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ABSTRACT

In this paper we present a new  algorithm,
DBMIN, for managing the bulfer pool of a relational
database management system. DBMIN is bascd on a
new model of relational query behavior, the query
locality set model (QLSM). Like the hot sct model,
the QLSM has an advantage over the stochastic models
duc o its ability 1o predict future reference bebavior.
However, the QLSM avoids the polential problems of
the hot set model by scparating the modeling of refer-
ence hehavior from any particular buffer management
algorithm. After introducing the QLSM and describing
the DBMIN algorithm, we present a performance
evaluation methodology for cvaluating buffer manage-
ment algorithms in a multiuser environment.  This
methodology employed a hybrid model that combines
fecaturcs of both trace driven and distribution driven
simulation models. Using this model, the performance
of the DBMIN algorithm in a multiuscr environment is
compared with that of the hot sct algorithm and four
more traditional buffer replacement algorithms.

1. Introduction

In this paper we present a new  algorithm,
DBMIN, for managing the buffer pool of a relational
databasc management system. DBMIN is based on a
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new model of rclational query behavior, the query
locality set model (QLSM). Like the hot set model
[Sacc82], the QLSM has an advantage over the stochas-
tic models duc to its ability 1o predict fulure reference
hehavior.  However, the QLSM avoids the potential
problems ol the hot set model by separating the model-
ing of reference hehavior from any particular buffer
management algorithm.  Afier introducing the QLSM
and describing the DBMIN algorithm, the performance
of the DBMIN algorithm in a multiuser environment is
comparcd with that of the hot set algorithm and four
more traditional buffer replacement algorithms.

A number of factors motivated this research.
Firsl, alihough Stoncbraker [Ston81] convincingly
argucd that conventional virtual memory page replace-
ment algorithms (c.g. LRU) were generally not suitable
for a relational databasc environment, the arca of buffer
management has, for the most part, heen ignored (con-
trast the activity in this arca with that in the con-
currency control arca).  Sccond, while the hot scl
results were encouraging they were, in our opinion,
inconclusive. In  particular,  [Sacc82] [Sacc83]
presented only limited simulation results of the hot st
algorithm. We felt that exiensive, multiuser tests of the
hot set algorithm and conventional replacement policics
would provide valuable insight into the effect of the
buffer manager on overall system performance.

In Scction 2, we review carlier work on buffer
management  stralegics  for  database  systems.  The
QLSM and DBMIN algorithm arc described in Section
3. Our multiuser performance evaluation of alternative
buffer replacement policies is presented in Section 4.
Scction 3 contains our conclusions and suggestions for
future rescarch.

2. Buffer Management for Database Systems

While many of the early studics on database buller
management focused on the double paging problem
[Fern78) [Lang77} ([Sher76a] [Sher76b]  [Tuel76],
recent research efforts have been focused on finding



bufler management policics that "understand” database
systems [Ston81} and know how to exploit the predicla-
bility ol database reference behavior, We review some
of these aigorithms in this section.

2.1. Domuain Separation Algorithms

Consider a query that randomly accesses records
through a B-tree index. The root page of the B-trec is
ohviously morc important than a data page, since it is
accessed with every record retricval.,  Based on  this
ohscrvation, Reiter [Reit76] proposed a buffer manage-
ment algorithm, called the domain separation (DS)
algorithm, in which pages are classified into types, each
of which is scparaicly managed in its associated domain
of bulfcrs. When a page of a certain type is needed, a
huffer is allocated from the corresponding domain. If
none arce available for some reason, c.g. all the huffers
in that domain have /O in progress, a buffer is bor-
rowed {rom another domain. Bulfers inside each
domain arc managed by the LRU discipline.  Rciter
suggested a simple type assignment scheme: assign once
domain to each non-leaf level of the B-tree structure,
and onc 1o the leaf level together with the data.  Empiri-
cal data' showed that this DS algorithm provided 8-10%
improvement in throughput when compared with an
LRU algorithm.

The main limitation of the DS algorithm is that its
concept of domain is static. The algorithm fails 10
reflect the dynamics of page references as the impor-
tance of a page may vary in different queries. It s
obviously desirable to keep a data page resident when it
is becing repeatedly accessed in a nested loops join.
However, it is not the case when the same page is
accessed in a scquential scan.  Second, the DS algo-
rithm docs not differentiate the relative importance
hetween different types of pages. An index page will be
over-wrilien by another incoming index page under the
DS algorithm, although the index page is potentially
more important’ than a data page in another domain.,
Memory partitiohing is another potential problem. Par-
titioning bufferé according to domains, rather than
queries, does nol prevent interference among competing
users.  Lastly, a separate mechanism needs lo be incor-
porated to prevent thrashing sincd the DS algorithm has
no built-in facilities for load control.

