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Abstract 

New applications of database management systems as 
in office automation and engineering require the system 
to process both textual and formatted data. To support 
text search appropriately, text indexes must be created 
and on-line text index maintenance be provided. Un- 
fortunately, text index maintenance. is generally a 
time-consuming task and does not fit well in an on-line 
environment, where short transaction processing times 
are usually required. In this paper we discuss how the 
time fcr those transactions, which cause text index up- 
dates, san be shortened by integrating a dedicated 
predicate-oriented concurrency control method and a 
selecti.“: deferred index update strategy. We also show 
some 2s*Rctical implp.mentation techniques and some 
aspects of their performances. 

1. Introduction 

In the past, computer based information systems have been 
separa?ed into two categories: database management sys- 
tems (DBMS) and information retrieval systems (IRS). 
DBMS’s have been designed to process formatted data, 
composed of a fixed number of atomic fields (attributes). 
Search conditions in queries are generally precise but rela- 
tively simple, allowing only the usual arithmetic compar- 
ison operators like less, equal, etc. w.r.t. field values. On the 
other hand, on-line concurrency control in DBMS’s is gen- 
erally very sophisticated. With the use of the transaction 
concept, where each transaction is treated as a unit, incon- 
sistencies as a result of conflicts are avoided. 
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In contrast, IRS’s have been designed to process documents 
(books or articles) where unformatted (textual) data is the 
norm and a very long string (number of pages) of text is 
equivalent to an atomic field in a DBMS. Search conditions 
within this atomic IRS text field are less precise but can be 
rather complex. In a query one can search for certain words, 
or for certain substrings (fragments) of words, and even for 
a sequence of their appearance in the text. To efficiently 
support retrieval queries, one generally uses indexes. These 
are constructed from key terms or searchable terms (simply 
called terms) from the documents, and associated with each 
term is a pointer list pointing to the appropriate documents. 
As a long text string generates a large number of terms, in- 
dex maintenance in IRS is a time-consuming task and is 
usually done in a batch mode during the night. Because the 
need to have the most current data is not critical, this ap- 
proach is satisfactory in such an environment. Hence no 
on-line concurrency control is needed. 

New applications like office automation, CAD/CAM, etc., 
having a mixture of both formatted and unformatted data, 
require both DBMS and IRS functions in one system. This 
means that the new system (called Integrated Irformation 
System (IIS)) must have indexes into the text fields as in 
IRS’s and the concurrency control techniques as in DBMS’s 
to provide efficient processing. As has been already recog- 
nized in /KSW79/, straightforward integration of both the 
IRS indexing technique and the DBMS concurrency control 
would produce long transaction time, which is detrimental 
to performance. The Advanced Information Mangcment 
(AIM) project at the Heidelberg Scientific Center 
/Lum85/, in collaboration with Hagen University, at- 
tempts to find an alternate solution to reduce the trans- 
action time in an IIS. Our proposed solution is reported 
below. 

As overnight batch update to indexes is not acceptable ir 
an IIS, because such a system does require current data, one 
must search for a solution that will reduce index mainte- 
nance time to obtain shorter transaction time. One strategy 
is to do index maintenance on only those terms that are 
most useful. Updating terms selectively permits the system 
to end a transaction immediately after its commit. HOW- 
ever, as consistency must be maintained, and current data 
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is necessary, the deferred update on the remaining terms 
must be handled properly. 

Deferring index updates selectively raises several questions, 
like 

How to recognize the terms that have to be updated to 
avoid consistency problems? 

How to represent the deferred update information? 

How to do bookkeeping for these updates? 

The problem to decide which terms and their pointer lists 
have to be updated to avoid consistency problems (obsolete 
information) for a subsequent transaction is a concurrency 
control problem. In the following sections, we shall first 
discuss the concurrency control strategy, then the consist- 
ency aspects, the strategies for performing the deferred up- 
dates, and implementation methods. 

