
A TIME BOUND ON THE MATEXIALIZATION
OF SOME RECURSIVELY DEFINED VIEWS

Yannis E. Ioannidis

Department of Electrical lihgineering and Computer Science
university of Gzlifo?nia

We?-keley, CA 94720

Abstract

A virtual relation (or view) can be defined with a
recursive statement that is a function of one or
more base relations. In general, the number of
times such a statement must be applied in order to
retrieve all the tuples in the virtual relation
depends on the contents of the base relations
involved in the definition. However, there exist
statements for which there is an upper bound on
the number of applications necessary to form the
virtual relation, independent of the contents of the
base relations. Considering a restricted class of
recursive statements, we give necessary and
sufficient conditions for statements in the class to
have this bound.

1. INTRODUCTION

In the past few years major attempts have been
made to improve the power of database systems, in

P
articular those based on the relational model (see
Codd70]). A significant part of this effort has been in

the direction of the formalization, design and
development of deductive databases. As deflned in
[Gal1641 , “a deductive database is a database in which
new facts may be derived from facts that were explicitly
introduced”. A very important difference between a
deductive and a conventional relational database is that
in the former new facts may be derived recursively. This

This research wr8~ supported by the Nauonel Science Foundation under
Grant ECS-8300463

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commelrial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion Erom the Endowment.

Proceedings of VLDB 85, Stockholm

very characteristic of deductive databases is what
makes query processing a difficult task in such an
environment. The main problem that arises is how to
detect the point at which further processing will give no
more answers to a given query. Many researchers have
studied and proposed solutions to this termination

P
roblem for various cases (see, for example, [Naqv64] ,
Reit78] and [ChanBl]). However no single solution is

known for the general problem
A common characteristic among all the proposed

solutions that we are aware of is that the termination
condition relies on the data explicitly stored in the
database. In general this is necessary. However, there
are some cases where a termination condition exists,
which is independent of the particular instance of the
database. The purpose of this paper is to identify and
characterize these cases. Restricting ourselves to a
particular class of recursive statements, we give
necessary and sufficient conditions for the existence of
a data-independent termination condition.

We assume that the reader has some familiarity
with mathematical logic and graph theory, although
nothing extremely involved from these fields will be
needed. Nevertheless, we are going to use some of their
notions without definition. The first few chapters of any
standard text in mathematical logic (e.g. [Ende72])
and graph theory (e.g. [Bond761) provide the necessary
background. Furthermore we assume that the reader is
familiar with relational databases at the level of
[Date621 . Finally, we would refer the reader to. [Gall761
and [~aii61] as extremely valuable sources of
information on the relationship between mathematical
logic and deductive databases.

The paper is organized as follows. In Section 2 we
give the formal framework of a deductive database that
we will be considering. Our investigation is restricted to
a subset of all possible deductive databases. We outline
all the restrictions we are imposing on the database and
explain the reasons for doing so. In Section 3 we
introduce some examples of cases where even though
data is derived recursively, the termination condition is
known a priori (i.e. it does not depend on the explicitly
stored data). Section 4 contains the description of the
graph model we used as a tool to derive our results. In
Section 5, we state the main result of this paper: the
necessary and sufficient conditions for a termination
condition to exist that is independent of the data
explicitly stored in the database. Furthermore we
illustrate our result with a number of characteristic
examples. The theorem is presented here without any
formal proof. For a detailed analysis and proof we refer
the reader to [Ioan65] . In Section 6 we discuss the
importance of our results and investigate ways in which
they can be used to speed up query processing in

219

deductive databases. Finally, in section 7 we summarize
our results and discuss more problems for future work
in the area.

2. ASSIJMPTIONS

The following definitions about first-order formulas
([Ende72]) will be useful in our analysis.

Definition 2.1: A tist-order formula is equivalent to
a I&n Claire if and only if it is of the form

with all the variables appearing in the formula being
(implicitly) universally quantified.