Several extensions to the DS algorithm have been
proposcd.  The group LRU (GLRU) algorithm, pro-
poscd hy Hawthorn [Nybc84], is similar to DS, excepl
that there exists a fixed priority ranking among different
groups (domains). A scarch for a free buffer always
starts from (he group with the lowest priority. Another

" In Reiter’s simulation experiments, a shared bufler pool and
a workload consisting of 8 concurrent users were assumed.
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allernative,  presented by Ellelsherg and - Haerder
[Effe84], is to dynamically vary the size of cach domain
using a working-set-like [Denn68] partitioning scheme.
Under this scheme, pages in domain i which have been
referenced in the last 7; references are exempt from
replacement consideration.  The “working set” of cach
domain may grow or shrink depending on the reference
behavior ol the user queries.  Although empirical data
indicated that dynamic domain partitioning can reduce
the number ol page faults (of the sysiem) over slatic
domain partitioning, Effclsberg and Hacerder concluded
that there is no convincing cvidence that the page-type-
oriented schemes? are distinctly superior to global algo-
rithms, such as LRU and CLOCK.

2.2. “New"’ Algorithm

In a study to find a betier buffer management algo-
rithm for INGRES [Ston76], Kaplan [Kapl80] made
two obscrvations from the reference patierns ol queries:
the priority 1o be given (o a page is not a property ol the
page itsclf but of the relation to which it belongs; cach
relation needs a “working set”. Based on these obser-
vations, Kaplan dcsigned an  algorithm, called the
“new” algorithm, in which the buffer pool is subdivided
and allocated on a per-relation basis.  In this "new”
algorithm, cach active relation is assigned a resident sel
which is initially empty. The resident sets of relations
are linked in a priority list with a global free list on the
top. When a page fault occurs, a search is initated
from the top of the priority list until a suitable buffer is
found. The faulting page is then brought into the
buffer and added 1o the resident set of the relation. The
MRU discipline is cmployed within  each  relation,
However, cach relation is entitled 1o one active bulfer
which is exempt from replacement consideration.  The
ordering of relations is determined, and may be adjusted
subscquently, by a set of heuristics. A relation s
placed near the top il its pages are unlikely to be re-
used. Otherwise, the relation is protected at the hottom.
Results from Kaplan's simulation experiments suggested
that the "new” algorithm performed much better than
the UNIX bulfer manager. However, in a trial implc-
mentation  |Ston&2], the “new” algorithm  failed 10
improve the performance of an experimental version of
INGRES which uses an LRU algorithm.

The "new” algorithm presented a new approach to
buffer management, an approach that tracks the locality
of a query through retations. However, the algorithm
itscH has several weak points. The use of MRU s jus-
tifiable only in limited cases. The rules suggested by
Kaplan for arranging the order of relations on the prior-
ity list were based solely on intuition.  Furthermore,

AP, ~ . . .
= The DS algorithm is called a page-type-oriented bulter allo-
caton scheme in {EHe84].



under high memory contention, searching through a
priority list for a free buffer can be expensive.  Finally,
extending the "new” algorithm 1o a multi-user environ-
ment presents additional problems as it is not clear how
to cstablish priority among relations from different
queries that are running concurrently.

2.3. Hot Set Algorithm

The hot set model proposed by Sacco and Schkol-
nick [Sacc82] is a query behavior model for relational
databasc systems that integrates advance knowledge on
reference patierns into the model.  In this model, a set
of pages over which there is a looping behavior is called
a hot set. 1f a query is given a buffer large enough to
hold the hot sets, its processing will be efficient as the
pages referenced in a loop will stay in the buffer. On
the other hand, a large number of page faulls may
result il the memory allocated to a query is insufficient
o hold a hot set. Plotting the number of page faults as
a function of bufler size, we can observe a discontinuity
around the buffer size where the ahove scenario takes
place. There may be several such discontinuities in the
curve, cach is called a hot point.

In a nested loops join in which there is a sequen
lial scan on both relations, a hot point of the query is
the number of pages in the inner relation plus one.
The formula is derived by reserving enough buffers (o
hold the entire inner relation, which will be repeatedly
scanned, plus one buffer for the outer relation, which
will be scanned only once. I, insiead, the scan on the
outer relation is an index scan, an additional bufler is
required for the leal pages of the index. Following
similar arguments, the hot points for different querics
can be determined.

