
ARIEL -- A Semantic Front-End to Relational DBMSs

Robert M. lMac Gregor

System Development Corp., Santa Monica, CA 90406

This paper introduces the query language ARIEL,a
language which retains the formal precision of relational
languages such as SQL and QUEL, while exploiting thegreater
expressiveness of a semantic data model. ARIEL bus been
implemented as a front-end query language to several
relational database systems, including to a front-end
distributed DBMS being developed at SDC.

The most noteworthy elements of ARIEL are (1) a flexible
syntax for expressing subqueries, (2) a convenient way to express
“outer-joins” within a non-procedural framework (without the
use of”‘null values’?, (3j a comprehensive set of rules for
defining the semantics of “reference chains”, (4Ja
‘light-weight” view mechanism, and (5) a clean semantics for
expressing aggregate functions, especially in combination with
the ‘group by”operator.

0. Introduction

ARIEL (A RetrIEval Language) is a calculus-based query
language based on a semantic data model. The fundamental
structure of ARIEL borrows heavily both from the relational
query languages SQL [Date81, Chamberlin761, and QUEL
[Stonebraker76, Ingres’lO] (familiarity with one or both of
these languages is assumed in this paper). ARIEL was
designed with the intent of allowing queries to be expressed
more simply and clearly than is possible in relational
languages such as SQL or QUEL. It seeks to achieve this end
by (1) exploiting the possibilities of a semantic data model,
and (2) increasing the clarity and orthogonality of some of the
constructs which already exist in these other two languages
(see 1Date841).

Permission to copy without fee all or part of this material is
granted provided that the copies are not, made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to rrpubliih, requires a fee and/or special permis-
sion from the Endowment.

ARIEL invites comparison with two other semantic
model-based query languages -- DAPLEX [ShipmanSl, Fox841
and GEM [Zaniolo83, Tsur841. ARIEL is a non-procedural
language, while DAPLEX is procedural -- thus, even though
both languages are based on similar semantic models, they
differ in their underlying approach. GEM, being firmly based
on QUEL, can readily be compared with ARIEL. The
philosophical basis of these two languages is different,
however. GEM’s designer deliberately avoided straying too far
from the relational model, and as a result did not exploit
constructs such as “set-valued attributes” to the fullest degree
possible. ARIEL, on the other hand, is fully-committed to a
semantic model base, and tries to exploit the possibilities
stemming from the additional semantics as much-as possible.
Both GEM and ARIEL have been implemented to interface
with relational database systems.

A translator is operational which translates ARIEL
statements into QUEL (for an RTI Ingres DBMS), IDL (for a
Britton-Lee IDM-500), SQL (for a Mistress DBMS), or DIL -- a
language recognized by SDC’s Mermaid system [TEMP83]
(Mermaid provides the capability for distributed data
management, acting as a front-end to multiple DBMS’s
connected via a network). Translating ARIEL into DIL is
particularly challenging, since the DIL syntax does not permit
subqueries, and hence a nested ARIEL query must be
converted into a sequence of”flat” DIL queries.

The schema which we will use as a basis for our semantic
model-based queries is illustrated in Appendix A. The model
we are using is referred to as the- “navigation” model.
Structurally it is fairly similar to DAPLEX [Shipman81], but
our choice of terminology is somewhat different. Readers
familiar with semantic n&works or semantic data models are
likely to find the schema self-explanatory. Appendix B
illustrates an “equivalent” schema phrased using relational
model terminology. This schema will be referenced by queries
which illustrate relational semantics.

The remaining sections of this paper treat the following
topics: Section 1 presents the basic structure of ARIEL without
going into any depth. Section 2 is primarily occupied with
introducing ARIEL’s “outer-join” construct. Section 3 defines
the semantics of ARIEL’s “reference chains”. Section 4
introduces the define statement. Section 5 discusses aggregate
functions in ARIEL, and Section 6 examines the semantics of
ARIEL’s group by clause. Section 7 briefly touches on several
issues relating to the implementation of an ARIEL translator
as a front-end to a relational DBMS. Finally, Section8
contains some concluding remarks.

Proceedings of VLDB 85, Stockholm 305

I. The ARIELQUERY LANGUAGE

This section introduces the basic elements of the ARIEL
query language, along with some terminology, and includes
brief illustrations of some of its non-standard operators.

ARIEL’s basic structure is fairly standard. The major
structural unit is the query block, which consistsofa
turgt ‘ist, which speciIies the columns to be output by that
block, and three optional clauses: a group-by clause,a
qnali/&~ion (where clause), and an order-by clause. Below is
the ARIEL formulation of the query “Retrieve namesof
employees whose age is greater than 50, sorted by their ages.”

retrieve Name of Employee
where Age > 50
order by Age

Example 1.1

(Note: ARIEL supports the traditional “dot” notation (e.g.,
“Employee.Name”), but prefers an “of’ notation in which the
order of references is reversed). “Employee” in the above query
is termed an iteration variable (sometimes called a “query
variable”). Each iteration variable is hound to a Class over
which we “iterate”. The phrases “Name of Employee” and
“Age” are termed column references.

The wildcard specification all, attached to an iteration
variable, expands into a list of all Roles of the corresponding
Class which (1) are SubComponents, and (2) are
single-valued If an iteration variable appears in a &-gel list
without a Role attached. a default Role is intended. The
default Role of the Class E’mployee is the Role “Name” -- hence,
the query “retrieve Employee” expands to “retrieve Kameof
Employee”. An isolated iteration variable residing in other
than a target list evaluates to a Role which serves as a “key”
for instances of the corresponding Class. (Instances of this
situation are illustrated further on).

