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Abstract. Assume that a set of derived relations 
are available in stored form. Given a query (or 
subquery), can it be computed from the derived rela- 
tions and, if so, how? Variants of this problem arise in 
several areas of query processing. Relation fragments 
stored at a site in a distributed database system, data- 
base snapshots, and intermediate results obtained dur- 
ing the processing of a query are all examples of 
stored, derived relations. In this paper we give neces- 
sary and sufficient conditions for when a query is com- 
putable from a single derived relation. It is assumed 
that both the query and the derived relation are 
defined by PSJ-expressions, that is, relational algebra 
expressions involving only projections, selections, and 
joins, in any combination. The solution is constructive: 
not only does it tell whether the query is computable 
or not, but it also shows how to compute it. 

1. INTRODUCTION 

Consider a database consisting of a number of 
(conceptual) relations R,,R,,...,R,, and assume that 
the extensions of the conceptual relations are not avail- 
able in stored form. Instead we have available, in 
stored form, a set of n derived relations, defined by 
E,,Ez,...,E, where each Ei is some expression in rela- 
tional algebra. We are given a query E,, that is, a 
relational algebra expression over R ,,R,,...,R,. The 
problem is then the following: Can E, be computed 
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from the available, stored relations defined by 
E,,E,,..., E, and, if so, how? 

This paper represents a first step towards the 
solution of this problem. We give necessary and suffi- 
cient conditions for deciding whether E, can be com- 
puted from a single derived relation E,, for the case 
when EO and E, are both PSJ-expressions. A rela- 
tional algebra expression is a PSJ-expression if it 
involves only the operations project, select, join and 
Cartesian product. This may seem a very restricted 
class of expressions, but that is not the case. PSJ- 
queries (queries that can be represented by a PSJ- 
expression) are extremely common in relational data- 
base systems. Whatever the user query language, 
almost every query is either a PSJ-query or has one or 
more subqueries which are PSJ-queries. 

Different variants of this problem occur in several 
areas of query processing. The differences arise from 
different interpretations of stored, derived relations. In 
a distributed database context, derived relations can be 
interpreted as relation fragments stored at a site (or 
group of sites). This variant of the problem has been 
studied extensively, but normally under the assumption 
that each fragment is derived from a single relation 
using only selections and projections [CP84]. Data- 
base snapshots are another example of stored, derived 
relations [ALgO]. 

The solution to this problem also has applications 
in “traditional” query optimization [MA83,UL82]. 
Here a derived relation can be interpreted as an inter- 
mediate result obtained in the process of computing a 
query. If some other part of the same query can be 
“easily” computed from intermediate results 
E,,E2,...,E,, query processing may be speeded up. It 
may even be worthwhile retaining certain intermediate 
results, if the chance that they can be used in subse- 
quent queries is high enough to warrant the extra 
storage space [FS82]. In this context the problem has 
been studied (usually) under the restriction that E. 
must exactly match one of the expressions E ,, Ez,..., E,. 

Our main motivation for studying this problem 
stems from a different area: physical database design 
for relational databases. In current relational systems 
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the structure of the stored database is normally 
required to be in one-to-one correspondence with the 
conceptual schema. By this we mean that each con- 
ceptual relation exists as a separate stored relation 
(file). To speed up query processing some auxiliary 
access structures may be added: secondary indexes, 
join indexes, record linking, etc. [AS76,BL81,SW76]. 
This way of structuring the stored database is a simple 
and straightforward solution. However, it has the 
effect that the processing of a query almost always 
requires data to be collected from several physical 
files. 

Instead of directly storing each conceptual rela- 
tion, we suggest a more flexible approach where the 
physical database is structured as a set of stored, 
derived relations. The choice of stored relations should 
be guided by the (actual or anticipated) query load, so 
that frequently occurring queries can be processed 
rapidly. If it is advantageous to do so, some data may 
be redundantly stored in several physical relations. 
The structure of the stored database, and changes to 
the structure, should be completely transparent at the 
user level, and user queries and updates expressed 
solely in terms of conceptual relations. The system 
must be capable of automatically transforming a user 
query into an equivalent query against stored relations, 
and a user update to updates of (one or more) stored 
relations. To make the suggested approach viable the 
two fundamental problems of query transformation and 
update transformation must be solved. This paper is a 
first contribution towards the solution of the query 
transformation problem. 

The idea of not necessarily having a one-to-one 
correspondence between conceptual relations and 
stored relations has so far received little attention (out- 
side the area of distributed databases). Joining rela- 
tions is often the most costly operation in query pro- 
cessing. Schkolnick and Sorensen [SS81] studied the 
effects of storing relations in prejoined form (called 
denormalization). Motivated by the availability of spe- 
cial hardware capable of rapid selection and projec- 
tion, Babb proposed a “Joined Normal Form” [BA82]. 
It amounts to storing the whole database as one single 
relation, which is the join of all conceptual relations. 
Roussopoulos [R082] originated the idea of view 
indexing. A view index represents a materialized user 
view, containing pointers to the tuples contained in the 
view. A view index is essentially an indirect version of 
a derived relation. 

A classical problem related to the one studied 
here is that of query containment: given two queries 
defined by relational expressions Et, and El, is the 
result of Ed a subset of the result of E r? This prob- 
lem, and the closely related problem of query 
equivalence, have been solved for certain classes of 
queries: conjunctive queries and tableau queries. For 

an overview and references, see the chapters on query 
optimization in [MA831 or [UL82]. Note, however, 
that the problem studied here is not equivalent to that 
of query containment. In addition to containment, we 
impose the further requirement that it must be possi- 
ble to compute the result of E. from the result of E ,. 

