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ABSTRACT 

This paper extends earlier research on hash-join 
algorithms IO a multiprocessor architecture. Implcmen- 
tations of a number of centralized join algorithms are 
described and measured. Evaluation of these algo- 

rithms served IO verify earlier analylical results. In 
addition, 1hcy demonstrate thaw bit vector iiltcring pro- 
vides dramatic improvement in the performance of all 
algorithms including the sorl merge join algorithm. 
Multiprocessor configurations of the centralized Grace 
and Hyhrid hash-join algorithms arc also presented. 
Both algorithms arc shown to provide linear increases 
in throughput with corresponding increases in processor 
and disk resources. 

1. Introduction 

After the publication of the classic join algorithm 
paper in 1977 hy Blasgcn and Eswnran [BLAS77], the 
topic was virtually ahandoncd as a research area. Ever- 
yhody “knew” that a nested-loops algorithm provided 
acccptahle performance on small relations or large rclu- 
tions when a suitahlc index existed and that sort-merge 

was the algorithm of choice lor ad-hoc’ queries. Las1 
year IWO papers ]DEW IX4a, BRAT841 took another 
look a~ join algorithms for centralized relational daLt- 
base systems. In particular, hoth papers compared ~hc 
performance of the more traditional join algorithms with 
a variety of algorithms hased on hashing. The IWO 
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papers reached the same conclusion: that while sort- 
merge is the commonly accepted algorithm for ad-hoc 
joins, il is, in fact, not nearly iiS fast as several join 
algorithms based on hashing. In retrospect, il is 
interesting lo observe that a simple, hut very good algo- 

rithm has heen virtually ignored’ simply because Sys- 
tem R [ASTR7h] did not support hashing as an access 
method. 

The motivation for the research described in this 
paper was twofold. Firsl, since (DEWl84a] and 
[ BRAT841 were both analytical evaluations, we wanted 
to implcmcnt and measure the algorithms proposed in 
these papers in a common framework in order to verify 
the pcrlbrmancc 01. the hash-based join algorithms. 
Second, WC wanted to see if the results for a single pro- 
cessor could he extended to multiple processors. The 
hash-based join algorithms dcscrihed in [DEW 184a], 
and in parlicular the Hyhrid algorithm, made very 
effective use of main memory IO minimize disk traffic. 
It seemed that since multiprocessor joins require that 
dab he moved hctwcen processors, that the multiproces- 
sor hash-based join algorithms might minimize the 
amount of data moved in the process of executing a join 

algorilhm. Hash-hased multiprocessor join algorithms 
for mulliprocessors arc not new. They were first sug- 
gested in [GOODXI], next adopted hy the Grace data- 
hasc machine prqject [ KITSX3], and evaluated in 
[VALDX4]. While each of these papers made imporhnt 
contributions to understanding multiprocessor hash- 
hascd join algorithms, a numhcl- of questions remain. 
First, in ]GOODXl), it is hard to factor out the infu 
encc of the X-tree architecture and the parallel readout 
disks on the results ohtaincd. ]Kl’I‘S83], on the ollwr 
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hand, concentrates on the speed of the sort-engine and 
no1 the overall performance of the Grace hash-join 
algot-ithm. Finally, the algorithm presented in 
(VALD84J exploits hashing only during the partitioning 
process and resorts to a pure nested loops algorithm 
aided hy hit vector filtering during the join phase. The 
goal 01‘ our rcscarch was to examine the multiprocessor 
hash-join algorithms in a multiprocessor environment 
that cnablcd us lo identify CPU, communications, and 
I/O handwidth design parameters. 

In Section 2, we review the join algorithms and 
analytical results presented in (DEW184a]. As a first 
step toward developing a multiprocessor version of the 
hash based join algorithms, we implemented the join 
algorithms described in [DEWl84a] on top of the 
Wisconsin Storage System (WiSS). The results 
pr-escntcd in Section 3 verify the analytical results 
pr-esented in (DEWIX4a]. Based on thcsc results, we 
Ieel that all relational database systems should provide a 
hash-hased join algorithm in order to effectively exploit 
main memory as it hccomes increasingly inexpensive. 
The algorithms described in Section 3 were also used to 
gather some “real” numbers for USC in a simulation of 
the multiprocessor join algorithms. In Section 4, WC 
describe two multiprocessor hash join algorithms. WC 
also prcscnt the results of a simulation study of thcsc 
algorithms. The results are extremely exciting as they 
indicate that hoth algorithms provide very close to a 
linear specdup in performance with corresponding 
increases in resources. In Section 5, our conclusions 
and our plans for a new database machine hascd on 
these multiprocessor join algorithms are dcscrihcd. 

2. An Overview of Hash-Partitioned Join Opera- 
tions 

In [DEWl84a], the performance of three hashcd- 
hased join algorithms (termed Simple, Grace [ KITS83], 
and Hybrid) were compared with that of the more tradi- 
tional sort merge algorithm. In the following discussion 
of the hash-partitioned join algorithms, the IWO source 
relations will be named R and S. R is assumed to be 
smaller (in pages) than S. All hash-join algorithms 
begin by partitioning R and S into dis,joint suh~els called 
buckets [GOOD8 1, KITSXJ]. These partitions have 
the important characteristic that all tuples with the same 
join attribute value will share the same bucket. The 
term bucket should not he confused with the overflow 
huckels of a hash table. The partitioned buckets arc 
merely dis,joint subsets of the original relations. Tuples 
are assigned to buckets based upon the value of a hash 
function that is applied to a tuple’s join attribute value. 
Assuming that the potential range of hash values is par- 
titioned into the subsets Xl, .., X,,, then every tuple 01 
R whose hashed join attribute value falls inlo the range 

of values associated with X; will he put into the bucket 

R;. Similarly, a tuple of S that hashes to the partition 

X, will he put into the bucket Si. Since the same hash 
function and partitioning ranges are used wilh both 
relations, the tuples in bucket R; will only have to he 

joined with those luples in S;. It will he the case that 
tuples from bucket R, will never have join attribute 
values equal lo those of luples in S; where iZ,j. The 
polential power of this partitioning lies in the fact that a 
join of two large relations has been reduced lo the 
separalc joins of many smaller relation buckets. 

The hash-join algorithms have two distinct phases. 
In the first phase, relations R and S are partitioned into 
buckets. In a centralized environment, th’is partitioning 
might he done by allocating a page frame to buffer the 
tuples heing assigned to the particular buckets. As a 
page butler is filled, it is flushed to a file on disk that 
represcnls a particular bucket. Each relation is scanned 
and partitioned in turn. Al the end of the partitioning 
phase, relations R and S arc represented by equal 
numhcrs of bucket files that have been written to disk. 
This partitioning phase must create a suitable number 
of buckets such that each bucket of relation R will he 
small enough to fit into main memory. The size of the 
buckets of S can hc ignored hccause, al most, only a 
single page of relation S needs IO he resident in memory 
at a time during the join phase. 