2. Concurrency Control for Text Indexes 

Concurrency control in DBMS’s is usually done by applying 
variants of the Directed Acyclic Graph (DAG) locking 
philosophy /GLP75, GLP76, Gra78/. For special kinds of 
data, especially secondary data, dedicated concurrency con- 
trol methods can sometimes be used to improve overall ef- 
ficiency /BS77,ICW84,Lau84,LY81,ML84/ (one can also 
see this from the aspect of synchronizing shared Abstract 
Data Types /SP84/). Earlier studies on how to perform 
concurrency control for text indexes /DPS82,DPS83/ have 
shown that performance can be improved by using a special 
method for synchronizing concurrent transactions on text 
attributes. The idea behind this approach is to use infor- 
mation derived from the search predicate of the query, or 
from the document to be processed, to decide more precisely 
than with standard DAG locking in a predicate oriented 
manner which transactions interfere among one another. 
The same approach is also useful for performing deferred 
index updates. 

Let us first consider the standard DAG locking philosophy: 
A read transaction has to lock at least one access path to the 
object. An update (insert, modify, delete) transaction has to 
lock all access paths to the object. 

Assume, that there is a query q which asks for all docu- 
ments of type X, containing the terms data, base, operating, 
and sys!ems and that there is another transaction u which 
inserts 3 document d of type X containing the terms dafa, 
base, in,Tormation, and systems. The DAG locking would re- 
quire that the inserter u acquires locks for the access paths 
corresponding to data, base, information, and systems. As the 
query q must lock at least one of its access paths too, the.:e 
is a relatively high risk that query q and inserter u can not 
run in parallel. (They can only run in parallel if q locks the 
access path corresponding to “operating”.) However, one 

can see that document d does not contain “operating”, and 
is therefore not a match for q. In other words, d does not 
belong to the read set of q. 

To avoid this kind of pseudo conflicts, we propose a solution 
which uses the terms contained in a document to be updated 
to form a lock predicate. The same is done with the terms 
occurring in a query. The method is designed to work for 
text indexes whose set of terms is stable, meaning it does 
not grow or shrink with insertions, modifications, or de- 
letions. How it can be extended to work with ‘unstable’ 
term sets will be shown at the end of this paper (section 6). 

Indexing methods of this kind include the Fragment String 
Method /KW81,KSW79,Sche78,Sche81/ or full word in- 
dexes basing on a controlled word set. With these ap- 
proaches, the set of key terms, called fragments in the 
following, can be ordered and represented’as a list, say FL:= 
(fragr,frags,...,frag,) where fragi stands for the i-th frag- 
ment in this list. Having FL, any text document d can be 
(non-uniquely) represented by a bit vector F(d):- 
(tl,t2 ,..., t,J where ti = 1, 1 5 j 5 n, if and only if fragment 
fragi is contained in d. 

Analogously, queries can be represented by a bit vector as 
well. The bit vector (read fragment vector) F(q):= 
@I.:2 ,...,ta) for a given query q contains ti = 1 if and only 
if fragi is specified in the query. This means that q asks for 
all documents each of which must contain all the corre- 
sponding fragments having a ‘1’ in this bit vector. (A zero 
in the iead fragment vector can be interpreted as a “don’t 
care” indicator for the corresponding fragment.) 

Consider the example we have mentioned earlier. Assume 
FL: = (data, base, compiler, construction, information, 
operating, systems). The bit vector for our document d con- 
taining data, base, information, and systems becomes F(d):- 
(1100101) while that of our query q becomes F(q):= 
(1100011). A query q’ asking only for terms not contained 
in FL, say, “computer” and “hardware”, would get a bit 
vector consisting only of zeros. The same is true for an up- 
date transaction inserting a document d’ containing only the 
terms “computer” and “hardware”. (The latter is slightly 
different when using ‘unstable’ fragment sets as discussed 
in section 6.) 

Denote AND to be the logical AND operation for inter- 
secting equal length bit vectors. We say that bit vector F(a) 
is contained in bit vector F(b) if and only if F(a) AND F(b) 
= F(a). That is, for every bit of F(a) containing a 1, F(b) 
must have a 1 in its corresponding position. Clearly, a bit 
vector consisting only of zeros is contained in any bit vector. 