ARIEL supports a test for equality of “enumerated” values
using the operator is. The left-hand argument to is must
reference a Role, while the right-hand argumentisan
enumerated value. For example:

retrieve Kame of Employee
where Sex is Female

Example 1.2

Because we have restricted enumerated values to appear only
as right-hand arguments to the is operator, the Datatype for
each value can be determined simply by inspecting the
corresponding left-hand operand. As a consequence, the same
label can be employed in more than one enumerated Datatype,
and can also be used as a Role Name, without causing any
ambiguities.

The is operator can also be used to specify subclass
restrictions, In this case the left-hand argument is an iteration
variable, and the right-hand argument is the nameofa
(sub)Class, e.g.,

retrieve Name of Dept
where Dept is ManufacturingDept or

Dept is EngineeringDept

Example 1.3

ARIEL supports the quantification predicates some, all,
and no, using constructs analogous to those defined for
DAPLEX, e.g.,

retrieve Name of Dept
where

all Employee
where Deptld of Employee = Deptld of Dept
have Age < 35

Example 1.4

In general, the predicate all (or some or no) is followed by a
list of iteration variables. The where clause belonging to the
all predicate is optional (and unnecessary for the some and no
predicates). We prefer these calculus-style predicates to
algebraic operators and predicates such as set-difference and
set-containment (contains), although contains is useful
enough that it may be added at a later date. Explicit
spec&ation of “join” predicates, as illustrated in Example I .5,
is seldom necessarv in ARIEL. The “reference chain” construct
defined in Section 1.3 will provide the following more
attractive equivalent to the preceding query:

retrieve Name of Dept
where all Employees of Dept have Age < 35

Example 1.5

2. Subqueries and Outer Joins

A subquery in ARIEL introduces a new scope inside of an
ARIEL query, analogous to a nested select-from-where block
in SQL. ARIEL subqueries appear in several forms. Ifan
ARIEL expression is qualified by a where clause, and if the
expression and its qualification are surrounded by
parentheses, then the parenthesized expression represents a
subquery. Secondly, expressions quantified by all, some, or
no represent subqueries. Thirdly, the argument to an in
operator (set membership) is always a subquery. Subqueries
also appear as arguments to aggregates, and within “reference
chains”. Within the scope of the subquery of Example 2.1
below, “OtherEmp” names a local uariabk, “Employee” names
an external variable. and “Salarv of Emplovee” is an e.rlrrnal
column reference (the define statement is discussed in section
4). The query is “Retrieve names of employees whose salary is
the same as that of some other employee”:

define OtherEmp is Employee
retrieve Name of Employee

where some OtherEmp
has Salary = Salary of Employee

Example 2.1

Novel semantics result when a subquery appears within
the target list of query. A property commonly attributed to
subqueries is that they have no side-effects. A useful
application of this property is illustrated in the following

306

example (assume “OtherEmp” is defined as before). The query
is “Retrieve the name of each employee, together with a listof
names of all employees having the same salary”:

retrieve Name of Employee,
Other : = (Name of OtherEmp where

Salary of OtherEmp = Salary of Empl

Example 2.2

The first column of the result of this query contains the
“Name” of each instance of “Employee”. Associated with each
“Employee” instance, in the second column, will appear zero,
one, or several “Names” of those instances of “OtherEmp”
which join successfully with the “Employee” instance. ARIEL
adopts a hierarchic format to print the value of columns which
evaluate to a set of values. Hence, a portion of the result looks
like

Name

Newton

Gauss
Euclid

Other

Euclid
Hilbert
Leibnitz

Newton
Hilbert
Leibnitz

Example 2.3

We observe that the join over the “Salary” columnsof
“Employee” and “OtherEmp” is actually an “asymmetric
outer-join” [Date831. Hence, placing subqueries in the target
list results in a natural way to define (asymmetric) outer-joins.
The expressive capability of this construct is equivalent to
what can be expressed using the “nested” loops” construct
commonly found in procedural query languages. A nested
loops-style query (omitting formatting specifications) would
look something like:

foreach Employee do
begin
printf Name of Employee);
foreach OtherEmp is Employee do

if (Salary of OtherEmp = Salary of Employee)
then print(Name of OtherEmpl;

end:

Example 2.4

The ARIEL query is noticeably more concise than the
procedural version. In terms of ease of expression, ARIEL’s
outer-ioin construct also compares favorablv with the
outer-join constructs suggested by Chamberlin 1801 and Date
[83]. We consider it advantageous that ARlEL’s outer-join
construct does not require an understanding of null values. We
note that, unlike these two latter outer-join proposals, ARIEL
cannot express a symmetric outer-join. This could be remedied
by adding a set-union operator to the ARIEL language.

We pause here to note an important aspect of our subquery
construct which has a bearing on the semantics we assign to
“reference chains” (the subject of the next section). Suppose we
remove the parentheses from the query in Example 2.2. The
result is

retrieve Name of Employee, Name of OtherEmp
where Salary of OtherEmp = Salary of Emp

Example 2.5

Removing the parentheses has caused the subquery to
evaporate, and the interpretation here is that the join is in fact
an “equi-join”. The query’s meaning is “Retrieve names of all
pairs of employees who have the same salary”.

