
Pre-Analysis Locking:
A Safe and Deadlock Free Locking Policy

Georg Lausen, Eljas Soisalon-Soininen’, Peter Widmayer

Institut fiir Angewandte Informatik und Formale Beschreibungsverfahren
UniversiM Karlsruhe, Postfach 6380, 7500 Karlsruhe, West Germany

Abstract

A safe and deadlock free lock policy is introduced, called
pre-analysis locking. Pre-analysis locking is based on an
efficient geometric algorithm which inserts lock and unlock
operations into the transactions. Pre-analysis locking is the
first safe and deadlock free general locking policy which is
not a variant of two-phase locking. It is an approach con-
ceptually different from policies following the two-phase
locking principle. In general, none of pre-analysis lock-
ing and two-phase locking dominates the other: there exist
cases in which pre-analysis locking allows for more concur-
rency than any two-phase locking policy, but there are also
cases in which a two-phase locking policy allows for more
concurrency than pre-analysis locking.

Keywords:

database concurrency control, locking policy, serializability,
safety, deadlock

1. Introduction

A database consists of a set of entities describing the appli-
cation of relevance. Transactions are user processes which
transform a consistent state of a database into a new con-
sistent state. The measure taken to achieve consistency is
a set of constraints on the entities defining the valid states

Permission to copy without fee all or part of thii material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Lafge Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

of a given application environment. The calculations of
a transaction are performed by executing several atomic
read or write actions on the database. There may be some
temporary violations of the consistency constraints during
a transaction, but at the end all restrictions are fulfilled.
Certainly, this consistency preservation property of a trans-
action is guaranteed if each transaction is executed alone
on the database. For efficiency reasons, transactions should
be executed concurrently. Lock policies are a widely used
mechanism to coordinate a concurrent set of transactions in
a way which guarantees a consistent view on the database
for each process, i.e., which guarantees safety. Safety is en-
forced if the lock policy allows only serializable schedules. A
schedule is an interleaving of the actions of the transactions.
For a serializable schedule, the computations performed by
all transactions are equivalent to a not interleaved, namely
serial, schedule of the same transactions.

Locking has been studied extensively in the past. In [4,
8, 161 it is shown that safe lock policies inherently cannot
allow all possible serializable schedules, even if we restrict
general serializability to D-serializability, which is an e5-
ciently decidable restricted version of serializability, while
the problem in general is NP-com:llete [7]. Besides safety,
freedom from deadlock is another important property lock
policies should have. Deadlocks are cyclic wait relation-
ships between transactions, which can be resolved only by
aborting at least one involved transaction.

Previous work on concrete lock policies can be classified
according to whether or not a structure on the database
is assumed, which restricts the allowed orderings of the
lock operations in a transaction. For example, one familiar
structure are trees - an entity may only be locked if its
father currently is locked. Safe and deadlock free lock pro-
tocols in the case of structured databases are investigated

1 The work of this author was supported by the Alexander van Hum-

boldt Foundation. Present address: Department of Computer Sci-

ence, University of Helsinki, Tukholmankatu 2, SF-00250 Helsinki 25,

Finland.

Proceedings of VLDB 85, Stockholm 270

exhaustively in [2, 3, 10, 11, 151. If no structure on the
set of entities is assumed, i.e., the transactions may lock
the entities in any order, two-phase locking (2PL) ia the
protocol commonly being used [l]. In 2PL a transaction
must lock every entity before it accesses it, but, after some
entity is unlocked, no succeeding lock is allowed any more.
Unfortunately, 2PL is not free from deadlock.

If no structure on the database is assumed, the only way
to develop improvements over 2PL is to analyze the action
sequences of the transactions.

Recently in 1131 an interesting algorithm is proposed which
inserts unlock operations into transactions, which initially
contain only actions and lock operations. The resulting
non-2PL lock policy is a heuristic for a safe improvement
over 2PL, where the measure of concurrency is related to
the time entities are being kept locked.

Freedom from deadlock for 2PL can be achieved by a simple
analysis called preclaiming 1121: one lock operation locking
all entities accessed by the transaction is executed as the
transaction’s first step. Obviously, preclaiming reduces po-
tential concurrency, since locks have to be acquired earlier
than it would be necessary for 2PL in general.

Further, there most probably does not exist an efficient
strategy to transform an initial set of 2PL transactions into
a set of deadlock free 2PL transactions without reducing
potential concurrency unnecessarily. It is shown in [IS] that
testing a set of 2PL transactions for freedom from deadlock
is NP-complete.

In this paper we further investigate the question of safe
and deadlock free policies in the case of an unstructured
database. A non-2PL safe lock policy is introduced, called
pre-analysis locking (PAL). PAL is based on an efficient ge-
ometric algorithm which inserts lock and unlock operations
into the action sequences of the transactions. Even though
lock operations need not be acquired at the beginning of
each transaction, PAL is a policy free from deadlock. To
the authors’ knowledge, PAL is the only safe and deadlock
free general policy known today which is not a variant of
2PL.

PAL and 2PL policies are conceptually different
approaches. In 2PL policies lock and unlock operations
are related to entities - in PAL lock and unlock opera-
tions are only syntactic operations. PAL and 2PL do not
strictly dominate each other in general: there exist sched-
ules which are allowed by PAL, but by no 2PL policy, and,
on the other hand, there exist schedules which are allowed
by preclaiming 2PL, but not by PAL. An exact characteri-
zation of PAL with respect to 2PL policies is an interesting
open research area.

The paper is organized as follows. In the next section,
we present the definitions and facts necessary in the sequel.

Section 3 illustrates concurrency in a geometric setting, and
Section 4 presents and analyzes PAL in some detail. Section
5 shows the freedom from deadlock of PAL, and Section 6
discusses implications of the results.

