
Selective Deferred Index Maintenance & Concurrency Control
in Integrated Information Systems

P. Dadam, V. Lum U. Praedel, G. Schlageter
IBM Scientific Center University of Hagen

Heidelberg, W. Germany Hagen, W. Germany

Abstract

New applications of database management systems as
in office automation and engineering require the system
to process both textual and formatted data. To support
text search appropriately, text indexes must be created
and on-line text index maintenance be provided. Un-
fortunately, text index maintenance. is generally a
time-consuming task and does not fit well in an on-line
environment, where short transaction processing times
are usually required. In this paper we discuss how the
time fcr those transactions, which cause text index up-
dates, san be shortened by integrating a dedicated
predicate-oriented concurrency control method and a
selecti.“: deferred index update strategy. We also show
some 2s*Rctical implp.mentation techniques and some
aspects of their performances.

1. Introduction

In the past, computer based information systems have been
separa?ed into two categories: database management sys-
tems (DBMS) and information retrieval systems (IRS).
DBMS’s have been designed to process formatted data,
composed of a fixed number of atomic fields (attributes).
Search conditions in queries are generally precise but rela-
tively simple, allowing only the usual arithmetic compar-
ison operators like less, equal, etc. w.r.t. field values. On the
other hand, on-line concurrency control in DBMS’s is gen-
erally very sophisticated. With the use of the transaction
concept, where each transaction is treated as a unit, incon-
sistencies as a result of conflicts are avoided.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy.
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special per&-
sion from the Endowment.

Proceedings of VLDB 85, Stockholm

In contrast, IRS’s have been designed to process documents
(books or articles) where unformatted (textual) data is the
norm and a very long string (number of pages) of text is
equivalent to an atomic field in a DBMS. Search conditions
within this atomic IRS text field are less precise but can be
rather complex. In a query one can search for certain words,
or for certain substrings (fragments) of words, and even for
a sequence of their appearance in the text. To efficiently
support retrieval queries, one generally uses indexes. These
are constructed from key terms or searchable terms (simply
called terms) from the documents, and associated with each
term is a pointer list pointing to the appropriate documents.
As a long text string generates a large number of terms, in-
dex maintenance in IRS is a time-consuming task and is
usually done in a batch mode during the night. Because the
need to have the most current data is not critical, this ap-
proach is satisfactory in such an environment. Hence no
on-line concurrency control is needed.

New applications like office automation, CAD/CAM, etc.,
having a mixture of both formatted and unformatted data,
require both DBMS and IRS functions in one system. This
means that the new system (called Integrated Irformation
System (IIS)) must have indexes into the text fields as in
IRS’s and the concurrency control techniques as in DBMS’s
to provide efficient processing. As has been already recog-
nized in /KSW79/, straightforward integration of both the
IRS indexing technique and the DBMS concurrency control
would produce long transaction time, which is detrimental
to performance. The Advanced Information Mangcment
(AIM) project at the Heidelberg Scientific Center
/Lum85/, in collaboration with Hagen University, at-
tempts to find an alternate solution to reduce the trans-
action time in an IIS. Our proposed solution is reported
below.

As overnight batch update to indexes is not acceptable ir
an IIS, because such a system does require current data, one
must search for a solution that will reduce index mainte-
nance time to obtain shorter transaction time. One strategy
is to do index maintenance on only those terms that are
most useful. Updating terms selectively permits the system
to end a transaction immediately after its commit. HOW-
ever, as consistency must be maintained, and current data

142

is necessary, the deferred update on the remaining terms
must be handled properly.

Deferring index updates selectively raises several questions,
like

How to recognize the terms that have to be updated to
avoid consistency problems?

How to represent the deferred update information?

How to do bookkeeping for these updates?

The problem to decide which terms and their pointer lists
have to be updated to avoid consistency problems (obsolete
information) for a subsequent transaction is a concurrency
control problem. In the following sections, we shall first
discuss the concurrency control strategy, then the consist-
ency aspects, the strategies for performing the deferred up-
dates, and implementation methods.

2. Concurrency Control for Text Indexes

Concurrency control in DBMS’s is usually done by applying
variants of the Directed Acyclic Graph (DAG) locking
philosophy /GLP75, GLP76, Gra78/. For special kinds of
data, especially secondary data, dedicated concurrency con-
trol methods can sometimes be used to improve overall ef-
ficiency /BS77,ICW84,Lau84,LY81,ML84/ (one can also
see this from the aspect of synchronizing shared Abstract
Data Types /SP84/). Earlier studies on how to perform
concurrency control for text indexes /DPS82,DPS83/ have
shown that performance can be improved by using a special
method for synchronizing concurrent transactions on text
attributes. The idea behind this approach is to use infor-
mation derived from the search predicate of the query, or
from the document to be processed, to decide more precisely
than with standard DAG locking in a predicate oriented
manner which transactions interfere among one another.
The same approach is also useful for performing deferred
index updates.