3. Reference Chains

ARIEL’s most visible departure from relational query
languages is its “reference chain” construct. A reference chain,
written “Rk of Rk-1 of of RI” (equivalently, written “Rl.RZ

RK” using “dot notation”), consists of a sequence of one or
more references “Ri”. In the simplest case, “Rl”is the name of a
Class, while R2 through Rk are the names of Roles which
designate a directed path in the navigation model whose origin
is the Class vertex to which Rl is bound. Here is an example
query using reference chains “For each department whose
department head has age greater than 50, print the
department name and the name of that department head”:

retrieve Name of Dept, Name of DeptHead of Dept
where Age of DeptHead > 50

Example 3.la

The reference “DeptHead” in the middle of the reference chain
“Name of DeptHead of Dept” names a Role of the Class “Dept”
This Role has Type Employee; hence “Name of DeptHead” and
“Age of DeptHead” refer to Roles of Employee. Here is an
equivalent query using relational semantics:

define HeadOfDept is Employee
retrieve Name of Dept, Name of HeadOfDept

where Age of HeadOfDept > 50 and
DeptHead of Dept = EmpId of HeadOfDept

Example 3.1 b

The presence of the relational join in Example 3.lb is implied
in Example 3.Ia by the use of the Role “DeptHead”. Also, note
in Example 3.la that the references to “DeptHead” in the
chains “Age of DeptHead” and “Name of De$tHead of Dept”
both refer to the same “variable”. We will now examine the
semantics of ARIEL’s reference chains

As a default, a reference is interpreted to have the same
meaning everywhere within its scope (references in ARIEL
follow block-structured scoping rules similar to those in SQL).
For example, suppose a reference chain ” B of C” appears in
the same block as (or in an outer block ofl a reference chain”A
of B”. Then the “B” in “A of B” is interpreted to be equivalent
to the “B” in “B of C”, implying that “A of B” is really an
abbreviation for “A of B of C”. Using this rule we find that the
following two queries are equivalent to the query of Example
3.1:

retrieve Name of Dept, Name of DeptHead of Dept
where Age of DeptHead of Dept > 50

307

retrieve Name of Dept, Name of DeptHead
where Age of DeptHead of Dept > 50

Example 3.lc

Sometimes the syntax makes it clear that two references
with the same name refer to separate entities. For example, if
reference chains “Name of Dept” and “Name of Employee”
occur in the same block, the two references named “Name” are
not equivalent. In some cases, the context of a reference causes
its meaning to be ambiguous; the following query is illegal
because the chain “Name of DeptHead” could mean either
“Name of DeptHead of Dept” or “Name of DeptHeadof
otherDept”: “Retrieve names of persons who head more than
one department”

define otherDept is Dept
retrieve unique Name of DeptHead

where DeptHead of Dept = DeptHead of otherDept

Example 3.2 (illegal)

References which are bound directly to Classes, such as the
references “Dept” and “otherDept” in Example 3.2, are called
unqclalified. On the other hand, both references to “DeptHead”
in Example 3.la are said to be qualified, because their
meaning depends upon their interpretation as a Role of some
other reference (in this case “Dept”). A reference whose Type
is an Entity-Class names a uaridble. In Example 3.la, Debt-is
a variable ranging over the Class Dept, while DeptHead is a
variable ranging over the Class Employee.

Thus far we have illustrated examples of qualified
variables which are explicitly qualified: a variable R is
explicitly qualified if R appears within at least one reference
chain of the form ‘I(,.. of) R of S (of .,,)“, i.e., in a chain where R
is not the right-most reference Variables can also be
implicitly qualified. For example, in the query “Retrieve
names of departments whose department heads are named
‘Irving”‘:

retrieve Name of Dept
where Name of DeptHead = “Irving”

Example 3.3

the ARIEL translator determines that “DeptHead” is a valid
Role of the Class “Dept”, so it automatically expands “Name of
DeptHead” to “Name of DeptHead of Dept”.

We now take a closer look at the problem of determining
the Class to which a variable in an ARIEL query is bound.
Suppose the reference chain “Name of Employees” occurs
within a query. In order to determine the Class associated
with the reference “Emolovees”. the ARIEL translator ftrst
determines whether or not “kmplbyees” is within the scope of a
chain such as ‘I... Employees of Dept.” which explicitly quaiifies
it. If this is not the case, the translator next lboks for-another
variable bound to a Class such as Dent to which “Emolovees”
can be qualified implicitly. If both ofthese conditions’faii, the
translator checks to see if “Employees” is the name of a Class
(or is a define image -- see section 4). Summarizing, the rules
used to bind a variable Rare:

(1) Determine if R is explicitly qualified.
(2) If (1) fails, see if R is implicitly qualified.
(3) If (1) and (2) fail, see if R is the name of a Class (or image)

Some examples will help to motivate this choice of rules.
Consider the folIowing query “Retrieve names of department
heads whose names start with ‘S’:

retrieve Name of DeptHead of Dept
where Name = IS*’

Example 3.4

Although the reference “Name” in the qualification binds
implicitly both to “DeptHead” and “Dept”, there is no
ambiguity because Rule (1) supercedes Rule (2), binding
“Name” to “DeptHead”. Next, consider the query

retrieve Employee, Dept of Employee, DeptHead of Dept

Example 3.5

Because Rule (1) supercedes Rule (3), “DeptHead of Dept” is
equivalent to “DeptHead of Dept of Employee”, i.e., both
references to “Dept” refer to the same variable. Applying Rule
(3) rather than Rule (1) would have created two separate
variables named “Dept”, resulting in a Cartesian product.