The second phase of the hash-join algorithms 
effects the actual search for tuplcs f‘rom relations R and 
S that have matching join values. Any of the traditional 
join methods could hc used in this phase 10 realize the 
final join result. However, as relation R has been parli- 
tioned into huckcts that will fit into memory, it seems 
most appropriate IO use a hash-based algorithm to pro- 
cess the search for matching join tuples. This second 
phase will hc refcrrcd 10 as the join phase. In the first 
step of the join phase, a bucket H; is used to huild a 
hash tahlc in main memory. Then bucket Si is read 
and each tuplc of S’j is used to probe the hash table for 
matches. 

2. I. Problems with Hash Join Algorithms 
The partitioning phase must ensure that the size ol 

the huckcts created from relation R do not exceed the 
size of main memory. Guaranteeing that a chosen par- 
titioning of hash values will result in buckets of relation 
R that will lit in memory is not necessarily trivial. The 
problem of buckets growing unacceptably large is 
termed bucket overflow. The choice of an appropriate 
hash function will tend IO randomize the distribution oi 
tuples across buckets and, as such, will minimize the 
occurrence of bucket ovcrfow. Il’ the chosen hash 
function fails to distrihutc the tuples uniformly and 
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huckct ovurllow occurs, a number of remedies are 
;rvailahle. ‘l‘he relations could be parlitioned again with 
another hash function. This solulion is almos1 always 
100 expensive. A better alternative is to apply the parti- 
tioning process recursively LO the oversized huckrts 
[ DEWIXla, BRAT84]. The net effect of this solulion is 
IO splil an oversized bucket into two or more smaller 
buckets. If relarion R is partitioned before rclalion S, 
then this method only requires rescanning the parlicular 
bucket thal overflowed. The range of values governing 
Ihc partitioning ot‘ relation S can hc adjusled to reflecl 
the final partilioning of R afier buckc1 overflow has 
hecn handled. This method could fail in the case that 
the combined sizes of tuples having identical join values 
exceeds 1hc size ot’ available memory. In such a case, a 
hash-based variation of Lhc nested loops join algorithm 
can hc npplicd. The performance of such an algorithm 
is analyzc%d in Scclion 3 of this paper. The solutions 
used to handle huckc1 overflow can also he applied IO 
the ovcrllow of a hash bhlc. 

2.2. Simple Hash-Join 

‘l‘hc Simple hash-join proccsscs one bucket al a 

lime while doing ;I minimal amount of partilioning. In 
Iact, ~hc parlilioning and join phases arc cxcculcd 
sirnulI:ln~ot~sly. ‘I‘wo iilcs arc associa1cd with relations 
R and S. ‘fhcrc arc tiles R input (S input) which con- 
tain ~uplcs char arc waiting lo he -processed hy the 
currcnl phase of‘ the algorilhm. The files R oulpul 
(S-OUI~UI) contain ~uplcs thar have hecn passed over hy 
the currcnl phase of rhc algorilhm. AL the slarl of the 
algorilllm, R input and S inpur are SCI IO equal 1hc rela- 
lions R ;lnd S. R_outpu1 and S OUI~LII arc ini1ially 
cmpcy. 

A partilioning hasis consisting ol ;I numhcr and 
range 01. 01. hash values is chosen a~ the slarl. l’hcre 
wilt hc as many slagcs lo Ihc algorilhm YS Ihcrc arc 
huckcls ol reta(ion R. The huckcls 01. R arc scqucn- 
[ially used IO huild hash tijhlcs in main memory. One 
hash tahlc is huill al ~hc slarl 01‘ each slagc. Each slagc 
hcgins wilh a scan of‘ R input. As each tuplc is con- 
sidercd, iI. iI hclongs IO Ihe targclcd memory huckcl K, 
lhc tuptc is added lo the hash cahlc. Olhcrwisc, the 
rupte is wrillcn IO R outpul. R output conlains all Ihc 
remaining huckcls lhal arc not of currenl intcrcsl. 
‘l‘hcn S input is scanned sequentially. If a 1uptc 01‘ 
S inpul hashes IO huckct S,, then it is used IO prohc ~hc 
Ilash l:rhtc huilc from huckcl R, If a march is tound, 
I~IC luptcs arc’ joined and OUI~UI. Othcrwisc, (ic. (he 
Itrptc does not hclong IO huckec S,) il is written lo 

s ouipur. 

AI the end 01‘ each stage 01‘ Ihc Simple hash-join, 
the R ourput (S oulpul) file hecomcs the R_inpul 
(S input) file (ha1 bitt he used hy the next stage. As the 

algorithm progresses, the R oulpul (Spulpul) iitc 
becomes progressively smaller ai rhe buckets of intcresl 
are consumed. The algorithm finishes when either 
Rputpur or S-output are empty following a processing 
stage. 

2.3. Grace Hash-Join 

The Grace hash join algorithm [GOODSl, 
KIT%.31 is characterized by a complete separation of 
the partilioning and joining phases. The partitioning of 
relations R and S is completed prior to the start of the 
join phase. Ordinarily, the parlitioning phase creates 
only as many buckets from relation R as are necessary 
to insure that the hash table for each bucket K; will fil 
into memory. Since only a single page frame is needed 
as an oulpul buffer for a huckcl, il is possible that 
memory pages will remain unused aflcr the requisite 
numhcr of bucket buffers have hcen allocalcd. In the 
Grace algorithm, these extra pages can he used to 
increase the number of huckeis Ihal arc generated hy 
the partitioning phase. Following Ihe partitioning 
phase, these smaller buckers can hc logically integrated 
into larger huckels Ihat arc ol’ oplimal size for building 
rhc in-memory hash lahtes. This strategy is termed 
bucket tuning [KITSIU]. Buckcl tuning is a uset‘ul 
method lor avoiding huckel overllow. 