2. NOTATION AND BASIC ASSUMPTIONS 

A relation scheme is a list of attribute names. A 
database scheme is a set of relation schemes. An 
instance (or extension) of a relation is a set of map- 
pings which maps a set of attribute names to values or, 
equivalently, a set of tuples. An instance (extension) 
of a database is a collection of instances of all relations 
in the database schema. When there is no risk of con- 
fusion we will use the shorter “relation” instead of 
“instance of a relation”, and correspondingly for data- 
base. 

Derived relations and queries are here expressed 
in relation algebra. The following notation will be 
used: 

RXS 

R{Cl 

RM ,, . . ..A.1 

RICIS 

a(C) 

Cartesian product of rela- 
tions R and S. 

Select all tuples from rela- 
tion R satisfying condition 
C (a boolean expression). 

Project relation R onto 
attributes A ,,..., A,. 

Join relations R and S 
over condition C, that is, 
R (CIS = (R XS){C}. 

The set of all attributes 
appearing in condition C. 

The logical connectives will be denoted by + for OR, 
juxtaposition (multiplication) for AND and 1 for 
NOT. A tuple t satisfies a condition C, if C evalu- 
ates to true when each attribute name in C is replaced 
by the corresponding attribute value from t. An 
instance of a relation satisfies C if all tuples in the 
relation satisfy C. Projections and selections are 
assumed to have higher precedence than binary opera- 
tions. 

A relational algebra expression has relation names 
as operands and relational algebra operators as opera- 
tors. If each relation name is replaced by a 
corresponding instance the expression is evaluated and 
the result is a derived relation. The result of evaluat- 
ing an expression E over an instance d of database 



D = {R,,R2 ,..., R,] will be denoted by V(E,d). An 
expression is considered to be defined over the full 
database scheme, even though the expression may only 
refer to a subset of the relations in the scheme. 

We state the following without proof: Every 
(valid) expression constructed from an arbitrary 
number of Cartesian products, joins, selections and 
projections (PSJ-expression) can always be transformed 
to an equivalent expression in a standard form consist- 
ing of a Cartesian product, followed by a selection, fol- 
lowed by a final projection. One can easily see that 
this holds by considering the query tree corresponding 
to a PSJ-expression. The standard form is obtained by 
first pushing all projections to the root of the tree and 
thereafter all selection and join conditions. 

From the above it follows that any RSJ-expression 
E can be written in the form 
E = (R,XR,X ... XRk) (C) [A,,A2 ,..., A,] where 
R ,, R,,..., Rk are relations, C is a selection condition 
and A,,A~ ,.,., A, are the attributes of the final projec- 
tion. We can therefore represent any PSJ-expression 
by a triple E = (A,R,C) where A = {A,,Az ,..., A,] is 
called the attribute set, R = {R1,R2,...,RI(] the rela- 
tion set or base, and C the selection condition. 

Example: Consider the following expression 
defined over relations R(A,B,C,D) and S(E,F): 

((R[A,Bl {A>lOj) 1 B=F I(SiE>20))) [A,Fl 
= (R XS) ((A>lO) (B=F) (E>20)] [A,F] 

= ({A,F],{R,S),(A>lO) (B=F) (E>20)). 

The triple representation inherits the naming 
problem of relational algebra: if a relation R occurs 
more than once in the relation set, then a reference to 
one of its attributes in C or A is ambiguous. The 
ambiguity can be resolved by appropriate renaming of 
repeated relation. This problem will be discussed 
later, but until further notice we will assume that no 
relation occurs more than once in the relation set of an 
expression. 

3. DERIVABILITY AND COVERAGE 

A user query is expressed in terms of conceptual 
relations. Query transformation consists of transform- 
ing a user query into an equivalent query against 
stored relations. This process should be done automat- 
ically by the system and be completely transparent at 
the user level. Once an equivalent query has been con- 
structed, the task of “optimizing” its evaluation still 
remains. This problem has been studied extensively 
and all the known techniques apply [MA83,UL82]. 
We are not at this stage concerned with constructing 
efficient queries; the only goal at this stage is to be 

able to correctly transform queries. 
Both stored, derived relations and queries are 

represented by relational algebra expressions. Stated 
in its most general form, query transformation amounts 
to finding a relational algebra expression 
W,,Ez,..., E,,) which generates the same result as a 
given query Eo, for every instance of the database. 
Solving the problem in its general form appears 
extremely hard. We will reduce it to a more manage- 
able level by imposing a certain restriction on the 
deriving expression F. The essence of the restriction is 
that “self-joins” are not allowed in F. A “self-join” is 
an expression of the type Ek 1 C 1 Ek or Ek X E, {C ]. 
In our opinion this is not a severe restriction; “self- 
joins” appear to be rare and of limited use. 

Definition. (Derivability) Consider a set of rela- 
tional algebra expressions { Eo, E i,..., E, ) defined over a 
database schema D = ~R,rR~v..rR,,,l, and let 
{Ei,qEi,,...,Ei,), k in, be a subset of {E,,E, ,..., E,]. 
We say that E, is (algebraically) derivable from 
(E 1, E2 ,..., E, ], over the base Ei,, Ei, ,..., Ei,, if there 
exists a relational algebra expression F, containing no 
joins or Cartesian products, such that 

V(E,,d) = V(F(Ei, X Eiz X X Ei,),d) for every 
instance d of the database D. 0 

Note that the definition does not completely 
prohibit joins or Cartesian products; it only forbids 
“self-joins”. There are no restrictions on the use of 
projections, selections and the standard set operations. 
An output tuple of F may be constructed by combin- 
ing any tuple from Ej with any tuple from E, pro- 
vided that j # 1. However, combining a tuple from 
Ej with another one from Ej is not allowed. Note 
also that F may not be unique. If the database con- 
tains redundant data, there may be many different 
ways of transforming the query. 