When nested query blocks are involved, the first three
rules are governed by an additional rule. Consider the query
“Retrieve names of departments having more than one
employee named Irving”:

retrieve Name of Dept
where count(Employees where Name = ‘Irving’) > I

Example 3.6

We consider it desirable that the reference “Name” in the
predicate “Name = ‘Irving”’ bind (implicitly) to “Employees”
rather than (explicity) to “Dept”. Hence we add

(2.5) Apply Rules (1) and (2) to each query block before
considering the next outer query block.
all levels, try Rule (3).

If they fail to apply at

As an example of how Rule (2.5) limits the application of Rule
(31, suppose that “Employees” was the name of a Class as well
as a Role of the Class Dept. Rule (2.5) is phrased so that the
reference “Employees” in Example 3.6 would still be bound to
(implicitly qualified by) “Dept”, rather than being defined as
unqualified.

Allowing variables to be qualified implicitly opens the door
to some subtleties which will almost surely escape the casual
user. Consider the classic query “For each employee who earns
more than their manager, print the employee’s name and the
manager’s name”:

retrieve Name of Employee, Name of Manager
where Salary of Employee > Salary of Manager

Example 3.7

Rule (2) expands “Name of Manager” to “Name of Manager of
Employee”. A second application of Rule (2) faces a problem:
“Salary of Manager” can expand to “Salary of Manager of
Employee” or “Salary of Manager of Manager of Employee”.
We are saved from an ambiguous interpretation by recalling
the default rule that a reference is interpreted to have the
Jame meaning everywhere, which in this case implies that the

308

two occurences of the variable “Manager” should have
identical qualifications. In general, allowing variables to be
implicitly qualified adds a bit of user-friendliness, but
increases the possibility that a query will be ambiguous.
Because of this, allowing an ARIEL query to contain implicitly
qualified variables is an option which can be disabled if the
user so wishes. In some cases, the specification of a Cartesian
product can happen only if implicit qualification is turned off.
For example, ARIEL implicitly links the Classes Employee
and Dept in the ARIE L query “retrieve Employee, Dept”.

For each qualified variable in a reference chain there
corresponds a join predicate relating that variable to the one
that qualifies it. Depending on the context of the qualified
variable, that join is interpreted either as an outer-join or an
equi-join. Qualified variables which only appear in a target
list are linked by outer-joins. For example, the query “For
each department, print its name and the names of any of its
employees”:

retrieve Name of Dept, Name of Employees of Dept

Example 3.8a

is equivalent to the relational query

retrieve Name of Dept,
(Name of Employee where DeptId of Employee = Dept)

Example 3.86

(the semantics of a subquery which appears in a target list is
described in Section 2).

Qualified variables which appear anywhere other than a
target list are linked by equi-joins. Consider the query
“Foreach department having at least one employee over age
50, print its‘ name, and the names of any employees over age
50”:

retrieve Name of Dept, Name of Employees of Dept
where Age of Employees > 50

Example 3.9a

The variable “Employees” occurs in both the target list and the
qualification. Hence it is linked by an equi-join. An
equivalent relational query would be

retrieve Name of Dept, Name of Employee
where DeptId of Employee = Dept and

Age of Employee > 50

Example 3.9b

If a user wanted to preserve outer-join semantics, resulting in
the query “Foreach department, print its name and the names
of any department employees over age 50”, s/he could write

retrieve Name of Dept,
(Name of Employees of Dept

where Age of Employees > 50)

Example 3.9c

We note that in this example it is the subquery semantics,
rather than the reference-chain semantics, which implies an
outer-join.

Implementation Note: The ARIEL translator utilizes a
post-processor to compute outer-joins, since none of the
back-end DBMSs it translates to support an outer-join. The
translator recognizes cases where an outer-join implied by a
reference chain can be replaced by an equi-join without
altering the meaning of the query. For example, the link for
“DeptHead of Dept” can be represented by an equi-join rather
than an outer-join if the navigation schema indicates that the
Role DeptHead cannot have a null value.

4. Define Statements and Images

The basic define statement represents a fusion of the
QUEL “range” statement with a view definition construct. An
example of a define is:

define TopEmployee is
Employee where Salary > 50000

Example 4.1

“TopEmployee” represents the set of instances of employees
whose salary exceeds 50000. In subsequent queries,
“TopEmployee” can appear anywhere that “Employee” can.
We refer to “TopEmployee” as an image. An image functions
semantically exactly like a view, except that it exists only for
the lifetime of a user session. Permanent images, which we
call “views”, are formed by including the keyword view:

define view TopEmployee
is Employee where Salary > 50000

Example 4.2

Using the keyword snapshot causes a snapshot of the image to
be created:

define snapshot TopEmployee is
Employee where Salary > 50000

Example 4.3

The snapshot creates a new table in the database containing
an evaluation of the image “TopEmployee”. Snapshots are
automatically deleted at the end of a user session.

It is intended that ordinary define statements be used
liberally, as QUEL range statements are, rather than frugally,
as views usuallv are. This is oractical because an ARIEL
image does noi carry the ad-ministrative overhead that
accompanies a view definition. Define statements can be
nested, e.g.

define TopSalesman is
(TopEmployee where

Name of Dept of TopEmployee = “Sales”)

Example 4.4

This “successive refinement” of image definitions can be used
to facilitate browsing -- a user can define on-the-fly a collection
of images which describe various useful subsets ofdata.