2.Basic Definitions and Facts

A transaction system T = (2’1,. . . , Z’d} is a set of tranz-
actions. A transaction Ti = (Til , . . . , Tim) is a sequence of
actions. Each action Tij has associated with it an entity
zij E E, where E is a set of entities forming the database.
We distinguish read and write actions, Tij = &j meaning
read zij and Tij = Wij meaning write zij. Each transac-
tion reads each entity at most once and writes each entity
at most once, and it is not allowed to read an entity after it
has written it. A schedule e of 7 is a permutation of all ac-
tions of 7 such that 1 < j < k 5 mi implies s(Tij) < S(Tik).

Two actions of two different transactions conflict, if they
involve the same entity, and at least one of them is a write
action. With each schedule s we associate a labelled di-
rected graph D(s) h aving as nodes the transactions of r and
an edge TiSTj for any action of Ti involving z that pre-
cedes in s a conflicting action of Tj. A schedule is called D-
eerialirable (conflict serializable) if D(8) = D(s’) for some
serial schedule s’ of 7, or, equivalently, if D(s) is acyclic. A
transaction system 7 is called D-safe if every schedule of
r is D-serializable.

For testing D-serializability and D-safety, conflicts between
transactions must be considered. We define a binary rela-
tion on the set of actions of the transaction system in the
following way. We say p = (Tiu,Tjv) is a direct con-
flict point between Ti and Tj, i # j, if Ti, and Tj, con-
flict. Point p = (Ti,, Tjv) is called a conflict point be-
tween Ti and Tj, i # j, if there exists a set of transactions
{Tk,]I < 1 5 m} s (r - {Ti, Ti}) for some m, such that for
all I, 1 5 I 5 m-l, (Tklyl, Tk,+lq,+,) is a direct conflict point
between Tk, and Tk,+,, and (Tiu, Tklq,) and (Tk,p,, Tjv)
are direct conflict points between Ti and Tk,, Tk, and Tj,
respectively. The sequence (Z’i,) Tklq,), (Tklpl, Tkaqz), . . . ,
(Tk,-lp,-,, Tk,*,), (TkmPmr Tjv) is called aCOnfliCt point

path for p. The number, m, of intermediate transactions
is called the length of the path. In the case of m = 0, p is
a direct conflict point; otherwise, i.e., for m 2 1,~ is called
an indirect conflict point.

3. The Geometry of Concurrency

In this section we will briefly mention a geometric charac-
terization of concurrency, in the same spirit as locking has
first been characterized in 191. Let r be a transaction sys-
tem consisting of two transactions Tl = (TII, . . . , TI,,)
and TZ = (Tz~,..., T,,,). In the coordinate plane, as

illustrated in Figure 3.1, the two axes correspond to the
transactions Tl and Tg, and the integer points on the axes
correspond to the actions in the transactions.

T.25

T23

T22

T21

(030) Rx1 Rx.2 wx.jRxl,wq ‘-I

Tll T12 Tl3 T14 T15

Figure 3.1: The representation of a two-transaction system

A schedule of {T, , Tg} has now the following geometric im-
age: Any nondecreasing curve from point (0,O) to point
(ml + 1, ma + 1) not passing through any other grid points
represents the schedule where the actions TII, . . . , TI,, ,
TN, . , . , Tarn2 are in the order in which the curve passes the
lines Tl = TIN,..., Tl = Tl,,,Ts = Tsl,. . .,Ts = Tm,.
As all curves representing a schedule are equivalent for
our purposes, we will refer in the sequel to an arbitrary
one of them, calling it the schedule’s CUNe. For instance,
in Figure 3.1, s1 and 82 correspond to the serial sched-
ules Tl1 . . .Tl,,,,Tsl . . .Tam,, and Tsl . . .Tg,,,,Tll . . .Tl,,,
respectively, and s represents the schedule T,, T~~T~~TIQTI~
TrrTasTarTzaTra . The conflict points in Figure 3.1 are
(Tll, Tad, (7’13, Gd (Tu,%), and (TM, Td Clearly,
the transaction system r = {Tl, Tz} is not D-safe, since s
is not a D-serializable schedule.

Let s be a schedule of a transaction system r = { TI , Ts, . . . ,
Td}. For any pair i, j E (1,. . . , d},i # j, the schedule 8ij

is a schedule of the transaction system 7i.j = {Ti, Tj}, and
8ij is derived as a projection from s by deleting all actions
of transactions not in ?ij.

Lemma 3.1: Let r = {Tl , T,, . . , , Td} be a transac-
tion system, and let s be a schedule of r which is not D-
serializable. Then there exist transactions Tig Ti,i # j,
i,j E {l,..., d} , such that the curve of 8ij separates two

conflict points in the plane (Ti, Tj) , at least one of which
is a direct conflict point.

Proof: Because 8 is not D-serializable, D(s) has a cycle,
say Tl -+ TQ --* . ..Tk + Tl, k 2 2. Let Tipi and Tjqj,
respectively, be the actions of Ti and Tj causing the arc
Ti + Tj in the cycle, 1 < i 5 k, j = i + 1 modulo k.
This means that for any such i, j, s(Tipi) < S(Tjqj), and
(Tip,,Tjqj) is a direct conflict point, and (Tiqi,Tjpj) is a
conflict point between Ti and Tim Assume for the sake of
contradiction that for no such i, j, the curve of 8ij separates
these two conflict points. Then for all i, j adjacent in the
cycle, S(Tiq,) < S(Tjpj). But these two conditions impose a
cyclic ordering on the actions Tia, Tipi for all i, and hence
no schedule 8 with its linear ordering of the actions can
comply, a contradiction.

