83]. 

The input is initially processed to discard some 
forced insertions or changes that are inherently ambi- 
guous. This situation occasionally arises when the 
relation to be updated is subject to functional depen- 
dencies that are entangled with a template depen- 
dency. For such special cases, these constraints force 
conflicting data to appear in the database, and further 
information would be needed in order to disambiguate 
the result of an update. This type of situation can be 
recognized in polynomial time in the size of the tem- 
plate dependency, and is dealt with at length else- 
where [MED85]. 

The central part of the validation algorithm is 
based on a process similar to tableaux chases. This 
part - called the q,/chase process - consists of 
evaluating the update policy, using the tuples (t }i 
indicated in {underlying transformations], so as to 
derive all possible side effects on the view. First, all 
underlying updates necessary to maintain the con- 
sistency of each relation are simulated. The result of 
performing this simulation, denoted by 
Op((t );,Ri,exception), is stored in the underlying 
modification table. Next, for each underlying update, 
the checking of side effects is performed by investi- 
gating what are the individual contributions of the 
updates described in the underlying modification 
table. This means that, for the set of transformations 
((Opi,{t )i,Ri,exception)Ji=l..k, this check must be 
executed using the entries in the underlying modifica- 
tion table corresponding to the isolated contribution of 
({t)l,(t)z. . and (tjk) to the view. In particular, 
if a given set of underlying transformations is com- 
posed of both underlying deletions and insertions, the 
algorithm explicitly takes the deletions into account 

318 



when computing which tuples may be inserted in the 
view (since the deleted tuples cannot contribute to 
insertions in the view). 
Example: 

Consider qv=Rl W R2, where R={Rt<AB,{]>, 
R2<BC,{B+C]>}, with extensions rt={(at bt), 
(a1 b2), (a1 b3), (a3 b3)j, r2={(b1 Cl), (b2 Cl)]. 
Suppose the user policy implements changing view 
tuple (ulblcl) into (u3b3c3) by deleting (at bl) from 
rl and inserting (63 c3) in r2, which actually achieves 
the desired change in the view. If the deletion of 
(at bl) is analyzed separately, it is seen that it causes 
the deletion of (a lblcl) from the view. The effect of 
inserting (b3 c3) in rz must also be considered by 
itself, as it inserts (~16~3) in the view as well. 

Each underlying operation is thus processed 
separately. This is done by creating a sequence of 
tableaux for each modified relation, as explained in 
the next section. In each sequence, every tableau is 
obtained from the previous one by application of one 
operator from qv, simulating actual projections, selec- 
tions and join operations over real tuples. The first 
tableau of the sequence for Ri contains the set of 
entries of the underlying modification table 
corresponding to Op( {t )i,Ri,exception). Unlike the 
usual concept of tableaux, a distinction is only made 
between user-supplied variables and system-supplied 
variables, with blanks where the relation does not con- 
tain the corresponding attribute. 

The output is a set of symbolic expressions, 
representing all tuples that may be deleted, replaced 
or inserted by the policy. Additional output informa- 
tion is provided by the database state table, which is 
filled during execution of the algorithm. It records 
the database state description for which each underly- 
ing update initially occurs, and keeps track of changes 
in variables for each row of the tableau. Each sym- 
bolic output expression is associated with a sequence 
of entries in this table, describing the underlying data- 
base state necessary for obtaining the corresponding 
update outcome. 
Example: 

Let qv = CJA>IO (RI W R2), R=(RI<AB,(]>, 
R2<BC,(B+C]>). Given the symbolic tuples 
(t]l=‘ab’, and {t]~=‘Bc’, the result of the q,/chase 
process would be (t}12=A IBCI: that is, this tuple 
appears in the view if ‘ab’ is in r~, ‘Bc’ is in r2 and 
the database state descriptions hold. Besides indicat- 
ing what are the database state descriptions for updat- 
ing RI and R2, the table entry for {t ] 12 contains: 
[b=B] (determined by the join operator); 
[c= Cl] (the functional dependency determines that 

the attribute must have a specific value, since B-K 
and the symbol B represents a particular value); 
[a=A I> lo] (determined while executing the selec- 

tion operator). A parametric value A 1 is assigned to 
this variable to indicate that the selection delimits the 
range of the corresponding attribute. Both A and C 
are assigned indices, indicating that the corresponding 
parametric variables are not directly specified by the 
user. 

