
Multiprocessor Hash-Based Join Algorithms

David J. Dewitt
Robert Gerber

Computer Sciences Department
University of Wisconsin

ABSTRACT

This paper extends earlier research on hash-join
algorithms IO a multiprocessor architecture. Implcmen-
tations of a number of centralized join algorithms are
described and measured. Evaluation of these algo-

rithms served IO verify earlier analylical results. In
addition, 1hcy demonstrate thaw bit vector iiltcring pro-
vides dramatic improvement in the performance of all
algorithms including the sorl merge join algorithm.
Multiprocessor configurations of the centralized Grace
and Hyhrid hash-join algorithms arc also presented.
Both algorithms arc shown to provide linear increases
in throughput with corresponding increases in processor
and disk resources.

1. Introduction

After the publication of the classic join algorithm
paper in 1977 hy Blasgcn and Eswnran [BLAS77], the
topic was virtually ahandoncd as a research area. Ever-
yhody “knew” that a nested-loops algorithm provided
acccptahle performance on small relations or large rclu-
tions when a suitahlc index existed and that sort-merge

was the algorithm of choice lor ad-hoc’ queries. Las1
year IWO papers]DEW IX4a, BRAT841 took another
look a~ join algorithms for centralized relational daLt-
base systems. In particular, hoth papers compared ~hc
performance of the more traditional join algorithms with
a variety of algorithms hased on hashing. The IWO

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

papers reached the same conclusion: that while sort-
merge is the commonly accepted algorithm for ad-hoc
joins, il is, in fact, not nearly iiS fast as several join
algorithms based on hashing. In retrospect, il is
interesting lo observe that a simple, hut very good algo-

rithm has heen virtually ignored’ simply because Sys-
tem R [ASTR7h] did not support hashing as an access
method.

The motivation for the research described in this
paper was twofold. Firsl, since (DEWl84a] and
[BRAT841 were both analytical evaluations, we wanted
to implcmcnt and measure the algorithms proposed in
these papers in a common framework in order to verify
the pcrlbrmancc 01. the hash-based join algorithms.
Second, WC wanted to see if the results for a single pro-
cessor could he extended to multiple processors. The
hash-based join algorithms dcscrihed in [DEW 184a],
and in parlicular the Hyhrid algorithm, made very
effective use of main memory IO minimize disk traffic.
It seemed that since multiprocessor joins require that
dab he moved hctwcen processors, that the multiproces-
sor hash-based join algorithms might minimize the
amount of data moved in the process of executing a join

algorilhm. Hash-hased multiprocessor join algorithms
for mulliprocessors arc not new. They were first sug-
gested in [GOODXI], next adopted hy the Grace data-
hasc machine prqject [KITSX3], and evaluated in
[VALDX4]. While each of these papers made imporhnt
contributions to understanding multiprocessor hash-
hascd join algorithms, a numhcl- of questions remain.
First, in]GOODXl), it is hard to factor out the infu
encc of the X-tree architecture and the parallel readout
disks on the results ohtaincd.]Kl’I‘S83], on the ollwr

Proceedings of VLDB 85, Stockholm 151

hand, concentrates on the speed of the sort-engine and
no1 the overall performance of the Grace hash-join
algot-ithm. Finally, the algorithm presented in
(VALD84J exploits hashing only during the partitioning
process and resorts to a pure nested loops algorithm
aided hy hit vector filtering during the join phase. The
goal 01‘ our rcscarch was to examine the multiprocessor
hash-join algorithms in a multiprocessor environment
that cnablcd us lo identify CPU, communications, and
I/O handwidth design parameters.

In Section 2, we review the join algorithms and
analytical results presented in (DEW184a]. As a first
step toward developing a multiprocessor version of the
hash based join algorithms, we implemented the join
algorithms described in [DEWl84a] on top of the
Wisconsin Storage System (WiSS). The results
pr-escntcd in Section 3 verify the analytical results
pr-esented in (DEWIX4a]. Based on thcsc results, we
Ieel that all relational database systems should provide a
hash-hased join algorithm in order to effectively exploit
main memory as it hccomes increasingly inexpensive.
The algorithms described in Section 3 were also used to
gather some “real” numbers for USC in a simulation of
the multiprocessor join algorithms. In Section 4, WC
describe two multiprocessor hash join algorithms. WC
also prcscnt the results of a simulation study of thcsc
algorithms. The results are extremely exciting as they
indicate that hoth algorithms provide very close to a
linear specdup in performance with corresponding
increases in resources. In Section 5, our conclusions
and our plans for a new database machine hascd on
these multiprocessor join algorithms are dcscrihcd.

2. An Overview of Hash-Partitioned Join Opera-
tions

In [DEWl84a], the performance of three hashcd-
hased join algorithms (termed Simple, Grace [KITS83],
and Hybrid) were compared with that of the more tradi-
tional sort merge algorithm. In the following discussion
of the hash-partitioned join algorithms, the IWO source
relations will be named R and S. R is assumed to be
smaller (in pages) than S. All hash-join algorithms
begin by partitioning R and S into dis,joint suh~els called
buckets [GOOD8 1, KITSXJ]. These partitions have
the important characteristic that all tuples with the same
join attribute value will share the same bucket. The
term bucket should not he confused with the overflow
huckels of a hash table. The partitioned buckets arc
merely dis,joint subsets of the original relations. Tuples
are assigned to buckets based upon the value of a hash
function that is applied to a tuple’s join attribute value.
Assuming that the potential range of hash values is par-
titioned into the subsets Xl, .., X,,, then every tuple 01
R whose hashed join attribute value falls inlo the range

of values associated with X; will he put into the bucket

R;. Similarly, a tuple of S that hashes to the partition

X, will he put into the bucket Si. Since the same hash
function and partitioning ranges are used wilh both
relations, the tuples in bucket R; will only have to he

joined with those luples in S;. It will he the case that
tuples from bucket R, will never have join attribute
values equal lo those of luples in S; where iZ,j. The
polential power of this partitioning lies in the fact that a
join of two large relations has been reduced lo the
separalc joins of many smaller relation buckets.

The hash-join algorithms have two distinct phases.
In the first phase, relations R and S are partitioned into
buckets. In a centralized environment, th’is partitioning
might he done by allocating a page frame to buffer the
tuples heing assigned to the particular buckets. As a
page butler is filled, it is flushed to a file on disk that
represcnls a particular bucket. Each relation is scanned
and partitioned in turn. Al the end of the partitioning
phase, relations R and S arc represented by equal
numhcrs of bucket files that have been written to disk.
This partitioning phase must create a suitable number
of buckets such that each bucket of relation R will he
small enough to fit into main memory. The size of the
buckets of S can hc ignored hccause, al most, only a
single page of relation S needs IO he resident in memory
at a time during the join phase.

The second phase of the hash-join algorithms
effects the actual search for tuplcs f‘rom relations R and
S that have matching join values. Any of the traditional
join methods could hc used in this phase 10 realize the
final join result. However, as relation R has been parli-
tioned into huckcts that will fit into memory, it seems
most appropriate IO use a hash-based algorithm to pro-
cess the search for matching join tuples. This second
phase will hc refcrrcd 10 as the join phase. In the first
step of the join phase, a bucket H; is used to huild a
hash tahlc in main memory. Then bucket Si is read
and each tuplc of S’j is used to probe the hash table for
matches.