m

Since in general the complete set of D-serializable sched-
ules cannot be achieved by locking [S, 161, our intention
is to define a lock policy that rules out all those schedules
which are not D-serializable, and basically in such a way
that only very few D-serializable schedules will be ruled
out. We will introduce a lock policy whose lock operation
apply only to pairs of transactions. As noted in [S], this is
no loss of generality. The lock operations are derived from
forbidden regions in the planes corresponding to all pairs of
transactions. The effect of a forbidden region on the set of
allowed schedules can be seen by looking at the set of grid
points (i.e., intersection points of grid lines) the forbidden
region contains. The exact boundary of the forbidden re-
gion is irrelevant because a schedule is represented as a set
of curves. Therefore, we restrict the subsequent discussion
to rectilinear polygons, i.e. polygons with sides parallel to
the coordinate axes, for the forbidden regions. To avoid
ruling out schedules unnecessarily, such regions should be
as small as possible while still guaranteeing safety. By
Lemma 3.1 all schedules must be forbidden whose curves
are separating conflict points in some plane. Therefore,
the forbidden regions are connected S(outh)W(est)- and
N(orth)E(aet)- closed regions, that implies, regions con-
taining the south-west and north-east corner points of their
smallest bounding rectangles. More formally, we say that
a region R (a set of points in the plane) is SW-closed,
if for any two points (~1, yr) and (22, ya) in R, such that
z1 < z2 and y, > ya, also the point (~1, ye) is included in
R. The SW-closure of region R, denoted SW(R), is the
smallest SW-closed region containing R. Analogously, we
define that region R is NE-closed, if for anz two points
(ZI,YI) and (a,~4 in R, such that z1 < ~a and yr > ys,
also the point (za, yr) is included in R. The NE-closure of
region R, denoted NE(R), is the smallest NE-closed region
containing R. We say that region R is NESW-closed, if
R is both SW- and NE-closed. The NESW-closure of R,

272

denoted NESW (R), is the smallest NESW-closed region
containing R.

An example of a NESW-closed region is given in Figure
3.2.

T.
J A .

x!l . .
El .

> T.
1

Figure 3.2: A NESW-closed region

Fact 3.2: Let 7 = {Tr , Ta} be a transaction system, and
let R be a connected region in the (Tr , Ta)-plane. The set
of curves of schedules not cutting R equals the set of curves
of schedules not cutting NESW(R).

n

Region R in the plane is called r-convex (rectilinearly con-
vex), if for any two points (z, yl) and (z, ya) in R the line
segment between (z, yr) and (2, ya) is also included in R,
and for any two points (zr, y) and (zz, y) in R, the line
segment between (21, y) and (cz, y) is also included in R.
Given a region R in the plane, a connected r-convex
hull, or cr-convex hull, of R, is a smallest connected r-
convex region containing R. A NESW-cloaed cr-convex
hull of a region R is the NESW-closure of a cr-convex hull
of R. An example of different NESW-closed cr-convex hulls
is given in Figure 3.3.

We say that a set of schedules of r = {Tl , TQ} can be defined
by a rectilinear forbidden area R in the plane (T,, Ta), if
this set is obtained by ruling out the schedules whose curves
are intersecting R.

Fact 3.3: Let 7 = {Tl, T2} be a transaction system,
and let some set of schedules of r be defined by a forbidden
area R in the (Tl , Tz)-plane. Then this set of schedules of
r can also be defined by a rectilinear forbidden area R’ in
the (Tl, Tz)-plane.

m

T. 1

Figure 3.3: Three NES W-closed cr-convex hulls

4. The Pre-Analysis Lock Policy PAL

A locked transaction system LT is a set of locked
transactions, 157 = {LTI, LTS, . . . , LTd}, where each
locked transaction is a transaction containing lock v and
unlock v operations besides the read and write actions, for
v E LV. LV is the set of locking variables; it is indepen-
dent of the set of entities. For any v E LV and any locked
transaction, there is at most one lock v and one unlock v
operation in the transaction; lock v must be followed by
unlock v, and unlock v must be preceded by lock v.

The meaning of the locks is that after the execution of op-
eration lock v for some v E LV in locked transaction LT;,
operation lock v is not allowed to be executed in locked
transaction LTj, j # i, before unlock v has been executed
in LTi. The lock and unlock operations hence act as bi-
nary semaphores between transactions, and only schedules
following these rules are allowed. We say that a locked
schedule Ls of Lr is legal, if in Ls each lock v operation
is followed first by an unlock v operation before the next
lock v operation. L(Lr) denotes the set of legal sched-
ules of Lr. We say that Lr realises the set of schedules
Sr = L(Lr)/{lock v,unlock vlv E LV}, where A/B de-
notes the deletion of all symbols in B from ail words in A.
LT is D-safe, if all schedules in ST are D-serializable.

Lr is called free from deadlock (deadlock free), if every
legal prefix of a locked schedule of Lr can be extended to
a legal locked schedule of LT. A locked transaction system
with a potential deadlock is undesirable because a schedule
may start running correctly and get blocked later on in such
a way that there is no correct completion.

Our goal is to develop a lock policy that allows us, for
any given transaction system 7, to compute efficiently a

273

safe and deadlock free locked version Lr of r allowing for
a high degree of parallelism. In our notion, the degree of
concurrency is the number of legal schedules of a locked
transaction system. We use Lemma 3.1 to define such a
lock policy: We will forbid all schedules s , where for some
i, j the curve of Sij separates two conflict points in the plane
(T;, Ti), at least one of which is a direct one. The resulting
locked transaction system is D-safe by Lemma 3.1. We
will show in the next section that we construct Lr in such
a way that it is also deadlock free. In general, we will have
to rule out legal schedules as well by this method, but it
is well known that a single locked transaction system must
also have this property in general, even for a system of two
transactions ([8, 141).

This will be accomplished by constructing an NESW-closed
cr-convex hull of the set of all conflict points in the plane
(Tip T’), for each i, j with at least one direct conflict be-
tween Ti and Tj. More formally, the pm-analysis lock pol-
icy PAL for a given transaction system r = { Tl , Ta, . . . , Td}
operates as follows:

Algorithm Pre-Analysis Locking

1.

2.

3.

4.

Determine the set of direct and indirect conflict points
between all pairs of transactions of r.