4. Creation of the underlying modification table by 
replacement rules 

Op({t )i,Ri,exception) is a set of expressions that 
describes the set of tuples inserted, deleted and 
changed as a result of following the rules that simu- 
late the effect of an update Op on Ri. Essentially, 
the template that represents Ri is replaced by a set of 
rows that describe all inserted and deleted tuples in 
the underlying relation. 

In the following pages, pairs of expressions of 
the form (t,[t’]) will denote that (t] replaces It’), and 
the expression [t’] by itself denotes deleted tuples. 
The symbol wi denotes the i-th row of a template, and 
iji denotes the same row after any symbol substitution 
has been performed. 

If the exception action is “cond” the update can- 
not imply any other updates, and thus 

Zn((t )i,Ri,cond)={t)i; 
De((t )i,Ri,cond)=[{t ]i]; 
Ch(~t,t’)i,Ri,cond)=((tji, [{f)i]). 

The rules that follow refer therefore to the “force” 
exception action, as it is the only case where underly- 
ing updates other than those explicitly specified by 
the user may be generated. 

4.1. Ri is not being updated 

The template is replaced by ws + I, which indi- 
cates no change to the relation and yet allows it to 
participate in view formation, 

4.2. Ri is not subject to any integrity constraints 

Insertion or deletion of (t )i does not violate any 
constraints, and no extra updates are needed (i.e., the 
only key consists of all attributes in Ri). 
Therefore, In({r )i,Ri&rce)={t]i; 

De({t )i,Riforce)=[{t)i]; 
Ch({t,t’)i,Rifurce)=({f]i, [{f]i]). 

4.3. Ri is subject to a template dependency 

Insertion of tuples is equivalent to modifying the 
hypotheses wt . . ws [NIC82]. Insertion effects 
must be tested separately for each hypothesis wj, 
replacing it by the inserted tuple and applying substi- 
tution inference rules to the whole template, as 
described by Sadri and Ullman [SAD82]. The substi- 
tuted conclusion rows {(wS+t)j) indicate which addi- 
tional tuples may need to be inserted to keep the 
clause valid, and the remaining hypothesis rows 
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iGk,k+j indicate the conditions under which insertion 
of ((KG + t)j ] is needed. 

Thus, Zn({t )i,Riforce)= ({t )i U {(Gs++)jj). 

Example: 

Let R 1 <ABC, {Ad-B ) C ] >. The template before 
replacement and after (ABC) replaces each row is 

ABC ABC ABC 

a1 bl Cl ABC A bl CI 
al b2 c2 A b2 c2 ABC 

al bz cl A b2C A B cl 

Forced insertion of (ABC) therefore results in a table 
with three rows: (ABC) itself, and the substituted con- 
clusion rows above: (AbzC) and (ABct). The data- 
base state table entries associated with insertion of 
(AbzC), for instance, are: 

3 bz,cz((Abzc2) E rt. 

For deletions, (t ]i initially replaces the conclu- 
sion row, and again substitutions are applied to the 
template. If the substituted conclusion row also 
appears as some hypothesis i?j, then satisfaction of 
the dependency is automatically achieved, because Gj 
is also deleted. If no such i?” exists, then another row 
may need to be eliminated to perform the deletion. 
This is chosen to be the first substituted hypothesis 
row that contains at least one parametric variable, 
denoted by i?ld; the remaining modified hypothesis 
rows indicate the conditions under which deletion of 
Etd is needed. Thus, oe((t~i,Riforce)=[~t~i U 

Etd]. In the previous example, forced deletion of 
(ABC) results in a tableau with rows [ABC] and 
[(AbtC)] ‘Wld. 

For changes, each template row Wj is duplicated, 
SO that wj-(wj,[wj]). The conclusion row thus 
formed is replaced by ({t ]i,[ (t’]i]), and substitution 
rules are applied to each duplicated row. If the con- 
clusion is not repeated in some hypothesis row, the 
change is propagated as indicated by the first row 
Gt, =(Gk,[iT’k]) where Wk f i?‘k. This is followed 
by any additional insertions that may be caused by 
appearance of {tli and WI,. Therefore, 
Ch(It,t’)i,Riforce)=(IZji,[~t’ji]) U (Wlc,[W’~cl) U 
Zn({t ]i,Riforce) U Zn(Zlc,Ri,jorce). For the same 
example, request of forced change (ABc,[AB’c]) ini- 
tially generates the substituted template 

A B C [A B C] 
b Cl, [ 

;i B’ ~2, 
b 

[; B’ 
Cll) 
czl) 

(A B cl, [A B’ cl]) 
where only the last two rows are considered for the 
underlying modification table, since the first row 
corresponds to “no change”. Since the second row 
describes the same modification as the conclusion 
row, there is no need for propagating the change. 

