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ABSTRACT

This paper extends carlier research on hash-join
algorithms to a multiprocessor architecture. Implemen-
tations of a number of centralized join algorithms are
described and measured. Evaluation of these algo-
rithms scrved to verify carlier analytical results.  In
addition, they demonstrate that bit vector filtering pro-
vides dramatic improvement in the performance of all
algorithms including the sort merge join algorithm.
Multiprocessor configurations of the centralized Grace
and Hybrid hash-join algorithms are also prescnied.
Both algorithms are shown to provide lincar increascs
in throughput with corresponding increases in processor
and disk resources.

1. Introduction

After the publication of the classic join algorithm
paper in 1977 by Blasgen and Eswaran [BLAS77], the
topic was virtually abandonced as a rescarch arca. Ever-
ybody “kncew” that a nested-loops algorithm provided
acceplable performance on small relations or large rela-
tions when a suitable index existed and that sort-merge
was the algorithm of choice for ad-hoc! queries. Last
ycar two papers [DEWI84a, BRAT84] took another
look al join algorithms for centralized relational data-
basc sysiems. In particular, both papers compared the
performance of the more traditional join algorithms with
a variety ol algorithms based on hashing. The two
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papers rcached the same conclusion: that while sort-
merge is the commonly accepted algorithm for ad-hoc

joins, it is, in fact, nol nearly as fast as sceveral join

algorithms based on hashing. In retrospect, il is
interesting to observe that a simple, but very good algo-
rithm has been virtually ignorcd2 simply because Sys-
tem R [ASTR76] did not support hashing as an access
mcthod.

The motivation for the rescarch described in this
paper was twofold.  Firsl, since [DEWI84a} and
IBRAT84] were both analytical cvaluations, we wanted
to implement and measure the algorithms proposed in
these papers in a common framework in order to verify
the performance of the hash-based join algorithms.
Sccond, we wanted to sce if the results for a single pro-
cessor could be extended to multiple processors. The
hash-based join algorithms described in [DEWI184a],
and in particular the Hybrid algorithm, made very
effective use of main memory to minimize disk traffic.
It secemed that since multiprocessor joins require that
data be moved between processors, that the multiproces-
sor hash-based join algorithms might minimize the
amount of data moved in the process of executing a join
algorithm. Hash-based multiprocessor join algorithms
for multiprocessors arc not new. They were first sug-
gested in [GOODS1], next adopted by the Grace data-
bas¢ machine project [KITS83], and evaluated in
[VALDS84]. Whiic cach of these papers made important
contributions to understanding multiprocessor  hash-
based join algorithms, @ number of questions remain.
First, in [GOODS&I1], it is hard to factor out the influ-
ence of the X-tree architecture and the parallel readout
disks on the results obtained. [KITS83], on the other

T By "ad-hoc” we mean a join for which no suitable indes ex-
ists.

2 While INGRES [STON76] uses hashing for ad-hoc queries,
the limited address space of the PDP 11 on which INGRES was
first implemented made it impossible to exploit the use of large
amounts of memory etfectively. Consequently, the algorithm never
received the recognition it deserves.



hand, concentrates on the speed of the sort-engine and
not the overall performance of the Grace hash-join
algorithm.  Finally, the algorithm presented in
[VALDS4] exploits hashing only during the partitioning
process and resorts 10 a pure nested loops algorithm
aided by bit vector filtering during the join phase. The
goal of our rescarch was to examine the multiprocessor
hash-join algorithms in a multiprocessor environment
that cnabled us to identify CPU, communications, and
1/0 bandwidth design paramelters.

In Section 2, we review the join algorithms and
analylical results presented in [DEWI184a]. As a first
step toward developing a multiprocessor version of the
hash based join algorithms, we implemented the join
algorithms described in [DEWI84a] on top of the
Wisconsin  Storage System (WiSS). The results
presented in Section 3 verify the analytical results
presented in [DEWI184a). Based on these results, we
feel that all relational database systems should provide a
hash-based join algorithm in order to cffectively exploit
main memory as il becomes increasingly inexpensive.
The algorithms described in Section 3 were also used to
gather some “real” numbers for use in a simulation of
the muliiprocessor join algorithms. in Section 4, we
describe two multiprocessor hash join algorithms. We
also present the results of a simulation study of these
algorithms. The results are extremely exciting as they
indicate that both algorithms provide very close 10 a
lincar speedup in performance with corresponding
increases in resources.  In Scction S, our conclusions
and our plans for a new database machince based on
these multiprocessor join algorithms are described.

2. An Overview of Hash-Partitioned Join Opera-
tions

In [DEWI184a], the performance of three hashed-
based join algorithms (termed Simple, Grace [KITS83],
and Hybrid) were compared with that of the more tradi-
tional sort merge algorithm. In the following discussion
of the hash-partitioned join algorithms, the two source
relations will be named R and S. R is assumed to be
smaller (in pages) than S. All hash-join algorithms
begin by partitioning R and S into disjoint subsets called
buckets [GOODS!, KITS83]. These partitions have
the important characteristic that all tuples with the same
join attribute value will share the same bucket. The
term bucket should not be confused with the overflow
buckets of a hash table. The partitioned buckets are
merely disjoint subsets of the original relations. Tuples
are assigned to buckets based upon the valuc of a hash
function that is applied to a tuple’s join autribute vatue.
Assuming that the potential range of hash values is par-
litioned into the subsets X, ..., X,, then every tuple of
R whose hashed join attribute value falls into the range
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of values associated with X; will be put into the bucket
R;. Similarly, a tuple of S that hashes to the partition
X; will be put into the bucket S;. Since the same hash
function and partitioning ranges are used with both
relations, the tuples in bucket R; will only have to be
joined with those wples in S;. It will be the case that
tuples from bucket R; will never have join atiribute
values equal to those of tuples in S; where /7 j. Thc
potential power of this partitioning lies in the fact that a
join of two large relations has been reduced to the
separalc joins of many smaller refation buckets.