2.4. Hybrid Hash Join 

The Hyhrid hash join was firs1 dcscrihcd in 
[DEWIX4a]. All parlilio~ing is finished in the first 
s~gc 01‘ the algorilhm in a fashion similar to the Grace 
algorilhm. However, whcrcas Ihc GI-ace algorithm uses 
any addilionat avail;lhle memory during ~hc partitioning 
phase IO parliiion the rclalions into a large number of’ 
huckcts, Hyhrid uses additional memory lo hcgin the 
joining process. Hyhrid crcalcs lhc minimum number 
of huckcts such I~;II c:lch huckcl can hc rcasonahty 
expected lo Ii1 inio memory. Allocating one page frame 
lo hc used as an OUI~III buft’cr for each huckcl, the 
Hyhrid algorithm ulitizcs any remaining pages frames 10 
build a hash tahlc I‘rom Ko. The partitioning range is 

ad,justcd lo crcalc N equal-sized huckels, Kt, ., RN, 
lhal arc wrillcn IO disk and one indcpcndcnlly sized 
huckcl, I<() , Ihal is used 10 build the hash table. The 
same p;irtilioning range is used Ibr r&lion S. Tuplcs 
of S rhar hash into hucttcl So arc immediately used lo 

prohe Ihc hash tahtc for marches. When lhc partition- 
ing phase comptctcs, the Hyhrid hash-join has already 
comptclcd processing par1 ol the join phase. Thus, the 
ruplcs Ihal arc immedialcty pr-occsscd do noI have IO hc 
writlen IO and rulricvcd from the disk hclwccn thr parti- 
tioning and join phases. These savings hccomc signifi 
cant as the amount ol memory incrcascs. 
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2.5. Sort-Merge Join Algorithm 

The standard sort-merge [ BLAS77] algorithm 
hcgins hy producing sorted runs of tuplcs that are, on 
the avcragc, twice as long as the number of tuples that 
can lit into a priority queue in memory [KNUT73]. 
This requires one pass over each relation. During the 
second phase, the runs are merged using an n-way 
merge, where n is as large as possible. If n is less than 
the number of runs produced hy the first phase, more 
than two phases will he needed. In the final phase, the 
sorted source relations are sequentially scanned and 
matching tuplcs are joined and output. 

2.6. Comparison of the Four Join Algorithms 

Figure 1 displays the relative performance of the 
four join algorithms using the analysis and parameler 
settings presented in [DEWl84a]. The vertical axis is 
execution time in seconds. The horizontal axis is the 

M ratio of :: 
l-+& 

where (M 1 and IRI are, respectively, 

the sizes of main memory and the R relation in pages 
and F equals 1.2 (F is a fudge factor used to account 
for the fact that even if IRI = IM(, a hash table for R 
will occupy more than IRI pages in main memory). 
For all the algorithms, R and S are assumed lo hc 
resident on mass storage when the algorithm hcgins 
execution. These results clearly indicate the advantage 
of using a hash based join algorithm over the more 
traditional sort mcrgc algorithm. In retrospect, the 
results arc not loo surprising, as sorting crcatcs a IOlill 

ordering of the records in both lilts, while hashing sim- 
ply groups related records togcthcr in the same huckct. 

ELAPSED TIME 
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I 
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: l“:i;l;--; l*l/pl’F 0.0 0.2 0.4 0.6 
FIGURE 1 

3. Evaluation of Centralized Hash Partitioned Join 
Algorithms 

To verify the analysis presented in [DEWl84a] and 
to gather information on CPU and l/O utilizalions dur- 
ing the partitioning and joining phases of the three 
hashing algorithms, we implemented the Simple, 

Grace, and Hybrid algorithms on a VAX I l/750 run- 
ning 4.2 Berkeley UNIX. In addition lo the three 
hash-partitioned join algorithms, two other popular join 
algorithms were studied. These algorithms, a sort- 

merge algorithm and a hash-hased nested loops algo- 
rithm, provide a context for comparing the performance 
of the hash-partitioned join algorithms. All the algo- 
rithms were implemented using the Wisconsin Storage 
System (WiSS) [CHOU83]. 

3.1. An Overview of WSS 

The WiSS project was begun approximately 3 years 
ago when WC recognized the need for a flexible data 
storage system that could serve as the basis for con- 
structing cxpcrimcntal datahasc management systems. 
While originally conceived as a rcplaccment fbr the 
UN IX lilt system (WiSS can run on cop of a raw disk 
under UN IX ), WiSS has also hccn ported IO run on the 
Crystal multicomputer [DEWIXlh]. The services PI-O- 
vidcd hy WiSS include structured scqucntial files, hyte- 

stream files as in UN IX, BS indices, stretch data 
items, a sort utility, and a scan mechanism. A sequen- 
tial file is a sequence of records. Records may vary in 
length (up IO one page in length), and may he inscrtcd 
and dclctcd al arbitrary locations within a sequential 
file. Optionally, each scqucntial file may have one or 
more associated indicts. The index maps kry values lo 
the records of IIIC sequential file that contain a matching 
value. The indexing mechanism is also used IO con- 
struct UNIX-style byte-stream files (~hr pages of the 
index correspond IO the inodc components ol a UNIX 
file). A stretch item is a scqucncc of hytcs, very similar 
to a lilt under UNIX. Howcvcr, insertion and deletion 
at arbitrary locations is supported. Associatsd with each 
stretch item (and each record) is a unique identifier 
(RID). By including the RID or a stretch item in a 
record, one can construct records of arhitrary length. 
As demonstrated in [CHOUX3], WiSS’s performance 
is comparahlc IO that of commercially availahlc database 
systems. 

3.2. Summary of Algorithms Evaluated 

Centralized versions of the Grace, Simple and 
Hyhrid hash-partitioned join algorithms wcrc implc- 
mentcd in the manner described in Section 2. A modi- 
fied version of the nested loops algorithm, termed 
Hashed Loops, was also implcmcntcd IBRATX4]. The 
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Hushed Loops algorithms is so named hccause it uses 
hashing as means of effecting the internal join of tuples 
in main memory. II is similar to the algorithm used by 
the university version of INGRES [STON7h]. For each 
phase of the Hnshcd Loops algorithm, a hash table is 
constructed from those pages of R that have been staged 
inlo memory. Tuples from S are used as probes into 
the hash tahlc. Constructing such a hash table avoids 
exhaustively scanning all of the R tuples in memory for 
each tuple in S as is done with the simpler form of the 
nested loops algorithm. The last algorithm, the Sorl 
Merge join, employed the sort utilities provided by 
WiSS. 

All the algorithms were allocated identical amounts 
01. main memory for buffering pages of the relation. 
Similarly, all the algorithms accessed relations on disk a 
page al a lime, blocking until disk operations completed. 

3.3. Presentation of Performance Results 

The join algorithms were compared using queries 
and data from the Wisconsin Benchmark Dalabase 
~BiTTX3]. As in Figure 1, the cxccution time of each 
,join algorithm is shown as a I’unclion of the amount 01 

availahlc memory rclalivc lo Ihe size 01‘ Ihc smaller rcla- 
lion. The rclativc amounl 01‘ memory is dclincd lo hc 
Ihc numhcr 01. pages 01‘ main memory, IMI, divided hy 
the size in pages of the smaller t-clarion, IRI. The 
elapsed times for all ,join algorithms include the time 
required IO write ~hc final result relation lo disk. All 
ICSIS were run in single user mode. ‘l‘hc lcsl machine 
had 8 mcgahytcs 01. memory so no paging occurred. 
Bucket overllow did not occur in any of Ihc IC’SIS of’ the 
hash-partitioned algorilhms. 