Applying the prediclability ol reference patierns in
querics, the hot set model provides a more accuralte
reference model for relational database sysiems than a
stochastic model. However, the derivation of the hot set
modcl is based partially on an LRU replacement algo-
rithm, which is inappropriatc for certin  looping
bchavior. In fact, th¢ MRU (Most-Recently-Used)
algorithm, the opposite 10 an LRU algorithm, is morc
suited for cycles of references [Thor72], because the
mosl-recently-used page in a loop is the onc that will
not be re-accessed for the longest period of time. Going
buck 1o the nesled loops join example, the number of
page faults will not increase dramatically when the
number ol buflers drops below the "hot point” if the
MRU ulgorithm is uscd. In this respect, the hot set
model does not truly reflect the inherent behavior of
somc reference patierns, but rather the behavior under
an LRU algorithm.

In the hot set (HOT) algorithm, each query is pro-
vided a separate list of buffers managed by an LRU dis-

ciplinc. The number of buffers cach query is entitled o
is predicted according to the hot set model. That is, a
query is given a local buffer pool of size cqual (o its hot
set size. A ncw query is allowed 1o enter the system if
its hot set size does not exceed the available buffer
space.

As discussed above, the use of LRU in the hot set
model lacks a logical justification. There cxist cases
where LRU is the worse possible discipline under tight
memory constrainl. The hot set algorithm avoids this
problem by always allocaling cnough memory to ensure
that references to different data structures within a
query will not interfere with once another. Thus it tends
o over-allocate memory, which implics that memory
may be under-utilized.  Another related problem is that
there are reference patierns in which LRU does per-
form well but is unnecessary since another discipline
with a lower overhead can perform equally well,

3. The DBMIN Buffer Management Algorithm

In this scction, we first introduce a new query
behavior model, the query locality set model (QLSM),
for dutabase sysiems. Using a classification of page
relerence patterns, we show how the reference behavior
of common database operations can be described as a
composition of a sct of simple and regular reference
patterns.  Like the hot sei model, the QLSM has an
advantage over the stochastic models due 1o its ability (o
predict future reference behavior, However, the QLSM
avoids the potential problems of the hot set model by
separating the modeling of reference behavior from any
particular huffer management algorithm,

Next we describe a new bufler management aigo-
rithm termed DBMIN based on the QLSM. In this
algorithm, buffers are allocaied and managed on a per
file instance basis. Each file instance is given a ocal
bulfer pool to hold its lecality set, which is the set of
the butfered pages associated the file instance. DBMIN
can be viewed as a combination of a working set algo-
rithm [Denn68] and Kaplan’s “new” algorithm in the
sense that the lfocality set assoctated with each file
instance is similar 1o the working set associated with
cach process. However, the size of a locality set is
determined in advance, and needs not be re-calculated
as the execution of the query progresses.  This predic-
live nawre of DBMIN is close to that of the hot sct
algorithm. Similar 1o the WS and the hot sct algo-

rithm?®, DBMIN uses a dynamic partitioning scheme, in

* The issue of memory partiioning was not clearhy addressed
in [Sacce82]. However, it was later shown in |Sacc85] how dynam
ic memory partitioning can be achieved by decomposing « query
into sub-evaluation plans, each of which is independently charac-
terized by the hot set model.



which the 1ol number of buffers assigned to a query
may vary as liles (relations) are opened and closed.

3.1. The Query Locality Set Model

The QLSM is based on the observation that rela-
tional databasc systems support a limited set of opera-
tions and that the pattern of page references exhibited
by these operations are very regular and predictable, In
addition, the reference pattern of a database operation
can be decomposed into the composition of a number of
simple reference patterns.  Consider, for example, an
index join with an index on the joining auribute of the
inner relation. The QLSM will identify two locality scts
for this operation: one for the sequential scan of the
outer relation and a second for the index and data pages
of the inner relation. In this section, we present a lax-
onomy for classifying the page reference patterns exhi-

bited by common access methods and database opera-

tions*

Sequential References

In a sequential scan, pages arce referenced and pro-
cessed once after another. In many cases, a sequential
scan is donc only once without repetition.  For exam-
ple, during a sclection operation on an unordered rela-
tion, each page in the file is accessed exactly once. A
single page frame provides all the bufler space that is
required. We shall refer to such a reference pattern as
straight sequential (SS).

Local re-scans may be observed in the course of a
scquential scan during certain  databasc  operations.
That is, once in a while, a scan may hack up a short
distance and then start forward again. This can happen
in a merge join [Blas77) in which rccords with the
same key value in the inner relation are repeatedly
scannced and matched with those in the outer relation.
We shall call this pattern of relerence clustered
sequential (CS). Obviously, records in a clusier (a scet
of records with the same key value) should be kepl in
memory at thé same time if possible.