2. I. Problems with Hash Join Algorithms
The partitioning phase must ensure that the size ol

the huckcts created from relation R do not exceed the
size of main memory. Guaranteeing that a chosen par-
titioning of hash values will result in buckets of relation
R that will lit in memory is not necessarily trivial. The
problem of buckets growing unacceptably large is
termed bucket overflow. The choice of an appropriate
hash function will tend IO randomize the distribution oi
tuples across buckets and, as such, will minimize the
occurrence of bucket ovcrfow. Il’ the chosen hash
function fails to distrihutc the tuples uniformly and

152

huckct ovurllow occurs, a number of remedies are
;rvailahle. ‘l‘he relations could be parlitioned again with
another hash function. This solulion is almos1 always
100 expensive. A better alternative is to apply the parti-
tioning process recursively LO the oversized huckrts
[DEWIXla, BRAT84]. The net effect of this solulion is
IO splil an oversized bucket into two or more smaller
buckets. If relarion R is partitioned before rclalion S,
then this method only requires rescanning the parlicular
bucket thal overflowed. The range of values governing
Ihc partitioning ot‘ relation S can hc adjusled to reflecl
the final partilioning of R afier buckc1 overflow has
hecn handled. This method could fail in the case that
the combined sizes of tuples having identical join values
exceeds 1hc size ot’ available memory. In such a case, a
hash-based variation of Lhc nested loops join algorithm
can hc npplicd. The performance of such an algorithm
is analyzc%d in Scclion 3 of this paper. The solutions
used to handle huckc1 overflow can also he applied IO
the ovcrllow of a hash bhlc.

2.2. Simple Hash-Join

‘l‘hc Simple hash-join proccsscs one bucket al a

lime while doing ;I minimal amount of partilioning. In
Iact, ~hc parlilioning and join phases arc cxcculcd
sirnulI:ln~ot~sly. ‘I‘wo iilcs arc associa1cd with relations
R and S. ‘fhcrc arc tiles R input (S input) which con-
tain ~uplcs char arc waiting lo he -processed hy the
currcnl phase of‘ the algorilhm. The files R oulpul
(S-OUI~UI) contain ~uplcs thar have hecn passed over hy
the currcnl phase of rhc algorilhm. AL the slarl of the
algorilllm, R input and S inpur are SCI IO equal 1hc rela-
lions R ;lnd S. R_outpu1 and S OUI~LII arc ini1ially
cmpcy.

A partilioning hasis consisting ol ;I numhcr and
range 01. 01. hash values is chosen a~ the slarl. l’hcre
wilt hc as many slagcs lo Ihc algorilhm YS Ihcrc arc
huckcls ol reta(ion R. The huckcls 01. R arc scqucn-
[ially used IO huild hash tijhlcs in main memory. One
hash tahlc is huill al ~hc slarl 01‘ each slagc. Each slagc
hcgins wilh a scan of‘ R input. As each tuplc is con-
sidercd, iI. iI hclongs IO Ihe targclcd memory huckcl K,
lhc tuptc is added lo the hash cahlc. Olhcrwisc, the
rupte is wrillcn IO R outpul. R output conlains all Ihc
remaining huckcls lhal arc not of currenl intcrcsl.
‘l‘hcn S input is scanned sequentially. If a 1uptc 01‘
S inpul hashes IO huckct S,, then it is used IO prohc ~hc
Ilash l:rhtc huilc from huckcl R, If a march is tound,
I~IC luptcs arc’ joined and OUI~UI. Othcrwisc, (ic. (he
Itrptc does not hclong IO huckec S,) il is written lo

s ouipur.

AI the end 01‘ each stage 01‘ Ihc Simple hash-join,
the R ourput (S oulpul) file hecomcs the R_inpul
(S input) file (ha1 bitt he used hy the next stage. As the

algorithm progresses, the R oulpul (Spulpul) iitc
becomes progressively smaller ai rhe buckets of intcresl
are consumed. The algorithm finishes when either
Rputpur or S-output are empty following a processing
stage.

2.3. Grace Hash-Join

The Grace hash join algorithm [GOODSl,
KIT%.31 is characterized by a complete separation of
the partilioning and joining phases. The partitioning of
relations R and S is completed prior to the start of the
join phase. Ordinarily, the parlitioning phase creates
only as many buckets from relation R as are necessary
to insure that the hash table for each bucket K; will fil
into memory. Since only a single page frame is needed
as an oulpul buffer for a huckcl, il is possible that
memory pages will remain unused aflcr the requisite
numhcr of bucket buffers have hcen allocalcd. In the
Grace algorithm, these extra pages can he used to
increase the number of huckeis Ihal arc generated hy
the partitioning phase. Following Ihe partitioning
phase, these smaller buckers can hc logically integrated
into larger huckels Ihat arc ol’ oplimal size for building
rhc in-memory hash lahtes. This strategy is termed
bucket tuning [KITSIU]. Buckcl tuning is a uset‘ul
method lor avoiding huckel overllow.

2.4. Hybrid Hash Join

The Hyhrid hash join was firs1 dcscrihcd in
[DEWIX4a]. All parlilio~ing is finished in the first
s~gc 01‘ the algorilhm in a fashion similar to the Grace
algorilhm. However, whcrcas Ihc GI-ace algorithm uses
any addilionat avail;lhle memory during ~hc partitioning
phase IO parliiion the rclalions into a large number of’
huckcts, Hyhrid uses additional memory lo hcgin the
joining process. Hyhrid crcalcs lhc minimum number
of huckcts such I~;II c:lch huckcl can hc rcasonahty
expected lo Ii1 inio memory. Allocating one page frame
lo hc used as an OUI~III buft’cr for each huckcl, the
Hyhrid algorithm ulitizcs any remaining pages frames 10
build a hash tahlc I‘rom Ko. The partitioning range is

ad,justcd lo crcalc N equal-sized huckels, Kt, ., RN,
lhal arc wrillcn IO disk and one indcpcndcnlly sized
huckcl, I<() , Ihal is used 10 build the hash table. The
same p;irtilioning range is used Ibr r&lion S. Tuplcs
of S rhar hash into hucttcl So arc immediately used lo

prohe Ihc hash tahtc for marches. When lhc partition-
ing phase comptctcs, the Hyhrid hash-join has already
comptclcd processing par1 ol the join phase. Thus, the
ruplcs Ihal arc immedialcty pr-occsscd do noI have IO hc
writlen IO and rulricvcd from the disk hclwccn thr parti-
tioning and join phases. These savings hccomc signifi
cant as the amount ol memory incrcascs.

153

2.5. Sort-Merge Join Algorithm

The standard sort-merge [BLAS77] algorithm
hcgins hy producing sorted runs of tuplcs that are, on
the avcragc, twice as long as the number of tuples that
can lit into a priority queue in memory [KNUT73].
This requires one pass over each relation. During the
second phase, the runs are merged using an n-way
merge, where n is as large as possible. If n is less than
the number of runs produced hy the first phase, more
than two phases will he needed. In the final phase, the
sorted source relations are sequentially scanned and
matching tuplcs are joined and output.

2.6. Comparison of the Four Join Algorithms

Figure 1 displays the relative performance of the
four join algorithms using the analysis and parameler
settings presented in [DEWl84a]. The vertical axis is
execution time in seconds. The horizontal axis is the

M ratio of ::
l-+&

where (M 1 and IRI are, respectively,

the sizes of main memory and the R relation in pages
and F equals 1.2 (F is a fudge factor used to account
for the fact that even if IRI = IM(, a hash table for R
will occupy more than IRI pages in main memory).
For all the algorithms, R and S are assumed lo hc
resident on mass storage when the algorithm hcgins
execution. These results clearly indicate the advantage
of using a hash based join algorithm over the more
traditional sort mcrgc algorithm. In retrospect, the
results arc not loo surprising, as sorting crcatcs a IOlill

ordering of the records in both lilts, while hashing sim-
ply groups related records togcthcr in the same huckct.