For each pair Ti, Tj with a direct conflict point be-
tween Ti and Tj, i # j, 1 5 i, j 5 d, construct a
NESW-closed cr-convex hull of all conflict points in
the plane (R, Ti).

For each transaction Ti, 1 5 i 5 d, regard Ti aa a
locked transaction LTi with no lock and unlock oper-
ations.

For each locked transaction LTi, 1 6 i 5 d, do:

For each transaction LTj, j # i, 1 < j 5 d,
which has a direct conflict with LTi, do:

augment LTi by locks and unlocks de-
rived from the NESW-closed cr-convex
hull of the conflict points in the plane
(Ti, Tj); position directly adjacent locks
according to a global order of all locking
variables.

End of Algorithm

In order to demonstrate the efficiency of pre-analysis lock-
ing, we describe in some more detail how to carry out the
operations of the algorithm.

First, all conflict points are being constructed. To this end,
all direct conflict points for each pair Ti, Tj of transactions
of r are computed, i # j, 1 2 i, j < d. Let dp(i, j) be
the set of direct conflict points between Ti and Tj, and let

dpi(i, j) be the set of actions of Ti occurring in dp(i, j),
and let dpj(i, j) be the set of actions of Tj occurring in
dp(i, j). Construct an undirected graph G = (V, E), where
the set of vertices represents the set of transactions, de-
noted V = {Tl, . . . , Td}. There is an edge between Ti and
Tj, denoted by (Ti,Tj), iff dp(i, j) # 0. With each edge
(Tiy Tj) E E, associate the set dp(i, j), for the time be-
ing. A simple path in G is a sequence of different edges
(Ti,,Ti,),(Ti,,Ti,),..., (Ti,-,, Ti.), with u 2 3, such that
for w # W’ Ti, # Ti,,; we say that the path connects
Ti, with Ti,. The set of indirect conflict points between Ti
and Tj, i # j, can be determined from the simple paths
connecting Ti and Tj in the following way. Consider any
such simple path, say the path (Ti,Tk), . . . , (Th,Tj). Then
for any action z E dpi(i, k) and any action y E dpj(h, j),
point (2, y) is an indirect conflict point in the plane (Ti, Tj);
the conflict point path is given by the simple path in
G. Hence, all points (z’, y’) E dpi(i, k) x dpj(h, j) are
indirect conflict points between Ti and Tj, where x de-
notes the Cartesian product. However, for the construc-
tion of the NESW-closed cr-convex hull of the set of con-
flict points it is, of course, equivalent to consider the four
corner points of the rectangular pattern of conflict points
obtained by dpi(i, k) x dpj(h, j). Therefore, for the com-
putation of the indirect conflict points it is sufficient to
associate with each edge (Ti,Tk) E E the four actions
firsti(i, k), lesti(i, k), firstk(i, Ic), lastk(i, k), instead of
the entire set dp(i, k), where fir&(;, k) denotes the first of
the actions of dpi(i, k) in Ti, and lasti k) denotes the last
of the actions of dpi(i, k) in Ti, and similar for dpk(i, k)
and Tk. The indirect conflict points between Ti and Tj
resulting from simple path (Ti, Tk), . . . , (Th, Tj) are then
(firSti(i,k),f;rStj(h,i)),(lasti(i, k), firStj(h,j)),

(fir&(;, k), laStj(h, j)), and (lasti(iy k), lastj(h, j)).

In order to determine all indirect conflict points it is pro-
hibitive to explicitly investigate all simple paths. At first,
because we are only interested in indirect conflict points
for pairs of transactions having a direct conflict point as
well, we remove from G all edges that do not belong to a
(simple) cycle; note that the edge between the transactions
in the considered pair forms a cycle with any simple path
between one of the transactions and the other. We then
compute the connected components of the modified graph,
resulting in connected graphs Gi, Ga, . . . , G,, c >_ 1. For
each Gi = (VI, El), 1 < 1 5 c, the set of edges is partitioned
into equivalence classes Ef , . . . , E;, r 2 1: two edges be-
long to the same class iff they are parts of a common simple
cycle in Gl. From this definition it follows that there can-
not exist a simple cycle whose edges belong to two different
equivalence classes. Hence, when searching for all simple
cycles, we may restrict our attention to edges within the
sameclass E,“, s E {l,..., r}. Now consider the subgraph
Gf = (V,“, E,b), where VI8 is the set of vertices occurring
in Ef. Clearly, Gt is a connected graph. Let US focus on

274

the computation of all indirect conflict points for a pair Ti,
Tj of transactions, with (Ti,Tj) E Ef. TO this end, con-
sider the graph Gf = (V;‘,Q’), where V;d = Vt - {Ti,Tj},
and &’ is obtained from E/ by removing all edges incident
with Ti or Tja Let Gi(l),...,e(f), f 2 1, denote the
connected components of G:, with Gt(g) = (Vt(g), E,!(g)),
for all g E {l,..., f}. By that definition, there does not
exist a simple path from Ti to 2” in G,” containing two
vertices from two different connected components of G;.
Hence, any simple path from Ti to Tj in Gf has to be con-
tained completely in some of the connected components of
G,d. For connected component G;(g) of Gf, consider the set
of those vertices of v18(g) that are incident with Ti in G,d,
and let US denote them by v;*(g)i; analogously, let v,“(g)j
be the set of vertices of vt(g) that are incident with Tj in
Gf. Pick any two vertices Tk and Th, with Tk E v(g)i
and Th E V;‘(g)j. Then, because Tk and Th belong to
vlb(g), there exists a simple path from Tk to Th in q(g),
and together with edges (TipTk) E Ef and (Tj,Th) E E,d,
this path determines a set of indirect conflict points be-
tween Ti and Tj, namely the points {fir&(i, k), losli(i, k)}
x {firatj(h,j), lasti(h,j)}. As this observation holds for
any pair of vertices picked from V;‘(g)i and Vl’(g)j, we ob-
tain the set ({firsti(i, k’)]k’ E q”(g)i} C! {loeti(i, k’)]k’ E
q’(g)i}) X({firdj(h’,j)(h’ E q”(g)j} U {laStj(h’,j)lh’ E

V;d(g)j}). For the purpose of constructing the NESW-
closed cr-convex hull, again the four corner points of the
rectangular pattern of indirect conflict points are sufficient.