The results of joining I\VO 10,000 ~uplc rclalions 
using c~h of the join algorithms is prcsentcd in Figure 
2. The join proiuccs 10,000 I-CSUII luplcs. The join 

EIAPSED TIME 
(SECONDS) 
600 -.- GRACE HASH 

HYBRID HASH 
SIMPLE HASH 
HASH LOOPS 
SORT MERGE 

I 1 I 1 IURI 
0.8 0.8 1.0 1.2 

FIGURE 2 (10K JOlN 10K) 

attribute is a randomly ordered, IWO hyte integer. Every 
tuple from both relations participates in the rcsull rela- 
tion produced by this join query. Whereas Figure 1 
presented performance results that were calculated from 
analytical models, Figure 2 presents the measured pcr- 
formancc of actual implementations of the algorithms. 
We find the similarity of Figures 1 and 2 both reassur- 
ing and encouraging. 

In Figure 2, the performance of the Grace hash- 
join algorithm is constant for the given range of avail- 
able memory. This results from the IO&I separation of 
the parlitioning and join phases in the Grace algorithm. 
From a performance viewpoint, the Grace algorithm 
only uses memory optimally during the joining phase. 
Excess memory during the partitioning phase is used as 
a means of creating a large numhcr of buckets for the 
bucket tuning process. In contrast, the performance of 
the Simple hash-join algorithm is significantly affcctcd 
hy the amount of available memory and performs well 
only when the smaller relation is less than twice the size 
of availahlc memory. The performance of the Hyhrid 
algorithm rellccls Ihc l’ac~ that it combines the best per- 

formance fealurcs 01. lhc Grace and Simple3 hasll-join 
algorithms. Since Hybrid completes all partitioning in a 
single pass through both source relations, it’s perfor- 
mance is always as least as good as that of the Grace 
algorilhm. The Hyhrid algorithm increasingly outpcr- 
forms Grace as the amounl of relative memory 
increases hccausc the additional memory is used IOI 

immediately joining tuples from one huckel of each 
source‘ rclalion. Such immediate joining eliminates the 
cosl of’ wriling and reading ~hcsc ~uplcs IO disk helwcen 
Ihc parlilioning and joining phases. The pcrlormancc 
of all of Ihe hash-partitioned algorithms remains 
unchanged once ~hc smaller relation fits in memory. 
This point occurs 31 a relative memory value 01‘ 1.2 and 
nor when availahlc memory CXKII~ equals the size 01 
Ihc smaller relation. This results from the ftc~ thal the 
hash-join algorithms use some of ~hc available memory 
during the join phase for the structure’ of the hash tahlc 
ilsell‘. Also, it must hc rcalizcd thal partitioning is a 
prcdictivc process and as such, prudence requires thal 
additional memory hc used IO accommodalc fluctuations 
in the size of Ihc hash lahlcs char arc constructed Krom 
huckcts. 

‘l‘hc performance 01‘ Ihc Sort-Merge join algorilhnl 
is constant over a wide range of available memory in 

Figure 2. Until a source relalion lils inlo mcmol-y, lhc 
sorting process completely reads and writes lhc rclulion 



al least twice, once when the sorted runs are produced 
and a second time when the sorted runs are merged. 
The Sort-Merge join algorithm then reads the source 
relations a third time to effect the final joining of tuples. 
An optimization is possible. Given sufficient memory, 
the sorted runs of hoth relations can be merged and 
joined simultaneously. In this case, the performance of 
the Sort-Merge algorithm could be expected to be simi- 
lar to the Grace algorithm as each algorithm would 
access every page of each source relation three times 
(two reads and a write). 

Perhaps, surprisingly, the Hashed Loops algorithm 
has quite good performance over a wide range of avail- 
able memory in Figure 2. Due to the existence of the 
hash table, the cost of of probing for matches with 
tuples from relation S is a relatively inexpensive opera- 
tion. The algorithm performs especially well when the 
size of the smaller relation is less than twice the size of 
availahle memory. As this is exactly the situation one 
would expect in the case of bucket overflow, the hash- 
hascd nested loops algorithm is an attractive remedy for 
handling bucket overflow. 

The pcrformancc of the join algorithms for a join 
of a 1,000 tuple relation with a 10,000 tuple relation is 
shown in Figure 3. The result relation contains 1,000 
tuples. The Hybrid algorithm continues IO dominate all 
the other join algorithms over a wide range of relative 
memory values. The stepwise prformancc transitions 
of the Sort-Merge and nested loops algorilhms become 
more ohvious in the environment of this query. 

Figure 4 reflects the performance of Ihc join algo- 
rithms on the same query used for Figure 3. The 
difference is that in Figure 4 all the algorithms use hit 
vector filtering techniques [ BABB79, BRAT84, 
VALD841. The notahlc performance improvements 
demonstrated are the result of eliminating, at an earlier 
stage of processing, those tuplcs that will not product 
any result tuples. The hit vector filtering technique 
used by the hash-partitioning and Sort-Merge algo- 
rithms are very similar. 4 Prior to the initial scan of 
relation R, a hit vector is initialized by setting all hits to 
0. As each R tuple’s join attrihutc is hashed, the 
hashed value is used to set a hit in the hit vector. Then 
as relation S is scanned, the appropriate hit in the hit 
vector is checked. If the hit is not set, then the tuple 
from S can be safely discarded. Applying the bit vector 
from relation R against relation S approximates a semi- 
join of relation S by relation R. The net impact of this 
process depends on the semijoin selectivity factor of 
relation S by R which is defined to be the ratio of tuples 

’ The Id vector tillering technique used I>! the hsll- 
partitioned and Sort-Merge algorithms is directly extendible to the 
cnsr of Hashed I,oops it’ the nnmes of the relations in the discus- 
sion we reversed. 
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FIGURE 3 (1K JOIN 10K WITHOUT BIT VECTOR FILTERING) 
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FIGURE 4 (1K JOIN 10K WITH BIT VECTOR FILTERING) 

resulting from the scmijoin of S hy R relative to the car- 
dinality of S. In the example query of Figure 4, the 
semijoin of relation S hy R has a semijoin selectivity 
factor of 0. I. The net effect is that approximately 90% 
ol' the ~uples of relation S can be eliminated at a very 
early stage of processing by the hash-partitioned and 
Sort-Merge algorithms. Significant I/O savings accrue 
from the fact that these non-participating tuples do not 
have to be stored on disk between the partitioning and 
joining phases of the hash-partitioning algorithms. Two 
disk accesses are saved for every page of tuples that can 
be eliminated by the hit vector filtering of reladon,S. 