Let us first consider the standard DAG locking philosophy:
A read transaction has to lock at least one access path to the
object. An update (insert, modify, delete) transaction has to
lock all access paths to the object.

Assume, that there is a query q which asks for all docu-
ments of type X, containing the terms data, base, operating,
and sys!ems and that there is another transaction u which
inserts 3 document d of type X containing the terms dafa,
base, in,Tormation, and systems. The DAG locking would re-
quire that the inserter u acquires locks for the access paths
corresponding to data, base, information, and systems. As the
query q must lock at least one of its access paths too, the.:e
is a relatively high risk that query q and inserter u can not
run in parallel. (They can only run in parallel if q locks the
access path corresponding to “operating”.) However, one

can see that document d does not contain “operating”, and
is therefore not a match for q. In other words, d does not
belong to the read set of q.

To avoid this kind of pseudo conflicts, we propose a solution
which uses the terms contained in a document to be updated
to form a lock predicate. The same is done with the terms
occurring in a query. The method is designed to work for
text indexes whose set of terms is stable, meaning it does
not grow or shrink with insertions, modifications, or de-
letions. How it can be extended to work with ‘unstable’
term sets will be shown at the end of this paper (section 6).

Indexing methods of this kind include the Fragment String
Method /KW81,KSW79,Sche78,Sche81/ or full word in-
dexes basing on a controlled word set. With these ap-
proaches, the set of key terms, called fragments in the
following, can be ordered and represented’as a list, say FL:=
(fragr,frags,...,frag,) where fragi stands for the i-th frag-
ment in this list. Having FL, any text document d can be
(non-uniquely) represented by a bit vector F(d):-
(tl,t2 ,..., t,J where ti = 1, 1 5 j 5 n, if and only if fragment
fragi is contained in d.

Analogously, queries can be represented by a bit vector as
well. The bit vector (read fragment vector) F(q):=
@I.:2 ,...,ta) for a given query q contains ti = 1 if and only
if fragi is specified in the query. This means that q asks for
all documents each of which must contain all the corre-
sponding fragments having a ‘1’ in this bit vector. (A zero
in the iead fragment vector can be interpreted as a “don’t
care” indicator for the corresponding fragment.)

Consider the example we have mentioned earlier. Assume
FL: = (data, base, compiler, construction, information,
operating, systems). The bit vector for our document d con-
taining data, base, information, and systems becomes F(d):-
(1100101) while that of our query q becomes F(q):=
(1100011). A query q’ asking only for terms not contained
in FL, say, “computer” and “hardware”, would get a bit
vector consisting only of zeros. The same is true for an up-
date transaction inserting a document d’ containing only the
terms “computer” and “hardware”. (The latter is slightly
different when using ‘unstable’ fragment sets as discussed
in section 6.)

Denote AND to be the logical AND operation for inter-
secting equal length bit vectors. We say that bit vector F(a)
is contained in bit vector F(b) if and only if F(a) AND F(b)
= F(a). That is, for every bit of F(a) containing a 1, F(b)
must have a 1 in its corresponding position. Clearly, a bit
vector consisting only of zeros is contained in any bit vector.

Using this definition, one can define a precise conflict test
between lock requests for read accesses (read fragmenf
lo&) and lock requests for accesses which update data
(write fragment locks). (Note that read and write fragment
locks are respectively the same as read and update fragment
bit vectors as described above.) Let FR(Ti) denote the set

143

of granted read fragment locks and FW(Ti) the set of
granted write fragment locks of transaction T,. The rules
for granting fragment locks can be stated as follows:

ment’ strategies /GS76,Mu181,Ver78/, or by a combination
of both.