The hash-join algorithms have two distinct phases.
In the first phase, relations R and S are partitioned into
buckets. In a centralized environment, this partitioning
might be done by allocating a page frame to buffer the
tuples being assigned to the particular buckets. As a
page buffer is filled, it is flushed to a file on disk thal
represents a particular bucket. Each relation is scanned
and partitioned in turn. At the end of the partitioning
phasc, rclations R and S arce represented by cqual
numbers of bucket files that have been written to disk.
This partitioning phasce must create a suitable number
of buckets such that each bucket of relation R will be
small enough to fit into main memory. The size of the
buckets of S can be ignored because, al most, only a
single page of relation S needs to be resident in memory
al a lime during the join phase.

The second phase of the hash-join algorithms
effects the actual search for tuples from relations R and
S that have maiching join values. Any of the traditional
join mcthods could be used in this phase to realize the
final join result. However, as relation R has been parti-
toned into buckets that will fit into memory, it seems
most appropriate to use a hash-based algorithm to pro-
cess the search for matching join tuples. This second
phase will be referred (o as the join phase. In the first
siep of the join phase, a buckel R; is used to build a
hash table in main memory. Then bucket §; is read
and cach tuple of S; is used to probe the hash tabie for
matches.

2.1. Problems with Hash Join Algorithms

The partitioning phase must ensure that the size of
the buckets created from relation R do not exceed the
size of main memory. Guaranteeing that a chosen par-
titioning of hash values will resuil in buckets of relation
R that will fit in memory is not necessarily trivial. The
problem of buckets growing unacceptably large is
termed bucket overflow, The choice of an appropriate
hash function will tend to randomize the distribution of
tuples across buckets and, as such, will minimize the
occurrence of bucket overflow. If the chosen hash
function fails 1o distribute the tuples uniformiy and



bucket overflow occurs, a number of remecdies are
available.  The relations could be partitioned again with
another hash function. This solution is almost always
oo expensive. A better alternative is to apply the parti-
tioning process recursively to the oversized buckels
[DEWI844, BRAT84]. The net effect of this solution is
to split an oversized bucket into two or more smaller
buckets. I relation R is partitioned before relation S,
then (his method only requires rescanning the particular
bucket that overflowed. The range of values governing
the partitioning of relation S can be adjusted to reflect
the final parlitioning of R after bucket overflow has
been handled. This method could fail in the case that
the combined sizes of tuples having identical join values
exceeds the size of available memory. In such a case, a
hash-basced variation of the nested loops join algorithm
can be applicd. The performance of such an algorithm
is anatyzed in Scction 3 of this paper. The solutions
used 10 handle bucket overflow can also be applied to
the overflow of a hash table.

2.2. Simple Hash-Join

The Simple hash-join processes one bucket at a
time while doing a minimal amount of partitioning. In
fact, the partitioning and join phases arce exccuted
simultancously. Two files are associated with relations
R and S. There are files R input (S input) which con-
tain tuples that are waiting to be processed hy the
current phasc of the algorithm.  The files R output
(S output) contain tuples that have been passed over hy
the current phase of the algorithm. At the start of the
algorithm, R input and S input are sci to equal the rela-
tions R and S. R output and S output are initially
emply.

A partitioning basis consisting of a number and
range of of hash values is chosen at the start. There
will he as many stages to the algorithm as there are
buckets of relation R. The buckets of R are sequen-
tially uscd to build hash wbles in main memory. One
hash table is built at the slart of cach stage. Each stage
begins with a scan of Rinpul. As cach tuple is con-
sidered, il it belongs (o the targeted memory bucket R;
the tuple is added to the hash table.  Otherwise, the
wple is written to R output. R output contains all the
remaining buckets that arc not of current interest.
Then Sinput is scanned sequentially. 16 a tuple of
S input hashes to bucket $;, then it is used to probe the
hash table built {rom bucket R;. W a match is found,
the tuples are joined and output.  Otherwise, (ic. the
wiple does not belong 1o bucket S;) it is written 1o
S output.

AL the end of cach stage of the Simple hash-join,
the  Routput (S outputy file becomes the R input
(S inpuy) file that will be used by the next stage.  As the
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algorithm progresses, the R output (S output) file
becomes progressively smaller as the buckets of interest
are consumed. The algorithm finishes when cither
R output or S output are empty following a processing
stage.

2.3. Grace Hash-Join

The Grace hash join algorihm [GOODS8I,
KITS83] is characterized by a complete separation of
the partitioning and joining phascs. The partitioning of
relations R and S is completed prior to the start of the
join phase. Ordinarily, the partitioning phase creates
only as many buckets from relation R as are necessary
to insure that the hash table for cach bucket R; will fit
into memory. Since only a single page frame is needed
as an output buffer for a bucket, it is possible that
memory pages will remain unused after the requisite
number of bucket buffers have been allocated. In the
Grace algorithm, these extra pages can be used to
increase the number of buckets that are gencrated by
the partitioning phase.  Following the partitioning
phase, these smaller buckets can be logically integrated
into larger buckets that arc of optimal size for building
the in-memory hash tables.  This strategy is termed
bucket tuning [KITS83]. Bucketl tuning is a useful
method for avoiding bucket overflow.

2.4. Hybrid Hash Join

The Hybrid hash join was first described in
[DEWI84a]. All partitioning is finished in the first
stage of the algorithm in a fashion similar to the Grace
algorithm. However, whereas the Grace algorithm uses
any additional available memory during the partitioning
phasc to partition the relations into a large number of
buckets, Hybrid uses additional memory to begin the
joining process. Hybrid creates the minimum number
of buckets such that cach bucket can he reasonably
expected 1o fit into memory.  Allocating one page frame
1o be used as an output buffer for cach bucket, the
Hybrid algorithm utilizes any remaining pages frames to
build a hash table from Ry. The partitioning range is
adjusted to create N equal-sized buckets, Ry, ..., Ry,
that arc written (o disk and onc independently sized
bhucket, Ry, that is used to build the hash table. The
same partitioning range is used for relation S, Tuples
of S that hash into bucket So are immediately used to
probe the hash table for matches. When the partition-
ing phasce completes, the Hybrid hash-join has already
completed processing part of the join phase. Thus, the
tuples that are immediately processed do not have to be
written 10 and retrieved from the disk between the parti-
tioning and join phasces. These savings become signifi-
cant as the amount of memory increases.