If the relations defined by E,,E2,...,E, do not 
contain “sufficient” data to construct Ea, no deriving 
expression F can exist. If we can show that “suffi- 
cient” data exist, then we can proceed to the more dif- 
ficult problem of constructing a deriving expression F. 
Saying that E,, E,,...,E, contains “sufficient” data 
vaguely means that “all the data values of E, can be 
found in E,,E, ,..., E, “. More precisely it means that 
any value (combination of values) of an attribute (set 
of attributes) found in a tuple in E. can also be found, 
under the same attributes, by taking some combination 
of tuples from E,,E,,..., E,. Consider the following 
example: 

Example: E,, is defined over R, and R,, and its 
attributes are [R1.A,RI.B,R2.C]. Assume that a tuplc 
(10, 5, -3) exists in E,-, for some instance of R, and 
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R2. If the value 10 is not contained in any projection 
of E ,, Ed ,..., E, over R ,.A for the same instance of R, 
and RZ, E,, cannot be derived from EI,E2,...,E,,. The 
same holds if the tuple (10, 5) cannot be found in any 
projection over [R l.A, R ,.B]. 0 

This idea is formalized in the following two defin- 
itions. 

Definition. Let r = (~,,%9...,Um) and 
s = (b,,b, ,..., b,), m 5 n, be two tuples of relations 
R(A,,A~,...+%,,) and S(B,,B2 ,..., B,), respectively. 
Tuple r is said to be a subtuple of s if for every ai, 
lSi<m, there exists an attribute j, 1 5 j I n, 
such that ai = bj and Ai = t?’ and no two attributes !’ 
in r map to the same attribute m s. •i 

Definition. (Coverage) Let (Eo, E,, El,..., E, 1 be a 
set of relational expressions defined over a common 
database schema D = {R,,Rp..,R,] and let 
{E,,,Ei *,...) Ei,j be a subset of {E,,El,..., E,]. We say 
that EO, is covered by E,,E2,...,E,, over the base 
{Ei,,Ei,,..., Ei,), if for every instance d of D and every 
tuple to E VE,,d) there exists a tuple 
t E V(Ei,XEi2X . X Eik,d) such that to is a subtu- 

pleof t. 0 

It is easy to see that derivability implies coverage. 
Coverage is a necessary, but not sufficient, condition 
for derivability. Testing coverage is much easier than 
testing derivability as we will see. If the coverage test 
fails, there is no need to consider derivability. 

4. TESTING THE VALIDITY OF BOOLEAN 
EXPRESSIONS 

We will in the sequel frequently need an algo- 
rithm for testing whether a given boolean expression is 
valid, that is, always evaluates to true. Such an algo- 
rithm is developed in this section, for formulas contain- 
ing no arithmetic expressions. It is based on the same 
idea as an algorithm given by Rosenkrantz and Hunt 
[RH80]. Our algorithm is faster but more restricted 
than theirs. 

We will consider boolean expressions constructed 
from variables, constants, comparison operators 
(<, =, >), boolean connectives and parentheses. An 
atomic conditions is an expression of the form x copy 
where x is a variable, cop is one of ‘<‘,‘=‘, or ‘>’ 
and y is either a variable or a constant. If y is a con- 
stant, the condition is said to be a simple condition, 
otherwise a connective condition. Negation is not 
needed; any expression containing negation can be 
reduced to one without negation. Without loss of gen- 
erality, all variables are assumed to be defined over 
some finite set of integer values. Variables correspond 
to attributes and in practice all attributes have a 

discrete, finite domain. Any discrete, finite domain 
can be mapped into a finite set of integer values. 

Let C(x~,xz,...,x,) be a boolean expression, as 
explained above, with variables x,,x~,...,x,, that is, a 
formula in first order logic. A formula is valid if 
vx1vx* ’ . Vx,(C(xl,xZ ,..., x,)) holds, that is, if it 
evaluates to true for all possible values of x,, x2,..., x,. 

Every xi, i = l,2 ,..., n is restricted to its domain, of 
course. When there is no risk of confusion we will use 
the shorter notation VX,,X~,...,X,,(C). 

From elementary logic we know that 
vx,,xz . . . x,(C) 0 je X1,X2. . . x,,(l C). Now expand 
1 C into disjunctive form, that is, let Y C 
= B,+B*+ ... + B, where each Bi is of the form 
Bi = Bi, Bi2 . . Bik, and each Bij is an atomic condi- 

tion. The quantifiers can be distributed over the &‘s, 
and we obtain the following equivalences: 

VXl,X~,...,X,(C) c) 

~x,,xz,...,x,(-r C) Q 

JlXl,XZ ,..., X”(B, +k?z+ . ‘. +B,) c=) 

(3 x1,x2. . . X”(B,))@ Xl,X2,...,X,(B~)) 

. ..a x,,x*,...,x,(B,)). 

To prove the validity of C it is sufficient to prove, for 
each B/ separately, that Bi is inconsistent (no value 
exists such that Ei evaluates to true). If, for any one 
of the Bi’s, we can find a value x’,,x’~,...,x’~ such that 
Bi is true, then it immediately follows that C is not 
valid. Finding a value that satisfies all conditions in 
Bi, or proving that no such value exists, can be done 
by the algorithm explained below. 