Let us recall that for each connected component of graph
G!, derived from Gf by removing vertices Ti and Tj, we
obtain at most four indirect conflict points between Ti and
Tj: we simply combine the actions of Ti and Tj associated
with the edges between Ti and Tj and vertices in the respec-
tive component of q. Because the number of components
of Gf is limited by O(d), so is the number of indirect con-
flict points between any pair of transactions, that need to
be considered for the computation of the hull. Therefore,
after the completion of Step 1 of algorithm PAL we are
left with at most O(nd) direct and O(d3) indirect conflict
points, where n is the total number of actions of 7.

Second, taking the set of conflict points between Ti and
Tj for each i,~’ as input, a NESW-closed cr-convex hull is
constructed using an algorithm proposed in [6].

To this end, the left lower and the right upper corner points
of the smallest rectangle bounding the set of conflict points
is added to the set of conflict points. Then, these points
are sorted lexikographically with increasing Ti-coordinate
and decreasing Tj-coordinate (see Fig. 4.1). The sorted
sequence of points is scanned, keeping track of all upper left
corner points of a cr-convex hull of the points as follows.
The first corner point is the first point in the sequence. As
soon as during the scan a point with higher Tj-coordinate
than the actual corner point is found, that points replaces

the actual corner point. When all points have been scanned,
all corner points have been found, that is, an upper contour
of a NESW-closed cr-convex hull has been determined (see
Fig. 4.1).

In case the NESW-closed cr-convex hull of the set of points
is not uniquely defined, care must be taken to ensure that a
lower contour does not intersect the upper contour. There-
fore, the set of points considered for a lower contour is the
preliminary set of points, augmented by the following: for
any twocorner points (2, y) and (2, y’) that are adjacent on
the upper contour and appear in this order during the scan,
the point (z’, y) is added to the set (see Fig. 4.1). Then,
for the new set of points the lower contour is constructed
similarly.

T.
4.

l

extra points to ensure correctness of Ti
lower contour

Figure 4.1: Construction of NESW-closed cr-convex hull

The third step, namely regarding the transactions as locked
transactions, does not involve any algorithmic action.

Fourth, each NESW-closed cr-convex hull is covered ex-
actly with a minimum number of (overlapping) rectangles
in the following way, which was first described in [5]. Con-
sider the sequence of corner points along the upper con-
tour of hull H, in sorted order from left to right, say
pl, ~2, . . . , pup, and the sequence of corner points for the
lower contour in the same order, say ql,q2, . . . ,qlow. Let
R(pi, qj) denote the rectangle with left upper corner point
pi and right lower corner point qj, for gj to the right and
below pi. Any such rectangle lies entirely in H, because
the contours of H are nondecreasing in both coordinates.

27 5

Choose R(pl,ql) to be the first rectangle to be used to
cover H. Let R(pi,qj) be the rectangle just chosen. Then
the next rectangle is chosen as follows. If pi # pup and
R(pi+l,qi) is a rectangle overlapping R(pi,qj), then let
p’ = pi+l, otherwiselet p’ = pi. Ifqj # glocr, and R(p’,qj+l)
is a rectangle overlapping R(pi, qj), then let q’ = qj+l, oth-
erwise let q’ = qj. Now let R(p’,q’) be the next rectangle
to be chosen. This process is to be repeated until p’ = pup
and q’ = qlora; then, H is covered by a minimum number of
rectangles. (Note in this context that for the procedure to
work it is essential that H is NEclosed.)

p4 :- -: ---I

F-LJ

I I I I PL,, r i-’ I ,I -,-- ‘q5

k I
1

: covering rectang
, les, slightly

1 : oversized for
1 clarity of their
I -_-2 L I ^ . .

Figure 4.2: Covering the hull of Figure 4.1

The coordinates of the rectangles correspond to the lock
and unlock steps to be inserted into the transactions. We
choose to use an extra locking variable for each rectangle,
which implies that each locking variable u occurs in exactly
two transactions; we say v acts in the corresponding plane.

We draw the needed locking variables from an unbounded
resource, namely from the set {viii a natural number}, in
order of increasing i. For each pair of transactions, the
locks representing rectangles used to cover the hull are se-
lected in this order. Hence, within each transaction of a
pair of transactions, the locks acting in the corresponding
plane occur in order of increasing i. Therefore, no deadlock
between any two transactions locked by PAL can exist.

When locking a system of more than two transactions by
PAL, we start with the pair Tl,Ta of transactions. We in-
sert the lock and unlock operations in between the read

and write actions in both transactions, Tl and Ta, az deter-
mined by the NESW-closed cr-convex hull of the conflict
points in the plane (T,,Ts). When we continue inserting
lock and unlock operations into Tl , resulting from the pair
Tl, Ts of transactions by applying the inner loop of Step
4 the next time, we face a problem. The position of the
lock operations with respect to the read and write actions
of Tl is clearly determined, but not the position of the
new lock operations with respect to the already present
ones. Inserting new locks in an arbitrary position with re-
spect to present locks is certainly dangerous: in this way,
we might create a deadlock with such locks alone. Such a
deadlock can be easily avoided by arranging these adjacent
locks (with no actions in between) differently, say, accord-
ing to one global order. We follow this strategy and use the
order of the locking variables when we add more locks to
a locked transaction system containing already some of the
computed locks. Note that for unlock operations, the prob-
lem does not occur; hence, we can insert unlocks arbitrarily
with respect to present locks and unlocks.