2.5. Sort-Merge Join Algorithm

The slandard sort-merge [BLAS77] aigorithm
begins by producing sorted runs of tuples that are, on
the average, twice as long as the number of tuples that
can {it into a priority queuc in memory [KNUT73].
This requires one pass over each relation. During the
sccond phase, the runs are merged using an n-way
merge, where n is as large as possible. If n is less than
the number of runs produced by the first phase, more
than two phases will be needed. In the final phase, the
sorled sourcc relations are sequentially scanned and
matching tuples are joined and output.

2.6. Comparison of the Four Join Algorithms

Figure 1 displays the relative performance of the
four join algorithms using the analysis and parameter
scitings presented in [DEWI84a). The vertical axis is
execution time in seconds. The horizontal axis is the

ratio of M,:

where |M] and |R| are, respectively,
the sizes of main memory and the R relation in pages
and F equals 1.2 (F is a fudge factor used to account
for the fact that even if |R| = |M], a hash table for R
will occupy more than |R| pages in main memory).
For ail the algorithms, R and S are assumed to be
resident on mass storage when the algorithm begins
execution. These results clearly indicate the advantage
of using a hash based join algorithm over the more
traditional sort merge algorithm. In retrospect, the
results are not oo surprising, as sorling crcales a total
ordering of the records in both files, while hashing sim-
ply groups related records together in the same bucket.
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3. Evaluation of Centralized Hash Partitioned Join
Algorithms

To verify the analysis presented in [DEW184a] and
to gather information on CPU and I/O utilizations dur-
ing the partitioning and joining phases of the three
hashing algorithms, we implemented the Simple,
Grace, and Hybrid algorithms on a VAX 11/750 run-
ning 4.2 Berkeley UNIX. In addition to the three
hash-partitioned join algorithms, two other popular join
algorithms were studied. These algorithms, a sorl-
merge algorithm and a hash-based nested loops algo-
rithm, provide a context for comparing the performance
of the hash-partitioned join algorithms. Al the algo-
rithms were implemented using the Wisconsin Storage
System (WiSS) [CHOUS83].

3.1. An Overview of WiSS

The WSS project was begun approximately 3 years
ago when we recognized the need for a flexible data
storage system that could serve as the basis for con-
structing  experimental database management systems.
Whife originally conccived as a replacement for the
UNIX file system (WiSS can run on top of a raw disk
under UNIX), WiSS has also been ported to run on the
Crystal multicomputer [DEWI184b]. The services pro-
vided by WiSS include structured sequential files, byte-
strecam files as in UNIX, B indices, stretch data
items, a sort ulility, and a scan mechanism. A sequen-
tial file is a sequence of records. Records may vary in
length (up 1o one page in length), and may be inserted
and deleted at arbitrary localions within a scequential
file. Optionally, cach sequential file may have one or
more associaled indices. The index maps key values 1o
the records of the sequential file thal contain a matching
value. The indexing mechanism is also used to con-
struct UNIX-style byte-sirecam files (the pages of the
index correspond to the inode components of a UNIX
file). A streteh item is a sequence of bytes, very similar
to a file under UNIX. However, insertion and deletion
at arbitrary locations is supported. Associated with each
stretch item (and cach record) is a unique identifier
(RID). By including the RID ol a stretch iiem in a
record, onc cun construct records of arbitrary length.
As demonstrated in [CHOUS83], WiSS’s performance
is comparable 1o that of commercially available database
systems.

3.2. Summary of Algorithms Evaluated

Centralized versions of the Grace, Simple and
Hybrid hash-partitioned join algorithms were imple-
menied in the manner described in Section 2. A modi-
fied version of the nested loops algorithm, termed
Hashed Loops, was also implemented [BRATR4). The



Hashed Loops algorithms is so named because it uscs
hashing as means of effecting the internal join of tuples
in main memory. 1t is similar to the algorithm used by
the university version of INGRES [STON76]. For each
phasc of the Hashed Loops algorithm, a hash table is
construcied from those pages of R that have been staged
into memory. Tuples from S are used as probes into
the hash wable. Constructing such a hash table avoids
exhaustively scanning all of the R wples in memory for
cach tuple in S as is done with the simpler form of the
nested loops algorithm. The last algorithm, the Sort
Merge join, cmployed the sort utilities provided by
WiSS.

All the algorithms were allocated identical amounts
of main memory for buffering pages of the relation.
Similarly, all the algorithms accessed relations on disk a
page at a time, blocking until disk operations completed.

3.3. Presentation of Performance Results

The join algorithms were compared using querics
and data from the Wisconsin Benchmark Database
[BITT83}. As in Figure 1, the execution time of cach
join algorithm is shown as a [unction of the amount of
available memory relative to the size of the smaller rela-
tion. The relative amount of memory is defined to be
the number of pages of main memory, |M|, divided by
the size in pages of the smalier relation, |R|. The
clapsed times for all join algorithms include the time
required lo write the final result relation 1o disk.  All
tests were run in single user mode.  The test machine
had 8 mcgabytles of memory so no paging occurred.
Bucket overflow did not occur in any of the tesis of the
hash-partitioned algorithms.

The results of joining two 10,000 tuple relations
using cach of the join algorithms is presented in Figure
2. The join produces 10,000 result tuples. The join
ELAPSED TIME
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attribute is a randomly ordered, two hyte integer. Every
tuple from both relations participates in the result rela-
tion produced by this join query. Whereas Figure 1
presented performance results that were calculated from
analytical models, Figure 2 presents the measured per-
formance of actual implementations of the algorithms.
We find the similarity of Figures 1 and 2 both reassur-
ing and encouraging.