Let B be a conjunctive condition with variables 
XI,X2v..,X,. The first step of the algorithm is to define 
for each variable a permissible range which is con- 
sistent with its domain and the simple conditions of B. 
Consider a variable xi and let its domain be 
{f.,,L, + I,..., H,, j. Denote its permissible range by 
rx, = @x,,bx,). 

For each variable xi of B we initialize its range 
to TX, = (&,H,,). Then we adjust these initial ranges 
by considering each simple condition of B in turn. 
Let w denote a simple condition involving xi. The 
permissible range of xi is then adjusted as follows: 

(i) if w = (xi > c) then rx, : = (max(a,,,c+ l), b,) 

(ii) if w = (xi < c) then rx, : = (a,,,min(b,,c- 1)) 

(iii) if w = (xi = c) then rx, = (c,c). 

At the end of this step we have for each xi a permissi- 
ble range which is consistent with its domain and the 
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simple conditions. If the range of any one variable xi 
is empty then the condition B is (trivially) incon- 
sistent. A range rX, = (ax,,bx,) is empty if ox, > b,. 

Example: Consider the conjunctive condition 

B’ = (x > lO)o, t20)(z > 15)(x <25)(x Cy) 

(z<Y)(x-)(t-) 

where x,y,z are restricted to the domain (0,1,...,50). 
After the first step we have the permissible ranges 
rx = (11,24), = (0,19), = (16,50) and 
rl = (0,50), so Bjr!s not trivially izconsistent. 0 

If the condition B is not trivially inconsistent we 
proceed to the next step, in which the connective con- 
ditions are taken into account. A directed graph is 
constructed where nodes represent variables and edges 
represent connective conditions of the form x > y. A 
node may represent several variables, as explained 
below. Each node also has an associated permissible 
range, which initially is the range obtained from the 
previous step. 

We will denote a node by N(v; (a,b)) where v is 
the set of variables associated with the node and (a,b) 
is their permissible range. For each variable x in B a 
node N(X; (a,,b,)) is created, where (ax,&) is the 
permissible range obtained from the previous step. 
Next we merge nodes by using connective conditions of 
the form x = y. Whenever there is a condition 
x = y, we locate the node in whose variable set x 

occurs, and correspondingly for y. Denote these two 
nodes by N,(v; (u,b)) and ~,,(a; (c,d)), respectively. 
Node NZ is modified to 
N,(v U 1.4; (max(u,c),min(b,d))) and N,, is eliminated. 
This step terminates when all connective conditions 
with equality have been processed. If any node now 
has an empty range, condition B is inconsistent and 
the processing of E stops. Otherwise, there is still at 
least one value that satisfies all simple conditions and 
all connective conditions with equality: the value 
obtained by setting each variable equal to the lower 
bound of the permissible range of the node in which 
the variable occurs. 

In the final step we take into account connective 
conditions of the form x > y. For each condition 
x > y we add an edge from the node in whose vari- 

able set y occurs to the node in whose variable set x 
occurs. For our example we obtain the following 
graph. 

For a variable to have a value that satisfies all 
connective conditions, the value must be consistent 
with the values of all its predecessors in the graph. 
From the graph above we see that the lowest possible 
values are t = 0, x = 11, z = max(16, ll+l, O+l) 
= 16 and y = max(O, 11-t-1, 16+1, 11+2,0+2) = 17. 
This value satisfies all the conditions of B’ and conse- 
quently we have found one value for which B’ evalu- 
ates to true. However, if there had been an additional 
condition t > 20, then the minimum value for y 
would be y = 23 = max(O, 16+1, 11+2, 21+2). This 
is not a permissible value for y because the upper 
bound is 19, and consequently B’ would be incon- 
sistent. 

Assume first that the graph obtained does not 
contain any cycles. Finding the minimum permissible 
value for each variable can then be done by processing 
the nodes in a certain order. Consider a node and its 
immediate predecessors in the graph. If the minimum 
permissible value for each immediate predecessor has 
been determined, then the minimum permissible value 
for (all the variables of) the node is 1 plus the highest 
of the minimum permissible values of all its immediate 
predecessors. Any lower value will violate at least one 
of the conditions. Whenever there are no cycles in the 
graph, we can easily find a processing sequence such 
that no node is processed before all its predecessors 
have been processed. First find all nodes that have no 
immediate predecessors and mark them. Then repeat- 
edly select any node having only marked immediate 
predecessors, adjust the lower bound of its range and 
mark it. If at any stage during this process the range 
of a node r becomes empty, condition B is incon- 
sistent (because there is no value for the variables of t 
that satisfies all the conditions). If, when all nodes 
have been processed, all permissible ranges are non- 
empty, then there exists at least one combination of 
values that satisfies all the conditions: the one 
obtained by setting each variable equal to the 
minimum value in its permissible range. 

Now consider the situation when there are one or 
more cycles in the graph. Then there is at least one 
node t which is its own predecessor. Because all the 
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predecessors of a node must be processed before a 
node can be processed, node t will never be processed. 
This will in the algorithm lead to a situation where 
there are still unmarked nodes in the graph, but they 
al1 have at least one unmarked (immediate) predeces- 
sor. This situation is easily detected. A cycle in the 
graph can arise only when there is a subset of connec- 
tive conditions in B such that 

(xi, > xi2)(xi2 > xii) . . (xi* > xi,). This set of condi- 
tions can never be satisfied and consequently B is 
inconsistent. 