The formula to the left of + will be called the
antecedent and that to the right of + the consequent.
Each one of C. A,, AZ, rEnde721) ,t.

, 1.e 1 1s 0
f ihk$rE an atoe formula (see

where P is a predicate symbol and ti, 1 <i In, is a term
(a variable symbol or a constant symbol or a function
symbol “applied” on one or more terms). Finally, a Horn
clause is recursive when the predicate that appears in
the consequent appears at least once in the antecedent
as well. Throughout the paper we will be using the terms
“formula” and “statement” indistinguishably. We will
also alternate between the terms “predicate” and
“relation”, in light of the discussions in [Gal1781 .

Definition 2.2: Two variables z, y appear under the
same predicate in a statement if and only if there is an
atomic formula P(. . . . z ,..., y ,...) appearing in the
statement, where P is a predicate symbol.

Definition 2.3: Consider a recursive statement
which is equivalent to a Horn clause. The sole predicate
appearing in the consequent of the statement will be
called the recursiue predicate of the statement. Any
other predicate in the statement will be called
non -recurshe.

Detition 2.4: A variable will be called consequent
if and only if it appears under the recursive predicate in
the consequent of the statement. Otherwise it will be
called antecedent.

We consider a deductive database to be a relational
database (in the sense of rCodd70i) enhanced with a
set of Horn clauses. If c there -is some recursive
statement or a set of mutually recursive statements
appearing in the database, then the termination
problem mentioned in Section 1 arises. We will examine
this problem with respect to the processing of a single
recursive statement only.

We restrict our attention to recursive statements
that satisfy the following conditions:

1) The recursive predicate of the statement appears
only once in the antecedent.

2) There are no function symbols in the statement.

3) There are no constant symbols in the statement.

4) No variable appears more than once under the
recursive predicate in the consequent.
Furthermore, no subsequence of the variables
appearing under the recursive predicate in the
consequent is a permutation of the corresponding
subsequence of the variables in the recursive
predicate in the antecedent.

Our motivation behind restriction (1) is simplicity.
Having more than one appearance of the recursive
predicate in the antecedent severely complicates our

analysis. Since most of the recursive statements
expected in a real world system will bave the recursive
predicate appearing only once in the antecedent, we
believe that assumption (1) is reasonable. Function
symbols appearing in a recursive statement may lead to
infinite relations. For example, consider the following
recursive statement containing the ‘+’ function:

P(z) + P(z+l)

Suppose that initially P contained the single tuple <l>.
It is clear that the above statement makes P an infInite
relation containing all the positive integers. Situations
like that are not easily handled in a database
environment, if at all; to avoid them we have imposed
restriction (2). The last two restrictions were imposed
for the sole purpose of getting a uniform result. We
speculate that it will not be very difficult to remove
them thereby generalizing ou; results. In fact,
considering a recursive statement that does contain
constant symbols, we may remove them by performing
selections and projections on the relations involved
(see [Codd70]). The new statement is free of constant
symbols and if applied to the new set of relations
produced by the operations mentioned above, will give
the same result as if the original statement was applied
on the original relations. Regarding restriction (4), it
may appear somewhat artificial, but its meaning will
become clear shortly, when we will describe the way we
model a recursive statement.

A final point worth mentioning here is that without
loss of generality we may assume that there are no
equalities in the statement. If there is any equality
between two variables, we may easily remove it by
replacing one of its variables with the other wherever it
appears in the statement. It is clear that the new
statement is equivalent to the initial one.

Definition 2.4: A recursive statement will be called
simple if and only if it satisfies conditions (1) through
(4) above and does not contain any equality symbol.