In Figure 2, the performance of the Grace hash-
join algorithm is constant for the given range of avail-
able memory. This results from the total separation of
the partitioning and join phases in the Grace algorithm.
From a performance viewpoint, the Grace algorithm
only uses memory optimally during the joining phase.
Excess memory during the partitioning phase is used as
a means of creating a large number of buckets for the
bucket tuning process. In contrast, the performance of
the Simple hash-join algorithm is significantly affected
by the amount of available memory and performs well
only when the smaller relation is less than twice the size
of available memory. The performance of the Hybrid
algorithm reflects the fact that it combines the best per-
formance features of the Grace and Simplc3 hash-join
algorithms. Since Hybrid completes all partitioning in a
singlc  pass through both source relations, it’s perfor-
mance is always as least as good as that of the Grace
algorithm. The Hybrid algorithm increasingly outper-
forms Grace as the amount of relalive memory
increases hecause the additional memory is used for
immediately joining tuples from one bucket of cach
source relation. Such immediate joining climinates the
cost of writing and rcading these tuples to disk between
the partitioning and joining phases. The performance
of all of the hash-partitioned algorithms remains
unchanged once the smaller relation fits in memory.
This point occurs at a relative memory value of 1.2 and
not when available memory exactly equals the size of
the smaller relation.  This results {rom the fact that the
hash-join algorithms usc some of the available memory
during the join phasc for the structure of the hash table
itsell.  Also, il must be realized that partitioning is a
predictive process and as such, prudence requires that
additional memory he used 10 accommodale fluctuations
in the size of the hash tables that are constructed from
buckets.

The performance of the Sort-Merge join algorithm
is constant over a wide range of available memory in
Figurc 2. Until a source relation fits into memory, the
sorting process completely reads and writes the relation

Y Ihe Simple hash-join algorithm should have perfornumee
equal 1o that of the Hybrid algorithm for relative memory values i
excess of approvimately 0.5, The ditference in the perfornunce of
the Hybrid and Simple hash-join algorithms for relative memorn
values between 0.5 and 1.2 is an artifact of the implementation.



at least twice, once when the sorted runs are produced
and a sccond time when the sorted runs are merged.
The Sort-Merge join algorithm then reads the source
relations a third time to effect the final joining of tuples.
An optimization is possible. Given sufficient memory,
the sorted runs of both relations can be merged and
joined simultaneously. In this case, the performance of
the Sort-Merge algorithm could be expected to be simi-
lar to the Grace algorithm as each algorithm would
access cvery page of each source relation three times
(two reads and a wrile).

Perhaps, surprisingly, the Hashed Loops algorithm
has quite good performance over a wide range of avail-
able memory in Figure 2. Due to the existence of the
hash 1able, the cost of of probing for matches with
tuples from relation S is a relatively inexpensive opera-
tion. The algorithm performs especially well when the
size of the smaller relation is less than twice the size of
available memory. As this is exactly the situation one
would expect in the case of bucket overflow, the hash-
based nested loops algorithm is an atiractive remedy for
handling bucket overf{low.

The performance of the join algorithms for a join
of a 1,000 tuple relation with a 10,000 wple relation is
shown in Figurc 3. The result relation contains 1,000
tuples. The Hybrid algorithm continucs to dominate all
the other join algorithms over a wide range of relative
memory values. The stepwise performance transitions
of the Sort-Merge and nested loops algorithms become
more ohvious in the environment of this query.

Figure 4 reflects the performance of the join algo-
rithms on the same query used for Figure 3. The
diffcrence is that in Figurc 4 all the algorithms use bit
vector filtering  techniques [BABB79, BRATS4,
VALDS84). The notable performance improvements
demonstrated are the result of climinating, at an carlier
stage of processing, those tuples that will not produce
any result tuples. The bit vector filtering technique
used by the hash-partitioning and Sort-Merge algo-
rithms are very similar.* Prior to the initial scan of
rcelation R, a bit vector is initialized by setting all bits to
0. As each R tuple’s join auribute is hashed, the
hashed value is used to set a bit in the bit vector. Then
as reclation S is scanned, the appropriate bit in the bit
vector is checked. If the bit is not set, then the wple
from S can be safely discarded. Applying the bit vector
from relation R against rclation S approximates a semi-
join of relation S by relation R. The net impact of this
process depends on the semijoin selectivity factor of
relation S by R which is defined to be the ratio of tuples

4 The bit vector filtering technique used by the hash-

partitioned and Sori-Merge algorithms is directly extendible to the
case of Hashed Loops if the names of the relations in the discus-
sion are reversed.
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resulting from the semijoin of S by R relative to the car-
dinality of S. In the example query of Figure 4, the
semijoin of relation S by R has a semijoin selectivity
factor of 0.1. The net effect is that approximately 90 %
of the tuples of relation S can be eliminated at a very
carly stage of processing by the hash-partitioned and
Sort-Merge algorithms. Significant 1/O savings accrue
from the fact that these non-participating tuples do nol
have to be stored on disk between the partitioning and
joining phases of the hash-partitioning algorithms. Two
disk accesses are saved for every page of tuples that can
be eliminated by the bit vector filiering of relation S.
Since, the Hashed Loops algorithm does not com-
plete a scan of relation R untl the end of the query, it
must instead use bit vector fiftering to approximate a
semijoin of relation R by S. In Figure 4 the semijoin



sclectivity factor for a semijoin of R by S is 1.0.
Therefore, in this instance, the Hashed Loops algorithm
doesn’t derive any benefit from applying bit vector
filiering.

Collisions that occur in the process of accessing bit
vectors may result in non-qualified (phantom) tuples
being propagated along to the final joining process.
The phantom tuples will, however, be eliminated by the
final joining process. The number of phantom tuples
can be reduced by increasing the size of the bit vector
or by splitting the vector into a number of smaller vec-
tors [BABB79]. A separate hash function would be
associated with each of the smaller bit vectors. The
costs associated with bit vector filtering are modest. For
the given test, a single bit vector of length 4K bytes was
used.  Since the hash-partitioning algorithms already
compute the hashed value of cach tuple’s join attribute,
the only additional cost of bit vector filtering for these
algorithms is the amount of space required for the bit
vector itself.