The above process for testing the inconsistency of 
a conjunctive boolean expression is summarized in the 
algorithm INCONSISTENT below. It is possible to 
strictly prove its correctness but we will not include 
the proof here. However, we think that its correctness 
is fairly obvious from the way it was constructed. 

The validity of a universally quantified boolean 
expression can then be proved, or disproved, by the 
simple algorithm VALID-C which follows. 

procedure VALID-C(C : boolean expression): 
boolean 

{C is a boolean expression as explained 
in the beginning of this sectionl 

convert -,C into disjunctive form, 
that is, -C = B,+B2+ ‘.. +B, 

for each Bi do 
if not INCONSISTENT (Bi) 
then return (false) 

od; 
return (true); 

end (VALID-C ] 

procedure INCONSISTENT (B : boolean 
expression): boolean 

{B must be of the form B = Cl Cz. . C,,, where 
each C, is an atomic condition. Each variable x in B 
must have a finite range (L,,H,).~ 

G: directed graph with nodes having the format 
N(v ;(u,b)) where v is a set of variable names and 
(a,b) is the permissible range of the variables; 

begin 

for each variable x in B do 
insert a new node N,((x] ; (L,,H,)) into G; 

od; 

for each simple condition (X op C) i, 
find node N,((x l ; (a,,&)); 
case op of 

<: (ux,bx) : = (axrmin(b,,c- 
= : (ux,bx) : = (c,c): 
> : (ux,b,) : = (max(u,,c + 1) 

end; 
if a, > b, then return (true); 

od; 

n B do 

1)); 

,b,); 

for each connective condition (x = y) in B do 
find nodes N,(v ; (u,b)) and N,,(u ; (c,d)) 
suchthat XEV and you; 
v : =vuu; 
(u,b) : = (max(u,c),min(b,d)); 
delete N,, from G ; 
if a > b then return (true); 

od; 

for each connective condition (x > y) in B do 
find nodes N,(v ; (u,b)) and N,,(u ; (c,d)) 
suchthat XEV and JJEU; 
insert into G an edge from N,, to N,; 

od; 

while G is not empty do 
find any node NP(v ; (up,bp)) 
without incoming edges; 
if none exists then return (true) ; 
{detected a cycle] 
for each edge s starting from Np do 

let N,(u,(u,, b,)) be the end node of s; 
(u,,b,) : = (max(u,,up + I),b,) 
if a, > b, then return (true); 

od 
delete node NP from G; 

od; 
return (false); 

end (INCONSISTENT]; 

Testing the validity of a boolean expression is 
equivalent to the satisfiability problem for boolean 
expressions. It is well-known that testing satisfiability 
may, in the worst case, take exponential time. How- 
ever, we do not consider this to be a very serious prob- 
lem. Selection expressions are normally short, and the 
exponential explosion occurs only for expressions 
involving several “not equals” [RH80]. 
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5. TESTING COVERAGE 

We are now ready to consider the question 
whether a PSJ-expression E, is covered by another 
PSJ-expression E , . Coverage means that every tuple 
obtained by evaluating E, must occur (as subtuples) in 
the relation obtained by evaluating El, and that this 
must hold for every instance of the database. Before 
stating the main theorem we need the notion of an 
extended attribute set. 

Definition. Let C be a boolean expression with 
variables x1,x2 ,..., x,,yI,y2 ,..., y,. The variable yi, 
llilm, is said to be uniquely determined by 
x,,x2 ,..,, x,, with respect to C, if the following holds: 

variables y,,y2,...,yk are guaranteed to be unique, 
because each variable y,,y2,...,yL is uniquely deter- 
mined by x1,x2 ,..., x,. In other words, we have 
correctly reconstructed the missing values of 
Yl*Y29-.9Yk* The following examples illustrates the dis- 
cussion. 

Example: Let 
E = ({A }.R,(B =A)((A >7)(C=5) + (A t5)(C= 10)) 
where R = (A,B,C,D). One can easily show that B 
and C (but not D) are uniquely determined by A. 
Now consider the following instance of R and the 
result when E is applied to that instance: 

R: A B C D E: A 

vx ,,..., x,,y I,..., ym,yl/ ,..., Y,‘(C(X,,...,X,,Yl,...,Ym) 

C(X,,...,X,,Yl’,...,Y,‘) * Yi = Yi’) •l 

10 10 5 4 
10 11 5 6 
11 11 7 4 
4 4 10 6 

Let C’ stand for C(X~,...,X,,Y I’....,Y,,,‘). 3 3 14 6 

The above condition is equivalent to 
-((y,. > y/i + yi < Y’~)C C’) which can be tested using 
the algorithm VALID-C. The attribute set of a 
derived relation can be extended to include all vari- 
ables uniquely determined by those already in the 
attribute set. 

Definition. Let E = (A,R,C) be a PSJ- 
expression and let B be the set of all attributes 
uniquely determined by the attributes of A. Then 
A u B, denoted by A +, is called the extended attri- 
bute set of E. 0 

The set B in the definition above must obviously 
be a subset of u(C). An attribute not mentioned in C 
cannot be uniquely determined by the attributes of A. 
The importance of the notion of an extended attribute 
set stems from the fact that given a tuple from E we 
can correctly derive the missing values of all the vari- 
ables in the set B. The procedure is explained below. 