ELAPSED TIME
(SECONDS)

2000

I

A,______ -_---__

1500 \ \

I \ \ 1000

\ -.--.-.+ ____._________.___. - ._._. -.- _.-.-.-___-.-_-

: l“:i;l;--; l*l/pl’F 0.0 0.2 0.4 0.6
FIGURE 1

3. Evaluation of Centralized Hash Partitioned Join
Algorithms

To verify the analysis presented in [DEWl84a] and
to gather information on CPU and l/O utilizalions dur-
ing the partitioning and joining phases of the three
hashing algorithms, we implemented the Simple,

Grace, and Hybrid algorithms on a VAX I l/750 run-
ning 4.2 Berkeley UNIX. In addition lo the three
hash-partitioned join algorithms, two other popular join
algorithms were studied. These algorithms, a sort-

merge algorithm and a hash-hased nested loops algo-
rithm, provide a context for comparing the performance
of the hash-partitioned join algorithms. All the algo-
rithms were implemented using the Wisconsin Storage
System (WiSS) [CHOU83].

3.1. An Overview of WSS

The WiSS project was begun approximately 3 years
ago when WC recognized the need for a flexible data
storage system that could serve as the basis for con-
structing cxpcrimcntal datahasc management systems.
While originally conceived as a rcplaccment fbr the
UN IX lilt system (WiSS can run on cop of a raw disk
under UN IX), WiSS has also hccn ported IO run on the
Crystal multicomputer [DEWIXlh]. The services PI-O-
vidcd hy WiSS include structured scqucntial files, hyte-

stream files as in UN IX, BS indices, stretch data
items, a sort utility, and a scan mechanism. A sequen-
tial file is a sequence of records. Records may vary in
length (up IO one page in length), and may he inscrtcd
and dclctcd al arbitrary locations within a sequential
file. Optionally, each scqucntial file may have one or
more associated indicts. The index maps kry values lo
the records of IIIC sequential file that contain a matching
value. The indexing mechanism is also used IO con-
struct UNIX-style byte-stream files (~hr pages of the
index correspond IO the inodc components ol a UNIX
file). A stretch item is a scqucncc of hytcs, very similar
to a lilt under UNIX. Howcvcr, insertion and deletion
at arbitrary locations is supported. Associatsd with each
stretch item (and each record) is a unique identifier
(RID). By including the RID or a stretch item in a
record, one can construct records of arhitrary length.
As demonstrated in [CHOUX3], WiSS’s performance
is comparahlc IO that of commercially availahlc database
systems.

3.2. Summary of Algorithms Evaluated

Centralized versions of the Grace, Simple and
Hyhrid hash-partitioned join algorithms wcrc implc-
mentcd in the manner described in Section 2. A modi-
fied version of the nested loops algorithm, termed
Hashed Loops, was also implcmcntcd IBRATX4]. The

154

Hushed Loops algorithms is so named hccause it uses
hashing as means of effecting the internal join of tuples
in main memory. II is similar to the algorithm used by
the university version of INGRES [STON7h]. For each
phase of the Hnshcd Loops algorithm, a hash table is
constructed from those pages of R that have been staged
inlo memory. Tuples from S are used as probes into
the hash tahlc. Constructing such a hash table avoids
exhaustively scanning all of the R tuples in memory for
each tuple in S as is done with the simpler form of the
nested loops algorithm. The last algorithm, the Sorl
Merge join, employed the sort utilities provided by
WiSS.

All the algorithms were allocated identical amounts
01. main memory for buffering pages of the relation.
Similarly, all the algorithms accessed relations on disk a
page al a lime, blocking until disk operations completed.

3.3. Presentation of Performance Results

The join algorithms were compared using queries
and data from the Wisconsin Benchmark Dalabase
~BiTTX3]. As in Figure 1, the cxccution time of each
,join algorithm is shown as a I’unclion of the amount 01

availahlc memory rclalivc lo Ihe size 01‘ Ihc smaller rcla-
lion. The rclativc amounl 01‘ memory is dclincd lo hc
Ihc numhcr 01. pages 01‘ main memory, IMI, divided hy
the size in pages of the smaller t-clarion, IRI. The
elapsed times for all ,join algorithms include the time
required IO write ~hc final result relation lo disk. All
ICSIS were run in single user mode. ‘l‘hc lcsl machine
had 8 mcgahytcs 01. memory so no paging occurred.
Bucket overllow did not occur in any of Ihc IC’SIS of’ the
hash-partitioned algorilhms.

The results of joining I\VO 10,000 ~uplc rclalions
using c~h of the join algorithms is prcsentcd in Figure
2. The join proiuccs 10,000 I-CSUII luplcs. The join

EIAPSED TIME
(SECONDS)
600 -.- GRACE HASH

HYBRID HASH
SIMPLE HASH
HASH LOOPS
SORT MERGE

I 1 I 1 IURI
0.8 0.8 1.0 1.2

FIGURE 2 (10K JOlN 10K)

attribute is a randomly ordered, IWO hyte integer. Every
tuple from both relations participates in the rcsull rela-
tion produced by this join query. Whereas Figure 1
presented performance results that were calculated from
analytical models, Figure 2 presents the measured pcr-
formancc of actual implementations of the algorithms.
We find the similarity of Figures 1 and 2 both reassur-
ing and encouraging.

In Figure 2, the performance of the Grace hash-
join algorithm is constant for the given range of avail-
able memory. This results from the IO&I separation of
the parlitioning and join phases in the Grace algorithm.
From a performance viewpoint, the Grace algorithm
only uses memory optimally during the joining phase.
Excess memory during the partitioning phase is used as
a means of creating a large numhcr of buckets for the
bucket tuning process. In contrast, the performance of
the Simple hash-join algorithm is significantly affcctcd
hy the amount of available memory and performs well
only when the smaller relation is less than twice the size
of availahlc memory. The performance of the Hyhrid
algorithm rellccls Ihc l’ac~ that it combines the best per-

formance fealurcs 01. lhc Grace and Simple3 hasll-join
algorithms. Since Hybrid completes all partitioning in a
single pass through both source relations, it’s perfor-
mance is always as least as good as that of the Grace
algorilhm. The Hyhrid algorithm increasingly outpcr-
forms Grace as the amounl of relative memory
increases hccausc the additional memory is used IOI

immediately joining tuples from one huckel of each
source‘ rclalion. Such immediate joining eliminates the
cosl of’ wriling and reading ~hcsc ~uplcs IO disk helwcen
Ihc parlilioning and joining phases. The pcrlormancc
of all of Ihe hash-partitioned algorithms remains
unchanged once ~hc smaller relation fits in memory.
This point occurs 31 a relative memory value 01‘ 1.2 and
nor when availahlc memory CXKII~ equals the size 01
Ihc smaller relation. This results from the ftc~ thal the
hash-join algorithms use some of ~hc available memory
during the join phase for the structure’ of the hash tahlc
ilsell‘. Also, it must hc rcalizcd thal partitioning is a
prcdictivc process and as such, prudence requires thal
additional memory hc used IO accommodalc fluctuations
in the size of Ihc hash lahlcs char arc constructed Krom
huckcts.