4. Multiprocessor Hash-based Join Algorithms

Multiprocessor versions of the Hybrid and Grace
algorithms are attractive for a number of reasons.
First, the ability of these algorithms to cluster related
tuples together in buckets provides a natural opportunity
for cxploiting parallelism. [n addition, the number of
buckets produced during the partitioning phase (or
activated in the joining phase) of each algorithm can be
adjusted to produce the level of parallclism desired dur-
ing the joining phasc. Second, the use of buckets by
multiprocessor versions of the two algorithms should
minimize communications overhcad. Furthermore, just
as the centralized form of the Hybrid algorithm made
very cffective use of main memory in order to minimize
disk traffic, one would cxpect that a multiprocessor ver-
sion of the Hybrid hash join algorithm should be able to
usec memory to minimize both disk and communications
traffic. Finally, it appears that control of these algo-
rithms can also be decentralized in a straightforward
manner.

4.1. Horizontal Partitioning of Relations

All relations are assumed to be horizontally parti-
tioned [RIES78] across all disk drives in the system.
From the view point of raw bandwidth, this approach
has the same aggregate bandwidth as the disk striping
stralegics [GARC84, KIM85, BROWS85} given an equal
number of disk drives. The difference is that in our
approach once the data has been read, it can be pro-
cessed dircctly rather than being transmitted  first
through some interconnection network to a processor.

There are at least two obvious strategies for distri-
buting tuples across the disks drives in the system. One

approach is to apply a randomizing function 1o each
tuple (or the key attribute of the wple) to select a disk
for storing the tuple. Each processor maintains an
independent index on the tuples stored on its disk. The
advantage of this approach is that as additions are made
to the file, the number of tuples on each disk should
remain relatively well balanced. The second approach
is to cluster tuples by key value and then distribute them
across the disk drives. In this case the disks, and their
associated processors, can be viewed as nodes in a pri-
mary, clustered index. A conirolling processor acts, in
effect, as the root page of the index. We intend to
investigate whether traditional tree balancing algorithms
provide acceptable performance in such an environ-
ment. This approach is similar to, but much simpler
than, the clustering approach employed by MDBS
[HE83). In MDBS [HES83), each backend processor
must examine every query as the clustering mechanism
is implemented by the backends, not the controlling
processor.

The real advantage of the second approach comes
when processing queries.  With the first distribution
strategy (ie. tuples distributed randomly), except in the
case of exact match queries on the attribute used (o dis-
tribute tuples, all processors must execulc every query,
With the second distribution strategy, the controlling
processor (which maintains the root page of each index)
can direct cach query to the appropriate processors.
While there is certainly some overhead in performing
this function, it is certainly less than the cost of sending
the query to all the processors. Furthermore, for even
a fairly large database, the root pages of all indices
should fit in the controlling processor’s main memory.
While the two distribution strategies should provide
approximalely the same response lime in single user
benchmarks, we cxpect that system throughput would
be significantly higher with the second distribution stra-
tegy in a multiuser cenvironment. When no suitable
index is available, all processors are available to per-
form the query.

4.2. Description of Multiprocessor Hybrid and
Grace Algorithms

The algorithms described in this section assume
that the relations of the database have been horizontally
partitioned across multiple disk drives in the manner
described above. Each disk drive has a processor asso-
ciated with it. (Note, the converse is not necessartly
truc.) For the purposes of the performance cvaluation
presented below, we have assumed that the processors
are interconnected with an 80 Mbit/sccond token ring,
As we will demonstrate, such an interconnection topol-
ogy provides adequate performance even when 50 pro-
cessors are being uscd.



4.2.1. A Multiprocessor Version of the Grace
Hash-Join Algorithm

There appear to be a number of alternative stra-
tegics for parallelizing the Grace hash-join algorithm.
The approach we have selected and evaluated assumes
that a different set of processors is used for the joining
and partitioning phases of the algorithms. Further-
more, while the "partitioning” processors are assumed
to have disk drives associated with them, the "joining”
processors are assumed to be diskless. One reason that
we find this strategy attractive is that diskless nodes are
cheaper than nodes with disks and we are interested in
exploring whether such processors can be effectively
utilized.

The algorithm proceeds as follows. Each node
with a disk partitions the smaller relation into buckets
that are written across the network (o the nodes without
disks. These nodes perform the join phase of the algo-
rithm. Each joining node will contain a single hash
table that has been built from the tples of a single
bucket of the smaller source rclation. After the hash
tables have been completely built, the larger relation is
pariitioned and the buckets are sent to the joining
nodes. Corresponding buckets of both source relations
arc guaranteed to be sent to the same joining node.
Tuples from the larger relation are used 1o probe the
join node hash tables for matches. [If the size of the
smaller relation exceeds the aggregale memory capacity
of the joining nodes, multiple phases are necessary and
unused buckets will he temporarily saved on the disks
attached to the partitioning nodes.

The multiprocessor Grace algorithm can allocate
varying numbers of joining nodes. The Grace algo-
rithms have been named according to the ratio of
partilioning nodes to joining nodes. The Grace 1:1
design allocates one partitioning node for cach joining
node. There is one partitioning node for cvery two
joining nodes in the Grace 1:2 design. Finally, the
Grace 2:1 design allocates two partitioning nodes for
each joining node. While these design combinations
proved optimal for the execution of single join queries,
it may very well be the casc that more varied combina-
tions of processors may prove optimal for more complex
queries.