309

The semantic network underlying ARIEL introduces some
aspects in the definition of images which are not applicable to a
relational data model. Notice that in the target list of Example
4.1, “Employee” is used without naming a Role link. Used in
this way within the target list of an ordinary ARIEL query,
“Employee” would be interpreted as “Name of Employee”
(some Role in each Class supplies the default value for this
construct). This is not an acceptable interpretation withina
define statement. since that would imDlv that “TouEmDlovee”
has only the single Role “Name”. Inste’ad, **Employ’ee’* 6y itself
in the target list of a define statement is interpreted to include
both its SubComponent and Navigation Roles. (Notice the
reference chain “Name of Dept of TopEmployee” in Example
4.4). We also note that if “TopEmployee” has instead been
defined as

define TopEmployee is
Employee.all where Salary > 50000

Example 4.5

such a reference chain would be illegal, since an all qualifier
expands only the SubComponent Roles of a Class.

An image definition whose target list consists of a single
Class name (such as in ExamDles 4.1 and 4.4) definesa
subclass of that Class. The usuai rules of inheritance apply.
ARIEL’s semantic network adds an additional inheritance rule
not commonly found in other networks.

Notice that the link from “Dept” to “Employee” is named
“Employees”. In the general case when a link “l” runs from a
Class ‘F’ to a Class (also named) “r’ (or “I” suffixed with an ‘s’
when “I” is a set-valued link), each subclass ‘S’ of Class T
inherits the link “I” but the induced link is renamed ‘S’
(suffixed by ‘s’ if appropriate). In our example, the definition of
the image/Class “TopEmployee” has the side-effect of inducing
a new link named “TopEmployees” running from “Dept” to
“TopEmployee”. This means that a reference chain such as
“Salary of TopEmployees of Dept” is valid.

The effect of this rule is that new classes introduced by the
define mechanism are not necessarily isolated from the rest of
the network. Instead, navigation paths to the new class are
immediately available (whenever the conditions just described
are satisfied).

Below is an example of the construct to define (virtual)
links:

define Manager of Employee is
DeptHead of Dept of Employee

Example 4.6

This defines a new link named “Manager” emanating from the
Class “Employee”. We note that traditional view mechanisms
do not provide the ability to add new links (columns) to
existing Classes (tables). The expression following is can be a
single- or set-valued query. Again, a virtual link defined by a
define statement exists only for the lifetime of a user’s session,
unless the keyword view is included.

5. Aggregate Functions

When considering the way in which aggregate functions
are defined in QUEL and SQL, we observe that each language
has some advantages not enjoyed by the other. ARIEL’s
aggregate construct attempts to capture the advantages
present in each of these languages. Our presentation of ARIEL
aggregate functions will be accompanied by a comparison with
the paradigms adopted by these other query languages.

QUEL aggregates have four notable advantages over their
SQL counterparts: First, they are “purer” than SQL aggregates
-- the argument to a QUEL aggregate must evaluate to a set.
An SQL aggregate in some sense “coerces” the type of its
operand. In example 5.la below, “Employee.Salary” is
single-valued,

select Employee.Salary
from Employee

Example 5.1 a (SQL)

select max(Employee.Salary)
from Employee

Example 5.1 b (SQL)

while in example 5.lb it evaluates to a set. Second, QUEL
aggregates are more orthogonal [Date841 -- they can appear
anywhere in both target-list and qualification expressions,
whereas in SQL the use of aggregates in the qualification is
restricted. Third, QUEL aggregates can be nested -- SQL’s
can’t. And finally, @JEL aggregates capture an “outer-join”
semantics which is not exmessible in SQL. as exemnlified bv
the QUEL query in Example 5.2 (“Retr& the name of each
department, and a count of the number of people in it”), which
cannot be expressed in SQL with fewer than three statements
(a “select into”; a “delete”; and a “select”):

range of e is Employee
range of d is Dept
retrieve (d.Name, count(e.Name by d.Id

where e.DeptId = d.Id))

Example 5.2 (QUEL)

ARIEL captures all of the advantages noted for QUEL
aggregates by allowing aggregate functions to be wrapped
around subqueries, just as they are in QUEL. In addition,
because of its more powerful scope rules (borrowed from SQL)
ARIEL can avoid employing the by clause needed in many
QUEL queries. For example, the ARIEL equivalent of
Example 5.2 would be

retrieve Name of Dept, count Employees of Dept

Example 5.3

(Note: In ARIEL, the argument of a count aggregate omits
specification of the “final” value-link, since it has no semantic
significance, e.g., we did not write “count Name of Employee
of Dept” in Fig. 5.3).

In general, an aggregate operator can be applied to any
set-valued ARIEL expression. AN aggregate induces its

310

argument to be a subquery, with accompanying implications
regarding the scoping of variables. For example, if
“PhoneNumbers” is a set-valued attribute of “Dept”, then

retrieve Name of Dept, count PhoneNumbers

Example 5.4

is a legal ARIEL query. The expression “PhoneNumbers”is a
constant within the subquery “count PhoneNumbers”, but
because it is set-valued, applying the aggregate operator
makes perfect sense. Next, consider the query “Retrieve the
values of the maximum and minimum salaries among all
employees”:

retrieve max Salary of Employee,
min Salary of Employee

Example 5.5

Here, max and min define two subqueries, implying that the
two references to “Employee” refer to two distinct iteration
variables. However, if we qualify “Employee” in the following
manner

retrieve max Salary of Employee,
min Salary of Employee

where Name of Dept of Employee = ‘KBS’

Example 5.6 (illegal)

then “Employee” refers to a single iteration variable, bound to
the outer-most query block. This implies that both expressions
“Salary of Employee” in the two subqueries evaluate to
single-valued constants. Hence, the query of Example 5.6 is
not legal.