‘l‘hc performance 01‘ Ihc Sort-Merge join algorilhnl
is constant over a wide range of available memory in

Figure 2. Until a source relalion lils inlo mcmol-y, lhc
sorting process completely reads and writes lhc rclulion

al least twice, once when the sorted runs are produced
and a second time when the sorted runs are merged.
The Sort-Merge join algorithm then reads the source
relations a third time to effect the final joining of tuples.
An optimization is possible. Given sufficient memory,
the sorted runs of hoth relations can be merged and
joined simultaneously. In this case, the performance of
the Sort-Merge algorithm could be expected to be simi-
lar to the Grace algorithm as each algorithm would
access every page of each source relation three times
(two reads and a write).

Perhaps, surprisingly, the Hashed Loops algorithm
has quite good performance over a wide range of avail-
able memory in Figure 2. Due to the existence of the
hash table, the cost of of probing for matches with
tuples from relation S is a relatively inexpensive opera-
tion. The algorithm performs especially well when the
size of the smaller relation is less than twice the size of
availahle memory. As this is exactly the situation one
would expect in the case of bucket overflow, the hash-
hascd nested loops algorithm is an attractive remedy for
handling bucket overflow.

The pcrformancc of the join algorithms for a join
of a 1,000 tuple relation with a 10,000 tuple relation is
shown in Figure 3. The result relation contains 1,000
tuples. The Hybrid algorithm continues IO dominate all
the other join algorithms over a wide range of relative
memory values. The stepwise prformancc transitions
of the Sort-Merge and nested loops algorilhms become
more ohvious in the environment of this query.

Figure 4 reflects the performance of Ihc join algo-
rithms on the same query used for Figure 3. The
difference is that in Figure 4 all the algorithms use hit
vector filtering techniques [BABB79, BRAT84,
VALD841. The notahlc performance improvements
demonstrated are the result of eliminating, at an earlier
stage of processing, those tuplcs that will not product
any result tuples. The hit vector filtering technique
used by the hash-partitioning and Sort-Merge algo-
rithms are very similar. 4 Prior to the initial scan of
relation R, a hit vector is initialized by setting all hits to
0. As each R tuple’s join attrihutc is hashed, the
hashed value is used to set a hit in the hit vector. Then
as relation S is scanned, the appropriate hit in the hit
vector is checked. If the hit is not set, then the tuple
from S can be safely discarded. Applying the bit vector
from relation R against relation S approximates a semi-
join of relation S by relation R. The net impact of this
process depends on the semijoin selectivity factor of
relation S by R which is defined to be the ratio of tuples

’ The Id vector tillering technique used I>! the hsll-
partitioned and Sort-Merge algorithms is directly extendible to the
cnsr of Hashed I,oops it’ the nnmes of the relations in the discus-
sion we reversed.

ELAPSED TIME
(SECONDS)

-.-.- GRACE HASH
- HYBRID HASH
---- SIMPLE HASH
....._...... HASH u)OPS
-- SORT LIERGE

0 I, IWIRI
0.0 0.2 0.4 0.6 0.6 1.0 1.2 1.4

FIGURE 3 (1K JOIN 10K WITHOUT BIT VECTOR FILTERING)

ELAPSED TIME
(SECONDS)
-240-L

180..

120-s

80 --

i.....

?
\

‘\.,
‘\ i

\~
\

0 1 IWIRI
0.0 0.2 0.4 0.6 0.6 1.0 1.2

FIGURE 4 (1K JOIN 10K WITH BIT VECTOR FILTERING)

resulting from the scmijoin of S hy R relative to the car-
dinality of S. In the example query of Figure 4, the
semijoin of relation S hy R has a semijoin selectivity
factor of 0. I. The net effect is that approximately 90%
ol' the ~uples of relation S can be eliminated at a very
early stage of processing by the hash-partitioned and
Sort-Merge algorithms. Significant I/O savings accrue
from the fact that these non-participating tuples do not
have to be stored on disk between the partitioning and
joining phases of the hash-partitioning algorithms. Two
disk accesses are saved for every page of tuples that can
be eliminated by the hit vector filtering of reladon,S.

Since, the Hashed Loops algorithm does no1 com-
plete a scan of relation R until the end of the query, il
must instead use bit vector filtering to approximate a
semijoin of relation R by S. In Figure 4 the semijoin

156

selectivity factor for a semijoin of R by S is 1.0.
‘l’hcrdorc, in this instance, the Hashed Loops algorithm
doesn’t derive any benefit from applying bit vector
fillcring.

Collisions that occur in the process of accessing bit
VCCIOI-s may result in non-qualified (phantom) tuples
being propagated along to the fmal joining process.
‘l’hc phantom tuples will, however, bc eliminated by the
final joining process. The number of phantom tuples
can be reduced by increasing the size of the bit vector
or hy splitting the vector into a number of smaller vec-
tors [BABB79]. A separate hash function would be
associated with each of the smaller bit vectors. The
costs associated with bit vector filtering are modest. For
the given test, a single bit vector of length 4K bytes was
used. Since the hash-partitioning algorithms already
compute the hashed value of each tuple’s join attrihutc,
the only additional cost of bit vector filtering for these
algorithms is the amount of space required for the bit
vector iIself.

4. Multiprocessor Hash-based Join Algorithms

Multiprocessor versions of the Hybrid and Grace
algorithms are attractive for a numher of reasons.
First, the ability of thcsc algorithms to cluster related
tuplcs together in buckets provides a natural opportunity
for exploiting parallelism. In addition, the number of
buckets produced during the partitioning phase (or
aclivatcd in the joining phase) of each algorithm can bc
adjusted to produce the level of parallelism desired dur-
ing the ,joining phase. Second, the use of buckets by
multiprocessor versions of the IWO algorithms should
minimize communications overhead. Furthermore, just
as the centralized form of the Hybrid algorithm made
very effective USC’ of main memory in order to minimize
disk traffic, one would cxpcct that a multiprocessor ver-
sion of the Hybr-id hash join algorithm should be able to
use memory to minimize both disk and communications
traffic. Finally, it appears that control of these algo-
rithms can also he decentralized in a straightforward
manner.

4.1. Horizontal Partitioning of Relations

All relations are assumed to bc horizontally parti-
tioned [RIES78] across all disk drives in the system.
From the view point of raw bandwidth, this approach
has the same aggregate bandwidth as the disk striping
strategies [GARC84, KIM85, BROW85) given an equal
number of disk drives. The difference is that in our
approach once the data has been read, it can bc pro-
cessed directly rather than being transmitted first
through some interconnection network lo a processor.

There are at least two ohvious strategies for distri-
huting tuplcs across the disks drives in the system. One

approach is to apply a randomizing function to each
tuple (or the key attribute of the tuple) to select a disk
for storing the tuple. Each processor maintains an
independent index on the tuples stored on its disk. The
advantage of this approach is that as additions are made
lo the file, the number of tuples on each disk should
remain relatively well balanced. The second approach
is to cluster tuples by key value and then distribute them
across the disk drives. In this case the disks, and their
associated processors, can be viewed as nodes in a pri-
mary, clustered index. A controlling processor acts, in
effect, as the root page of the index. We intend to
investigate whether traditional tree balancing algorithms
provide acceptable performance in such an environ-
ment. This approach is similar to, but much simpler
than, the clustering approach employed by MDBS
[HE83]. In MDBS]HE83], each backend processor
must examine every query as the clustering mechanism
is implcmcnted by the backcnds, not the controlling
processor.