3. SOME EXAMPLES

Consider the following simple recursive statement
a:

a: P(z) A Qb.Y) -) P(Y)

Relation Q is a base relation in the system (that is, it is
stored explicitly), whereas P is a derived relation. It is
clear that in addition to a above, there has to be some
non-recursive way to get some initial tuples into P. As
an example assume that this is done with /3:

8: R(z) -+ P(z)

Assume that R is a base relation as well. A natural way
of thinking about the processing of a is iteration. In
particular, the statement is applied once on the initial
contents of the relations involved and produces some
new tuples for P. This process is repeated for these new
tuples and then again, until no new tuples are produced.
It is obvious that in general there is no upper bound on
the number of times this process has to be repeated in
order to get all the derivable tuples for P. If we
consider Q to represent a directed graph and R to
contain some nodes of the graph, then P comes to
contain all nodes reachable from those in R. At step i
of the iterative process described above, we insert into
P all those nodes of the graph that are reachable from
some node in R through a path of length i. Since the
graph may contain arbitrarily long paths, it is not
possible to know in advance how many iterations will be
needed.

220

As another example of a simple recursive
statement, consider 7:

7: Pb)AQ(z)AR(Y) -4p(Yl)
where Q and R are base relations. Clearly. one
application of the statement is enough, regardless of the
initial contents of the relations P, Q and R. Statement
7 derives for P all the tuples in R, as long as there is
initially one tuole in P that ioins with (that is. is eaual
to) some tuple-in Q. Any f&her step‘in the .itera&on
will fail to produce any new tuples for P. So for 7,
unlike a, there exists an upper bound on the number of
times the statement has to be applied to derive all the
tuples possible in the recursive relation, that number
being equal to 1.

As a third example consider 6:

6: P(~J)AQ(Y) -, P(z.Y)

with Q being a base relation. In this case we are takinn
the cartes& product of the projection on the second
attribute of the initial CODY of P with Q. However one
step is not enough for 6. *One more step-will be needed,
where actually the Cartesian product of Q with itself will
be derived for P. Nevertheless, there will be no need for
a third step. Further processing -will only continue
producing the Cartesian product of Q with itself.
Therefore 6. like y, has an upper bound on the number
of times it needs to be applied, only that now the tight
upper bound is equal to two. This is not to say that the
second step of the iteration will always produce new
tuples for P. In fact, if Q is initially empty, not even the
first step will be needed. However the point is that
there exists an instance of Q and P that will need two
steps, whereas there exists no instance of these
relations that will need three.

The examples given above indicate that the way in
which the variables appearing in the statement are
connected with each other through the predicates, plays
an important role on whether an upper bound on the
number of iterative steps needed to produce all
derivable tuples exists or not. In order to study the
properties of these statements we developed a graph
model for them which reflects this connection among
the variables. The description of this model is the
subject of the next section.

4. THEMODEL
Suppose that we are given a simple recursive

statement. We will model this statement by a labeled,
weighted, directed graph constructed as follows:

6)

(ii)

(iii)

To every variable appearing in the statement we
associate a node in the graph.

For every pair of variables x,y that appear under
the same non-recursive predicate Q in the
statement there is a labeled undirected edge (Z ‘y)
in the graph between the corresponding two nodes
z,y, for each such predicate Q. The label of the
edge is Q and its weight is 0.

For every pair of variables z,y such that z appears
under the recursive predicate P in the antecedent
and y appears in the corresponding position of the
recursive predicate in the consequent, there is a
directed edge (z+y) in the graph from node z to
node y with weight 1 and its inverse edge (y+z)
with weight - 1. Each directed edge has label P.

The graph constructed in this way from a simple
recursive statement a will be called the a-graph. The
subgraph induced on the a-graph by the undirected
edges defined in (ii) will be called the static a-graph.

The spanning subgraph of the a-graph with edge set its
directed edges deflned in (iii) will be called the dynamic
a-graph. Finally, the length of a path (cycle) in the
graph is dellned to be the sum of the weights of the
edges along the path (cycle). Regarding undirected
edges, they can be traversed in both directions, as if
there were two opposite directed edges.