Before examining further aspects of ARIEL’s aggregates,
we will finish our earlier discussion by noting two advantages
which SQL’s aggregates have over QUEL’s. First, for the case
of aggregates within a qualification, SQL’s scoping avoids the
use of a by clause in the same way that it was avoided in the
target-list in the ARIEL query of Example 5.3. This is
illustrated by the following equivalent QUEL, SQL and
ARIEL queries “Retrieve names of departments having more
than 10 employees”:

range of d is Dept
range of e is Employee
retrieve d.Name

where count(e.Id by d.Id
where e.DeptId = d.Id) > 10

select Dept.Name
from Dept
where (select count(*)

from Employee
where Employee.Deptld = Dept.Id) > 10

retrieve Name of Dept
where count Employees of Dept > 10

Example 5.7

Second, for queries containing what might be termeda
“replicated qualification”, SQL can often phrase queries much
more concisely than is possible in QUEL. As an example,
consider the following equivalent SQL and QUEL queries
“Retrieve the maximum and minimum salaries among all
employees in the KBS department”:

select max(Employee.Salary), mint Employee.Salary)
from Employee, Dept
where Employee.DeptId = Dept.Id and

Dept.Name = ‘KBS’

retrieve (
max(Salary of Employee

where Name of Dept of Employee = “KBS”),
min(Salary of Employee

where Name of Dept of Employee = “KBS”))

Example 5.8a

ARIEL’s syntax for aggregates is closer to QUEL’s than SQL’s,
(Note that the illegal ARIEL query of Example 5.6 has the
same syntactic form as the above SQL query). However,
ARIEL can still achieve roughly the same degreeof
conciseness as SQL by exploiting the power of its define
statement, as illustrated by Example 5.8b:

define KBSsalary is Salary of Employee
where Name of Dept of Employee = “KBS”

retrieve max(KBSsalary), min(KBSsalary)

Example 58b

Thus, we see that by straightforward means, or by ones that
are only slightly devious, ARlEL can achieve all of the
advantages of QUEL’s aggregates, and also those advantages
enjoyed by SQL. ARIEL will lend help to users who are
confused by illegal queries such as the one in Example 5.6 --
the translator will print out a message suggesting that a
define statement be used in this case.

6. The Group-By Clause

The group by clause in an ARIEL query block allowsa
user to specify a partition over the image referenced by a local
iteration variable, in a manner similar (but not identical) to
the SQL group by. ARIEL mandates that the columns listed
in an ARIEL group by clause must all be bound to the same
variable, called the group-by variable (this restriction, as we
shall see, does not reduce ARIEL’s expressive power) An
additional restriction is that column references in a group by
list must be single-valued. A group by clause produces the
following important effect: The group by clause induces all
column references bound to the group-by variable which are
not listed in the group by clause to become set-uahci. For
example, in the query below (“For each department, print its
department ID and the names of all employees in it”) the
reference “Name of Employee” is set-valued.

retrieve DeptId, Name of Employee
group by Deptld

ErtrmplP 6 1

311

This implies that the output of the query will be hierarchic, this observation while teaching SQL in graduate-level data
e.g., management classes).

DeptId

25

32

Name

Newton
Kepler
Gauss
Hilbert
Euclid

By utilizing ARIEL’s define statement, we can construct
an ARIEL query equivalent to that in Example 6.5.

define TopEmployee is
Employee where Salary > 50000

retrieve DeptId, count TopEmployee
group by DeptId

Example 6.2 where max Salary < 100000

This further implies that we can wrap an aggregate around
any column reference bound to the group-by variable, but not
listed in the group by clause, e.g., “For each department
having more than 10 employees, print its department ID and
the names of all employees in it”:

Example 6.6

retrieve DeptId, Name of Employee
group by DeptId
where count Employee > 10

This trick always works -- for any SQL query which includes
both where and having clauses, an equivalent ARIE L query
is constructed by moving the contents of the SQL where clause
into an ARIEL define statement, and then placing the
contents of the SQL having clause into an ARIEL where
clause. By use of this device, we can insure that column
references are uniformly single- or set-valued across an ARIEL
statement.

Example 6.3

However, a third implication is that these latter column
references cannot be used as arguments to operators which
require single-valued arguments, e.g., in the query below,
“Salary”, as a set-valued variable, is incompatible with the ‘>’
operator.

The second source of difficulty users have with the SQL
group by is that they find it difficult to visualize the conceot of - _
a “partition over a restricted cross-product of relations”.
ARIEL’s group by semantics require that a user place the
restricted cross-product definition in a define statement, and
then give it a name. This creates a new semantic entity over
which grouping seems relatively straight-forward.

retrieve DeptId, count Employee
group by DeptId
where (Salary > 50000) and (max Salary < 100000)

Example 6.4 (illegal)

Furthermore, the presence of a group by clause precludes the
participation of the group-by variable in any join conditions,
except where the join column is a member of the group by list.

These difficulties are presumably what led the designers of
SQL to split the SQL qualification into two parts, the where
clause and the having clause. This allows one to write (in
SQL):

select DeptId, count Employee.Id
from Employee
where Salary > 50000
group by DeptId
having max(Salary) < 100000

Example 6.5 CSQLJ

(the query is “For each department for which at least one
employee salary exceeds 50000, and for which all employees
have salaries under 100000, print its department ID and the
number of employees in it with salaries over 50000”). Within
the SQL query of Example 6.5, the column reference “Salary”
is interpreted as single-valued when it appears within the
where clause, and as set-valued when it appears in the
having clause, We suspect that this lack of uniformity is one of
the reasons why SQL’s group by and having clauses are
relatively difficult for people to comprehend (the author made

A final note on the group by: The existence of set-valued
links in ARIEL largely does away with the need for a group
by clause. The clause exists only to provide a reasonable way
to group on non-key attributes (grouping on non-key attributes
can be accomplished by adding extra variables and joining
them on these attributes. This is an awkward solution which
we don’t recommend).