1. A read fragment lock 1, for transaction Tr is granted, if
there exists no write fragment lock 1, c FW(T,) for

3. Consistency Aspects of Deferred Index Update

any transaction T,, Tr # T,, such that 1, is contained
in 1,. We say Tr is in conflict with T, (or vice versa) if

For simplicity reasons we will assume the following: when

1, is contained in 1,.
a text index is used as access path for a given read trans-
action, the pointer lists corresponding to the ‘on’ fragment

2. A write fragment lock 1, is granted, if there exists no
bits are intersected to obtain the final pointer list, and this

read fragment lock 1, E FR(T,), Tr # T,,., such that I,
list will then be used for accessing the documents them-

is contained in 1,.
&es. In this case it is easy to see that pointer lists need
only to be current with respect to conflicting transactions

3. Read locks never interfere among one another.

4. Write locks never interfere among one another:

The 4th &ule may look surprising at first glance. One must
remember, however, that we only talk about index lucks
here, and index locks alone are never sufficient to update a
docume.tt because other access paths (e.g. relation scan,
segmenS scan) exist as well. In addition to the index lock,
an exchzive lock for the document itself has to be obtained
before n:Z.e operation may be performed. The index write
locks ai- compatible for the same reason as the IX locks in
System %., used for locking inde:;es /GLP75,GLP76/.

Queries containing OR-clauses can be represented either by
using one fragment lock per OR-clause or by ANDing these
vectors PO get only one fragment lock. To insert or delete a
document Jne write fragment lock is sufficient. To modify
a documr,nt either one write fragment lock for the old value
and on? fragment write lock for the new value has to be
obtained or the OR result of both vectors. (Note: The scope
of a read fragment lock which is obtained by ANDing single
read fragment locks is usually larger (in the best case equal)
than the scope defined by the original set of single read
fragment locks. The same holds analogously when combin-
ing a set of write fragment locks to one write fragment lock
by appl;ring the OR operation. In other words, more is usu-
ally lock-d in these cases than by using multiple fragment
locks irctead.)

Up to r.o’.v we have discussed how conflicts at the level of
primary data (documents) can be determined more precisely
using +.?e predicate oriented fragment locks as described
above. As locks on primary data have usually to be kept
until k?.iXi Of transaction to ensure consistency
(serializability) /BSW79,EN81,U1180/, more precise locks
on primary data generally enhance the degree of parallelism
between t.;ansactions. However, no conflict at primary data
level does not necessarily mean no conflict at the secondary
data (pointer list) level. Hence, the update of secondary
data rn.st be implemented such that parallel transactrons
never s=e inconsistent secondary data (invalid pointers,
wrong I.:. +, th information, etc.). This can be achieved by
temporarily locking the portion of secondary data for the
duration of the update operation, by using ‘careful replace-

but can be obsolete otherwise (some updateson index are
still pending).

As a-1 example, consider again the query q and the inserter
u of document d as introduced in the previous section. The
final pointer list for q is obtained by intersecting the pointer
lists corresponding to data, base, operahg, and systems. As q
is not in conflict with u, the pointer to document d will not
occur in q’s final pointer list, regardless whether the pointer
lists corresponding to the terms of document d have been
completely or partially updated, or even none of them has
been updated yet.

Obviously, for a given transaction, updating pointer lists
can only be deferred as long as no conflict with any subse-
quent or parallel transaction occurs. Consequently, trans-
actions, which have logically committed but have not yet
performed all their related index updates, must be tracked
by the concurrency control mechanism as if they were still
active. The problem of detecting conflicts due to pending
index updates is, to a large extent, the same as the normal
problem of detecting conflicts between concurrent trans-
actions. Hence, lock representation and deferred update
representation can be done in the same way to make conflict
test simple.

Another question is, how to do bookkeeping for the com-
pleted and the pending index updates. Assume that bit vec-
tors as described in section 2 are used to represent fragment
locks in a dedicated lock table. Could one and the same bit
vector be used to represent both the fragment lock and the
update status? In other words, whenever a pending index
update for a transaction has been performed, could the cor-
responding bit in the bit vector simply be switched from ‘1’
to ‘0’.

Let 1, E FW(T,) be the write lock of a committed trans-
action T, locking the fragments corresponding to the vector
(011001). 1, shall be in the lock table because the update
of tire index is still pending. The corresponding document
it&!‘, however, is already included in the database. That is.
only ;.he access paths are not up-to-date.

Ass:,ni: now that transaction T, with vector (011000) re-
quests a read lock 1,. To compute the pointers to all the
documents belonging to its read set, an intersection will be

144

done on the pointer lists for fragments frag2 and frag3. To TNR fragment write lock update status
ensure that it gets all the po of the committed documents, ABCDEFGHIJ ABCDEFGHIJ
one must check if these two pointer lists corresponding to 1 0010110010 0000100000
frag2 and frag3 are up-to-date. If the vector 1, for trans- 2 0110010001 0110010001
action T, is (011001) like above, this conflict is detected 3 1110110010 1110110000
and T, would be blocked until the necessary updates have 4 0010010011 0010010011

been performed. 5 0010001010 0010001010

Suppose now the pointer list corresponding to fragz had
been updated and the lock vector would reflect this by
changing the pending update vector for transaction T, to
(001001). A test for conflict will show that no conflict ex-
ists, even though the pointer list corresponding to frag3 is
still obsolete! This is clearly wrong as the new document
updated by T, should be in the read set of T,.