Since, the Hashed Loops algorithm does no1 com- 
plete a scan of relation R until the end of the query, il 
must instead use bit vector filtering to approximate a 
semijoin of relation R by S. In Figure 4 the semijoin 
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selectivity factor for a semijoin of R by S is 1.0. 
‘l’hcrdorc, in this instance, the Hashed Loops algorithm 
doesn’t derive any benefit from applying bit vector 
fillcring. 

Collisions that occur in the process of accessing bit 
VCCIOI-s may result in non-qualified (phantom) tuples 
being propagated along to the fmal joining process. 
‘l’hc phantom tuples will, however, bc eliminated by the 
final joining process. The number of phantom tuples 
can be reduced by increasing the size of the bit vector 
or hy splitting the vector into a number of smaller vec- 
tors [BABB79]. A separate hash function would be 
associated with each of the smaller bit vectors. The 
costs associated with bit vector filtering are modest. For 
the given test, a single bit vector of length 4K bytes was 
used. Since the hash-partitioning algorithms already 
compute the hashed value of each tuple’s join attrihutc, 
the only additional cost of bit vector filtering for these 
algorithms is the amount of space required for the bit 
vector iIself. 

4. Multiprocessor Hash-based Join Algorithms 

Multiprocessor versions of the Hybrid and Grace 
algorithms are attractive for a numher of reasons. 
First, the ability of thcsc algorithms to cluster related 
tuplcs together in buckets provides a natural opportunity 
for exploiting parallelism. In addition, the number of 
buckets produced during the partitioning phase (or 
aclivatcd in the joining phase) of each algorithm can bc 
adjusted to produce the level of parallelism desired dur- 
ing the ,joining phase. Second, the use of buckets by 
multiprocessor versions of the IWO algorithms should 
minimize communications overhead. Furthermore, just 
as the centralized form of the Hybrid algorithm made 
very effective USC’ of main memory in order to minimize 
disk traffic, one would cxpcct that a multiprocessor ver- 
sion of the Hybr-id hash join algorithm should be able to 
use memory to minimize both disk and communications 
traffic. Finally, it appears that control of these algo- 
rithms can also he decentralized in a straightforward 
manner. 

4.1. Horizontal Partitioning of Relations 

All relations are assumed to bc horizontally parti- 
tioned [RIES78] across all disk drives in the system. 
From the view point of raw bandwidth, this approach 
has the same aggregate bandwidth as the disk striping 
strategies [GARC84, KIM85, BROW85) given an equal 
number of disk drives. The difference is that in our 
approach once the data has been read, it can bc pro- 
cessed directly rather than being transmitted first 
through some interconnection network lo a processor. 

There are at least two ohvious strategies for distri- 
huting tuplcs across the disks drives in the system. One 

approach is to apply a randomizing function to each 
tuple (or the key attribute of the tuple) to select a disk 
for storing the tuple. Each processor maintains an 
independent index on the tuples stored on its disk. The 
advantage of this approach is that as additions are made 
lo the file, the number of tuples on each disk should 
remain relatively well balanced. The second approach 
is to cluster tuples by key value and then distribute them 
across the disk drives. In this case the disks, and their 
associated processors, can be viewed as nodes in a pri- 
mary, clustered index. A controlling processor acts, in 
effect, as the root page of the index. We intend to 
investigate whether traditional tree balancing algorithms 
provide acceptable performance in such an environ- 
ment. This approach is similar to, but much simpler 
than, the clustering approach employed by MDBS 
[HE83]. In MDBS ]HE83], each backend processor 
must examine every query as the clustering mechanism 
is implcmcnted by the backcnds, not the controlling 
processor. 

The real advantage of the second approach comes 
when processing queries. With the first distribution 
strategy (ic. tuples distributed randomly), except in the 
case of exact match queries on the attribute used to dis- 
tribute tuples, all processors must execute every query. 
With the second distribution strategy, the controlling 
processor (which maintains the root page of each index) 
can direct each query to the appropriate processors. 
While there is certainly some overhead in performing 
this function, it is cerlliinly less than the cost of sending 
the query to all the processors. Furthermore, for even 
a fairly large database, the root pages of all indices 
should fit in the controlling processor’s main memory. 
While the two distribution strategies should provide 
approximately the same response time in single user 
benchmarks, we expect that system throughput would 
be significantly higher with the second distribution stra- 
tegy in a multiuser environment. When no suitable 
index is availahle, all processors arc availahle lo per- 
form the query. 

4.2. Description of Multiprocessor Hybrid and 
Grace Algorithms 

The algorithms dcscribcd in this section assume 
that the relations of the database have heen horizontally 
partitioned across multiple disk drives in the manner- 
described above. Each disk drive has a processor asso- 
ciated with it. (Note, the converse is not ncccssarily 
true.) For the purposes of the pcrformancc evaluation 
presented below, we have assumed ihat the pr-occssors 
are interconnected with an X0 Mhit/sccond token ring. 
As we will demonstrate, such an interconnection topol- 
ogy provides adequate performance even when 50 pr-o- 
cessors are being used. 
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4.2. I. A Multiprocessor Version of the Grace 
Hash-Join Algorithm 

There appear to be a number of alternative stra- 
tegies for parallelizing the Grace hash-join algorithm. 
The approach we have selected and evaluated assumes 
that a difierent set of processors is used for the joining 
and partitioning phases of the algorithms. Further- 
more, while the “partitioning” processors are assumed 
to have disk drives associated with them, the “joining” 
processors are assumed to be diskless. One reason that 
we find this strategy attractive is that diskless nodes are 
cheaper than nodes with disks and we are interested in 
exploring whether such processors can be effectively 
utilized. 

The algorithm proceeds as follows. Each node 
with a disk partitions the smaller relation inlo buckets 
that arc written across the network lo the nodes without 
disks. These nodes perform Ihe join phase of the algo- 
rithm. Each joining node will contain a single hash 
table that has been built from the tuplcs of a single 
bucker of the smaller source relation. After the hash 
tables have heen completely built, the larger relation is 
pdrlidoned and the buckets are senl to the joining 
nodes. Corresponding buckets of both source relations 
arc guaranteed to bc sent to the same joining node. 
Tuplcs from the larger relation arc used to probe the 
join node hash tables for matches. If t.hc size of the 
smaller relation exceeds the aggregate memory capacity 
of the joining nodes, multiple phases arc ncccssary and 
unused buckets will he temporarily saved on the disks 
attached to the partitioning nodes. 