7. Notes on the Implementation of ARIEL

What we have referred to here as “the ARIEL, translator”
is actually a more general translator which can translate any
one of three languages (ARIEL, SQL, or DIL) into any one of
four language&SQL, QUEL, IDL, and DIL). This translator is
utilized in multiple places within a heterogeneous distributed
DBMS front-end being developed at SDC.

To translate ARIEL queries, the translator utilizes a pair
of internal schemas -- one defining the semantic model seen by
the user, and one mirroring the (relational) schema of the
target DBMS. A set of mapping tables guides the translation
across schemas. For example, a table maps each entity-valued
Role onto an equivalent join predicate.

DIL -- the relational language utilized by the Mermaid
Distributed Query Optimizer [Templeton831, cannot express
“nested” subqueries. Hence, ARIEL queries containing nested
subqueries are “flattened” before being translated into DIL.
For example, the query “Retrieve names of departments
having no employees”:

retrieve name of Dept
where count(Employees of Dept) = 0

Example 7.1 a

is translated into a sequence of three actions:

retrieve DeptId, Name of Dept into Temp

delete Temp
where DeptId of Temp = DeptId of Employee

retrieve Name of Temp

Example 7.1 b

This exemplifies one three different transformations which the
translator employs to process aggregated subqueries. The most
general of them is a variation on Epstein’s algorithm for
evaluation aggregates in QUEL IEpstein791. We should
mention that the flattening strategies described in [Kim821
are not suitable for our present application. Some of Kim’s
transformations employ an “anti-join” operator which is not
supported in current relational query languages. Also, his
transformation for handling aggregates cannot handle the case
“countt...) = 0”.

Data retrieved by the translator may be processed by a
Post Processor module which has the capability to compute
outer-joins, We have deliberately avoided null-value based
strategies for computing outer-joins, such as the one described
in [Tsur84], because we wish to avoid the necessity for
modifying the original schema and data of the underlying
database.

8. Conclusion

The ARIEL language introduces several innovations in the
area of formal query languages. The semantic constructs,
especially reference chains, result in queries which are much
more English-like than their relational-query counterparts.
We note that, although ARIEL is based on a semantic data
model, many of its constructs (e.g., outer-join semantics, define
statement, aggregate and group-by semantics) could be
utilized in a strictly-relational query language.

The ARIEL translator demonstrates the feasibility of
installing a semantic-model based front-end to unmodified
relational databases. We anticipate that the presence of links,
as embodied in reference chains, and of set-valued attributes
will greatly facilitate planned future efforts to interface
ARIEL to network or hierarchic databases.

Acknowledgement: I would like to thank Margaret
Reid-Miller, who helped to clarify and simplify the semantics
of ARIEL’s reference chains. I also benefitted from numerous
discussions with Dan Kogan, Marjorie Templeton, and Iris
Kameny on various aspects of the ARIEL language. Finally, I
wish to thank Stephen Russell, who typeset the final version of
this paper.

REFERENCES

[Chamberlin761
Chamberlin, D.D., et al., SEQUEL 2: A Unified Approach lo Data
Definition, Manipulation, and Control IBM J. Res. Develop., 20.6.
November, 1976 (pp. 560-574).

[ChamberlinE
Chamberiin, D.D.. A Summary of User Experience with the SQL Data
Svbhnguage, Proc. Int’l Conf. on Data Bases. Aberdeen, Scotland.
:u&l986. Also IBM Research Report RJ2767, San Jose, CA. April

IChen761
Chen, P.P., The Entity-Relationshcp Model--Toward a Unifid View
ofDada, ACM Trans. Database Syst., 1.1, March 1976 Ipp. 9-36).

[Date811
Date, C. J., An Introduction to Database Systems, Vol. I (Third
Edition). Addison-Wesley, 1981.

-

IDate
Date, C. J. An Introduction to Database Systems, Vol. II,
Addison-Wesley, 1983.

(Date841
Date, C. J., Some Principles of Good Language Design, ACM
SICMDD Record. 14.3. Nov., 1984.

[Fox841
Fox, S., et. al., DAPLEX User’s Manual. Computer Corporationof
America, Cambridge. Massachusetts, 1984.

IEpstein
Epstein, Robert, Techniques for Processing of Aggregates in
Relational Database Systems, Electronics Research Lab Report No.
UCBIERL-M79/8, University ofcalif., Berkeley, CA, February 1979.

Vngres791
Woodfill, J.. K.. et al.. INGRES Version 62 Reference Manual,
Electronics Research Lab Report No. lJCB/ERL-M78/43 University
ofcalif.. Berkeley. CA, 1979.

IKim 821
Kim, Won, On Optrmirlng OR SQL-like Nested Query, ACM Trans.
Database Syst., 7.3, September 1982 (pp. 443.46).

IShipmanBll
Shipman, D.W., The Functional Model and the Dab Language
DAPLEX. ACM Trans. Database Syst.. 6.1. March 1981 (pp.
140.1731.