Whenever a new lock II operation has to be inserted into
transaction Ti between actions Ti, and Ti,+l, the insertion
takes place directly before Z’ir+r, i.e., behind all lock and
unlock operations already present between Ti, and Ti,+l.
The way we use new locking variables ensures that in be-
tween Ti, and T. tr+r, all lock and unlock operations will
always be ordered, for all Ti,, Tir+l . From the construc-
tion of the NESW-closed cr-convex hull we conclude that
at the moment of the insertion of a lock into a transaction,
the lock is directly followed by an action conflicting with
the transaction in whose plane the lock acts. Later on,
only locks and unlocks can be inserted in between those
two. Hence at the end of Step 4 of pre-analysis locking,
the next action following a lock conflicts in the plane in
which the lock acts.

Fact 4.1: Let u be a locking variable which acts in the
plane (Ti, Tj) , and let Ti, and Tja be the first actions SUC-

ceeding Iv in Ti and Tj, respectively. Then there exist con-
flict points (Ti,, Tj,t), (Tie,, Tja) in the plane (Ti, Tj).

To see how long algorithm PAL runs in the worst case,
let us analyze the runtime requirements step by step. The
computation of all direct conflict points certainly does not
take longer than O(n(d + logn)) steps, where n is the to-
tal number of actions in 7 (recall that each variable is ad-
dressed within each transaction at most twice). This bound
can be achieved, for instance, by sorting the set of all ac-
tions according to the addressed variable (the variables are
thought of being ordered in some arbitrary fixed order).
Then for each action, a search for the variable is performed
in O(logn) time, and a scan of the neighborhood of that

276

variable in the sorted order reveals at most O(d) further
occurrences, corresponding to other transactions. Graph G
can be constructed in O(8) time. The connected graphs
Gi can be found in time linear in the size of G, i.e. in time
O(G). The same bound holds for finding the equivalence
classes Ef for G1, for all 1. The indirect conflict points can
be determined in time linear in the size of the graph for
each edge (Ti, Z”), amounting to a total of at worst O(d’),
if the partitioning of edges into equivalence classes forming
simple cycles is done anew for every edge of the graphs.
Hence, Step 1 can be carried out in O(n(d + logn) + d4)
steps altogether. Step 2 of the algorithm can be carried out
in time linear in the number of conflict points, as we can
obtain the conflict points in sorted order in Step 1, that is,
in no more than O(dn l t- d3) computation steps. Step 3 re-
quires no time. Step 4 can be performed in O(dn+d3) steps
by similar arguments as those for Step 2. Hence, the overall
worst-case runtime of our algorithm is O(n(d flog n) + d4).

Theorem 4.2: Pre-analysis locking (PAL) is a safe
lock policy, i.e., PAL transforms any transaction system r
into a safe locked transaction system Lr. The transforma-
tion takes O(n(d+logn)+d4), where n is the total number
of actions and d is the number of transactions in 7.

a

5. Freedom from Deadlock of PAL

In this section, we are going to show that PAL is a dead-
lock free lock policy, i.e., any locked transaction system
constructed by PAL is free from deadlock.

Let 7 = {Ti,..., Z’d} be a transaction system and let
L7 = {LTI,..., LTd} be the locked transaction system con-
structed from r according to the definition of PAL. Let Iv
denote operation lock v for locking variable v, and let uv
denote unlock v. In order to show that PAL is deadlock
free, let us assume the contrary for some transaction system
7, namely that LT is not deadlock free. By construction,
each pair of transactions Lrij = {LTi, LTj} is deadlock
free. Therefore, if r = { Ti , Ts}, PAL is clearly deadlock
free. Hence, assume that r contains at least 3 transactions.
Then there must exist a sequence LT;, . . . , LTL, k 1 2, of
transactions in Lr and a set { vo, vl, . . . , vk} of locking vari-
ables such that

LT; : . . .hklvo... . ..uvk...
LT; : . ..lvo... . ..lVl... . ..uvo...

Lip * . ..lVi-I.*. **.lVi..* ..etLVi-1 *a*

Li;:hk-1hk UVk-1 . . .

Moreover, there must exist a legal partial schedule SD con-
taining exactly the actions up to but not including 1Vi for

each transaction T,f,O 5 i < k. We characterize such a
deadlock situation by a deadlock cycle TL -+ Td -+ Ti -+
. . . ---t TL in the following, and we call SD the corresponding
deadlock schedule. From the definition of PAL it follows
that whenever there exists a locking variable acting in a
plane, then this plane contains at least one direct conflict
point.

Lemma 5.1: Assume there exists a deadlock with
deadlock cycle TL -) Td -+ T{ + . . . ---) T:. Then
for each direct conflict point (Ti$!,T&,j) in plane (T,I,T,!)
(j = (i + 1)modulo k), T,f,,,: > lvi or Tjw, < lvj holds.

Proof: Assume there exists a direct conflict point
(T&,!, Tjwj), and Til,! < lvi, and Tjwj > lvje Then from the
definition of PAL and the existence of the deadlock sched-
ule we conclude the existence of a situation in the plane
(LT,‘, LT,!) as shown in Figure 5.1. Clearly this situation is
a contradiction to PAL being pairwise deadlock free.

n

T.’ lVi

> LT;

lW!
1

Figure 5.1: A pairwise deadlock

In the following we will derive a contradiction to L7 not
being deadlock free. We will do this by systematically
studying the possible locations of direct conflict points in
the planes of neighbouring transactions of a deadlock cycle
Ti+T;+T;-+...+T/. We write T,‘-%T,! (j = (i + 1)
modulo k) if there is at least one direct conflict point in the
plane (T,!,T,!) with Tiw, < lvj. We write T/AT,! if there

is at least one direct conflict point with T,fw! > 1Vi. This
m&trkiug of arcs is called direct conflict poh marking.
The possible direct conflict point markings of a given deacl-
lock cycle can be characterized as follows.