4.2.2. A Multiprocessor Version of the Hybrid
Hash-Join Algorithm

While the multiprocessor Grace algorithm employs
a combination of processors with and without disks, the
multiprocessor Hybrid algorithm requires that each pro-
cessor has a disk drive.  The multiprocessor Hybrid
hash-join algorithm performs the partitioning and join-
ing phases on the same nodes. Each processor parti-
tions the source relations in a fashion similar 1o the
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Grace algorithms. However, each node allocates excess
memory during the partitioning phase to a hash table
for one bucket of wples. As the source relations are
partitioned on a local Hybrid processor, most tuples are
written across the net lo the appropriate join node.
Tuples belonging to the bucket associated with a parti-
tioning processor are instead immediately used to either
build or probe the local hash table. Because some of
the tuples can be processed locally, the Hybrid hash
join algorithm generates a relatively lighter network
load than the Grace algorithm. For a given level of
resources, a Hybrid multiprocessor aigorithm will use
more disks and fewer processors than a Grace muitipro-
cessor algorithm.,

4.3. Discussion of Simulation Model

To evaluate the performance of the distributed
Hybrid and Grace hash-join algorithms a simulation
model of the proposed multiprocessor architecture was
constructed. The hardware components that are
represented in the model are intended to be examples of
current, commercially available components. The
capabilitics of the various components can be varied (o
test the cffects of various combinations of resources.
While the distributed hash-partitioned algorithms could
be implemented in many different kinds of network
environments, the processors in the current simulation
arc tooscly coupled via a token ring network.

4.3.1.

The model allows us to simulate 1, 2, and 3 MIP
processors. The disk drives were modeled after the
Fujistu Eagle drive and arc assumed to support a
transfer rate of 1.8 Mbytes/second.  The combined
positioning and latency times have been modeled as a
normal distribution with a mcan value ol 26 mil-
liscconds and a standard deviation of 4 milliseconds.
The processor’s network interface is assumed (o have a
single, output buffer of 2 Kbytes. A similar input buffer
is assumed. The cffective DMA bandwidth at which
these buffers can be filled or flushed to the main
memory of a processor is assumed 1o be either 4
Mbits/second or 20 Mbits/second. The 4 Mbits/second
number is derived from measurements made on a VAX
11/750 with a Proteon ProNct interface [PROT83]
attached to the Unibus. The 20 Mbits/second is an esti-
matc of the DMA rale if the device were attached to the
internal bus of a VAX 11/750. The token ring is
assumed (o have a bandwidth of cither 10 Mbits/second
or 80 Mbits/second. The 10 Mbits/second value is
representative of currently available local network inter-
faces such as the ProNet token ring. The 80
Mbits/sccond interface with a 20 Mbits/second DMA
rate is representative of the Cl interface from Digital
Equipment Corporation.

Hardware



Since the multiprocessor version of the Hybrid
algorithm requires that each processor has a disk drive,
while the Grace algorithm employs processors with and
without disks, a method for computing the "cost” of a
particular configuration of processors and disk was
needed. The approach we adopted was to assume that a
1 MIP processor cost the same as a disk drive and con-
trolier. The relative cost of the 2 and 3 MIP processors
was compuled using Grosch’s law [GROSS53] which
relates the cost of a processor to the performance
(speed) of the processor:

Performance = Technology Constant * Processor_Coslg
The technology constant and cost exponent werc

assigned, respectively, values of 1 and 1.5.% The cost of
a particular configuration is calculated by computing the

aggregalte cosl of all processors® and disks.

So far, we have not incorporated memory or com-
munications costs in our cost model. It might, for
example, be more cost effective to use more memory
and a lower speed communication device.

Using this cost model, calculating the cost of a
particular configuration of processors and disks is
straightforward. The reverse transformation, is not,
however, always obvious. Assume, for cxample, that
all processors are 1 MIP processors. Then a Hybrid
join configuration with a cost of 10 will consist of §
processors and 5 disks. A 2:1 Grace configuration (2
partitioning processors for every join processor), with a
cost of 10 will consist of 4 partitioning processors, 4
disks, and 2 joining processors.  No 1:2 or 1:1 Grace
configuration will have exactly a cost of 10. For exam-
ple, a 1:2 configuration with 2 parlitioning nodes, 2
disks, and 4 joining nodes has a cost of 8§ while the nexi
1:2 configuration (3,3,6) has a cost of 12. Likewise,
the 1:1 Grace configuration with a cost closest 1o 10
will have 3 partitioning processors, 3 disks, and 3 join
processors.  To facilitate interpretation of the results
presenied below, we have summarized in Table | the
resource costs of 6 alternative hardware configurations
(assuming 1 MIP processors) for each of the four algo-
rithms (Hybrid, Grace: 1:1, 2:1, and 1:2). The same 6
configurations were also used when we evaluated 2 and
3 MIP processors. While the cost of cach configuration
changes for these cases, the table can still be used to
determine the hardware configuration associated with
cach data point.

* The price/performance relationship of the IBM System/370
series correlates well with a value of 1.6 for the cost exponent
ISHEWS2 ).

% Note that in the case of the Grace algorithm, different per-
formance processors might be used tor the partitioning and joining

nodes.
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—
Resource Hybrid Grace 1:1 Grace 2:1 Grace 1:2
Cost #P #D | #PP #D #IP | PP #D KIP | #PP #D #IP
2 1 1
.3 1 1 1
4 2 P 1 1 2
5 2 2 1
6 2 2 2
8 2 2 4
9 3 3 3
10 5 5 4 4 2
12 3 3 6
15 5 5 5 6 6 3
16 4 4 8
20 10 10 8 8 4 5 5 10
21 7 7 7
24 12 12 6 6 12
25 10 10 5
30 i5 15 10 10 10 12 12 6
#P - number of Processors
#D - number of Disks
#PP - number of Partitioning Processors
#JP - number of Joining Processors

Table |
Resource Costs for Hash-Join Configurations
(1 MIP Processors)

4.3.2. Software

The operation of cach simulated processor is con-
trolled by a simple operating system kernel that provides
a precmptive scheduler.  Processes have associated
prioritics that arc used to resolve contention for system
resources. To minimize overhead, all disk transfers are
done a track (28 Kbytes) at a time [GARC84]. In addi-
tion, a double huffer is associated with each open file so
that while a process is processing track i, track i+ 1 can
be read. The maximum packet size supported by the
network is assumed to be 2K bytes.