Fig. 1: Fragment Write Lock Table and Update Status Table
at Time to

TNR mode status lock request
ABCDEFGHI J

6 read active 0010010010

Fig. 2: Read Fragment Lock Request at Time tr

As one can see from this example, the lock information for
a transaction must remain unchanged even if only one
pointer list remains to be updated. Bookkeeping on pending
and completed updates on the terms has to be done sepa-
rately. A write fragment lock can be removed from the
fragment lock table only when all the terms for that trans-
action have been updated.

Another aspect of the deferred update approach is that all
the lock information must be secure and survive system cras-
hes to ensure consistent indexes. This can be achieved by
logging this information. Flow this information can be re-
presented compactly, is discussed in section 5.

4. Strategies for Performing Deferred Updates

The key to a more effective solution is the following obser-
vation: When inserting or deleting a document, generally a
relatively high number of fragment pointer lists has to be
updated. As a consequence, in the vector describing the
write fragment lock, many bits are usually ‘on’. In contrast,
queries or read requests tend to specify only a relatively
small number of search terms or fragments. Hence, the
vector describing the read fragment lock usually has only a
small number of bits ‘on’. Assume, for instance, that the
fragment lock vector of an update transaction has 100 bits
‘on’, whereas the conflicting fragment lock vector of a query
has 4 bits ‘on’. In this case only the 4 bits which are common
in both vectors cause the conflict. The other 96 bits are not
of interest at this moment. This observation is used in the
following approaches to perform index update processing
not only in a deferred way but also selectively.

In the previous section we have discussed how to recognize
conflicts caused by pending index updates. In this section
we want to discuss various alternatives to resolve such
conflicts. For explanatory purposes we will assume in the
following, that bookkeeping of pending updates is again
done by using a bit vector representation. That is, a ‘1’
signals that the corresponding pointer list has still to be
updated (this point is reconsidered in section 5).

Let us assume that at time to the fragment lock table for
committed transactions with pending index updates and the
bookkeeping information (update status) for a given attri-
bute is as shown in Figure 1. Assume further, that the read
lock depicted in Fig. 2 is requested at time tt. As one can
easily see from Figures 1 and 2, the lock request of trans-
action no. 6 conflicts with the write locks of transactions
no. 1, 3, and 4 which are already in their deferred update
phase. The straightforward solution to resolve such a con-
flict would be to perform all pending updates of the affected
transactions. However, this solution would only shift the
waiting for updates to some subsequent transaction and, as
a consequence, would cause there unexpected as well as un-
acceptable long response times.

We will assume in the following that there are write locks
FWr. FWZ, FW, in the fragment lock table and corre-
sponding update status vectors FU,, FU,, FU,, all be-
longing to committed transactions Tl, T,, T, (only one
lock entry assumed). Let FR, be the read fragment lock
request of a running transaction (not in conflict with any
other active transaction) which has to be tested against the
deferred update information of the committed transactions.
Let IC be the index set of all conflicting write locks, i.e.
IC:= {i 1 FR, in conflict to FWi, i = 1,2,...,nI. For all locks
specified in IC by their index number one can now compute
which updates have to be performed to resolve the existing
conflict with FR,. That is, for each entry i in IC the conflict
fragment vector CFi:= FR, AND FUi can be computed. AS
an example, consider the situation of Figures 1 and 2. That
is, IC:= 11.3.4). In this case, the conflict fragment vectors
CF,, i = 1,3,4, look like as depicted in Fig. 3.

In Pig. 3 the bit vector for transaction 1 contains only 0’s.
That is, there are no pending updates which cause a blocking
of the read lock request. Only some pending updates of
transaction 3 (fragments C alrd F) and transaction 4 (frag-
ments C, F, and I) have to be performed. If, say at time t2,

145

Fig. 3: Conflict Fragment Vector at Time tr

these updates have been performed, the resulting lock table
and update status table will appear as ln Fig. 4.