The multiprocessor Grace algorithm can allocate 
varying numbers of joining nodes. The Grace algo- 
rithms have been named according to the ratio of 
partitioning nodes to joining nodes. The Grace 1: 1 
design allocates one partitioning node for each joining 
node. There is one partitioning node for every two 
joining nodes in the Grace 1:2 design. Finally, the 
Grace 2:1 design allocates two partitioning nodes for 
each joining node. While these design combinations 
proved optimal for the execution of single join queries, 
it may very well be the case that more varied combina- 
tions of processors may prove optimal for more complex 
queries. 

4.2.2. A Multiprocessor Version of the Hybrid 
Hash-Join Algorithm 

While the multiprocessor Grace algorithm employs 
a combination of processors with and without disks, the 
multiprocessor Hybrid algorithm requires that each pro- 
cessor has a disk drive. The multiprocessor Hybrid 
hash-join algorithm performs the partitioning and join- 
ing phases on the same nodes. Each processor parti- 
tions the source relations in a fashion similar to the 

Grace algorithms. However, each node allocales excess 
memory during the partitioning phase to a hash table 
for one bucket of tuples. As the source relations are 
partitioned on a local Hybrid processor, most tuples are 
written across the net to the appropriate join node. 
Tuples belonging to the bucket associated with a parti- 
tioning processor are instead immediately used to either 
build or probe the local hash table. Because some Of 
the tuples can be processed locally, the Hybrid hash 
join algorithm generates a relatively lighter network 
load than the Grace algorithm. For a given level Of 
resources, a Hybrid multiprocessor algorithm will use 
more disks and fewer processors than a Grace multipro 
cessor algorithm. 

3.3. Discussion of Simulation Model 

To evaluate the performance of the distributed 
Hybrid and Grace hash-join algorithms a simulation 
model of the proposed multiprocessor architecture was 
constructed. The hardware components that arc 
represented in the model are intended to he examples of 
current, commercially available components. The 

capabilities of the various components can be varied IO 
test the effects of various combinations of resources. 
While the distributed hash-partitioned algorithms could 
he implemented in many different kinds of network 
environmcnls, the processors in the current simulation 
are loosely coupled via a token ring network. 

4.3.1. Htirdwarc 

The model allows us to simulate 1, 2, and 3 MIP 
processors. The disk drives were modeled after the 
Fujistu Eagle drive and arc assumed to support a 
Iransfcr- rale of I .8 Mhyteslsccond. The combined 
positioning and latency times have hcen modeled as a 
normal distrihurion with a mean value of 26 mil- 
liseconds and a standard deviation of 4 milliseconds. 
The processor’s network interface is assumed to have a 
single, o~lpul buffer of 2 Khytes. A similar input buffer 
is assumed. The cffectivc DMA handwidth at which 
these huflers can he filled or flushed to the main 
memory of a processor is assumed to he either 4 
Mhils/sccond or 20 Mhits/sccond. The 4 Mbits/second 
number is derived from measurements made on a VAX 
I l/750 with a Proteon ProNct interface [PROT83] 
attached to the Unihus. The 20 Mbits/second is an esti- 
mate of the DMA rate if the device were attached to the 
internal bus of a VAX 11/750. The token ring is 
assumed Lo have a handwidth of either 10 Mbits/second 
or 80 Mbits/second. The IO Mbits/second value is 
rcprcscntativc of currently available local network inter- 
faces such as me ProNet token ring. The 80 
Mhits/sccond interface with a 20 Mbits/second DMA 
rate is representative of the Cl interface from Digital 
Equipment Corporation. 

158 



Since the multiprocessor version of the Hybrid 
algorilhm requires that each processor has a disk drive, 
while the Grace algorithm employs processors with and 
withoul disks, a method for computing the “cost” of a 
particular conliguration of processors and disk was 
needed. The approach WC adopted was to assume that a 
1 MI P processor cost the same as a disk drive and con- 
Iroller. The rclativc cost of the 2 and 3 MIP processors 
was computed using Grosch’s law [GROSS31 which 
rckws the COSI of a processor to the performance 
(speed) of the processor: 
Pcrformancc = Technology Constant *: Processor Cos? 
The technology constant -and cost exponent- were 

assigned, respecbvely, values of 1 and 1.5.” The cost of 
a particular configuration is calculated hy computing the 

aggrcgarc cosl of all processors’ and disks. 

SO far, we have noi incorporated memory or com- 
municalions costs in our COSI model. It might, for 
example, bc more cost effective to use more memory 
and a lower speed communicalion device. 

Using this COSI model, calculating the cost of a 
parlicular conliguralion of processors and disks is 
slraightforward. The revcrsc Iransformalion, is not, 
however, always obvious. Assume, ior example, that 
all processors arc 1 MIP processors. Then a Hybrid 
join configuration with a cosl of 10 will consist of 5 
processors and 5 disks. A 2: 1 Grace configuration (2 
parlilioning processors for cvcry join processor), with a 
cost of 10 will consisl 01‘ 4 partitioning processors, 4 
disks, and 2 joining processors. No I:2 or I:1 Grace 
conliguralion will have exaclly a cosl of IO. For cxam- 
plc, a I:2 configuralion with 2 parlilioning nodes, 2 
disks, and 4 ,joining nodes has a COSI 01‘ 8 while (hc ncxi 
1:2 conliguration (3,3,h) has a cost of 12. Likewise, 
the I: I Grace configuration wilh a COSI CIOSCSI lo IO 
will have 3 partitioning processors, 3 disks, and 3 join 
processors. To facilitate inlerprctation of the rcsulls 
prcscntcd hclow, we have summarized in Table I the 
rcsourcc costs of 6 alternative hardware conligurations 
(assuming I MIP processors) for each of the I’our algo- 
rithms (Hyhrid, Grace: l:l, 2:1, and 1:2). The same h 
conligurations were also used when WC’ cvalua(cd 2 and 
3 MIP processors. While the COSI ol‘cach conligurabon 
changes for ~hcse cases, the table can still hc used IO 
dclcrminc the hardware configuration associated wirh 
each data point. 
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Table 1 
Resource Costs for Hash-Join Configurations 

( I M IP Processors) 

4.3.2. Software 

The operation of each simulated processor is con- 
rrollcd hy a simple operating syslem kernel that provides 
a precmptivc scheduler. Processes have associated 
priorilics that arc used to resolve contention for system 
resources. To minimize overhead, all disk transfers are 
done a track (28 Kbytes) at a time [GARCX4]. In addi- 
lion, a double huffcr is associated with each open file so 
that while a process is processing track i, track i+ I can 
he read. The maximum packcl size supported hy the 
nelwork is assumed lo he 2K hyles. 