The real advantage of the second approach comes
when processing queries. With the first distribution
strategy (ic. tuples distributed randomly), except in the
case of exact match queries on the attribute used to dis-
tribute tuples, all processors must execute every query.
With the second distribution strategy, the controlling
processor (which maintains the root page of each index)
can direct each query to the appropriate processors.
While there is certainly some overhead in performing
this function, it is cerlliinly less than the cost of sending
the query to all the processors. Furthermore, for even
a fairly large database, the root pages of all indices
should fit in the controlling processor’s main memory.
While the two distribution strategies should provide
approximately the same response time in single user
benchmarks, we expect that system throughput would
be significantly higher with the second distribution stra-
tegy in a multiuser environment. When no suitable
index is availahle, all processors arc availahle lo per-
form the query.

4.2. Description of Multiprocessor Hybrid and
Grace Algorithms

The algorithms dcscribcd in this section assume
that the relations of the database have heen horizontally
partitioned across multiple disk drives in the manner-
described above. Each disk drive has a processor asso-
ciated with it. (Note, the converse is not ncccssarily
true.) For the purposes of the pcrformancc evaluation
presented below, we have assumed ihat the pr-occssors
are interconnected with an X0 Mhit/sccond token ring.
As we will demonstrate, such an interconnection topol-
ogy provides adequate performance even when 50 pr-o-
cessors are being used.

157

4.2. I. A Multiprocessor Version of the Grace
Hash-Join Algorithm

There appear to be a number of alternative stra-
tegies for parallelizing the Grace hash-join algorithm.
The approach we have selected and evaluated assumes
that a difierent set of processors is used for the joining
and partitioning phases of the algorithms. Further-
more, while the “partitioning” processors are assumed
to have disk drives associated with them, the “joining”
processors are assumed to be diskless. One reason that
we find this strategy attractive is that diskless nodes are
cheaper than nodes with disks and we are interested in
exploring whether such processors can be effectively
utilized.

The algorithm proceeds as follows. Each node
with a disk partitions the smaller relation inlo buckets
that arc written across the network lo the nodes without
disks. These nodes perform Ihe join phase of the algo-
rithm. Each joining node will contain a single hash
table that has been built from the tuplcs of a single
bucker of the smaller source relation. After the hash
tables have heen completely built, the larger relation is
pdrlidoned and the buckets are senl to the joining
nodes. Corresponding buckets of both source relations
arc guaranteed to bc sent to the same joining node.
Tuplcs from the larger relation arc used to probe the
join node hash tables for matches. If t.hc size of the
smaller relation exceeds the aggregate memory capacity
of the joining nodes, multiple phases arc ncccssary and
unused buckets will he temporarily saved on the disks
attached to the partitioning nodes.

The multiprocessor Grace algorithm can allocate
varying numbers of joining nodes. The Grace algo-
rithms have been named according to the ratio of
partitioning nodes to joining nodes. The Grace 1: 1
design allocates one partitioning node for each joining
node. There is one partitioning node for every two
joining nodes in the Grace 1:2 design. Finally, the
Grace 2:1 design allocates two partitioning nodes for
each joining node. While these design combinations
proved optimal for the execution of single join queries,
it may very well be the case that more varied combina-
tions of processors may prove optimal for more complex
queries.

4.2.2. A Multiprocessor Version of the Hybrid
Hash-Join Algorithm

While the multiprocessor Grace algorithm employs
a combination of processors with and without disks, the
multiprocessor Hybrid algorithm requires that each pro-
cessor has a disk drive. The multiprocessor Hybrid
hash-join algorithm performs the partitioning and join-
ing phases on the same nodes. Each processor parti-
tions the source relations in a fashion similar to the

Grace algorithms. However, each node allocales excess
memory during the partitioning phase to a hash table
for one bucket of tuples. As the source relations are
partitioned on a local Hybrid processor, most tuples are
written across the net to the appropriate join node.
Tuples belonging to the bucket associated with a parti-
tioning processor are instead immediately used to either
build or probe the local hash table. Because some Of
the tuples can be processed locally, the Hybrid hash
join algorithm generates a relatively lighter network
load than the Grace algorithm. For a given level Of
resources, a Hybrid multiprocessor algorithm will use
more disks and fewer processors than a Grace multipro
cessor algorithm.

3.3. Discussion of Simulation Model

To evaluate the performance of the distributed
Hybrid and Grace hash-join algorithms a simulation
model of the proposed multiprocessor architecture was
constructed. The hardware components that arc
represented in the model are intended to he examples of
current, commercially available components. The

capabilities of the various components can be varied IO
test the effects of various combinations of resources.
While the distributed hash-partitioned algorithms could
he implemented in many different kinds of network
environmcnls, the processors in the current simulation
are loosely coupled via a token ring network.

4.3.1. Htirdwarc

The model allows us to simulate 1, 2, and 3 MIP
processors. The disk drives were modeled after the
Fujistu Eagle drive and arc assumed to support a
Iransfcr- rale of I .8 Mhyteslsccond. The combined
positioning and latency times have hcen modeled as a
normal distrihurion with a mean value of 26 mil-
liseconds and a standard deviation of 4 milliseconds.
The processor’s network interface is assumed to have a
single, o~lpul buffer of 2 Khytes. A similar input buffer
is assumed. The cffectivc DMA handwidth at which
these huflers can he filled or flushed to the main
memory of a processor is assumed to he either 4
Mhils/sccond or 20 Mhits/sccond. The 4 Mbits/second
number is derived from measurements made on a VAX
I l/750 with a Proteon ProNct interface [PROT83]
attached to the Unihus. The 20 Mbits/second is an esti-
mate of the DMA rate if the device were attached to the
internal bus of a VAX 11/750. The token ring is
assumed Lo have a handwidth of either 10 Mbits/second
or 80 Mbits/second. The IO Mbits/second value is
rcprcscntativc of currently available local network inter-
faces such as me ProNet token ring. The 80
Mhits/sccond interface with a 20 Mbits/second DMA
rate is representative of the Cl interface from Digital
Equipment Corporation.

158

Since the multiprocessor version of the Hybrid
algorilhm requires that each processor has a disk drive,
while the Grace algorithm employs processors with and
withoul disks, a method for computing the “cost” of a
particular conliguration of processors and disk was
needed. The approach WC adopted was to assume that a
1 MI P processor cost the same as a disk drive and con-
Iroller. The rclativc cost of the 2 and 3 MIP processors
was computed using Grosch’s law [GROSS31 which
rckws the COSI of a processor to the performance
(speed) of the processor:
Pcrformancc = Technology Constant *: Processor Cos?
The technology constant -and cost exponent- were

assigned, respecbvely, values of 1 and 1.5.” The cost of
a particular configuration is calculated hy computing the

aggrcgarc cosl of all processors’ and disks.

SO far, we have noi incorporated memory or com-
municalions costs in our COSI model. It might, for
example, bc more cost effective to use more memory
and a lower speed communicalion device.