The proposed multiprocessor  join  algorithms
require that large blocks of data be transferred across
the communications device. To this end, a model has
been built of a modificd, sliding window protocol that
insures the reliable delivery of large blocks of data
while enhancing the effective throughput of the network
for such transfers. To help control contention for
receivers, a higher-level, connection-based communica-
tions protocol has also been incorporated in the simula-
tion modcl.

We have, so far, ignored the issue of memory size
and bucket overlflow. The preliminary results presented
below assume that the smaller of the two relations being

joined always fits in the aggregate memory of the pro-

cessors used for joining. While this assumption will be
truc in a number of cases, one would not want to base
the design of a machine on such an assumption.
Assume, for cxample, that 8 processors arc used for
partitioning. With 64K RAMs, 1 megabytc memory
boards ar¢ common. As 256K RAMS become avail-



able, a typical memory board will hold 4 megabytes of
data. Thus with just 2 memory boards, an aggregate of
64 megabytes will be available for holding buckets. If
one assumes that the smaller relation will be produced
by applying a selection operation first, 64 megabytes
might be enough to hold most temporary relations. We
have aiso not addressed the issue of bucket overflow
(the size of a bucket is larger than the memory of the
joining processor to which the bucket is assigned)
which can occur even in the case that the size of the
smaller relation is less than the total available memory.

4.4. Preliminary Results

To evaluate the performance of the different algo-
rithms, a number of join operations were exccuted seri-
ally onc after another. Each join took two 10,000 tuple
relations as input and produced a result result relation
containing 10,000 tuples as output. For 1, 2, and 3
MIP processors, the network bandwidth and DMA rate
were held constant while varying the resources available
to the muliprocessor Hybrid join algorithm and the 3
configurations of the multiprocessor Grace algorithm:
1:1, 1:2, and 2:1. Throughput, measured in terms of
executed queries per minute, was used as the perfor-
mance metric. While we have conducted a wide range
of tests, we have included only the results obtained
using a network bandwidlth of 80 Mbits/second and a
DMA rate of 20 Mbits/second. A summary of the
results obtained with other configurations is contained
in Section 4.6. Since the cost of displaying or saving
the result relation is the same for cach configuration it
itas been ignored in the resuits dispiayed beiow.

The performance obtained by the multiprocessor
Hybrid join algorithm and the 3 configurations of the
multiprocessor Grace algorithm are displayed in Figures
5, 6, and 7 for 1, 2, and 3 MIP processors, respec-
tively. We think these results are very exciting and
represent a breakthrough in designing an architecturally
simple, but very high speed database machine. For
cach 1ype of processor, almost lincar speedups are
obtained with increasing level of resources.

With I MIP processors, the 1:1 Grace configura-
tion provides a higher throughput ratc over a wide
range of availabie resources. The principal reason is
that with 1 MIP processors, the average CPU utilization
for the Hybrid design is almost 100%, whereas the 1:1
Grace design, which uses a larger number of proces-
sors per resource cost level, is not CPU bound. For
example, when the total resource cost is equal to 6, the
Grace design is using 2 partitioning nodes, 2 join
nodes, and 2 disks. By comparison, for a resource cost
of 6 the Hybrid design is using 3 processors and 3
disks. The average disk utilization was approximately
20% for the Hybrid design and 30% for the 1:1 Grace

design. Thus, Hybrid’s advantage of having the source
iele for a

relations partitioned over a larger number of disks for a
given resource cost level was not a significant factor.
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Figure 6 presents the throughput results for the
case where all processors are assumed 1o be 2 MIP pro-
cessors. In this test, the Hybrid processors are no
longer CPU bound and the Hybrid algorithm outper-
forms all the Grace design combinations. The balanced
nature of the processing requirements of this query
favor the Hybrid and Grace 1:1 designs that allocate
balanced processor resources. The Grace 2:1 and 1:2
designs perform less well because of lower processor
utilizations resulting from the mismatch of processor
resources.

Figure 7 presents the throughput results when 3
MIP processors are used. The increased processor per-
formance favors the Hybrid design which processes a
bucket of cach relation on the local processor. The
Gracc designs are not able to utilize the increased pro-
cessor performance to the same magnitude as the net-
work data transfers’ impediment
increased performance.

bccome an 1o

4.5. A Look at Resource Utilizations with 2 MIP
Processors

The performance of the multiprocessor hash-join
algorithms nccessarily depend on how well the algo-
rithms utilize hardware resources.  The Hybrid algo-
rithm has the intrinsic advantage of sending a relatively
smaller number of tuples across the communications
nctwork.  On the other hand, the Hybrid algorithm
imposces a greater load on cach of the processors.

Figure 8 presents the resource utilization levels for
the multiprocessor Hybrid algorithm with 2 MIP pro-
cessors. The high CPU utilization levels reflect the fact
that cach processor in the Hybrid algorithm is used for
both the partitioning and joining phascs of the algo-
rithm. ‘The inital increase in CPU utilization is caused
by the transition of the algorithm from using a single
processor (0 using two processors. Wherceas the single
processor Hyhrid design did not utilize the network at

%
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all, the two processor Hybrid design must expend a sub-
stantial amount of processing effort transferring buckets
of wples between processors. As additional processors
are added to the Hybrid algorithm, the CPU ulilization
of the processors begins to declinc. This decline
corresponds to an increased level of contention for the
network. As the level of contention for the network
increases, processors are morce frequently blocked wait-
ing to transfer blocks of data across the network. The
increased levels of network contention also result in an
increasc in the total utilization of the network. The
relatively low disk utilizations result from the fact that
data is read from the disk a track at a ime. With that
disk 1/0 blocking factor, the disk is {requently idic
while the previously read tuples are being partitioned. 8

Figure 9 presents the resource utilizations for the
Grace 1:1 multiprocessor algorithm design with 2 MIP
processors. The relative CPU utilizations for the parti-
tioning nodes and joining nodes reflect the fact that the
partitioning phasc is normally the most computationally
expensive phase of the hash-join algorithm. The CPU
utilizations ol both the partitioning nodes and joining
nodes decrease as the levels of network contention
increase. The CPU utilizations of the Grace processors
arc relatively lower than the CPU utilizations presented
for the Hybrid algorithm. This is duc to the fact thai
for a given resource level, the Grace algorithm uses a
grealer number ol processors (han does the Hybrid
algorithm. Conversely, the fact that the Grace algo-
rithm uses lewer disks than the Hybrid algorithm for a
given resource level leads o the relatively higher disk
utilizations thal arc scen lor the Grace algorithm.