The proposed mulliprocessor join algorithms 
rcquirc lhal large blocks of data hc transferred across 
rhc communications device. To this end, a model has 
been huih of a modilicd, sliding window prolocol that 
insures the rcliahlc dclivcry of large blocks of data 
while enhancing the ellcc(ive throughput of the nclwork 
for such transrcrs. 1‘0 help control contention for 
receivers, a higher-lcvcl, conneciion-hascd communica- 
lions prorocol has also hecn incorporated in the simula- 
tion model. 

WC have, so far, ignored the issue of memory size 
and huckcl overflow. The preliminary results prcscnlcd 
hclow assume Ihal the smaller of Ihe IWO relalions hcing 
joined always iits in lhc aggrcgatc memory of the pr-o- 
ces,sors used for joining. While this assumption will hc 
true in a number of cases, one would not want IO hasc 
the design of a machine on such an assumplion. 
Assume, for example, that 8 processors are LIW~ Ibr 

partilioning. With 64K RAMS, 1 megahyrc mcnlol-\: 
hoards are common. As 2ShK RAMS hccomcb ;1\‘;iiI 
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able, a rypicat memory hoard will hold 4 megabytes of 
data. Thus wilh just 2 memory hoards, an aggregale of 
64 mcgahytes will be available for holding buckets. If 
one assumes that the smaller relation will be produced 
hy applying a selection operation first, 64 megabytes 
might be enough to hold mosl temporary relations. We 
have also not addressed the issue of bucket overflow 
(the size of a bucket is larger than the memory of the 
joining processor to which the bucket is assigned) 
which can occur even in the case that the size of the 
smaller relation is less than the total available memory. 

4.4. Preliminary Results 

To evaluate the performance of the different algo- 
rithms, a number of join operations were executed seri- 
ally one after another. Each join took two 10,000 tuple 
relations as input and produced a result result relation 
containing 10,000 tuples as output. For 1, 2, and 3 
MIP processors, the network handwidth and DMA rate 
were held constant while varying the resources available 
to the multiprocessor Hybrid join algorithm and the 3 
conligurations of the multiprocessor Grace algorithm: 
I: I, 1:2, and 2: 1. Throughput, measured in terms of 
executed queries per minute, was used as the perfor- 
mance metric. While WC: have conducted a wide range 
of tests, we have included only the results obtained 
using a network bandwidth of X0 Mbits/second and a 
DMA rate of 20 Mbits/second. A summary of the 
results obtained with other configurations is contained 
in Section 4.6. Since the cost of displaying or saving 
the resuh relation is the same for each configuralion ir 
has been ignored in the results displayed below. 

The performance obtained hy the multiproccssol 
Hybrid join algorithm and the 3 configurations of the 
multiprocessor Grace algorithm are displayed in Figures 
5, 6, and 7 for 1, 2, and 3 MIP processors, rcspcc- 
tively. We think these results are very exciting and 
represent a hrcakthrough in designing an architecturally 
simple, hut very high speed datahasc machine. For 
each type of processor, almost linear speedups are 
obtained with increasing level of resources. 

With I MIP processors, the I: I Grace configura- 
tion provides a higher throughput rate over a wide 
range of available resources. The principal reason is 
that with 1 MIP processors, the average CPU utilization 
for the Hybrid design is almost lOO%, whereas the 1: 1 
Grace design, which uses a larger number of proces- 
sors per resource cost level, is not CPU bound. For 
example, when the total resource cost is equal to 6, the 
Grace design is using 2 partitioning nodes, 2 join 
nodes, and 2 disks. By comparison, for a resource cost 
of 6 the Hybrid design is using 3 processors and 3 
disks. The average disk utilization was approximately 
20% for the Hybrid design and 30%. for the I:1 Grace 

design. Thus, Hybrid’s advantage of having the source 
relations partitioned over a larger number of disks for a 
given resource cost level was not a significant factor. 
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Figure h presents the throughput results for the 

case where all processors arc assumed to be 2 MIP pro- 
cessors. In this test, the Hybrid processors are no 
longer CPU hound and the Hybrid algorithm outper- 
forms all the Grace design combinations. The balanced 
nature of the processing requirements of this query 
favor the Hyhrid and Grace 1: 1 designs that allocate 
balanced processor resources. The Grace 2:l and 1:2 
designs perform less well hccause of lower processor 
utilizations resulting from the mismatch of processor 
resources. 

Figure 7 presents the throughput results when 3 
MIP processors are used. The increased processor per- 
formance favors the Hyhrid design which processes a 
bucket of each relation on the local processor. The 
Grace designs are not able to utilize the increased pro- 
ccssor performance to the same magnitude as the net- 

work data transfers7 hccome an impediment to 
increased performance. 

3.5. A Look at Resource Utilizations with 2 MIP 
Processors 

The performance of the multiprocessor hash-join 
algorithms ncccssarily depend on how well the algo- 
rithms utilize hardware rcsourccs. The Hyhrid algo- 
rithm has the intrinsic advantage of sending a rclativcly 
smaller numhcr of tuples across the communications 
network. On the other hand, the Hyhrid algorithm 
imposes a greater load on each of the processors. 

Figure 8 presents the resource utilization lcvcls i’or 
the multiprocessor Hyhrid algorithm with 2 MIP pro- 
ccssors. The high CPU utilization lcvcls rcllect the fact 
that cnch processor in the Hyhrid algorithm is used for 
hoth 111~ partitioning and joining phases of the algo- 
rithm. ‘l‘hc initial incrcasc in CPI! utilization is caused 
hy the transition of the :rlgorithm from using a single 
processor to using two processors. Whcrcns Ihc single 
processor Hyhrid design did not utilize the network itit 
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all, the two processor Hybrid design must expend a sub- 
stantial amount of processing effort transferring buckets 
of tuples between processors. As additional processors 
are added to the Hybrid algorithm, the CPU utilization 
of the processors begins to decline. This decline 
corresponds to an increased level of contention for the 
network. As the level of contention for the network 
increases, processors are more frequently blocked wait- 
ing to transfer blocks of data across the network. The 
increased lcvcls of network contention also result in an 
increase in the total utilization of the network. The 
relatively low disk utilizations result from the fact that 
data is read from the disk a track iit a time. With that 
disk I/O blocking factor, the disk is frequently idle 

while the previously read tuplcs arc hcing partitioned. ’ 

Figure 9 presents the resource utilizations for the 
Grace 1: 1 multiprocessor algorithm design with 2 MIP 
processors. The relative CPU utilizations for the parti- 
tioning nodes and joining nodes reflect the fact that the 
partitioning phase is normally the most computationally 
cxpcnsive phase of the hash-join algorithm. The CPlI 
utilizations of both the partitioning nodes and joining 
nodes decrease as the levels of network contention 
increase. The CPU utilizations 01. the Grace processors 
urc rclativcly lower than the CPU utilizations prescntcd 
for the Hyhrid algorithm. This is due to the fact thar 
for a given rcsourcc‘ Icvcl, the Grace algorithm uses a 
greater numhcr of processors than dots the Hybrid 
algorithm. Convcrscly, the lact that the Grace algo- 
rithm USC’S l’cwcr disks than the Hybrid algorithm for a 
given rcsourcc lcvcl leads to the rclutivcly higher disk 
ulilizations thal ;irc’ seen lor 111~ Grace algorithm. 