As an example consider the following simple
recursive statement:

a: P(z.w) A Q(z.z) A R(wP) A

S(US.Y) + Pb,Y)
The a-graph is shown in figure 4.1.

z u R.0 W

2 Y

Fig. 4.1 : The a-graph

We can now see the meaning of restriction (4) in
Section 2. All it says is that the dynamic subgraph of a
simple recursive statement (restricted on the positive
edges) is a forest. This has the implication that there is
at most one path from any node to any other node in
the subgraph, which proved to be crucial for the
accuracy of our results.

For those familiar with the unification algorithm
(see rRobi651). we would like to indicate an imnortant
relatibnship between that and the graph model analyzed
above. Unification is a first-order theorem proving
algorithm The iterative process used for recursive
statements in Section 2, is equivalent, with respect to
the Anal outcome, to a unification process. In
particular, consider two copies of the statement, with
distinct variable symbols for all the antecedent
variables. That is, consider a as given above and a’ as
given below:

a’ : P(z’,w’) A Q(z’.x) /\ R(w’.u’) A

Clearly a is equivalent to a’, since all we did was to
change some variable names. We can now unify the
recursive predicate in the antecedent of the first copy
with that in the consequent of the second copy (the
unification algorithm would work with the statements
put in clause form but its actions are equivalent to the
ones we describe here). The resolvent is a new simple
recursive statement, which if applied on the initial
instance of the recursive predicate, will give exactly the
same result with the application of the original
statement on the outcome of the first step of the
iterative process. For our example the resolvent comes
out to be:

P(z’,W’) A Q(z’.z) A R(w’,u’) AS(u’,Z,W) A

Q(z.z) A R(w.u) A S(UJ.Y) + J'hsy)

Regarding unification, the dynamic subgraph of a
simple recursive statement captures something very
important. Namely, it shows the substitution of the

221

variables that one has to make to unify the two literals
in the two copies of the statement. For every positive
directed edge of the graph, the tail should be
substituted in the second copy for the head, to obtain
the resolvent. In the example above, z was substituted
for z and UJ was substituted for Y, which is exactly what
the directed edges (z +z) and (w-+Y) in figure 4.1
indicate. We will not be directly referring- to the
unification algorithm but the ideas behind it have a
significant i&act on our analysis.

Finally, there is a notational comment we would
like to make about the graph model described above.
According to the definition, there is a one to one
correspondence between the positive and the negative
directed edges. The positive ones alone are enough to
carry all the information captured by the directed edges
in the graph. In the remainder of this paper we will be
referring to the dynamic subgraph as containing the
positive edges of the graph only, the negative ones
implicitly assumed only whenever the length of a path is
discussed. Likewise, in all the figures we will draw the
positive edges only. Finally, since the weight of some
edge is easily determined from whether it is undirected
(weight zero) or directed (weight one), we will put no
weights on the edges.

5. THE PROBLEM
Let the following be a simple recursive statement.

P(~,.~z....J,) A B + P(Y 14/2....*ym) (1)
The subformula @ is a conjunction of atomic formulas,
none of which involves the predicate P, and all variables
are assumed to be universally quantified. There are two
equivalent ways of expressing (1) in a nonrecursive way.

l The above statement may be viewed as equivalent to
the following infinite sequence of statements:

P,(~,.%w.*%)nB + Pl(Y bY2....9Yrn)
P,(~,,~,....Jm)AB -a JUY l*YW.*Yrn)
P2(~,3,....*Gn)AB + MY l.Y2....~Yrn)