TNR fragment write lock update status
ABCDEFGHIJ ABCDEFGHI J

1 0010110010 0000100000
2 0110010001 0110010001
3 1110110010 1100100000
4 0010010011 0000000001
5 0010001010 0010001010

Fig. 4: Fragment Write Lock Table and Update Status Table
at Time t2

Deferring index update selectively as described above leads
usually (see /DLPS85/) to significant improvements in re-
sponse times for transactions because update transactions
commit earlier, and queries do not have to wait until con-
flicting transactions have performed all their index updates.
If a pending update does not cause any conflicts, it may not
be processed until the end of transaction processing (system
shutdown). The above approach reduces response time for
active transactions, but obviously, does not reduce the total
amount of work with respect to index update; in fact, due
to additional logging and bookkeeping the total overhead is
slightly increased.

The key for saving also some amount of overall work is the
following observation: To fetch a certain pointer list, say,
10 times to perform 10 updates is usually much more ex-
pensive than to fetch it only once and to perform the 10
updates in a batch-like manner. Consider once again the
situation of Figures 1, 2, and 3. The pointer lists corre-
sponding to fragments C and F have to be updated for
transactions T3 and T4 to resolve the conflict. Instead of
performing first all conflicting updates for T, and then all
those for T4 one could also work ‘column oriented’. That
is. first one fetches the pointer list of fragment C and per-
forms the updates for both T3 for T4 before one releases the
pointer list again, then the procedure is repeated for pointer
list of fragment F etc..

A further improvement along this line is as follows: Instead
of performing only the updates of conflicting transactions
for a specific fragment, one could perform all pending up
dates for this fragment at once. Using this approach, the
Update Status Table in Fig. 4 would show only O’s in col-

umns C, F, and I. The response time for a given query might
be slightly increased compared to the previous approach,
however, I/O-overhead is reduced substantially. More in-
vestigations are required to see which solution is superior
ln which cases.

By using idle times of the system to perform pending up-
dates, further improvements are possible. In this case some
background task (let us call it indexer) would be activated
to look for pending updates whenever system load is low.
The indexer can also be used to control the amount of stor-
age used for bookkeeping and/or to restrict the amount of
work to be done after end of transaction processing. In this
case, however, the indexer has to run concurrently to the
other transactions even when the system is not idle, which
may result in increased response time for the other trans-
actions.

5. Implementation Considerations

Throughout the previous sections we have used the bit vec-
tor representation for fragment locks as well as for the up-
date status information. This has been done mainly to
simplify discussion. In this section WC want to analyze some
internal structures to see their effect on performance. In
the following we will compare the Bit Vector (BV) repre-
sentation with two list structures: a Transaction Oriented
Fragment List (TOFL) and a Fragment Oriented Transaction
List (FOTL). First we discuss briefly the lock represen-
tation problem. It is assumed that, besides the fragment
lock information itself, some “global” information as
Transaction Number (TNR) and Lock and/or Operation
Mode (LMO) has to be maintained. Depending on the se-
lected structure, one may also need the fragment number
(FNR), the number of list entries (NoE), and a chain field.
For simplicity, we will assume that each text attribute, as
far as it is indexed, has its own fragment lock table. Thus,
index-id and attribute-id need not be concerned in the fol-
lowing representations and discussions.

As alternatives to a bit vector representation (Figure 5), one
can represent the fragment conjunctions either in a trans-
action oriented (row oriented) list structure (Fig. 6) or in
a fragment oriented (column oriented) list structure (Fig.
7). In the latter case, for every fragment there exists a
(perhaps empty) list of transaction and lock or operation
entries. Obviously, the storage space needed for the bit
vector representation is dependent only on the number of
fragments used in a specific fragment index but not on the
fragments actually specified in a read or write fragment lock
(bit vector compression is beyond the scope of this paper
and is not considered here). In contrast, the storage re-
quirements of both list representations depend on the num-
ber of fragments specified in the fragment locks.

146

TNR LMO 1 <bit vector>

Fig. 5: Bit Vector Lock Representation

TNR LMO NcE *] *mFNRT’1 w...- -1

Fig. 6: Transaction Oriented Fragment Lit

I
t

Fig. 7: Fragment Oriented Transaction List

frag2

..*

. . .

. . .

The numbers in Table 1 show the amount of storage space
needed for the different approaches in various environ-
ments. FRAGMENTS stands for the number of fragments
used in the fragment index. READ-LOCKS and
WRITE LOCKS are the number of read lock entries and
write lock entries in the lock table. READ FRAGS and
WRITE FRAGS show how many fragmentsare specified
on the average in a read or a write lock, respectively.
USED FRAGS shows how many different fragments are
currenry used by the read and write locks. That is, how
much overlap occurs among the read locks or the write
locks. The abbreviations BV, TOFL, and FOTL have been
introduced at the beginning of this section. The extensions
_ .-W,and- R TOTAL stand for number of bytes for
read fragment locks, write fragment locks, and the sum of
both, respectively. Further, in calculating the figures in this
table, we have assumed that transaction and fragment
numbers can be represented with two bytes and chain
pointets with four.