Let A = (x,,xz,....x,) and a(C) -A 
= ~YI9Y29...~Yrnl~ Assume that yl,y2 ,..., ykr k I m, 
have been shown to be uniquely determined by 
XI,X21...,X,. We are given a tuple t = (xp,xF,...,x,O) 
from the relation defined by E. The values of the 
variables y,,...,ym are not known, but they must have 
been such that the tuple t, before the projection, satis- 
fied the condition C. In other words, the following 
must hold: 3y1,y2 ,... ,ym(C(xp, . . . . x,~?,YI,Y~,...,Y,,,). 

This is equivalent to +vy,,y2,...,y,(X)). The 
algorithm VALID-C is now applied to Vyl,...,y,(-C), 
modifying it to return the values found. Denote the 
values returned by y~,y~,...,y~. Such a value combi- 
nation always exists, because otherwise t would not 
have satisfied C in the first place. The values for the 

10 
4 

Each tuple appearing in the result of E must have 
satisfied the selection condition. For the first tuple in 
E we can conclude that B = 10 (because of the con- 
dition B = A) and that C = 5 (because A > 7). In 
the same way, we find for the second tuple that 
B = 4 and C = 10. 0 

Lemma. Let E = (A,R, C) be a PSJ-expression. 
Given a tuple from E, the value of an attribute y, is 
guaranteed to be uniquely reconstructible if and only 
ifyEA+. 0 

Sketch of proof: The procedure above for recon- 
structing missing values shows that the condition 
y E A + is sufficient. To show that it is also neces- 
sary, assume that y 4 A +. Then we can find two 
tuples t0 and t, over the base of E (the Cartesian 
product of all relations in R) such that they agree on 
all attributes in A but differ at least on the attribute 
Y. This follows directly from the definition of 
“uniquely determined” above. The database instance 
obtained by projecting t0 and t, onto the attributes of 
each relation in R is a valid instance. When t,, and t, 
are projected onto the attributes of A they will map to 
the same tuple, because they agree on all attributes of 
A. Given only this tuple from E (and the condition 
C) the value of y cannot be uniquely determined. 
There are at least two different values of y, which 
when combined with the given tuple satisfy C. 0 

Given a tuple in E, we know the values of all 
attributes in A and we can correctly determine the 
values of all other attributes in A+. The above 
lemma shows that A+ is the maximal set of attributes 
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whose values can be determined from a tuple in E. 
The following theorem gives necessary and sufficient 
conditions on coverage. Note the requirement that all 
instances of the relations involved must be non-empty. 

Theorem 1. Consider two PSJ-expressions 
E,, = (Ao,Ro,Co) and El = (A,,R,,CJ defined over 

a database where every relation in R, U R, is non- 
empty. Let a(C,) U a(C,) = {x1,x2,...,x,j. Then E,, 
is covered by E, if and only if A0 c A, + and 
t/x*,x*, . . . . xn(Co(xl,x*, . . . . x,) * C1(XIrX*,...,Xn)). n 

Sketch of Proof: First extend the relation set of 
E,, and E, to R. U R, so that they are defined over 
a common base (Cartesian product). Adding a new 
relation S to the relation set of an expression does not 
change the result of the expression (as long as the new 
relation always contains at least one tuple). A tuple t 
in the base before adding S will give rise to a number 
of “copies” in the extended base, where the copies 
differ only in the values of the attributes of S. If t 
satisfied a given selection condition, then all its 
“copies” will satisfy the condition as well. If t did not 
satisfy the condition, then none of the “copies” will 
satisfy it. The added attributes have no effect on the 
selection. The final projection will reduce all “copies” 
of t to a single tuple, exactly the same one as the pro- 
jection of t. 

Assume that A, _C A, + and that the implication 
holds. The fact that the implication holds, guarantees 
that each tuple t in the common base satisfying Co, 
will also satisfy C,. Because A0 c A, + , the projec- 
tion of t onto A0 is a subtuple of the projection of t 
onto A, + . Consequently EO is covered by E ,. 

It is obvious that the condition A0 c A, + is 
necessary for coverage. Now assume that EO is 
covered by E, and that A, c A, + , but that the 
implication does not hold. Then there must exist a 
tuple t such that it satisfies C, but not Ci. Now con- 
sider the database instance where each relation 
Si E R. U R, consist of the single tuple obtained by 

projecting t onto the attributes of Si. When EO is 
evaluated over this instance, the result will be one 
tuple: the projection of t onto Ao. However, when 
evaluating E, over the same database instance the 
result will be the empty set. Hence E, is not covered 
by E, for this instance, contradicting the assumption 
that EO is covered by E, for every instance of the 
database. 0 

By the above theorem testing coverage is reduced 
to two simpler tests. Note that it is not always neces- 
sary to construct A, + . If A, c A, the first condition 
is trivially satisfied. If this is not the case, then we 
must test whether every variable in A0 - A, is uniquely 
determined by the attributes in A,. Let x be a vari- 

able in A0 - A,. A first simple test is to check whether 
x is in u(C,). If x is not mentioned in C,, then it 
cannot be uniquely determined by those in A,. 

Note that Theorem 1 can be used to test 
equivalence of relational expressions for a wider class 
of expressions than those considered in [AS791 and 
[SY81]. 

6. TESTING DERIVABILITY 

The fact that an expression EO is covered by a 
derived relation El does not automatically guarantee 
derivability. All the necessary tuples are guaranteed 
to exist in E,, but it may be impossible to select out 
the ones belonging to E,, as illustrated by the follow- 
ing example. 