Using this definition, one can define a precise conflict test 
between lock requests for read accesses (read fragmenf 
lo&) and lock requests for accesses which update data 
(write fragment locks). (Note that read and write fragment 
locks are respectively the same as read and update fragment 
bit vectors as described above.) Let FR(Ti) denote the set 
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of granted read fragment locks and FW(Ti) the set of 
granted write fragment locks of transaction T,. The rules 
for granting fragment locks can be stated as follows: 

ment’ strategies /GS76,Mu181,Ver78/, or by a combination 
of both. 

1. A read fragment lock 1, for transaction Tr is granted, if 
there exists no write fragment lock 1, c FW(T,) for 

3. Consistency Aspects of Deferred Index Update 

any transaction T,, Tr # T,, such that 1, is contained 
in 1,. We say Tr is in conflict with T, (or vice versa) if 

For simplicity reasons we will assume the following: when 

1, is contained in 1,. 
a text index is used as access path for a given read trans- 
action, the pointer lists corresponding to the ‘on’ fragment 

2. A write fragment lock 1, is granted, if there exists no 
bits are intersected to obtain the final pointer list, and this 

read fragment lock 1, E FR(T,), Tr # T,,., such that I, 
list will then be used for accessing the documents them- 

is contained in 1,. 
&es. In this case it is easy to see that pointer lists need 
only to be current with respect to conflicting transactions 

3. Read locks never interfere among one another. 

4. Write locks never interfere among one another: 

The 4th &ule may look surprising at first glance. One must 
remember, however, that we only talk about index lucks 
here, and index locks alone are never sufficient to update a 
docume.tt because other access paths (e.g. relation scan, 
segmenS scan) exist as well. In addition to the index lock, 
an exchzive lock for the document itself has to be obtained 
before n:Z.e operation may be performed. The index write 
locks ai- compatible for the same reason as the IX locks in 
System %., used for locking inde:;es /GLP75,GLP76/. 

Queries containing OR-clauses can be represented either by 
using one fragment lock per OR-clause or by ANDing these 
vectors PO get only one fragment lock. To insert or delete a 
document Jne write fragment lock is sufficient. To modify 
a documr,nt either one write fragment lock for the old value 
and on? fragment write lock for the new value has to be 
obtained or the OR result of both vectors. (Note: The scope 
of a read fragment lock which is obtained by ANDing single 
read fragment locks is usually larger (in the best case equal) 
than the scope defined by the original set of single read 
fragment locks. The same holds analogously when combin- 
ing a set of write fragment locks to one write fragment lock 
by appl;ring the OR operation. In other words, more is usu- 
ally lock-d in these cases than by using multiple fragment 
locks irctead.) 

Up to r.o’.v we have discussed how conflicts at the level of 
primary data (documents) can be determined more precisely 
using +.?e predicate oriented fragment locks as described 
above. As locks on primary data have usually to be kept 
until k?.iXi Of transaction to ensure consistency 
(serializability) /BSW79,EN81,U1180/, more precise locks 
on primary data generally enhance the degree of parallelism 
between t.;ansactions. However, no conflict at primary data 
level does not necessarily mean no conflict at the secondary 
data (pointer list) level. Hence, the update of secondary 
data rn.st be implemented such that parallel transactrons 
never s=e inconsistent secondary data (invalid pointers, 
wrong I.:. +, th information, etc.). This can be achieved by 
temporarily locking the portion of secondary data for the 
duration of the update operation, by using ‘careful replace- 

but can be obsolete otherwise (some updateson index are 
still pending). 

As a-1 example, consider again the query q and the inserter 
u of document d as introduced in the previous section. The 
final pointer list for q is obtained by intersecting the pointer 
lists corresponding to data, base, operahg, and systems. As q 
is not in conflict with u, the pointer to document d will not 
occur in q’s final pointer list, regardless whether the pointer 
lists corresponding to the terms of document d have been 
completely or partially updated, or even none of them has 
been updated yet. 