As one can see from table 1, the bit vector approach behaves
quite well when the number of fragments and the number
of read locks are relatively small (see columns 1 and 2). If,
however, the number of locks increases (see colu,nns 3 and
4). or a larger set of fragments is used (see col. 5), the BV

1 2 3 4 5

FRAGMENTS 4000 4000 4000 4000 8000
READ-LOCKS 10 10 20 20 20
READFRAGS 4 4 4 4 4
WRITE-LOCKS 5 5 10 110 10
WRITE-FRAGS 100 200 100 100 100
USED-FRAGS 400 800 400 2000 400
BV-R 5030 5030 10060 10060 20060
BV-W 2515 2515 5030 55330 10030
BV-TOTAL 7545 7545 15090 65390 30090

TOFL-R 330 330 660 660 660
TOFL-W 3045 6045 6090 66990 6090
TOFL-TOTAL 3375 6375 6750 67650 6750

FOTLR 520 528 800 672 800
FOTLW 6460 13152 9960 92888 9960
FOTLTOTAL 6980 13680 10760 93560 -10760

Table 1: Storage Requirements for Lock Table

solution becomes relatively poor. The number of 110 write
fragment locks in column 4 might seem somewhat high at
first sight. However, having only 10 write locks of “active”
transactions and in total 100 write locks due to pending
updates would already reach this number. Looking at the
storage requirements alone, the Fragment Oriented Trans-
action List approach also does not look very promising. It
is always worse than the Transaction Oriented Fragment
List approach and sometimes even worse than the bit vector
approach.

The second essential issue is conflict testing. As explained
earlier (see section 2), a read fragment lock request has to
be tested (inclusion test) against all granted write fragment
locks, regardless whether they belong to “active” trans-
actions or pending updates. Assume that we have 100 write
fragment lock entries, each having 100 fragments specified
on the average, and a read fragment lock request having 4
fragments specified. In the bit vector case we would have
to perform 100 bit vector AND operations. In the Trans-
action Oriented Fragment List case, we have to run through
100 lists and to touch 50 list elements on the average to find
out whether there is a conflict. In the Fragment Oriented
Transaction List case, however, we would simply intersect
4 lists to find out whether there is any transaction having
all these 4 fragments specified. In our example, in the worst
case, these lists would have 100 entries each. Furthermore,
as the lengths of the fragment transaction lists are generally
not the same, we can perform list intersection starting with
the shortest ones first. This would reduce the operation time
to find an intersection. Thus, as one can easily see this
method of conflict testing is in general by far the fastest one.

There is also another aspect not considered so far. If the
lock table becomes too large to be kept completely in main
memory, one has to think about how to swap parts of it ef-
ficiently in and out of memory (to save I/O’s). Using the
BV or TOFL methods to store information, one can hardly

147

avoid piecewise fetching the whole lock table into main
memory to perform the necessary comparisons. On the
other hand, with the fragment oriented (FOTL) method,
one has to fetch only the few (and relatively short) affected
lists.

Our analysis leads to the following conclusion: In a general
environment, where a large number of pending updates may
occur, the write fragment locks should be organized as a
Fragment Oriented Transaction List to enable fast conflict
testing and swapping. The read locks should be organized in
transaction oriented manner as in the Transaction Oriented
Fragment List (alternatively, one can use a compressed bit
vector representation). As these lists are usually very short
(see table l), one should be able to keep them in main
memory. If the main memory is too small to capture all
write fragment locks in Fragment Oriented Transaction List
representation but would allow to store it either in bit vec-
tor or Transaction Oriented Fragment List representation,
the bit vector representation would be preferred over the
Transaction Oriented Fragment List due to its faster con-
flict test.

The bookkeeping information should be organized in the
fragment oriented fashion, as already pointed out in section
4. Hence it should be organized in a Fragment Oriented
Transaction List, too. In addition to the lock representation,
the list elements have to carry now also the object’s address
to be inserted or deleted in the corresponding pointer list.