In the above statements, PO denotes the initial contents
of P, PI denotes the tuples “inserted” into P after
applying the recursive statement once, Pz denotes the
tuples “inserted” in P after applying the recursive
statement on the new tuples produced by the previous
application, and so on. The Anal result for relation P is
&Pi. The i-th statement above will be called the i-fh

application of statement (1). Note that this infinite
non-recursive expression of (1) actually reflects the
iterative process to materialize P, along the lines of our
discussions in the previous sections.
. Statement (1) may be also viewed as equivalent to
the statements

where, for all i-2 0. it is @i = /3 a,] and
PO(ZP-‘),ZA*-‘) ,,.., ~2~‘)) = Po(Z,,Z, ,..., Z,)[zPi z , with 66
some substitution of the variables in 8. the details of
which will not concern us for the moment. Note that IJO
maps each variable to itself. In a similar but somewhat
different way than for the applications of (l), the i-th
statement above will be called the (i-1)th expansion of
statement (1). so that the first of these statements,
which is actually the statement itself, is the 0-th

expansion. Each one of these expansions is applied on
the initial contents of P. Clearly. the R’s above are the
same as the ones in the “a&licatidn” view of the
recursive statement, i.e. the tuples produced by the i-th
application of (1) for Pt. are the same as those
produced by the (i -1)-th_expansion of (1) for Pi. In the
end P is again equal to iioPi. Note that the antecedent

of each expansion is equal to that of the previous
expansion with the recursive predicate being replaced
by yet another instance of the antecedent of the
original statement (with different variables, of course).
In terms of the unification algorithm mentioned in
Section 4, the k-th expansion of a simple recursive
statement a is the resolvent of its (k-1)-th expansion
and a itself. In the sequel we will be referring to the
k -th expansion of a recursive statement a as ok. Since
the statement itself is its own 0-th expansion we have
that a = [ro.

In both cases above, the initial statement becomes
equivalent to an infinite number of nonrecursive
statements. However, since in a database environment
all the relations are finite, and because of the fact that
we are considering simple recursive statements only,
which contain no functions, after some point the
nonrecursive statements will stop producing any new
tuples for P, and therefore the whole process eventually
terminates. Moreover the process terminates exactly
when some i-th application (or the corresponding
(i-1)-th expansion of (1)) fails to produce any new
tuples for the first time.

This is an appropriate place for the following
definitions.

DeDnition 5.1: Let a be a simple recursive
statement. The rank of a is defined to be the smallest i
such that LX~ does not produce any tuple not already
contained in some Pj for Olj% i.

Note that, in general, the rank of o is dependent on
the contents of the relations involved in a.

DeDnition 5.2: A simple recursive statement will be
called bounded if and only if there exists a finite upper
bound on its rank jndeuenderlf: of the contents of the
relations involved in the statement.

In view of the previous definitions we can pose our
problem as the following question:

When is a simple recursive statement bounded?
We are also interested in finding this upper bound

in the cases it exists. The answer to this question is
given by the following theorem

Theorem: Let a be a simple recursive statement.
Statement a is bounded if and only if the a-graph
contains no cycle of non-zero length. In that case a tight
upper bound on the rank of a is equal to the maximum
length of any path in the a-graph.

We have mentioned earlier that a detailed analysis
and proof of this theorem may be found in [Ioan85] .
However, we will attempt to sketch the important steps
in our proof there, by means of some examples.

5.1. SUFFICIENCY OF THE CONDITION
Consider formula y from Section 3:

y: -.. -N~)AB(~)AR(Y) + P(Y)

Figure 5.1 shows that the y-graph contains no cycles at
all (excluding that formed through the implicitly
assumed negative edge, which again is of length zero).

222

2 Y
b

Fig. 5.1 : The r-graph

Furthermore the maximum length of any path in the
graph is 1. In our discussion in Section 3, we have
concluded that one step of the iteration process is
enough to derive all possible tuples in P, which is in
perfect agreement with the theorem above.

The fact that the rank of 7 is bound by 1, can be
seen from the first expansion of 7, which is

71: P(z')/\Q(z')/\R(z)/\Q(2)nR(y) + P(Y)
If we substitute z for z’ and z’ for z in yl, the
antecedent of yI becomes equal to the antecedent of 7
with some additional atomic formulas conjuncted to it.
The antecedent of rl being strictly more restrictive than
that of 7, implies that any tuple derived from the former
is also derived from the latter. Thus y1 need never be
considered.