Therefore, the entry for Ch((t ,t’ji,Riforce) in the 
underlying modification table consists exclusively of 
the conclusion row indicated. 

4.4. Ri is subject to non-trivial key dependencies 

If there are only functional dependencies, the 
template corresponds in fact to a single symbolic 
expression describing the inserted tuple (or the set of 
changed tuples). 

Deletion of tuples cannot violate a functional 
dependency, so oe( { t ]i,Ri force) is calculated as in 
4.3 if there is a template dependency, or as in 4.2 if 
not. A functional dependency X+Y may be violated 
by forcing either insertions or changes involving 
parametric values in X and Y. For every such depen- 
dency, both forced insertions and changes must be 
accompanied by modification of other tuples’ values 
in the attributes in Y. This is achieved by specifying a 
row (w,[w’]) such that w and [w’] match {t]i in the 
parametric attributes corresponding to X, and have 
different values for the attributes in Y. Once the 
pairs I(w,[w’l)l are generated, indicating preliminary 
operations necessary to solving any conflicts arising 
from functional dependencies, the set of rules in 4.3 
for template dependencies is applied to determine 
which other tuples may need to be inserted or deleted 
to maintain the template dependency. Finally, any 
conflicts that may still arise (because the new inser- 
tions generated by the rules 4.3 for template depen- 
dencies may disagree with existing tuples over func- 
tional dependencies) are solved by deleting the offend- 
ing tuples from the relation. 

Example: (having functional dependencies only) 
Let RI tABC,(A+BC; C+BA] >. Forced insertion 
of (ABC) may violate either dependency. Thus, the 
expressions generated are (ABC,[AB’C’]), for the 
tuple whose A-value matches A, and (ABC,[A’B’C]), 
for the tuple whose C-value matches C. 

Consider again the same scheme RI. The forced 
change (aBc,[aB’c]), for instance, transforms all B- 
values of all tuples in the relation to the value B. 
Another forced change, (ABc,[AB’c]), is transformed 
by chase into (ABCt,[AB’Ct]) because A is a key and 
has a parametric value. This change modifies only 
the B-value of the tuple whose A-value is given by A, 
and whose C-value may be unknown to the user but is 
uniquely determined by the system. 

Example: (Of having two types of dependency) 

Let RI<ABC,{A+-+B(C, BC+AJ>, whose tem- 
plate is A B C 

al 61 Cl 

a1 b2 c2 

al b2 cl 
Forced deletion of (ABC) generates the rows 

(ABC) and (AbtC)=Etd. 
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Forced insertion of (ABC) is processed as fol- effects on the view caused by the underlying opera- 
lows: tions in the policy. 
1. insertion of (ABC) may require deletion of some 

existing tuple (A’BC), because of the functional 
dependency; 
2. deletion of (A’BC) alone may not be possible 

because of the template dependency. Therefore, this 
deletion is processed using rules 4.3 for template 
dependencies, which causes tuples of the form 
Gtd = (A’ b 1 C) to be deleted for all values of b 1 such 
that 3 ~21 (A’Bc2) E rl; 
3. (ABC) is then processed as an insertion for tem- 

plate dependencies (rules 4.3) and the insertions 
{(i78 +r)j ] generated are (Ab2C) and (ABct); 
4. These additional insertions (in 3.) must be exam- 

ined to see if the updated relation violates the func- 
tional dependency. In other words, existing tuples of 
the form (A ” b2 C) and (A ” B c I) (where A ” # A) 
may have to be deleted. 
5. Finally, (A” 62 C) and (A ” B cl) alone may not 

be deletable because of the template dependency. 
These deletions are therefore processed against the 
template dependency, and the result is 
V bl,c2 [(A” bl C)] - deleted if (A” bz C) is 

deleted (in 4.) and (A ” bl c2) E r~; 

v b1,cz [(A” bl cl)] - deleted if (A” B CI) is deleted 
(in 4.) and (A ” B c2) E r~. The final set of entries in 
the underlying modification table is 