Example: Consider a database consisting of the 
single relation S(A ,B,C). Let Eo 
= (iA l,~s~,(B~1wC-G!0)) and 
E, = ((A,C),{Sj,B>5). It is easy to see that E. is 

covered by E, because every tuple satisfying 
(B>lO)(Ct20) will automatically satisfy B > 5. 
However, to compute E, from the derived relation E,, 
attribute B is needed (to further qualify the tuples) 
and B is not present in E, after the projection. 
Hence E. cannot be derived from E,. 0 

Consider E. = (Ao,Ro,Co) and E, = (A,,R,,C,) 
and assume that E, is covered by E ,. If 
a(Co) c A, + , that is, if all the attributes needed to 

evaluate the condition Co are present in A, +, it is 
obvious that E, can be derived from E ,. However, 
even when some attributes in u(C,) are missing from 
A,+ it may still be possible to derive E. from E,. 
The missing attributes may not be needed. In the 
example above that would be the case if the condition 
in E. were B > 5 instead of B > 10. To handle this 
type of situation we introduce the notion of essential 
and nonessential variables. 

Definition. Consider a boolean expression C with 
variables x1,x2 ,..., x,. The variable xk is said to be 
nonessential if the following holds 

vx I,..., xk ,..., XnrXk’(c(X~,...,Xk ,..., k,) 
= c(x I,..., Xk’,...,&)) 

Otherwise xk is an essential variable of C. Cl 

A nonessential variable can be eliminated from 
the condition simply by replacing it with any value 
from its domain. This will in no way change the value 
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of the expression. However, for derivability we need 
to know whether a variable in a condition is essential 
given that another condition holds. This is covered by 
the next definition. 

Definition. Let Co and Cl be boolean expressions 
with variables xi, x2 ,..., x,. The variable xk is said to 
be computationally nonessential in c,-, with respect to 
C, if the following condition holds: 

vx I,..., xk ,..., &,,xk’ 

=+ c,,(x I,..., xk ,..., x,) = c,,(x I,..., xk’,..., x,)) q 

The basic idea of this definition is that the exact 
value of xk does not matter when evaluating Co. It 
can be replaced by any value xk’ as long as the value 
xk’ is such that Cl is satisfied. The algorithm 
VALID-C in section 3 can be used to test whether the 
condition holds. Let C{ stand for C,(xi ,..., xk’ ,..., x,) 
and similarly for Ce’. Then the condition is equivalent 
to 

t/x I,..., xk ,111, x,,,xk’ 

(-(C, C,‘(Co + cox-ccl+ -Cd)) * 

to which the algorithm can be applied directly. 

Both definitions above can trivially be extended to 
the case of several nonessential variables by interpret- 
ing xk (and xk’) as Sets of variables. Note ah0 that a 
variable not occurring in C,, is (trivially) nonessential. 

If a variable (or set of variables) y of Co is com- 
putationally nonessential with respect to C,, we can 
correctly evaluate C,, without knowing the exact value 
of y. However, y cannot be assigned an arbitrary 
value in its domain. Consider two PSJ-expressions 
Es = (A,,R,,CJ and E, = (A,,R,,C,) where E, is 

covered by E ,. Let a(C,) = (x1,x2 ,..., x,,,y} where 
{xi ,..., x,} c A, + and y 4 A, + . Assume that we 

have shown that y is computationally nonessential 
with respect to C,. Then y must be one of the vari- 
ables in Cl. Now consider an arbitrary but fixed tuple 
1, = (x,‘,x;,..., x,‘,y’,...) from E, before the projection 

onto A,. After the projection y disappears and its 
exact value in tl is not known. However, we know 
that it was such that t, satisfied Cl. If we somehow 
can find a surrogate value y” such that the tuple t2 
= (XI/,X; ,..., x,‘,y” ,...) satisfies C,, then from the fact 
that y is computationally nonessential it follows that 
c&I/,X;,...,Xn’.Y’) = co(x,‘,x; ,..., x,‘,y”). In other 
words, using the surrogate value y” when evaluating 
Co gives exactly the same result as would have been 
obtained using the correct, but unknown, value y’. 

Example: Let R(A,B,C,D), 
E,-, = ((A,B),{R},(A<50)(B>lO)(C'<40)(D<C)(D>B)) 
and 
= ({A,B,C),(R),(B>lO)(C<4O)(D<C)(D>B)+(B:;)). 
E, covers E. and it is easy to show that D is compu- 
tationally nonessential in Co. Now consider the follow- 
ing instance of the relation defined by E ,: 

E,: A B C 

100 30 35 
20 15 25 
20 4 0 

For the first tuple we can deduce that the missing 
value of D must have been in the range 30 =c D -c 35. 
We can set D to any value in this range, D = 3 1, for 
example. Using D = 31 and the given values for the 
other attributes, we find that the first tuple does not 
satisfy the condition in Eo. For the second tuple the 
range is 15 < D < 25. Setting D = 16 we find that 
the second tuple satisfies the selection condition of Eo. 
For the third tuple, D can be assigned any value in its 
range, D = 0, for example. (The tuple satisfies the 
condition B < 5 independently of the value of D.) 
With D = 0 (or any other value) the tuple does not 
satisfy the condition in E,. The final result of Es is 
hence the single tuple (20, 15). Cl 