Obviously, for a given transaction, updating pointer lists 
can only be deferred as long as no conflict with any subse- 
quent or parallel transaction occurs. Consequently, trans- 
actions, which have logically committed but have not yet 
performed all their related index updates, must be tracked 
by the concurrency control mechanism as if they were still 
active. The problem of detecting conflicts due to pending 
index updates is, to a large extent, the same as the normal 
problem of detecting conflicts between concurrent trans- 
actions. Hence, lock representation and deferred update 
representation can be done in the same way to make conflict 
test simple. 

Another question is, how to do bookkeeping for the com- 
pleted and the pending index updates. Assume that bit vec- 
tors as described in section 2 are used to represent fragment 
locks in a dedicated lock table. Could one and the same bit 
vector be used to represent both the fragment lock and the 
update status? In other words, whenever a pending index 
update for a transaction has been performed, could the cor- 
responding bit in the bit vector simply be switched from ‘1’ 
to ‘0’. 

Let 1, E FW(T,) be the write lock of a committed trans- 
action T, locking the fragments corresponding to the vector 
(011001). 1, shall be in the lock table because the update 
of tire index is still pending. The corresponding document 
it&!‘, however, is already included in the database. That is. 
only ;.he access paths are not up-to-date. 

Ass:,ni: now that transaction T, with vector (011000) re- 
quests a read lock 1,. To compute the pointers to all the 
documents belonging to its read set, an intersection will be 
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done on the pointer lists for fragments frag2 and frag3. To TNR fragment write lock update status 
ensure that it gets all the po of the committed documents, ABCDEFGHIJ ABCDEFGHIJ 
one must check if these two pointer lists corresponding to 1 0010110010 0000100000 
frag2 and frag3 are up-to-date. If the vector 1, for trans- 2 0110010001 0110010001 
action T, is (011001) like above, this conflict is detected 3 1110110010 1110110000 
and T, would be blocked until the necessary updates have 4 0010010011 0010010011 

been performed. 5 0010001010 0010001010 

Suppose now the pointer list corresponding to fragz had 
been updated and the lock vector would reflect this by 
changing the pending update vector for transaction T, to 
(001001). A test for conflict will show that no conflict ex- 
ists, even though the pointer list corresponding to frag3 is 
still obsolete! This is clearly wrong as the new document 
updated by T, should be in the read set of T,. 

Fig. 1: Fragment Write Lock Table and Update Status Table 
at Time to 

TNR mode status lock request 
ABCDEFGHI J 

6 read active 0010010010 

Fig. 2: Read Fragment Lock Request at Time tr 

As one can see from this example, the lock information for 
a transaction must remain unchanged even if only one 
pointer list remains to be updated. Bookkeeping on pending 
and completed updates on the terms has to be done sepa- 
rately. A write fragment lock can be removed from the 
fragment lock table only when all the terms for that trans- 
action have been updated. 

Another aspect of the deferred update approach is that all 
the lock information must be secure and survive system cras- 
hes to ensure consistent indexes. This can be achieved by 
logging this information. Flow this information can be re- 
presented compactly, is discussed in section 5. 

4. Strategies for Performing Deferred Updates 

The key to a more effective solution is the following obser- 
vation: When inserting or deleting a document, generally a 
relatively high number of fragment pointer lists has to be 
updated. As a consequence, in the vector describing the 
write fragment lock, many bits are usually ‘on’. In contrast, 
queries or read requests tend to specify only a relatively 
small number of search terms or fragments. Hence, the 
vector describing the read fragment lock usually has only a 
small number of bits ‘on’. Assume, for instance, that the 
fragment lock vector of an update transaction has 100 bits 
‘on’, whereas the conflicting fragment lock vector of a query 
has 4 bits ‘on’. In this case only the 4 bits which are common 
in both vectors cause the conflict. The other 96 bits are not 
of interest at this moment. This observation is used in the 
following approaches to perform index update processing 
not only in a deferred way but also selectively. 