The same conclusion could be drawn, by looking at
the y- and the 71-graphs, as they appear in figures 5.1
and 5.2 respectively.

2’ Y
l

.
z

Fig. 5.2 : The 7,-graph

We can see that the r-graph is isomorphic to a subgraph
of the rl-graph. The isomorphism preserves the
consequent variables as well as the edges of the dynamic
y-graph. As for the antecedent variables the
isomorphism maps them according to the substitution
mentioned before, that makes the antecedent of 7 part
of that of yl.

These properties of the expansions and their
graphs do not follow from any specific characteristic of
7, but only from the fact that the y-graph is free of
non-zero length cycles. To illustrate this, we will now
consider a much more complicated example. Consider
the simple recursive formula a:

p(%J+U@dl) A Q(u~ruz) A R(uaua.x) A

S(w.2) -) P(v*~J,y,z)

The a-graph appears in figure 5.3.
‘113 %

Y

V w z

Fig. 5.3 : The a-graph

All the cycles in the a-graph have zero length, including
those formed through the negative directed edges,
which according to our convention are not drawn (going
along a negative edge can be thought of as going along a
positive edge in the opposite direction and inversing the
weight). Hence, according to our theorem a is bounded.
The maximum length of any path in the graph being 2.
we may conclude that a2 is redundant, i.e. two steps are
enough in the iterative process to get the Anal result

for P.
This becomes apparent if we look at the a,- and the

as-graphs. They are shown in figures 5.4 and 5.5
respectively.

U’.

Fig. 5.4 : The a,-graph

u’p3

Ull Q u’ R R
R -e %
S

Fig. 5.5 : The az-graph

The al-graph in figure 5.4 shows two (connected)
components, instead of one that initially appeared in
the a-graph. Furthermore, the latter is not isomorphic
to any subgraph of the former, which implies that there
are some instances of the relations involved in a that
will make a, produce some tuples that are not produced
by a. Hence a, is necessary.

On the other hand the as-graph in figure 5.5 has
three components, one more than the al-graph. Two of
these components are isomorphic to those in the
al-graph. Moreover, the isomorphism has all the desired
properties, i.e. it maps consequent variables to
themselves and preserves the labeling of the static
edges. For a, and as this means that changing the
antecedent variable names in the latter appropriately,
its antecedent becomes strictly more restrictive than
that of the former. The rank of a is bounded by 2,
therefore as is not necessary.

Notice that the number of components increased in
the first example with 7 as well. In fact, this is true for
all graphs free of non-zero length cycles. If, for
example, the graph of the initial statement is
connected, then each expansion comes with one more
component than the previous one. At some point, we get
a component that contains no directed edges, i.e. no
consequent variables. This expansion is exactly the first
one that is redundant and it determines the bound on
the rank of the initial statement.

Another general characteristic of the graphs of
bounded statements, which is proved in [Ioan85] , is
that the last expansion that is significant (regarding the
production of new tuples), is the first one with the
maximum length of any path in its graph being 1. This
may be seen in both the y- and the al-graphs above.

5.2. NECESSITYOFTHECONDITION
We will now attempt to illustrate with an example,

that the condition given in the theorem for bounded
statements is as tight as possible. Consider the

223

statement below:

B : P(UlW ~U23ki) A Q(w *u2) A R(y J4i) A

S(x,z) -, P(w,z,y,o)
The ,&graph appears in figure 5.6.

Ul

Fig. 5.6 : The p-graph
The p-graph contains a cycle of length 1, name1
(W -+~s+u -rug-~ +z-wJ). Recall that the edge (Z-W 3
with weight -1 does exist, even though it is not show-n in
the figure, and also that an undirected edge can be
traversed in both directions. Hence, according to our
theorem, /3 cannot be bounded. The expansions of /3
become quite complicated and difficult to read, that is
why we will attempt to convince ourselves on the
unboundedness of /? by looking at the graphs of these
expansions. The PI- and &,-graphs appear in figures 5.7
and 5.8 respectively.