6. Extension to Unstable Fragment Sets

We have discussed so far fragment lock generation and
conflict testing based on a stable fragment set. In the fol-
lowing we want to outline how this approach can be ex-
tended to work with ‘unstable’ fragment sets as well. An
example for ‘unstable’ fragment sets is standard full word
indexing where every new word contained in a document
and not being a so-called “stop word”l will be inserted into
the set of fragments. We will assume throughout this dis-
cussion that the fragment set used as reference basis for
fragment lock computation is only allowed to grow during
normal transaction processing. Shrinking shall only be al-
lowed when there are no locks in the lock table. When al-
lowing the fragment set to grow dynamically one has to
show that no conflicts get “lost”. For explanatory purposes
we will assume that new fragments are always appended to
the fragment list. To understand the problem, consider the
following example.

Suppose that at time to FL,:= (du@use,systems) is the cur-
rent fragment list. Assume, at time tt, to < tr, a transaction
T, wants to read all documents containing information and
systems. As T,‘s read fragment lock 1, is computed based on
FL0 it looks like I,:= (001). Assume further, that “infor-

1 Stop words are those words that are excluded to be key
terms (e.g. ‘the’, ‘of’, ‘is’)

mation” is simply ignored for bit vector computation.
Consider now the case that at time t2, t2 > tr, while T, is
still active, an update transaction T, wants to insert a doc-
ument d containing the fragments information and systems.
This causes FL0 to be extended first to FL, by adding “in-
formation”. Obviously d belongs to Tr’s read set. The
question is, however, whether the conflict will be detected
regardless whether T,‘s write fragment lock request is
computed based on FL0 or on FL, assuming that 1, remains
unchange

Let l,,,:= (001) and 1,2:= (0011) denote the write frag-
ment lock computed based on FL0 and on FL,, respectively.
As one can easily see, 1, is in conflict with both l,,, and
1 w,z. But would it have caused any problem if T, had asked
only for “information” but not for “systems” as done
above? - No, because in this case 1, would have been I,:=
(000). Such an “empty” read fragment lock, however, con-
flicts with all write fragment locks (even with empty ones),
except write locks belonging to the same transaction. Thus,
in all these cases the conflict would be properly detected
causing T, to be blocked until T, has released its locks.

The reason why the method can be applied for dynamically
growing fragment sets as outlined above is based on the
following fact: Let A, B, and C denote three arbitrary sets
(including empty sets). If A is a subset of B, then A will
always be a subset of B U C, too. As the conflict test de-
scribed in this section is essentially a subset test, one can
conclude that an existing lock conflict between a read frag-
ment lock and a write fragment lock is not affected by “ex-
tending” the write fragment lock.

7. Summary and Conclusion

This paper concentrated on the issue of how to integrate
text index maintenance into an on-line concurrent update
environment such that the resulting transaction processing
times remain acceptable. First, we discussed a dedicated
concurrency control method which reduces the probability
of lock conflicts by using a predicate-oriented locking
scheme. Second, we analyzed how text index maintenance
can be accomplished such that it can be done on-line with-
out causing excessive transaction time. The key idea of this
new approach is to selectively perform those index updates
within a transaction which are relevant to ensure consist-
ency, and to perform others after end of transaction proc-
essing using intermediate idle times of the system.

It has been shown that this approach of selective deferred
update can be integrated into the concurrency control
method described. As we have shown, the concept of se-

lective deferred update reduces not only the transactions’
response times but also the total amount of work by pack-
aging several updates together such that the total number
of necessary I/O’s is decreased. We have also analyzed
three practical implementation techniques to see the effects
of different environment parameters on performance. In

148

addition, we have performed some simulations and the re-
sults clearly show the strength of the new approach com-
pared to normal index maintenance techniques. Because of
lack of space, these results are not included here but re-
ported in /DLPS85/.

Acknowledgement

The authors would like to thank the IBM management,
particularly Dr. A. Blaser, for their support, and their col-
leagues F. Andersen, K. Kuespert, and P. Pistor for their
suggestions to improve this manuscript.

References

BS77

BSW79

DLPSSS

DPS82

DPS83

EN81

GLP75

GLP76

Bayer, R.; Schkolnick, M.: Concurrency of Op-
erations on B-Trees. Acta Informatica. Vol. 9,
1977, pp. 1-21

Bernstein, Ph.A.; Shipman, D.W.; Wong, W.S.:
Formal Aspects of Serializability in Database
Concurrency Control. IEEE Trans. on Software
Eng., Vol. SE-5, No. 3, May 1979, pp. 203-216

Dadam, P.; Lum, V.; Praedel, U.; Schlageter, G.:
Selective Deferred Index Maintenance & Con-
currency Control in Integrated Information Sys-
tems: Concepts and Performance Evaluation.
FernUniversitaet Hagen. Informatik Berichte
Nr. 54.1985