Using this COSI model, calculating the cost of a
parlicular conliguralion of processors and disks is
slraightforward. The revcrsc Iransformalion, is not,
however, always obvious. Assume, ior example, that
all processors arc 1 MIP processors. Then a Hybrid
join configuration with a cosl of 10 will consist of 5
processors and 5 disks. A 2: 1 Grace configuration (2
parlilioning processors for cvcry join processor), with a
cost of 10 will consisl 01‘ 4 partitioning processors, 4
disks, and 2 joining processors. No I:2 or I:1 Grace
conliguralion will have exaclly a cosl of IO. For cxam-
plc, a I:2 configuralion with 2 parlilioning nodes, 2
disks, and 4 ,joining nodes has a COSI 01‘ 8 while (hc ncxi
1:2 conliguration (3,3,h) has a cost of 12. Likewise,
the I: I Grace configuration wilh a COSI CIOSCSI lo IO
will have 3 partitioning processors, 3 disks, and 3 join
processors. To facilitate inlerprctation of the rcsulls
prcscntcd hclow, we have summarized in Table I the
rcsourcc costs of 6 alternative hardware conligurations
(assuming I MIP processors) for each of the I’our algo-
rithms (Hyhrid, Grace: l:l, 2:1, and 1:2). The same h
conligurations were also used when WC’ cvalua(cd 2 and
3 MIP processors. While the COSI ol‘cach conligurabon
changes for ~hcse cases, the table can still hc used IO
dclcrminc the hardware configuration associated wirh
each data point.

tesource
CC61

--

2
.3

4
5
6
8
9

IO
12
I5
16
20
21
24
25
30

Hybrid Grace 1:1
UP ND IPP XD IJP

I I

2 2

5 5

10 10

I2 I2

I5 15

1 1 I

2 2 1

3 3 3

5 5 5

7 7 7

10 IO IO

Grace 2: 1 Grace I:2

UPP UD #JP #PP #D XJP

4 4 2

6 6 3

8 8 4

10 10 5
12 I2 6

I I 2

2 2 4

3 3 6

4 4 8
5 5 10

6 6 12

#P - number of‘ Processors
XD - number of Disks
XPP number of Partitioning Processors
XJP - number of Joining Processors

Table 1
Resource Costs for Hash-Join Configurations

(I M IP Processors)

4.3.2. Software

The operation of each simulated processor is con-
rrollcd hy a simple operating syslem kernel that provides
a precmptivc scheduler. Processes have associated
priorilics that arc used to resolve contention for system
resources. To minimize overhead, all disk transfers are
done a track (28 Kbytes) at a time [GARCX4]. In addi-
lion, a double huffcr is associated with each open file so
that while a process is processing track i, track i+ I can
he read. The maximum packcl size supported hy the
nelwork is assumed lo he 2K hyles.

The proposed mulliprocessor join algorithms
rcquirc lhal large blocks of data hc transferred across
rhc communications device. To this end, a model has
been huih of a modilicd, sliding window prolocol that
insures the rcliahlc dclivcry of large blocks of data
while enhancing the ellcc(ive throughput of the nclwork
for such transrcrs. 1‘0 help control contention for
receivers, a higher-lcvcl, conneciion-hascd communica-
lions prorocol has also hecn incorporated in the simula-
tion model.

WC have, so far, ignored the issue of memory size
and huckcl overflow. The preliminary results prcscnlcd
hclow assume Ihal the smaller of Ihe IWO relalions hcing
joined always iits in lhc aggrcgatc memory of the pr-o-
ces,sors used for joining. While this assumption will hc
true in a number of cases, one would not want IO hasc
the design of a machine on such an assumplion.
Assume, for example, that 8 processors are LIW~ Ibr

partilioning. With 64K RAMS, 1 megahyrc mcnlol-\:
hoards are common. As 2ShK RAMS hccomcb ;1\‘;iiI

159

able, a rypicat memory hoard will hold 4 megabytes of
data. Thus wilh just 2 memory hoards, an aggregale of
64 mcgahytes will be available for holding buckets. If
one assumes that the smaller relation will be produced
hy applying a selection operation first, 64 megabytes
might be enough to hold mosl temporary relations. We
have also not addressed the issue of bucket overflow
(the size of a bucket is larger than the memory of the
joining processor to which the bucket is assigned)
which can occur even in the case that the size of the
smaller relation is less than the total available memory.

4.4. Preliminary Results

To evaluate the performance of the different algo-
rithms, a number of join operations were executed seri-
ally one after another. Each join took two 10,000 tuple
relations as input and produced a result result relation
containing 10,000 tuples as output. For 1, 2, and 3
MIP processors, the network handwidth and DMA rate
were held constant while varying the resources available
to the multiprocessor Hybrid join algorithm and the 3
conligurations of the multiprocessor Grace algorithm:
I: I, 1:2, and 2: 1. Throughput, measured in terms of
executed queries per minute, was used as the perfor-
mance metric. While WC: have conducted a wide range
of tests, we have included only the results obtained
using a network bandwidth of X0 Mbits/second and a
DMA rate of 20 Mbits/second. A summary of the
results obtained with other configurations is contained
in Section 4.6. Since the cost of displaying or saving
the resuh relation is the same for each configuralion ir
has been ignored in the results displayed below.

The performance obtained hy the multiproccssol
Hybrid join algorithm and the 3 configurations of the
multiprocessor Grace algorithm are displayed in Figures
5, 6, and 7 for 1, 2, and 3 MIP processors, rcspcc-
tively. We think these results are very exciting and
represent a hrcakthrough in designing an architecturally
simple, hut very high speed datahasc machine. For
each type of processor, almost linear speedups are
obtained with increasing level of resources.

With I MIP processors, the I: I Grace configura-
tion provides a higher throughput rate over a wide
range of available resources. The principal reason is
that with 1 MIP processors, the average CPU utilization
for the Hybrid design is almost lOO%, whereas the 1: 1
Grace design, which uses a larger number of proces-
sors per resource cost level, is not CPU bound. For
example, when the total resource cost is equal to 6, the
Grace design is using 2 partitioning nodes, 2 join
nodes, and 2 disks. By comparison, for a resource cost
of 6 the Hybrid design is using 3 processors and 3
disks. The average disk utilization was approximately
20% for the Hybrid design and 30%. for the I:1 Grace

design. Thus, Hybrid’s advantage of having the source
relations partitioned over a larger number of disks for a
given resource cost level was not a significant factor.

THROUGHPUT
(PER MINUTE)

60 - HYBRID
----. GRACE 1:1
. GRACE 1:2

50 ._._._.. GRACE 2:1

30

20

I

/ ,,_/
/'

,' -.s+
10

/ ---

,, ,.,.$&~
,/,-.;;:'/

/...: ./
, ../

O o/ RESoURCES
FIGURE 5 (1 YIP PROCESSORS)

THROUGHPUT
(PER MINUTE)

60

50

I

- HYBRID
----- GRACE 1:l

GRACE 13
._._._.. GRACE 2:1

.‘-
30

.-‘T* _..
,,<.L _ _

,/; 1."
,/ .,.' ,/"

, .' _..'

4o-/
,'.:,' .,'

20 /,:. ',, ' /'
,I;.." ,' ,'

10 ,,;; y'
,

0 1 1 I I 1 1 ! RESOURCES
0 10 20 30 40 50 00

FIGURE 8 (2 YIP PROCESSORS)

THROUGHPUT
(PER MINUTE)

80
t

50--

40--

30 --

20--

lo-

.---_
._

.-.-.-..

HYBRID
GRACE 1:l
GRACE 1:2
GRACE 2:l

0 1, RESOURCES
0 10 20 30 40 60 60

FIGURE 7 (3 MIP PROCESSORS)

160

Figure h presents the throughput results for the

case where all processors arc assumed to be 2 MIP pro-
cessors. In this test, the Hybrid processors are no
longer CPU hound and the Hybrid algorithm outper-
forms all the Grace design combinations. The balanced
nature of the processing requirements of this query
favor the Hyhrid and Grace 1: 1 designs that allocate
balanced processor resources. The Grace 2:l and 1:2
designs perform less well hccause of lower processor
utilizations resulting from the mismatch of processor
resources.