Fig. 5.7 : The PI-graph

Q U2R U’s S UI Q U’2RU”2 ‘11’1 Q U”2

zt
S v x II+ R .“”

Fig. 5.8 : The &-graph
Looking at the way the graph changes as we move from
one expansion to the next, we see a distinct difference
between what happened in the previous cases and what
happens now. Instead of having the number of
components increase, we continue to have a single
component, but the original cycle becomes larger &d
larger, in terms of the number of the undirected (static)
edges in it. This continues, no matter how many

expansions we perform. Clearly, for two cycles to be
isomorphic, they have to contain the same number of
edges. Since no expansion can have a graph which is
isomorphic to a subgraph of any other expansion, there
can be no upper bound on the number of them that are
significant for the result.

In general, as shown in [Ioan85] , every cycle of
length 1 in a graph increases in size from one expansion
to the next. Cycles of length greater than 1, have a
more complicated behavior. The significant chara-
cteristic of it is that at some expansion they break into
multiple cycles of length 1. It is not diiult to show
that the boundedness property of a statement is
inherited to all expansions of it and vice-versa. From
this, combined with the general behavior of cycles
mentioned above, follows the conclusion that if a
statement has a non-zero length cycle in its graph it is
not bounded.

The condition of the theorem given in the beginning
of the section is sufficient for a statement to be
bounded even when restrictions (3) and (4) are removed.
However it is not necessary. For example consider the
trivial example

P(YJ) + P(x.l/)
This statement is not simple. It violates restriction (4)
by having a subsequence of the variables under the
recursive predicate in the consequent being a
permutation of the corresponding variables in the
antecedent. The graph of the statement appears in
figure 5.9.

Fig. 5.9 : Graph violating restriction (4)
As expected the dynamic graph (restricted to the
positive edges), which in this case is equal to the whole
graph, is not a forest. Even though it is clear that the
statement is bounded with bound 1, the graph contains
a cycle of length 2, thus violating our theorem Future
work should attempt to generalize the condition of the
theorem to include statements like this as well.

6. AF’PLICATIONS
Besides its theoretical interest, our result may

have considerable implications on how general recursive
statements can be processed in a deductive database
environment. We have no specific results in that
direction but we can speculate that many recursive
statements can be decomposed into “smaller” ones,
some of which are bounded. Our unbounded statements
will be smaller than the initial one and this will result in
faster processing. Furthermore, the parts of the result
that correspond to bounded statements will be obtained
in a bounded number of steps independent of the rest of
the statement. This should result in greater efficiency,
since the processing of the original statement may
involve many more steps than the bound of the bounded
statements. Processing the original statement in its
initial form would recompute the same things again and
again. Of course there will be some overhead in the end

224

to combine the results of the various substatements in a
way that they produce the same result as the original
statement. In many cases though, the effort will be
worth some net savings in computational cost.

As an example of such a decomposition consider
the following statement

P(z.w) A Q(z,w) A R(z,y) A S(ZJ) -a P(z~Y)
The graph of this statement is shown in 6gure 8.1.

z Q

a

w

S

R
Y

Fig. 6.1 : Graph of decomposable statement
The statement can be decomposed into the two
statements

The corresponding graphs of the two statements appear
in figure 6.2. - - -

S

\/

W

Pl

Y

Fig. 6.2 : Graphs of statements after decomposition
As we can see the first statement is bounded, with bound
1, while the second is unbounded. Processing the two
statements separately and then combining the two
results may affect the processing time significantly.

As for a single statement, the information that it is
bounded might prove to be useful as well. Its deflnition
can be expressed non-recursively in a finite form This
makes applicable all the tools used in conventional
relational databases to find fast access paths to process
the statement. It also makes it much easier to compile
such an access path compared to the effort needed for a
general unbounded statement (e.g. see [Naqv64]).
Finally, when we know that a statement is bounded, with
say bound n, we never need to process the statement
for an (<+l)-th time, only to discover that no new
tuples are produced. For statements with small bounds,
say 1 or 2, this may prove to be quite significant. We
should also note that, even though we have examined
the problem of bounded recursive statements in a
deductive database context, our results apply to other
similar environments too, like those based on the
PROLOG programming language.