IStonebraker761
Stonebraker. M., E. Wang. and P. Kreps, The Design and
Implementation of INGRES. ACM Trans. Database Syst.. 1.3,
September 1976lpp. 189.222).

[Templeton831
Templeton, M. et al. An overwew of the Mermord System --A
Frontend to Heterogeneous Databases, Proc. IEEE EASCON Conf.,
Washington. D.C.. September. 1983.

ITsur841
Tsur. S.. and C. Zaniolo. An Implement&on ofGem -- SupportingA
Semantic Doto Model on a Relatrontll Each-End Proc.
ACMiSIGMOD Conf.. SICMOD Record 14.2, June, 1984.

IZaniolo831
Zamolo, C.. The Datnhose Language GEM, Proc. ACMiSIGMOD
Conf.. SICMOD Record l&4, May, 1983.

313

Appendix A: Navigation Model Schema Appendix B: Relational Model Schema

The schema shown below is expressed in terms defined by a
simplified version of a model of our own devising, termed the
“navigation” model. The discussion following the schema is
included primarily as a means of acquainting the reader with
our choice of terminology.

The schema shown below is expressed using relational model
terminology. It can be considered a relational “realization” of
the Employee and Dept Classes defined in the navigation
model schema of Appendix A.

class Employee
roles

Name : s32 default,
Age : i2,
Sex : Sex,
Salary : i2,
Dept: Dept

class Dept
roles

Name
Division
DeptHead

: s20 default,
: s20,
: Employee,

Employees : set of Employee,
PhoneNumbers : set of d7

class ManufacturingDept
superclasses Dept

class EngineeringDept
superclasses Dept
roles

TechnicalMgr : Employee;

datatype Sex enum (Male, Female 1;

The definitions define four “Classes”: Employee, Dept,
ManufacturingDept, and EngineeringDept, and one
“Datatype”: Sex. A Class is defined by listing its
“SuperClasses” and “Roles”. Each Class defined above hasa
single Superclass (Employee and Dept Superclasses default to
the root Class).

A Role is defined by its “Name”, “Type”, and an optional
list of other “facets”. Roles listed have as their Tvoe either a
system-defined “Datatype” (e.g., d4, ~32, i2), a ;ser-defined
Datatype (Sex), or a Class. The Type “set of d7” is filled by a
set containing zero or more instances of 7-digit integers.

relation Employee
attributes

EmpId : d4,
Name : ~32,
Age : i2,
Sex :cl,
Salary ’
DeptId ;;‘$

relation Dept
attributes

DeptId : d4.
Name : s20,
Division : s20,
DeptHead : d4

relation DeptPhoneNos
attributes

DeptId : d4,
Number : d7

314

Appendix C: ARIEL Grammar

In the grammar below, the symbols (, },[,I ,* ,I , and :: = are
metasymbols. Symbols enclosed in single quotes denote
themselves. (...} denotes a mandatory syntactic element, [...I
denotes an optional element, and {...}* denotes zero or more
occurrences of an element. ARIEL’s grammar is relatively
small because typing rules are enforced by semantic rather
than syntactic means.

program :: = {action 1 transaction }*

transaction :: = begin (action I* end

action :: =
I

queryAction 1 defineAction
dmlAction 1 ddlAction

queryAction :: = { retrieve 1 print 1 append}
queryExpr

queryExpr :: = targetList {clause }*

targetList :: = [intoclause 1 [unique]
I targetItem { , targetftem }*

targetftem :: = [identifier : =] arithPrim

intoclause :: = { into 1 to } table

clause :: =

I

where boolExpr 1 unique 1 intoclause
[group I by column { , column }*
order by orderkern {, order-Item }*

orderltem :: = column [asc 1 desc 1

boolExpr :: =
I

boolExpr {or and } boolExpr
I not boolExpr predicate

predicate :: =
I

arithExpr compareop arithExpr
quantifier quanList [where boolExpr]

I

f,E;; ;y!$JnpJxpr

arithExpr between arithExpr
and arithExpr

I arithExpr

compareOp::=inI=~<I>~!=~<>I<=~>=

quantifier :: = some 1 all 1 no

quanList :: = quanltem { , quanItem }*

quanltem :: = column / variable in column

arithEx,pr :: = arithExpr { + I,- 1 ‘*’ I / } arithExpr
arithExpr (arrthPrim

arithPrim ::= column 1 literal / ‘{’ literallist’}

I
t queryExpr)
aggOp [unique I aggoperand

column :: = attribute I { arrow of}* variable
I variable { arrow }*

arrow :: = { attribute 1 all I ‘*’ }

literal :: = string I integer I float I null

31

aggOp :: =
I

set I max I min I avg I count I sum
identifier

aggOperand :: =cLl:;g;tList [where boolExpr 1)

defineAction :: = define variable { is I isa } queryExpr

dmlAction :: = insert [into 1 to] table

I
[columnSpec I tuple { , tuple}*

{ update 1 replace } table [set 1

I
targetList [where boolExpr]

delete [from I table

I
[where booiExpr 1

add arithExpr [where boolExpr]

I
to column [where boolExpr]

remove arithExpr [where boolExpr]
from column [where boolExpr J

columnSpec :: = (attribute { , attribute }*)

tuple :: = < literal { , literal }* >

ddl Action :: = create [table J tablevar

I
t attribDefn { , attribDefn }*)

destroy [table 1 tablevar
{ , tablevar }*

tableVar :: = variable I table

attribDefn :: = attribute : class

variable :: = identifier

table :: = identifier

attribute :: = identifier

class :: = identifier