A B C [A B C] 
(A B C [A B C]) 

bl Cl 
A 62 C ;;” b2 C] 

A B c1 [$I “B’ Cl 
Cl1 

[A” bl CI] 

The number of comparisons in executing the 
qv/chase process for each relation scheme Ri is poly- 
nomial, and is bounded by the chase of functional 
dependencies performed when building the underlying 
modification table and when processing tableau 
sequences. Forced insertions and forced changes are 
the most expensive operations, since they may require 
the type of housekeeping activity indicated in 4.4. 
Details on the complexity of this algorithm, and on 
methods to optimize its execution time and eliminate 
redundant rows are described by Medeiros [MED85]. 

6. Illustrative examples 
Consider the relations 

R 1 = <(Part,Qty,Wt), {Part+(Qty,Wt) ] >, 
R2= <(Part, Agent, Co.), 

(*[(Part,Agent), (Part,Co.), (Agent,Co.)] ] >, 
and qv =n(~~~r~l~~~t,c~.,wr)R~WR~. The templates 
built from this specification are 

Part Qty Wt Part Agent Co. 

p1 q1 Wl p2 a1 c2 

p2 a2 CI 

p3 a1 Cl 

p2 a1 Cl 

and the corresponding database state table records the 
conditions for each update. 

5. Analysis of the validation algorithm 
Theorem: The validation algorithm correctly 

indicates all possible results for any user update pol- 
icy, and the underlying state necessary for obtaining 
each result. 
This theorem is proved by reliance on the following 
major results [MED85]: 

l The template replacement rules that generate 
OP( (t ]i,Ri,exception) create a minimal set of under- 
lying updates that perform the underlying operation 
Op over relation pi, while maintaining the relation’s 
consistency. 

l Each result row of the qv/chase process describes a 
possible effect that the underlying updates may have 
on the view, and the initial database state for which 
that effect occurs. 

l Testing the q”/chase process with the inputs 
Iit “. itlkl is sufficient to describe all possible 

(1) Test the update (In,(P,A,C,W)), for the policy 
I tIn,(P,A,C),Rz,force), tIn,tP,Q,W,R 1 ,force) 1 

1.1. Inserting (P,A,C) into t-2 
Replacing the first row of the template by (P,A,C) 

results in the consequent row (PAcr); replacing the 
second row results in (PatC); replacing the third row 
results in @2AC). The initial tableau is therefore 

Part Qty Agent Co. Wt 
PI 41 WI 
P A C 
P A Cl 
P a1 C 

A C 
Joining RI’; R2 causes the rows to be merged and 
requires @I = P), for joining the first row to the three 
subsequent rows; and @2=p1), for joining the first 
and the last rows. This information is stored in the 
execution condition table to show that the join will 
take place only if tuples satisfying these conditions 
exist in r-1. Chasing the functional dependency over 
the modified tableau rows changes variables (qi,wi) 
to parametric values, since the key (Part) is 
parametric. Finally, applying the view projection on 
(Part.Agent,Co.,Wt) yields the rows ((PACWI), 
(PatCWt), (PAciWt), @tACwi)]. 
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This result, in conjunction with the associated 
database state description, indicates that forced inser- 
tion of (P,A,C) into t-2 might have the side-effect of 
adding other tuples to the view. For example, if 
@‘AC) = (Tire,Smith,FIAT), then tuple 
(Tire,Smith,FIAT,Skg) is inserted in the view if 
(Tire,lO,Skg) is in rt and (Tire,Smith,FIAT) is not 
already in r2. Tuple (Tire,Smith,VW,Skg) will also 
appear if (Tire,lO,Skg) is in r 1 and t-2 already con- 
tains (Tire,Jones,VW) and (Window,Smith,VW). 
1.2. Inserting (P,Q,W) into r t 
The result row is (Pa~c~W),[(PatctW’)]). The asso- 

ciated conditions are interpreted as follows: if, for 
instance, (P,Q,W) = (Tire,20,10kg), and tuple 
(Tire,l5,8kg) already exists in the relation, then all 
agents and companies associated with (Tire, 8kg) in 
the view will become associated with (Tire, 10kg). If 
the part (Tire) does not exist in rt, and 
(Tire,Jones,VW) exists in t-2, then the tuple 
(Tire,Jones,VW,lOkg) is inserted into the view. 
1.3. Analysis of the two previous output stages shows 

that the specified tuple U’ACW) = 
(Tire,Smith,FIAT,lOkg) is inserted in the view, 
although others may be inserted as well. Therefore, if 
these side effects are not desired, the view should not 
support this type of insertion. 