Surrogate values for computationally nonessential 
variables can easily be found using the algorithm given 
in section 3. Let A, = (x,x2,..., x,) and let 
s = (xi..... x,,‘) be a tuple in the relation defined by 
E,. This tuple must then have satisfied C,. Let 
a(C,) - A, = {y,,y2 ,..., yk), that is, the variables of C1 

not retained after the projection. All computationally 
nonessential variables of Co are guaranteed to be in 
the set {y I,..., yk 1. Finding surrogate values for 
Yl*YZv~~TYk to be used with the given tuple 
s = (x,/.x; ,..., Xn’) amounts to proving 
~yI,y2~...,yk(CI(x~,x~,...~x~‘,yI~Y2~...,Yk))~ Proving this 
is equivalent to disproving 
tIyi,y2 ,..., yk(Y C,(x,‘,..., x,‘,y, ,..., yk)) which can be 

done by applying the algorithm of section 3 (modifying 
it to return the value found). Surrogate values 
Y :,Y;,...Yk will always exist, because otherwise s 
could not have satisfied C,. It may be necessary to 
compute new surrogate values for every tuple, as we 
saw in the example above. However, when given a 
new tuple, it may be worthwhile trying to use previ- 
ously computed surrogate values. If the attribute 
values of the new tuple combined with the ‘old’ surro- 
gate values satisfy Ci, then there is no need to recom- 
pute the surrogates. 
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The following theorem summarizes the main 
result of this paper: 

Theorem 2. Let E, = (Ao,Ro, C,) and E, 
= (A,,R!,C,) be PSJ-expressions and assume that E,, 
is covered by E ,. Then EO is derivable from E, if 
and only if all variables in u(C,) -A, + are computa- 
tionally nonessential with respect to c,. q 

Sketch of Proof: If the condition holds then E,, 
can be computed in the way discussed above, so the 
condition is clearly sufficient. To show that it is neces- 
sary, assume that a(C,) -A, + is nonempty, that 
y E a(C,) - A, + is a computationally essential vari- 
able, and that E,, is derivable from E,. Then there 
must exist a relational algebra expression F, not 
involving the missing attribute y, which correctly com- 
putes E, from E, for every instance of the database. 
Denote by S the base of E,, that is, the Cartesian pro- 
duct of all relations in R,. Because y is computation- 
ally essential, we can construct two tuples t, and t2 
over S which differ only in the value of y and which 
both satisfy C, but only one, t, say, satisfies Co. Now 
consider the following two database instances: d, 
obtained by projecting t, onto the relations in R, and 
d2 by similarly projecting t2. E, evaluated over I, 
must then result in one tuple, while E, evaluated over 
t2 must be empty. However, evaluating F over 1, 
gives exactly the same result as evaluating F over t2, 
because they differ only in the value of y and the 
expression F does not involve the attribute y. Hence, 
F gives an incorrect result for one of the two database 
instances, contradicting the assumption that E,, is 
derivable from E ,. 0 

Note that the proof does not impose any other 
restrictions on the deriving expression F than that it 
does not involve attribute y. This implies that the 
theorem holds also for expressions that involve “self- 
joins”. In other words, if EO cannot be derived from 
Et then it cannot be derived from E, X E, or 
E,XE,XE,,. . either. 

7. DISCUSSION 

In this section we summarize the main assump- 
tions made and briefly discuss the effect of relaxing 
them. 

One of the main restrictions was not to allow 
“self-joins”. A “self-join” in a PSJ-expression is indi- 
cated by the same relation name occurring more than 
once in the relation set when the expression is con- 
verted into triple format. This restriction can be 
slightly relaxed. Assume that a relation R occurs k, 
k > 1, times in the relation set of EO and that the k 
occurrences have been renamed R’,R2,...,Rk. If the 
same relation occurs in E, with at least the same mul- 

tiplicity, E, may be derivable from E ,. Assume that 
there are 1, 1 2 k, occurrences of R in Et and that 
they have been renamed S1,S2,...,S’. If we can find a 
mapping of the names R’,R2,...,Rk onto a subset of 
S’,S’,...,S’ such that EO is derivable from E, under 
the mapping, the problem is solved. (A mapping asso- 
ciates each name R’,R2,...,Rk with some name 
S’,S’,...,S’.) There does not seem to be any better way 
of solving this than trying all f(1 - 1)...(1 -k + 1) pos- 
sible mappings. 

The algorithm in section 4 works only for a res- 
tricted class of boolean expressions: only those where 
atomic condition are restricted to a comparison of two 
variables or a comparison of a variable with a con- 
stant. Note, however, that none of the results in sec- 
tions 5 and 6 depend directly on this algorithm. Any 
class of boolean expressions can be handled provided 
that we have an algorithm for testing the validity (or 
satisfiability) of expressions of that class. The core of 
such an algorithm is an algorithm for testing whether a 
set of inequalities and/or equalities can all be simul- 
taneously satisfied. Whether such an algorithm exists 
or not, and its complexity, depend completely on the 
type of expressions (functions) allowed in the 
(in)equalities and the domain of the variables. If 
linear expressions with variables ranging over the real 
numbers are allowed, the problem is equivalent to fin- 
dingng a feasible solution to a linear programming 
problem. 

The reader may have noticed that so far we have 
not mentioned keys, functional dependencies, inclusion 
dependencies and so on. What effect will they have on 
derivability? The only constraints taken into account 
in this paper are domain constraints: any combination 
of attribute values drawn from their respective 
domains represents a tuple that potentially may occur 
in an instance of the relation in question. The only 
effect of functional dependencies, multivalued depen- 
dencies, inclusion dependencies, etc. is to impose con- 
straints on what tuples can occur simultaneously in the 
database, thereby reducing the set of permitted data- 
base instances. Clearly the conditions given for deriva- 
bility are still sufficient, but they may not be neces- 
sary. The proof that the stated conditions are neces- 
sary for derivability relies on a certain database 
instance, consisting of two tuples, to produce a con- 
tradiction. In the presence of additional constraints, 
this may not be a permissible database instance. 
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