Lemma 5.2: In a transaction system locked according
to PAL, for each direct conflict point marking of a deadlock
cycle Ti --+ Ti + Ti --) . . . + TL at least one of the
following holds:

6)

(ii)

(iii)

(iv)

there is a sequence of markings where all markings are
1.

there is a sequence of markings where all markings are
0.

there is a sequence of markings such that the markings
form an alternating sequence.

there exist arcs T,f:T,!&T:AT,', where (j = (i + 1)
modulo Ic) , r = (i + 2) modulo k, s = (i + 3) modulo
k

there exist arcs T,f>Tj%T,!-!+T:, where j, r, s are as in
(iv).

Proof: According to PAL, there is at least one direct con-
flict point between any two transactions adjacent in the
deadlock cycle. Therefore, every arc of every deadlock cy-
cle possesses at least one of the markings 0,l. Assume none
of (i) to (v) holds. Then there must exist at least one of
the following two sequences of arcs (i, j, r, s are as in (iv)):

(1) Ti'-r*T;AT$T,,

If marking l,l,O is part of the cycle, then start with T,!
and go backwards in the cycle until the first (next) 0 is
met. This marking 0 must exist; it forms a sequence of
markings O,l,l according to (iv) in the cycle. The case
l,O,O is symmetric: go forward instead of backward, and
exchange 1 with 0. The result then is a marking according
to (v).

n

(b)

Theorem 5.3: PAL is deadlock free,
LT:

Proof: We assume that PAL is not deadlock free, and
we derive a contradiction by showing that a deadlock cy-
cle canuot have any of the forms (i) to (v) of Lemma 5.2.
Therefore assume that there is a deadlock cycle of one of
the following forms:

(a) a sequence of markings O,l,l or O,O,l exists in the
deadlock cycle (cases (iv) or (v) of Lemma 5.2).

We show the existence of an indirect conflict point in
the plane (Ti, T,!) according to the order of the trans-
actions involved in the deadlock cycle starting with T:

by constructing a conflict point path (T&, Tiw,), . . . ,
(T/$!, Tjrj), where T&,, > IV, and Tjwj < lvj- But
this ‘implies a contradi&ion to PAL being pairwise
deadlock free, in analogy with Figure 5.1.

a sequence of alternating marks exists in the deadlock
cycle (case (iii) of Lemma 5.2).

W.l.o.g., let the sequence be T~~T~-%T~-t*T~~ . . .
AT;-, ZTL. From this follow direct conflict points:

P’&,,%,) and T:,l < h,

Pi,;, T.L,) and %,a < b,

Wl,;~I 3 T&) and TL,* < 1~.

Since in each plane of neighbouring transactions, there
is at least one direct conflict point, we infer the fol-
lowing conflict point paths:

(T:,~, %t,; h a . . , K,, , T;,; 1,

(~,~,T~,a),...,(T;,,,T~,;),

LT;
m

LT:.
\

Figure 5.2: Conflicting actions in a deadlock

Since PAL is pairwise deadlock free, the following
must hold (see Figure 5.2):

278

(cl

(4

T,& < lva, T&,, < IQ,. . . , T&,, < lve. Otherwise a
contradiction similar to the situa!ion shown in Figure
5.1 follows immediately.

Hence, in each plane (T,f, T,!), (j = (i + 1) modulo k)
, there exists

- a direct conflict point (T,fwf,Tjwj) such that

Ti’,! < Iv~,T&,~ < lvj, if T,!qT,!,

- an indirect conflict point (T,&, T,!,,,) such that
,

Ti’,, < iv;, T,!,,, < lttj, if T/AT,!.
,

Hence, since PAL constructs a connected forbidden
area in each plane containing all conflict points, for
any deadlock schedule s the following must hold:

s(T;,:,) < sCG,o,) < s(TL,;J < +.a < 4%;) <
s(T{,,) < s(Ti,:,), a contradiction.

there is a sequence of markings that are all 0 (case (ii)
of Lemma 5.2).

In each plane (T,!,T$, (j = (i + 1) modulo k) , there
exists a direct conflict point (T,$,T,!,j) with T;wj <
lvj. We can derive a contradiction analogously to case
(iii).

there is a sequence of markings that are all 1 (case (ii)
of Lemma 5.2).

In each plane (T,‘,T,!), (j = (i + 1) modulo k) ,
there exists a direct conflict point (T,f’,,, Tjw,) with
Tiwl > lvi. Assume first that for at least one pair of
transactions, T/, Ti, (j = (i + 1) modulo k) , there ex-
ists some action between lvi and lvj in Tj. Then from
Fact 4.1 it follows that there must exist some action

Ti’to,, namely the one closest to lvi, with a conflict
point (T,‘,,, T&J , where T,f,,,, > lvi. Hence, there
exists a conflict point path

(T~~p,T::,,),(T:l,;,T~),,),...,(T~~;,T3!ur,),12O.

The following arguments are illustrated by Figure 5.3.
W.l.o.g., we assume lvk < TAwp < 1% and T& > lvk.

h‘ow consider the conflict point path

(T:,;,T~,,),(T~,;,T~,,),...,(T~-,,;_,,T~,*),
(T~,p,T:),I),...,(~~;,~,,).

If {T;,..., Ti-,} n{T:‘,..., T[‘} = 0 then there ex-
ists an indirect conflict point (TA,,,p, Ti,,,;), which is a
contradiction to PAL being pairwise deadlock free.

Now assume there exist T,f’ and T,! with Ty = Tj and
J’ # 1. A contradiction results from the conflict point
path

(T:,;,T&J,. -a, (T;-w-,J’~w,)~ (%$‘,$I,,+~),

. . . , Vi’;; > Go,,).