(2) Test the update (De,(P,A,C,W)), for the policy 
I(del,(P,A,C),R2,cond), (del,(P,Q,w),R I,force)j. 

2.1. Isolated deletion of (P,Q,w) is transformed into 
deletion of (P,Q,Wt) because of the dependency 
Part+(Qty,Wt). The result is that if Q is, in fact, the 
quantity value for part P, all tuples of the form 
(PUICI WI) will be deleted, where P-+WI. For exam- 
ple, if (P,Q,W) = (Wheel,l5,30kg), then all view 
tuples containing (Wheel,*,*,30kg) will be deleted. If 
Q is not the quantity stored for P, nothing will be 
deleted from the view as a result of a deletion in RI. 
2.2. Deleting (P,A,C) from r’z creates the substituted 

template 
Part Agent Co. 

P A c2 

P a2 C 
P3 A C 
P A C 

This deletion cannot always be performed, since no 
hypothesis row is automatically deleted as well. 
Being a conditional update, it can only be executed if 
V pwz,c& ( (PAc2) +? r2 V (Pa2C) P r2 V (p3AC) 
6! rz). If this condition is met, (PACWt) is deleted 
from the view. For instance, if (P,A,C) = 
(Wheel,Black,FIAT), and if the relation contains the 
tuples (Wheel,Black,BMW), (Wheel,Brown,FIAT) 
and (Clutch,Black,FIAT), then (Wheel,Black,FIAT) 
cannot be deleted. 
2.3. Analysis of these output stages shows that not 

only might the tuple not be deletable (due to the 

execution conditions for the updates), but if it were 
deleted, others might also disappear from the view. 

7. Conclusions 

This paper presents an algorithmic approach to 
validating updates through views at design time, 
showing how the effects of arbitrary update policies 
can be systematically derived in an error-free way. 
For a particular update request in a view, the 
system’s translation rules can be applied to produce 
the update transformation from which the algorithm 
will generate not only the set of conditions under 
which the update will take place, but also the set of 
all possible side effects that might result from such an 
update. 

The framework supported by the algorithm 
allows it to generalize and encompass the results of 
other validation tools, when applied to the limited set 
of problems they were designed to handle. For exam- 
ple, as shown by Medeiros [MED85], policies essen- 
tially equivalent to those of Furtado et al. [FUR791 
(using a hierarchical view model), Dayal and Bern- 
stein [DAY821 (employing trace graphs) or Keller 
[KEL85] (using the structural model for defining 
views created on BCNF relations), are all expressible 
in this framework. 

The algorithm is also capable of handling poli- 
cies which have so far been explicitly disallowed or 
not even considered. This helps in the formulation of 
new design policies and also enlarges the set of views 
which can be updated, including many which, in gen- 
eral, have been considered to be query-only views 
(e.g., allowing reference to sets of attributes not visi- 
ble in the external schema, as well as modification of 
such attributes). 

Rather than restricting the designer to a system- 
wide update translation, this approach can be used to 
document and validate an appropriate policy (or even 
a set of policies) for each view. For example, it 
extends the concept of operational views as proposed 
by Spyratos [SPY82], and can be applied to views 
implemented as abstract data types as proposed by 
Tucherman et al. [TUC83], validating the transla- 
tions which are part of the view definition. For such 
cases, the designer can compare the outcomes of dif- 
ferent policies, and choose to implement the policies 
where side effects are less likely to occur. 

Finally, with very simple extensions, the algo- 
rithm can also be used for detecting the effects of 
view interference (instead of (R, qv, uv), the input 
used is ( (R,{qv lj,nv)), involving repeated executions 
of the qv/chase process for each view generated by 
{qvjj), checking the invariance of view complements 
[BAN811 (instead of qv, the input uses qvc, the func- 
tion that defines the complementary view), and 
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validating sequences of update operations (transac- 
tions), since they are composed of single insertions, 
deletions and changes. The results presented can be 
extended to monotonic view generating functions 
other than those exclusively composed of projections, 
selections and joins (by including the effects of other 
operators after creation of the underlying modification 
table using 0~ ({ t ) i ,Ri ,exception)). 
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