In the previous section we have discussed how to recognize 
conflicts caused by pending index updates. In this section 
we want to discuss various alternatives to resolve such 
conflicts. For explanatory purposes we will assume in the 
following, that bookkeeping of pending updates is again 
done by using a bit vector representation. That is, a ‘1’ 
signals that the corresponding pointer list has still to be 
updated (this point is reconsidered in section 5). 

Let us assume that at time to the fragment lock table for 
committed transactions with pending index updates and the 
bookkeeping information (update status) for a given attri- 
bute is as shown in Figure 1. Assume further, that the read 
lock depicted in Fig. 2 is requested at time tt. As one can 
easily see from Figures 1 and 2, the lock request of trans- 
action no. 6 conflicts with the write locks of transactions 
no. 1, 3, and 4 which are already in their deferred update 
phase. The straightforward solution to resolve such a con- 
flict would be to perform all pending updates of the affected 
transactions. However, this solution would only shift the 
waiting for updates to some subsequent transaction and, as 
a consequence, would cause there unexpected as well as un- 
acceptable long response times. 

We will assume in the following that there are write locks 
FWr. FWZ, . . . . FW, in the fragment lock table and corre- 
sponding update status vectors FU,, FU,, . . . . FU,, all be- 
longing to committed transactions Tl, T,, . . . . T, (only one 
lock entry assumed). Let FR, be the read fragment lock 
request of a running transaction (not in conflict with any 
other active transaction) which has to be tested against the 
deferred update information of the committed transactions. 
Let IC be the index set of all conflicting write locks, i.e. 
IC:= {i 1 FR, in conflict to FWi, i = 1,2,...,nI. For all locks 
specified in IC by their index number one can now compute 
which updates have to be performed to resolve the existing 
conflict with FR,. That is, for each entry i in IC the conflict 
fragment vector CFi:= FR, AND FUi can be computed. AS 
an example, consider the situation of Figures 1 and 2. That 
is, IC:= 11.3.4). In this case, the conflict fragment vectors 
CF,, i = 1,3,4, look like as depicted in Fig. 3. 

In Pig. 3 the bit vector for transaction 1 contains only 0’s. 
That is, there are no pending updates which cause a blocking 
of the read lock request. Only some pending updates of 
transaction 3 (fragments C alrd F) and transaction 4 (frag- 
ments C, F, and I) have to be performed. If, say at time t2, 
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Fig. 3: Conflict Fragment Vector at Time tr 

these updates have been performed, the resulting lock table 
and update status table will appear as ln Fig. 4. 

TNR fragment write lock update status 
ABCDEFGHIJ ABCDEFGHI J 

1 0010110010 0000100000 
2 0110010001 0110010001 
3 1110110010 1100100000 
4 0010010011 0000000001 
5 0010001010 0010001010 

Fig. 4: Fragment Write Lock Table and Update Status Table 
at Time t2 

Deferring index update selectively as described above leads 
usually (see /DLPS85/) to significant improvements in re- 
sponse times for transactions because update transactions 
commit earlier, and queries do not have to wait until con- 
flicting transactions have performed all their index updates. 
If a pending update does not cause any conflicts, it may not 
be processed until the end of transaction processing (system 
shutdown). The above approach reduces response time for 
active transactions, but obviously, does not reduce the total 
amount of work with respect to index update; in fact, due 
to additional logging and bookkeeping the total overhead is 
slightly increased. 

The key for saving also some amount of overall work is the 
following observation: To fetch a certain pointer list, say, 
10 times to perform 10 updates is usually much more ex- 
pensive than to fetch it only once and to perform the 10 
updates in a batch-like manner. Consider once again the 
situation of Figures 1, 2, and 3. The pointer lists corre- 
sponding to fragments C and F have to be updated for 
transactions T3 and T4 to resolve the conflict. Instead of 
performing first all conflicting updates for T, and then all 
those for T4 one could also work ‘column oriented’. That 
is. first one fetches the pointer list of fragment C and per- 
forms the updates for both T3 for T4 before one releases the 
pointer list again, then the procedure is repeated for pointer 
list of fragment F etc.. 