Figure 7 presents the throughput results when 3
MIP processors are used. The increased processor per-
formance favors the Hyhrid design which processes a
bucket of each relation on the local processor. The
Grace designs are not able to utilize the increased pro-
ccssor performance to the same magnitude as the net-

work data transfers7 hccome an impediment to
increased performance.

3.5. A Look at Resource Utilizations with 2 MIP
Processors

The performance of the multiprocessor hash-join
algorithms ncccssarily depend on how well the algo-
rithms utilize hardware rcsourccs. The Hyhrid algo-
rithm has the intrinsic advantage of sending a rclativcly
smaller numhcr of tuples across the communications
network. On the other hand, the Hyhrid algorithm
imposes a greater load on each of the processors.

Figure 8 presents the resource utilization lcvcls i’or
the multiprocessor Hyhrid algorithm with 2 MIP pro-
ccssors. The high CPU utilization lcvcls rcllect the fact
that cnch processor in the Hyhrid algorithm is used for
hoth 111~ partitioning and joining phases of the algo-
rithm. ‘l‘hc initial incrcasc in CPI! utilization is caused
hy the transition of the :rlgorithm from using a single
processor to using two processors. Whcrcns Ihc single
processor Hyhrid design did not utilize the network itit

lJ-&.ATION
100.0 +

90.0
60.0
70.0 11 HYBRID CPU

60.0
1. 50.0 \

40.0 i-f-- D'SK

30.0
t -I Nm

all, the two processor Hybrid design must expend a sub-
stantial amount of processing effort transferring buckets
of tuples between processors. As additional processors
are added to the Hybrid algorithm, the CPU utilization
of the processors begins to decline. This decline
corresponds to an increased level of contention for the
network. As the level of contention for the network
increases, processors are more frequently blocked wait-
ing to transfer blocks of data across the network. The
increased lcvcls of network contention also result in an
increase in the total utilization of the network. The
relatively low disk utilizations result from the fact that
data is read from the disk a track iit a time. With that
disk I/O blocking factor, the disk is frequently idle

while the previously read tuplcs arc hcing partitioned. ’

Figure 9 presents the resource utilizations for the
Grace 1: 1 multiprocessor algorithm design with 2 MIP
processors. The relative CPU utilizations for the parti-
tioning nodes and joining nodes reflect the fact that the
partitioning phase is normally the most computationally
cxpcnsive phase of the hash-join algorithm. The CPlI
utilizations of both the partitioning nodes and joining
nodes decrease as the levels of network contention
increase. The CPU utilizations 01. the Grace processors
urc rclativcly lower than the CPU utilizations prescntcd
for the Hyhrid algorithm. This is due to the fact thar
for a given rcsourcc‘ Icvcl, the Grace algorithm uses a
greater numhcr of processors than dots the Hybrid
algorithm. Convcrscly, the lact that the Grace algo-
rithm USC’S l’cwcr disks than the Hybrid algorithm for a
given rcsourcc lcvcl leads to the rclutivcly higher disk
ulilizations thal ;irc’ seen lor 111~ Grace algorithm.

-. -
’ For a giLen query, the Grace designs must transfer a larger

amount of data across the network than the Hybrid design.

8 Disk 110 blocking factors have been reduced IO as low as 8

Kbytes wrthout significantly altering the performance of the algo-

rithms.

UT&ATlON
100.0 t \

PARTITIONING CPU

JOINING CPU

s

0.0 1 : RESOURCES
0 10 20 30 40 I50 60

IlGURE S (GRACE 1:l -- 10K JOIN 1OK)

161

4.0. Other Tests
Similar results were ohtained when we varied the

nchvork bandwidth and the DMA rate. With a network
handwidth of 10 Mbits/second and a DMA rate of 4
Mbits/second (the slowest configuration tested), almost
linear speedups were obtained up to approximately a

resource cost of 20.9 After this point, the network
tended IO become completely utilized and throughput
remained constant.

We have, so far, chosen the same type of proces-
sors for the partitioning and joining nodes for the three
alternative Grace designs. Join queries with varied dis-
tributions of join attribute values may provide the possi-
hility of altering the balance of performance between
the processing and joining nodes. We plan on investi-
gating this alternative.

5. Conclusions and Future Research
In this paper, the hash-join algorithms presented in

[DEW184a] were extended to a multiprocessor architcc-
ture. As a firs1 step, the algorithms dcscrihed in
[DEW184a] were implemented using WiSS [CHOU83]
running on a VAX 11/750 running 4.2 Berkeley
UNIX. In addition IO providing CPU and l/O utiliza-
tion figures for use in the simulation of the multiproces-
sor algorithms, these centralized experimenls provided
two interesting results. First, the measured performance
of the algorithms was very similar to that predicted
analytically in (DEWl84al. Second, bit veclor filtering
[BABB79] was shown to provide a dramatic reduction
in the execution time of all algorilhms including the sort
merge join algorithm. In fact, for the one query tested,
with bit-vector filtering all algorithms had virtually the
same execution time.

We also extended the centralized Grace and Hyhrid
hash-join algorithms to a common multiprocessor conli-
guration. These IWO centralized algorithms were
chosen as they each provide a nalural pin1 I’or separal-
ing the joining and partitioning phases of the algorithm.
The multiprocessor Hybrid algorithm uses a multipro-
cessor configuration consisting entirely of nodes having
an associated disk drive. The nodes are used for both
the partitioning and join phases of the algorithm. Three
cOnfigUratiOns of the multiprocessor Grace algorithm
were evaluated: Grace 1: 1, Grace 2: 1, and Grace 1:2.
ln the 1:l design one diskless joining processor is allo-
cated for each partitioning processor. The 2:) design
allocates two partitioning nodes for each diskless joining
node. The 1:2 design has one partitioning node for
every two diskless joining nodes. The results from the
simulation experiments of these algorithms is very
encouraging as both algorithms provide linear increases

‘) ‘I%e acted point varied with the MII’ rate of the processors.

in throughput with corresponding increases in processor
and disk resources.

There are two interesting extensions to this
research that we are currently exploring. This first is
what we term adjustable join parallelism. By adjust-
ing the partitioning algorithms, the number of buckets

produced can be adjusted.” This in turn, effects how
much parallelism can be used during the joining

phase. ‘I For example, if the partitioning phase pro-
duces just two buckets, than at most 2 processors can be
used during the joining phase. There are a number of
cases when such a technique might be useful:

(1 I load balancing under heavy loads

(2) low priority queries

(3) joins of small relations - Too much parallelism
doesn’t make sense if the relations being joined are
small.

A second promising area is the USC of bit filtering in
mulliprocessor hash join algorithms. There are a
number of ways bit filtering [BABB79, KITS831 can be
exploited hy lhc multiprocessor hashing algorithms. For
example, each joining node can build a hit vector simul-
taneously with the construction of a hash table. When
completed, the hi1 vectors would he distributed to the
parlilioning processors. The partitioning processors
could maintain the bit vectors on a per bucket basis.
Alternately, the partitioning nodes might merge the per
bucket hit vectors into a single hit vector. The hit
vector(s) would then be applied during the partitioning
of relation S. This strategy, plus a number of other bit
vector fillering strategies, look promising.