All the above lead us to the conclusion that the
existence of bounded recursive statements and our
ability to characterize them is an important step
towards processing efficient algorithms for recursion.

7. CONCLUSIONS
We have considered a restricted class of recursive

statements in the context of a deductive database. We
have demonstrated that some such statements are
amenable to an equivalent finite nonrecursive

expression, i.e. using the first n expansions of the
statement, where n is its bound. By modeling such a
statement with a weighted graph, we have shown that
the property that the statement can be expressed in a
finite way is equivalent to the property that the graph
has no cycles of non-zero length. Finally, we have
indicated some possible implications of our result in the
construction of efilcient algorithms to process recursive
statements.

There are many things left to be done in the future.
We are currently working on obtaining necessary and
sufficient conditions for more general classes of
recursive statements, by remov%g some of the
restrictions (1) to (4) of section 2. We believe that this
should not de’difflcuit for restrictions (3) and (4) and
partly for restriction (2). As an even more important
task for the future we consider the study of unbounded
recursive statements. We are currently investigating the
possibility of decomposing such a statement into smaller
ones some of which are bounded, in the way it was
demonstrated in section 6. Finally, much work needs to
be done for unbounded non-decomposable recursive
statements.
Acknowledgements: I am deeply indebted to Timos Sellis
for the innumerable discussions I had with him without
which this paper may never have existed. I would also
like to give thanks to Prof. E. Wong for his valuable help
and to Eric Hanson and Brad Rubenstein for their useful
comments on earlier drafts of this paper.

8. REFERENCES

[Bond761
Bondy, J. A. and U. S. R. Murty, CXuph 7heory with
Applications, North Holland, 1976.

[ChanBl]
Chang, C. L., “On Evaluation of Queries Containing
Derived Relations in a Relational Data Base”. in
Advances in Lkzta Bose theory Vol. 1. edited by H.
Gataire, J. Minker and J. M. Nicolas. Plenum Press,
New York, N.Y.. 1961, pages 235260.

[Codd70]
Codd, E. F., “A Relational Model of Data for Large
Shared Data Banks”, CACM 13, 6 (1970), pages 377-
367.

[Date621
Date, C. J.. An introduction to Database Systems,
3rd edit., Addison-Wesley, Reading, MA, 1962.

[Ende72]
Enderton, H. B., A Mathematical introduction to
Logic, Academic Press, New York, N.Y., 1972.

[Gal1761
Gallaire, H. and J. Minker, Logic and Data Bases,
Plenum Press, New York, N.Y.. 1976.

[Gal1611
Gallaire, H., J. Minker, and J. M. Nicolas. Advances in
Data Base meory, Vol. 1, Plenum Press, New York,
N.Y., 1961.

225

[Gall041
Gallaire, H., J. Minker, and J. M. Nicolas, “Logic and
Databases: A Deductive Approach”, ACM Cbmwng
Surweys 16, 2 (June 1964).

[Ioan85]
Ioannidis, Y. E., Ebunded Recursian in Lkductiua
titaboses, Memorandum No. UCB/ERL I&5/6,
University of California, Berkeley, 1985.

[Naqv84]
Naqvi, S. and L. Henschen, “On Compiling Queries in
Recursive First-Order Databases”, JACM 31, 1
(January 1984).

[Reit78]
Reiter, R., “Deductive Question-Answering on
Relational Data Bases”, in ‘Logic and tits -es’:
edited by H. Galaire and J. Minker, Plenum Press,
New York, N.Y., 1978, pages 149-177.

[Robi
Robinson, J. A., “A Machine Oriented Logic Based on
the Resolution Principle”, JACM 12, 1 (January
1965) pages 23-41.

226