A further improvement along this line is as follows: Instead 
of performing only the updates of conflicting transactions 
for a specific fragment, one could perform all pending up 
dates for this fragment at once. Using this approach, the 
Update Status Table in Fig. 4 would show only O’s in col- 

umns C, F, and I. The response time for a given query might 
be slightly increased compared to the previous approach, 
however, I/O-overhead is reduced substantially. More in- 
vestigations are required to see which solution is superior 
ln which cases. 

By using idle times of the system to perform pending up- 
dates, further improvements are possible. In this case some 
background task (let us call it indexer) would be activated 
to look for pending updates whenever system load is low. 
The indexer can also be used to control the amount of stor- 
age used for bookkeeping and/or to restrict the amount of 
work to be done after end of transaction processing. In this 
case, however, the indexer has to run concurrently to the 
other transactions even when the system is not idle, which 
may result in increased response time for the other trans- 
actions. 

5. Implementation Considerations 

Throughout the previous sections we have used the bit vec- 
tor representation for fragment locks as well as for the up- 
date status information. This has been done mainly to 
simplify discussion. In this section WC want to analyze some 
internal structures to see their effect on performance. In 
the following we will compare the Bit Vector (BV) repre- 
sentation with two list structures: a Transaction Oriented 
Fragment List (TOFL) and a Fragment Oriented Transaction 
List (FOTL). First we discuss briefly the lock represen- 
tation problem. It is assumed that, besides the fragment 
lock information itself, some “global” information as 
Transaction Number (TNR) and Lock and/or Operation 
Mode (LMO) has to be maintained. Depending on the se- 
lected structure, one may also need the fragment number 
(FNR), the number of list entries (NoE), and a chain field. 
For simplicity, we will assume that each text attribute, as 
far as it is indexed, has its own fragment lock table. Thus, 
index-id and attribute-id need not be concerned in the fol- 
lowing representations and discussions. 

As alternatives to a bit vector representation (Figure 5), one 
can represent the fragment conjunctions either in a trans- 
action oriented (row oriented) list structure (Fig. 6) or in 
a fragment oriented (column oriented) list structure (Fig. 
7). In the latter case, for every fragment there exists a 
(perhaps empty) list of transaction and lock or operation 
entries. Obviously, the storage space needed for the bit 
vector representation is dependent only on the number of 
fragments used in a specific fragment index but not on the 
fragments actually specified in a read or write fragment lock 
(bit vector compression is beyond the scope of this paper 
and is not considered here). In contrast, the storage re- 
quirements of both list representations depend on the num- 
ber of fragments specified in the fragment locks. 
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TNR LMO 1 <bit vector> 

Fig. 5: Bit Vector Lock Representation 

TNR LMO NcE * ] *mFNRT’1 w...- -1 

Fig. 6: Transaction Oriented Fragment Lit 

I 
t 

Fig. 7: Fragment Oriented Transaction List 

frag2 

..* 

. . . 

. . . 

The numbers in Table 1 show the amount of storage space 
needed for the different approaches in various environ- 
ments. FRAGMENTS stands for the number of fragments 
used in the fragment index. READ-LOCKS and 
WRITE LOCKS are the number of read lock entries and 
write lock entries in the lock table. READ FRAGS and 
WRITE FRAGS show how many fragmentsare specified 
on the average in a read or a write lock, respectively. 
USED FRAGS shows how many different fragments are 
currenry used by the read and write locks. That is, how 
much overlap occurs among the read locks or the write 
locks. The abbreviations BV, TOFL, and FOTL have been 
introduced at the beginning of this section. The extensions 
_ .-W,and- R TOTAL stand for number of bytes for 
read fragment locks, write fragment locks, and the sum of 
both, respectively. Further, in calculating the figures in this 
table, we have assumed that transaction and fragment 
numbers can be represented with two bytes and chain 
pointets with four. 