-. - 
’ For a giLen query, the Grace designs must transfer a larger 

amount of data across the network than the Hybrid design. 

8 Disk 110 blocking factors have been reduced IO as low as 8 

Kbytes wrthout significantly altering the performance of the algo- 

rithms. 
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4.0. Other Tests 
Similar results were ohtained when we varied the 

nchvork bandwidth and the DMA rate. With a network 
handwidth of 10 Mbits/second and a DMA rate of 4 
Mbits/second (the slowest configuration tested), almost 
linear speedups were obtained up to approximately a 

resource cost of 20.9 After this point, the network 
tended IO become completely utilized and throughput 
remained constant. 

We have, so far, chosen the same type of proces- 
sors for the partitioning and joining nodes for the three 
alternative Grace designs. Join queries with varied dis- 
tributions of join attribute values may provide the possi- 
hility of altering the balance of performance between 
the processing and joining nodes. We plan on investi- 
gating this alternative. 

5. Conclusions and Future Research 
In this paper, the hash-join algorithms presented in 

[DEW184a] were extended to a multiprocessor architcc- 
ture. As a firs1 step, the algorithms dcscrihed in 
[DEW184a] were implemented using WiSS [CHOU83] 
running on a VAX 11/750 running 4.2 Berkeley 
UNIX. In addition IO providing CPU and l/O utiliza- 
tion figures for use in the simulation of the multiproces- 
sor algorithms, these centralized experimenls provided 
two interesting results. First, the measured performance 
of the algorithms was very similar to that predicted 
analytically in (DEWl84al. Second, bit veclor filtering 
[BABB79] was shown to provide a dramatic reduction 
in the execution time of all algorilhms including the sort 
merge join algorithm. In fact, for the one query tested, 
with bit-vector filtering all algorithms had virtually the 
same execution time. 

We also extended the centralized Grace and Hyhrid 
hash-join algorithms to a common multiprocessor conli- 
guration. These IWO centralized algorithms were 
chosen as they each provide a nalural pin1 I’or separal- 
ing the joining and partitioning phases of the algorithm. 
The multiprocessor Hybrid algorithm uses a multipro- 
cessor configuration consisting entirely of nodes having 
an associated disk drive. The nodes are used for both 
the partitioning and join phases of the algorithm. Three 
cOnfigUratiOns of the multiprocessor Grace algorithm 
were evaluated: Grace 1: 1, Grace 2: 1, and Grace 1:2. 
ln the 1:l design one diskless joining processor is allo- 
cated for each partitioning processor. The 2:) design 
allocates two partitioning nodes for each diskless joining 
node. The 1:2 design has one partitioning node for 
every two diskless joining nodes. The results from the 
simulation experiments of these algorithms is very 
encouraging as both algorithms provide linear increases 

‘) ‘I%e acted point varied with the MII’ rate of the processors. 

in throughput with corresponding increases in processor 
and disk resources. 

There are two interesting extensions to this 
research that we are currently exploring. This first is 
what we term adjustable join parallelism. By adjust- 
ing the partitioning algorithms, the number of buckets 

produced can be adjusted.” This in turn, effects how 
much parallelism can be used during the joining 

phase. ‘I For example, if the partitioning phase pro- 
duces just two buckets, than at most 2 processors can be 
used during the joining phase. There are a number of 
cases when such a technique might be useful: 

(1 I load balancing under heavy loads 

(2) low priority queries 

(3) joins of small relations - Too much parallelism 
doesn’t make sense if the relations being joined are 
small. 

A second promising area is the USC of bit filtering in 
mulliprocessor hash join algorithms. There are a 
number of ways bit filtering [BABB79, KITS831 can be 
exploited hy lhc multiprocessor hashing algorithms. For 
example, each joining node can build a hit vector simul- 
taneously with the construction of a hash table. When 
completed, the hi1 vectors would he distributed to the 
parlilioning processors. The partitioning processors 
could maintain the bit vectors on a per bucket basis. 
Alternately, the partitioning nodes might merge the per 
bucket hit vectors into a single hit vector. The hit 
vector(s) would then be applied during the partitioning 
of relation S. This strategy, plus a number of other bit 
vector fillering strategies, look promising. 

Finahy, we intend IO USC these algorithms as part 
of the Gamma Project. Gamma is a new database 
machine project that was hegun recently. Gamma will 
provide a test vchiclc for validating our multiprocessor 
hash-join results. Gamma will he built using the Cry- 
stal mullicomputcr (DEWl84b] and WiSS (CHOU83] 
as a hasis. The Crystal Multicomputer project was 
funded as part of the National Science Foundation’s 
Coordinate Experimental Research Program. Crystal is 
a network of hare VAX 11/750 processors (currenlly 
twcnly, eventually forty) serving as nodes, connected by 
a 10 Mbit/second token ring from Proteon Associates 
[PROT83]. This ring is currently being upgraded IO an 
80 Mbit/second ring. Nine node machines have 
attached disks. File and database services are provided 
to Crystal “users” using WiSS. Crystal software pro- 
._ _..--..-... I__-- 

I0 Conslrnined bv the rrqt~ireiiient that encli lwket he rez 
‘. sonahlv he expected to tit into the memory ol the joining pI’0CCsW~. 

’ ’ Equivnlently, multiple Imckets can he nssignrtl to IIVZ SFIIW 
join processor. Since only one htcket will he ;tctive al arly gi\rn 
lime. the Iwel ol’ pai~allelisnt is cotllrOlletl, 
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vidcs a simple opcraling system (NOSE) with multiple, 
IighIwcighI processes with shared memory and reliable 
conncclions lo NOSE processes on other node machines 
and UN IX proccsscs on the host machines (Vax’s run- 
ning 4.2 Unix). WiSS runs on lop on NOSE. Crystal, 
NOSE, and WiSS arc all operational and in production 
USC. 
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