Finahy, we intend IO USC these algorithms as part
of the Gamma Project. Gamma is a new database
machine project that was hegun recently. Gamma will
provide a test vchiclc for validating our multiprocessor
hash-join results. Gamma will he built using the Cry-
stal mullicomputcr (DEWl84b] and WiSS (CHOU83]
as a hasis. The Crystal Multicomputer project was
funded as part of the National Science Foundation’s
Coordinate Experimental Research Program. Crystal is
a network of hare VAX 11/750 processors (currenlly
twcnly, eventually forty) serving as nodes, connected by
a 10 Mbit/second token ring from Proteon Associates
[PROT83]. This ring is currently being upgraded IO an
80 Mbit/second ring. Nine node machines have
attached disks. File and database services are provided
to Crystal “users” using WiSS. Crystal software pro-
._ _..--..-... I__--

I0 Conslrnined bv the rrqt~ireiiient that encli lwket he rez
‘. sonahlv he expected to tit into the memory ol the joining pI’0CCsW~.

’ ’ Equivnlently, multiple Imckets can he nssignrtl to IIVZ SFIIW
join processor. Since only one htcket will he ;tctive al arly gi\rn
lime. the Iwel ol’ pai~allelisnt is cotllrOlletl,

162

vidcs a simple opcraling system (NOSE) with multiple,
IighIwcighI processes with shared memory and reliable
conncclions lo NOSE processes on other node machines
and UN IX proccsscs on the host machines (Vax’s run-
ning 4.2 Unix). WiSS runs on lop on NOSE. Crystal,
NOSE, and WiSS arc all operational and in production
USC.

Acknowledgements

This research was parlially supported by Ihe
DcparImcnI of Energy under contracl #DE-AC02-
X1 ER10920 and Ihc Niitional Science Foundation under
granl MCSX2-01X70.

IASTR7hJ Aslrahan, M., cl. al., Syslcm R: RclnIional
Appi-ouch to Darabasc Managcmcnt, ACM Transac-
tions on Data Systems, Volume 1, No. 2, IJunc
197h), pp. 119-120.

IBABB79j Hahh, E., Implcmcnring ;I RclaIional
Dotrjhasc hy Mnms 01‘ Spccializcd Hlrrdwarc, ACM
TransacIions on Datahasc Systems, Volume 4, No.
1, 1979.

[BlTl’X3] BiIton D., D.J. DcWiII, and C. ‘l‘urhylill,
Benchmarking DaIiihasc SysIcms A SysIcmaIic
Approach, Proceedings 01’ IIIC 19X.3 \‘cr-y L;rrgc
Datahasc Conlbcncc, Octohcr, 1983.

jBLAS77j Blasgcn, hl. W., and K. P. Eswarun,
Slorugc and Access in Rclationtil Dab HUSCS, IBM
Systems Journal, No. 4, 1977.

[BRA’I‘X4] Brathcrgsengcn, K,jcll, Hashing Methods
and Relational Algchr:r OpcraIions, Proceedings 01’
the 19X4 Very Large D;ltuh;tsc ConIcrcncc, August,
19x4.

IBROWXSj Brownc, J. C., Dale, A. C., Lcung, C.
and R. Jcncvcin, A Parallel MulIi-SIagc I/O Arch-
Iecturc with Sell‘-M;mnging Disk Cache IOI- Dilla-
hasc Managcmcnl ApplicuIions, Proceedings of’ 111~

-llll International Workshop on DaIahasc Machines,
March. 19XS.

[CHOUX3] Chou, H-T, DeWiIt, D. J., Katz, R., and
‘1‘. Klug, Design and Implcmcnliuion 01‘ the
Wisconsin Storage Sysicm (WiSS) lo HPpCiil’,
Soi‘I\varc PracIicc and Experience, also Compuier
Sciences DcpartmcnI, llnivcrsily 01‘ Wisconsin,
‘l‘cchnical RcporI #524, Novcmhcr 19X.3.

[DEWIX4a] Dewitt, D., Katz, R., Olkcn, F., Shapiro,
D., Stonebrakcr, M. and D. Wood, Implementa-
tion Techniques for Main Memory DaIahasc Sys-
tems, Proceedings of lhe 19X4 SIGMOD Confer-
ence, Boston, MA, June, 19X4.

(DEWI84bJ Dewitt, D. J., Finkel, R., and M. Solo-
mon, The CRYSTAL Muhicomputer: Design and
Implementation Experience, submitted for publica-
tion IEEE Transactions on Software Engineering,
also, Computer Sciences Department Technical
Report #SS3, IJniversiIy of Wisconsin, Scplcmher,
19x4.

[GARCX4] Garcia-Molina, H. and Kenneth Salem,
Disk Striping, lo appear Proceedings of Ihe 19X5
SIGMOD Confcrcncc, also Dcpl. ol’ ElecIrical
Engineering and Compuier Scicncc Technical
Report #332, Dccemher, 19X2.

(GOODXI] Goodman, J. R., An lnvesligation of Mul-
tiprocessor Struciurcs and Algorithms ior Dabhasc
Management, University ol’ Calilorni:j at Berkclcy,
Technical Report UCB/ERL, MX1/33, May, 19X1.

IGROSS3j Grosch, H. R. J., High Speed Arithmetic:
The DigiIiil Compulcr as a Research Tool, Journal
of the Optical Society 01 America, Volume 4, No.
4, April, 1953.

[HEX31 Hc, X. CI. VI. ‘I‘hc ImplcmcnIation of a Multi-
hackcnd DvIiIhasc SYSIC~TIS I M DBS), in Advanced
DaIahasc Machine Archilcclurc, cdiIed hy David
Hsiao, PrcnIicc-Hall, 19X3.

IKIMXS] Kim, h/l. Y, Parvllcl Operation ol Magnetic
Disk Sloragc Devices, Proceedings of Ihc 4th Inter-
national Workshop on Datrrhase Machines, March,
19x5.

(KI’I’SX.%t] Kilsurcaga!va, M ., ‘I’anrrka, H ., and I‘.
MOIO-oka, Applic:ition 01’ HaSI IO Dali1 BaSC

Machine and IIS ArchiIcctlrre, New Ccncration
Compuling, Volllmc I, No. I, 19X.3.

I KITSX3h] Kitsurcg;tw:r, M ., ‘l‘anaka, H ., and l‘.
MoIo-oku, RclaIional Algchra Machine Grace,

RIMS SynIpnsi:r on Soltwarc Scicncc and Engineer-
ing, 19X2, Lcctllrc NOICS in Computer Scicncc,
Springer Vcrlag, 19X3.

[KITSX3cj Kitsurcgawa, M., Tanaka, H., and T.
MOIO-OkU, ArchiIccIurc and Pcrlbrmancc 01’ Rcla
tional Algchra hlachinc Grace, UnivcrsiIy 01’
Tokyo, ‘I‘cchnical RcporI, 19X3.

[KNUT73] Knuth, The Art of Computer Programming:
Sorting and Searching, Volume 111, 1973.

]PROTX3] Proteon Associates, Operation and Mainte-
nancc Manual for the ProNet Model plOO0
Unihus, Waltham, Mass, 1983.

(RIES78) Rics, D. and R. Epstein, Evaluation of Distri-
bution Criteria for Distributed Database Systems,
UCB/ERL Technical Report M78/22, UC Berke-
ley, May, 1978.

(SlEW82] Siewiorek, D. P., Bell, C. Ci., and A.
Newell, Computer Structures: Principles and
Examples, McGraw Hill, 1982.

[STON76] Stonebraker, Michael, Eugene Wong, and
Peter Kreps, The Design and Implementation of
INGRES, ACM Transactions on Database Systems,
Volume 1, No. 3, September, 1976.

[VALD84] Valduriez, P., and G. Gardarin, Join and
Semi-Join Algorithms for a Multiprocessor Data-
base Machine, ACM Transactions on Database
Systems, Volume 9, No. 1, March, 1984.

164