As one can see from table 1, the bit vector approach behaves 
quite well when the number of fragments and the number 
of read locks are relatively small (see columns 1 and 2). If, 
however, the number of locks increases (see colu,nns 3 and 
4). or a larger set of fragments is used (see col. 5 ), the BV 

1 2 3 4 5 

FRAGMENTS 4000 4000 4000 4000 8000 
READ-LOCKS 10 10 20 20 20 
READFRAGS 4 4 4 4 4 
WRITE-LOCKS 5 5 10 110 10 
WRITE-FRAGS 100 200 100 100 100 
USED-FRAGS 400 800 400 2000 400 
BV-R 5030 5030 10060 10060 20060 
BV-W 2515 2515 5030 55330 10030 
BV-TOTAL 7545 7545 15090 65390 30090 

TOFL-R 330 330 660 660 660 
TOFL-W 3045 6045 6090 66990 6090 
TOFL-TOTAL 3375 6375 6750 67650 6750 

FOTLR 520 528 800 672 800 
FOTLW 6460 13152 9960 92888 9960 
FOTLTOTAL 6980 13680 10760 93560 -10760 

Table 1: Storage Requirements for Lock Table 

solution becomes relatively poor. The number of 110 write 
fragment locks in column 4 might seem somewhat high at 
first sight. However, having only 10 write locks of “active” 
transactions and in total 100 write locks due to pending 
updates would already reach this number. Looking at the 
storage requirements alone, the Fragment Oriented Trans- 
action List approach also does not look very promising. It 
is always worse than the Transaction Oriented Fragment 
List approach and sometimes even worse than the bit vector 
approach. 

The second essential issue is conflict testing. As explained 
earlier (see section 2), a read fragment lock request has to 
be tested (inclusion test) against all granted write fragment 
locks, regardless whether they belong to “active” trans- 
actions or pending updates. Assume that we have 100 write 
fragment lock entries, each having 100 fragments specified 
on the average, and a read fragment lock request having 4 
fragments specified. In the bit vector case we would have 
to perform 100 bit vector AND operations. In the Trans- 
action Oriented Fragment List case, we have to run through 
100 lists and to touch 50 list elements on the average to find 
out whether there is a conflict. In the Fragment Oriented 
Transaction List case, however, we would simply intersect 
4 lists to find out whether there is any transaction having 
all these 4 fragments specified. In our example, in the worst 
case, these lists would have 100 entries each. Furthermore, 
as the lengths of the fragment transaction lists are generally 
not the same, we can perform list intersection starting with 
the shortest ones first. This would reduce the operation time 
to find an intersection. Thus, as one can easily see this 
method of conflict testing is in general by far the fastest one. 

There is also another aspect not considered so far. If the 
lock table becomes too large to be kept completely in main 
memory, one has to think about how to swap parts of it ef- 
ficiently in and out of memory (to save I/O’s). Using the 
BV or TOFL methods to store information, one can hardly 
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avoid piecewise fetching the whole lock table into main 
memory to perform the necessary comparisons. On the 
other hand, with the fragment oriented (FOTL) method, 
one has to fetch only the few (and relatively short) affected 
lists. 

Our analysis leads to the following conclusion: In a general 
environment, where a large number of pending updates may 
occur, the write fragment locks should be organized as a 
Fragment Oriented Transaction List to enable fast conflict 
testing and swapping. The read locks should be organized in 
transaction oriented manner as in the Transaction Oriented 
Fragment List (alternatively, one can use a compressed bit 
vector representation). As these lists are usually very short 
(see table l), one should be able to keep them in main 
memory. If the main memory is too small to capture all 
write fragment locks in Fragment Oriented Transaction List 
representation but would allow to store it either in bit vec- 
tor or Transaction Oriented Fragment List representation, 
the bit vector representation would be preferred over the 
Transaction Oriented Fragment List due to its faster con- 
flict test. 

The bookkeeping information should be organized in the 
fragment oriented fashion, as already pointed out in section 
4. Hence it should be organized in a Fragment Oriented 
Transaction List, too. In addition to the lock representation, 
the list elements have to carry now also the object’s address 
to be inserted or deleted in the corresponding pointer list. 