LT;
< 1

Tzw; 1~2 Iv1

IV k-l --

‘“k

L”;i

T;wp 1~0

T

Figure 5.3: The location of conflict points in a deadlock

The case T,f’ = T: remains. In this case, there exists
a conflict point path

(T:,;~
where {Tj’,Ty+I,.. .,Tr}n{TA ,..., Ti} = 0. Toavoid
a contradiction to PAL being pairwise deadlock free,
we have Ti,,, < lq. But finally consider the conflict
point path ’
(T:,y, Ti’:, 1,. . . , CT/;;, T;,J, G%u,, T;,;),
(TL+, Lwo;J,.. . , Vi,,, T;,;).

We conclude the existence of the indirect conflict
point (Ti,;,, awt T’), which clearly contradicts PAL be-
ing pairwise dea a lock free.

The remaining case is that for each pair of transac-
tions, T,I,T,!, (j = (i + 1) modulo k) , there does not
exist an action T&, such that ltji < T& < lvja But
this immediately is ‘a contradiction to the’existence of
a deadlock, since in each transaction succeeding locks
without intermediate actions are ordered by PAL ac-
cording to a global linear order.

l

6. Analysis and Outlook

We will analyze PAL with respect to 2PL policies. PAL
and 2PL policies are conceptually different approaches. In
2PL policies, lock and unlock operations are related to en-
tities - in PAL lock and unlock operations are only syn-
tactic operations. Hence, not surprisingly, PAL and 2PL

do not strictly dominate each other with respect to the set
of allowed schedules. Figure 6.1 shows a transaction sys-
tem with two schedules allowed by PAL, which cannot be
allowed simultaneously by any 2PL policy.

LTz

r
L 1 I

> L*l

a b e C a

Figure 6.1: PAL is sometimes better than any 2PL policy

A simple situation in which PAL is strictly superior to pre-
claiming 2PL is shown in Figure 6.2. The solid lines indi-
cate the area forbidden by PAL, the dashed lines the one
forbidden by preclaiming 2PL.

A case in which 2PL policies are superior to PAL is shown
in Figure 6.3. In each plane the projections of two sched-
ules are shown: s1 is represented by the solid lines, sp by
the dashed lines. Assume that each transaction uses pre-
claiming 2PL and unlocks as early as possible. Then the
solid schedule is allowed by 2PL, but is not allowed by PAL.
On the other hand, the dashed schedule is not allowed by
preclaiming 2PL, but it is legal in PAL.

While preclaiming 2PL can only profit from early unlock-
ing, PAL profits from late locking and early unlocking. Our
intuition therefore suggests that PAL is a deadlock free im-
provement over 2PL. An exact characterieation of PAL ver-
sus 2PL policies is an interesting open research topic.

It is worth to note that PAL is deadlock free even though
locks need not be acquired at the beginning of the trans-
actions. To the authors’ knowledge, PAL is the first safe
and deadlock free general policy which is not a variant of
2PL. PAL looses potential concurrency due to its a-priori
designed locking strategy; it may be improved considerably

r--- -.-

Figure 6.2: PAL is sometimes better than preclaiming 2PL

Jl L*3

Figure 6.3: PAL and 2PL are incomparable in general

if a dynamic lock supervisor can be designed which allows
to ignore lock operations (implied by the existence of indi-
rect conflict points), if this is possible due to the prefix of a
given schedule. Such a lock supervisor is the topic of future
research.

280

Acknowledgement

The authors wish to acknowledge the TEXnical suppo~$ of
A. Hoth and M. Schrapp in typesetting the paper.

References

14. Yannakakia, M., “Issues of correctness in database con-
currency control by locking,” Proc. 13th ACM Symp.
Theory Comput. (1981), 363-367.

15. Yannakakis, M., “Freedom from deadlock of safe lock-
ing policies,” SIAM J. Comput. 11 (1982), 391-408.

16. Yannakakia, M., ‘Serializability by locking,” J. Asrroc.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger,
I.L., ‘The notions of consistency and predicate locks in
a database system,” Comm. Assoc. Comput. Mach.
19 (1976), G24-633.

Comput. Mach. 31 (1984), 227-244.

Kedem, Z., and Silberschatz, A., “Controlling concur-
rency using locking protocols,” Proc. 20th IEEE Symp.
on Foundations of Comp. Sci. (1979), 274-285.

Kedem, Z., and Silberschatz, A., “Non-two phase lock-
ing protocols with shared and exclusive locks,” Proc.
Int. Conf. Very Large Databases (1980).

Lausen, G., Soisalon-Soininen, E., and Widmayer,
P., “Maximal concurrency by locking,” Third ACM
SIGACT-SIGMOD Symposium on Principles of Data
Base Systems (1984), 38-44.

Lipski, W., and Papadimitriou, C.H., ‘A Fast Algo-
rithm for testing for safety and detecting deadlocks in
locked transaction systems,” Journal of Algorithms 2
(1981), 211-226.

Ottmann, Th., Soisalon-Soininen, E., and Wood, D.,
“On the definition and computation of rectilinear con-
vex hulls,” Universitgt Karlsruhe, Institut fiir Ange-
wandte Informatik und Formale Beschreibungsverfah-
ren, Report 127 (1983).

Papadimitriou, C.H., “Serializability of concurrent da-
tabase updates,” J. Assoc. Comput. Mach. 26 (1979),
631-653.

Papadimitriou, C.H., “A theorem in database concur-
rency control,” J. Assoc. Comput. Ma& 29 (1982),
998-1006.

Papadimitriou, C.H., “Concurrency control by lock-
ing,” SIAM J. Comput. 12 (1983), 215-226.

10. Silberschatz, A., and Kedem, Z., ‘Consistency in hier-
archical database systems,” J. Assoc. Comput. Mach.
27 (1980), 72-80.

11. Silberschatz, A., and Kedem, Z., “A family of lock-
ing protocols for database systems that are modeled by
directed graphs,” IEEE Trans. Software Eng. SE-S
(1982), 558-562.

12. Ullman, J.D., “Principles of database systems,” Com-
puter Science Press, Maryland (1982).

13. Wolfson, O., “A safe improvement of concurrency over
two-phase-locking,” manuscript, 1984.