7 For a given query, the Grace designs must transfer a larger
amount of data across the network than the Hybrid design.

8 Disk 1/O blocking factors have been reduced to as low as §

Kbytes without significantly altering the performance of the algo-
rithms.
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4.6. Other Tests

Similar results were obtained when we varied the
nctwork bandwidth and the DMA rate. With a network
bandwidth of 10 Mbits/second and a DMA rate of 4
Mbits/second (the slowest configuration tested), almost
lincar speedups were obtained up to approximately a

resource cost of 20.% After this point, the network
tended to become completely utilized and throughput
remained constant.

We have, so far, chosen the same type of proces-
sors for the partitioning and joining nodes for the three
alternative Grace designs. Join queries with varied dis-
tributions of join attribute values may provide the possi-
bility of altering the balance of performance between
the processing and joining nodes. We plan on investi-
gating this alternative.

5. Conclusions and Future Research

In this paper, the hash-join algorithms presented in
[DEW184a] were extended 10 a multiprocessor architec-
turc. As a first step, the algorithms described in
[DEWI184a] were implemented using WiSS [CHOUZ§3)
running on a VAX 11/750 running 4.2 Berkeley
UNIX. In addition to providing CPU and 1/O utiliza-
tion figures for use in the simulation of the multiproces-
sor algorithms, these centralized experiments provided
two interesting results. First, the measured performance
of the algorithms was very similar to that predicted
analytically in [DEW184a]. Sccond, bit vector filtering
[BABB79] was shown to provide a dramatic reduction
in the exccution time of all algorithms including the sort
merge join algorithm. In fact, for the onc¢ query lested,
with bit-vector filtering all algorithms had virtually the
same execution time.

We also extended the centralized Grace and Hybrid
hash-join algorithms to a common multiprocessor confi-
guration. These two centralized algorithms werc
chosen as they cach provide a natural point for scparat-
ing the joining and partitioning phases of the algorithm.
The multiprocessor Hybrid algorithm uses a multipro-
cessor configuration consisting entirely of nodes having
an associated disk drive. The nodes are used for hoth
the partitioning and join phases of the algorithm. Three
configurations of the multiprocessor Grace algorithm
were cvaluated: Grace 1:1, Grace 2:1, and Grace 1:2.
In the 1:1 design one diskless joining processor is allo-
caled for each partitioning processor. The 2:1 design
allocates two partitioning nodes for each diskiess joining
node. The 1:2 design has one partitioning node for
every two diskless joining nodes. The results from the
simulation experiments of these algorithms is very
encouraging as both algorithms provide linear increases

? The actual point varied with the MIP rate of the Processors.
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in throughput with corresponding increases in processor
and disk resources.

There are two inleresting exiensions to this
research that we are currently exploring. This first is
what we term adjustable join parallelism. By adjust-
ing the partitioning algorithms, the number of buckets
produced can be adjusted.10 This in turn, effects how
much parallelism can be used during the joining
phase.ll For cxample, if the partitioning phase pro-
duces just two buckets, than at most 2 processors can be
used during the joining phase. There are a number of
cases when such a technique might be useful:

(1)
(2)
3)

load balancing under heavy loads
low priority queries

joins of small relations - Too much parallelism
doesn’t make sense if the relations being joined are
small.

A sccond promising area is the usc of bit filtering in
multiprocessor  hash join algorithms. There are a
number of ways bit filiering [BABB79, KITS83] can be
exploited by the multiprocessor hashing algorithms. For
example, cach joining node can build a bit vector simul-
tancously with the construction of a hash table. When
completed, the bit vectors would be distributed to the
partitioning processors. The partitioning processors
could maintain the bit vectors on a per bucket basis.
Alternately, the partitioning nodes might merge the per
buckel bit vectors into a single bit vector. The bit
vector(s) would then be applied during the partitioning
of relation S. This strategy, plus a number of other bit
vector filiering strategies, look promising.

Finally, we intend 1o use these algorithms as part
of the Gamma Project. Gamma is a new database
machince project that was begun recently. Gamma will
provide a test vehicle for validating our multiprocessor
hash-join results. Gamma will be built using the Cry-
stal multicomputer [DEWI184b] and WiSS {CHOUS83]
as a basis. The Crystal Multicomputer project was
funded as part of the National Science Foundation’s
Coordinate Experimental Research Program. Crystal is
a network of barc VAX 11/750 processors (currently
twenty, eventually forty) serving as nodes, connected by
a 10 Mbit/second token ring from Proteon Associates
[PROT83]. This ring is currently being upgraded lo an
80 Mbit/sccond ring. Ninc node machines have
attached disks. File and database services are provided
to Crystal "users” using WiSS. Crystal software pro-

10" Constrained by the requirement that each bucket be rea-
sonably be expected to fit into the memory of the joining processor.
" Equivalently, multiple buckets can be assigned 1o the same

join processor. Since only one bucket will be active a1 any given

time, the level of parallelism is controlled.



vides a simple operating system (NOSE) with multiple,
lightweight processes with shared memory and reliable
conneclions to NOSE processes on other node machines
and UNIX processes on the host machines (Vax’s run-
ning 4.2 Unix). WiSS runs on top on NOSE. Crystal,
NOSE, and WiSS arc all operational and in production
use,
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