6. Extension to Unstable Fragment Sets 

We have discussed so far fragment lock generation and 
conflict testing based on a stable fragment set. In the fol- 
lowing we want to outline how this approach can be ex- 
tended to work with ‘unstable’ fragment sets as well. An 
example for ‘unstable’ fragment sets is standard full word 
indexing where every new word contained in a document 
and not being a so-called “stop word”l will be inserted into 
the set of fragments. We will assume throughout this dis- 
cussion that the fragment set used as reference basis for 
fragment lock computation is only allowed to grow during 
normal transaction processing. Shrinking shall only be al- 
lowed when there are no locks in the lock table. When al- 
lowing the fragment set to grow dynamically one has to 
show that no conflicts get “lost”. For explanatory purposes 
we will assume that new fragments are always appended to 
the fragment list. To understand the problem, consider the 
following example. 

Suppose that at time to FL,:= (du@use,systems) is the cur- 
rent fragment list. Assume, at time tt, to < tr, a transaction 
T, wants to read all documents containing information and 
systems. As T,‘s read fragment lock 1, is computed based on 
FL0 it looks like I,:= (001). Assume further, that “infor- 

1 Stop words are those words that are excluded to be key 
terms (e.g. ‘the’, ‘of’, ‘is’) 

mation” is simply ignored for bit vector computation. 
Consider now the case that at time t2, t2 > tr, while T, is 
still active, an update transaction T, wants to insert a doc- 
ument d containing the fragments information and systems. 
This causes FL0 to be extended first to FL, by adding “in- 
formation”. Obviously d belongs to Tr’s read set. The 
question is, however, whether the conflict will be detected 
regardless whether T,‘s write fragment lock request is 
computed based on FL0 or on FL, assuming that 1, remains 
unchange 

Let l,,,:= (001) and 1,2:= (0011) denote the write frag- 
ment lock computed based on FL0 and on FL,, respectively. 
As one can easily see, 1, is in conflict with both l,,, and 
1 w,z. But would it have caused any problem if T, had asked 
only for “information” but not for “systems” as done 
above? - No, because in this case 1, would have been I,:= 
(000). Such an “empty” read fragment lock, however, con- 
flicts with all write fragment locks (even with empty ones), 
except write locks belonging to the same transaction. Thus, 
in all these cases the conflict would be properly detected 
causing T, to be blocked until T, has released its locks. 

The reason why the method can be applied for dynamically 
growing fragment sets as outlined above is based on the 
following fact: Let A, B, and C denote three arbitrary sets 
(including empty sets). If A is a subset of B, then A will 
always be a subset of B U C, too. As the conflict test de- 
scribed in this section is essentially a subset test, one can 
conclude that an existing lock conflict between a read frag- 
ment lock and a write fragment lock is not affected by “ex- 
tending” the write fragment lock. 

7. Summary and Conclusion 

This paper concentrated on the issue of how to integrate 
text index maintenance into an on-line concurrent update 
environment such that the resulting transaction processing 
times remain acceptable. First, we discussed a dedicated 
concurrency control method which reduces the probability 
of lock conflicts by using a predicate-oriented locking 
scheme. Second, we analyzed how text index maintenance 
can be accomplished such that it can be done on-line with- 
out causing excessive transaction time. The key idea of this 
new approach is to selectively perform those index updates 
within a transaction which are relevant to ensure consist- 
ency, and to perform others after end of transaction proc- 
essing using intermediate idle times of the system. 

It has been shown that this approach of selective deferred 
update can be integrated into the concurrency control 
method described. As we have shown, the concept of se- 

lective deferred update reduces not only the transactions’ 
response times but also the total amount of work by pack- 
aging several updates together such that the total number 
of necessary I/O’s is decreased. We have also analyzed 
three practical implementation techniques to see the effects 
of different environment parameters on performance. In 
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addition, we have performed some simulations and the re- 
sults clearly show the strength of the new approach com- 
pared to normal index maintenance techniques. Because of 
lack of space, these results are not included here but re- 
ported in /DLPS85/. 
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