Dadam, P.; Pistor, P.; Schek, H.-l.: Praedikat-
Sperren mittels Textfragmenten, in:
Informatik-Fachberichte 57 (Proc. GI-12.
Jahrestagung, Kaiserslautern, October 1982),
Springer-Verlag, pp. 648-668

Dadam, P.; Pistor, P.; Schek, H.-l.: A Predicate
Oriented Locking Approach for Integrated In-
formation Systems, in: Information Processing
83 (Proc. IFIP’83, Paris, 1983), North-Holland
Publ. Comp., 1983, pp. 763-768

Ekanadham, K.; Nigam, A.: On Serializability.
IBM Research Report RC 9257,1981

Gray, J.N.; Lorie, R.A.; Putzolu, G.R.:
Granularity of Locks in a Shared Data Base.
Proc. VLDB 75, New York, September 1975, pp.
428-451

Gray, J.N.; Lorie, R.A.; Putzolu, G.R.:
Granularity of Locks and Degrees of Consist-
ency in a Large Shared Data Base, in: Modelling

Gra78

GS76

KSW79

KW81

KW84

La.184

turn85

LY81

ML84

Mu181

Sche78

in Data Base Management Systems, North-
Holland Publ. Comp., 1976, pp. 365-394

Gray, J.N.: Notes on Database Operating Sys-
tems, in: Lecture Notes in Computer Science,
No. 60, Springer-Verlag, 1978, pp. 393-481

Giordano, N.J.; Schwartz, M.S.: Data Base Re-
covery at CMIC. Proc. ACM-SIGMOD Conf.,
Washington, D.C., June 1976, pp. 33-42

Kropp, D.; Schek, H.-J.; Walch, G.: Text Field
Indexing, in: Database Technology (Proc. ACM
German Chapter, Seminar on Data Base Tech-
nology, 1979), Teubner-Verlag, 1979, pp.
101-115

Kropp, D.; Walch, G.: A Graph Structured Text
Field Index Based on Word Fragments. Infor-
mation Processing and Managcmcnt, Vol. 17,
No. 6, 1981, pp. 363-376

Kwong. Y.; Wood, D.: A New Method for Con-
currency in B-Trees. IEEE Trans. on Software
Eng., Vol. SE-8, No. 3, May 1982, pp. 211-222

Lausen, Cr.: Integrated Concurrency Control in
Shared &Trees. Computing, Vol. 33, 1984, pp.
13-26

Lum, V.; Dadam, P.; Ilrbc, R.; Guenaller, J.;
Pistor, P.; Walch, G.; Werner, II.; Woodfill, J.:
Design of an Integrated DBMS to Support Ad-
vanced Applications. Invited paper, Proc. Inter-
national Conference on Foundations of Data
Organization, Kyoto University, Japan, May
1985; also in: Proc. Fachtagung GI
Datcnbanksystcme in Buero,Technik und
Wissenschaft March 1985, Karlsruhe, Germany,
pp. 362-381

Lehman, P.L.; Yao, S.B.: Efficient Locking for
Concurrent Operations on B-Trees. ACM Trans.
on Database Systems, Vol. 6, No 4, Dec. 1981,
pp. 650-670

Manber, U.; I-adncr, R.E.: Concurrency Control
in a Dynamic Search Structure. ACM Trans. on
Database Systems, Vol. 9, No. 3, Sept. 1984, pp.
439-455

Mullin, J.K.: Change Area IG’I‘rees: A Technique
to Aid Error Recovery. The Computer Journal,
Vol. 24, No. 4. 1981, pp. 367-373

Schek, H.-J.: The Reference String Indexing
Method, in Lecture Notes in Computer Science
65 (Proc. Informations Systems Methodology,
Venice, Italy, 1978), Springer-Vcrlag, 1978, pp.
432-459

143

Sche81 Schek, H.-J.: Methods for the Administration
of Textual Data in DB Systems, in: Information
Retrieval Research (Proc. of Research and De-
velopment in IR, Cambridge, May 1980),
Butterworths, London, 1981, pp. 218-235

SP84 Schwan, P.M.; Spector, AZ: Synchronizing
Shared Abstract Types. ACM Trans. on Com-
puter Systems, Vol. 2, No. 3, August 1984, pp.
223-250

Ull80 Wman, J.D.: Principles of Database Systems.
Pitman Publ. Ltd., London, 1980

Ver78 Verhofstad, J.S.M.: Recovery Techniques for
Database Systems. ACM Computing Surveys,
Vol. 10, No. 2, June 1978, pp. 168-195

150