In somecascs, a scquential reference to a file may
be repeated several times. In a nested loops join, lor
instance, the inner relation is repeatedly scanned until
the outer relation is exhausted. We shall call this a
looping sequential (LS) pattern. The entire file thal is

being repeatedly scanned should be kept in memory il

possible. If the file is too large to fit in memory, an
MRU replacement algorithm should be used to manage
the buffer pool.

4A similar analysis of query reference behavior was indepen-
dently derived in [Sacc85].
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Random References

An independent random (IR) reference pattern
consists a scrics of independent accesses.  As an exam-
ple, during an index scan through a ‘non-clustered
index, the data pages are accessed in a random manner.
There are also cases when a locality of reference exists
in a series of "random” accesses. This may happen in
the evaluation of a join in which a file with a non-
clustered and non-unique index is used as the inner
relation, while the outer relation is a clustered file with
non-unique keys.  This patiern of reference is termed
clustered random (CR). The reference behavior of a
CR reference is similar to that of a CS scan. |If
possible, each page containing a record in a cluster
should be kept in memory.

Hierarchical References

A hierarchical reference is a sequence of page
accesses that form a traversal path from the root down
to the lcaves of an index. If the index is traversed only
once (c.g. when retrieving a single tuple), one page
frame is cnough tor buffering all the index pages. We
shall call this a straight hierarchical (SH) reference.
There are two cases in which a tree traversal is followed
by a scquential scan through the leaves: hierarchical
with straight sequential (H/SS), if the scan on the
lcaves is SS, or hierarchical with clustered sequen-
tial (H/CS), otherwisc. Note that the reference patlerns
of an H/SS reference and an H/CS reference are simi-
lar 1o those of an SS reference and a CS relerence,
respectively.

During the cvaluation of a join in which the inner
relation is indexed on the join field, repeated accesses to
the index structure may be observed. We shall call this
pattern of reference as looping hierarchical (LH). In
an LH reference, pages closer to the root are more
likely to be accessed than those closer to the leaves.
The access probability of an index page at level i,
assuming the root is at level 0, is inversely proportional
to the ith power of the fan-out factor of an index page.
Therefore, pages at an upper fevel (which are closer to
the root) should have higher priority than those al’ a
lower level. In many casces, the root is perhaps the only
page worth keeping in memory since the fan-out of an
index page is usually high.

3.2. DBMIN - A Buffer Management Algorithm
Based on the QLSM

In the DBMIN algorithm, buflers arce allocated
and managed on a per file instance basis®. The set of

* Active instances of the same file are given dilferent butter
pools, which are independently managed. However, as we will ex
plain later, all the file instances share the same copy of a bultered
page whenever possible through a global table mechanism,



butfered pages associated with a file instance is referred
to as its locality set. Each locality set is scparately
managed by a discipline sclected according to the
intended usage of the file instance. If a buffer contains
a page that does not belong to any locality set, the
buffer is placed on a global free list.  For simplicity of
implementation, we restrict that a page in the buffer can
helong to at most one locality set. A file instance is
considered the owner of all the pages in its locality set.
To allow for data sharing among concurrent queries, all
the bulfers in memory are also accessible through a
glohal buffer table. The following notation will be used
in describing the atgorithm:

N - the t1otal number of buffers (page frames) in

the system;

lij - the maximum number of buffers that can be

allocated to file instance j of query i;

rjj - the number of buffers allocated 10 file instance

j of query i.

Note that 1 is the desired size for a locality set while r is
the actual size of a locality sct.

Al start up time, DBMIN initializes the global table
and links all the buffers in the system on the global free
list.  When a file is opened, its associaled locality sct
size and replacement policy are given 1o the buffer
manager.  An emplty locality sct is then initialized for
the file instance. The two control variables r and |
associaled with the file instance are initialized 10 0 and
the given locality set size, respectively.

When a page is requested by a query, a scarch is
made to the global table, followed by an adjustment to
the associated locality set.  There are three possible
cases:

(1) The page is found in both the global table and
the locality set: In this case, only the usage statis-
tics need to be updated if necessary as determined
by the local replacement policy.

(2) The page is found in memory but not in the

locality set: I the page already has an owner, the

page is simply given to the requesting query and no
further actions are required.  Otherwise, the page
is added to the locality sct of the file instance, and

r is incremented by one. Now il r > I, a page is

chosen and rcleased back to the global free list

according to the local replacement policy, and r is
sctto 1. Usage statistics are updated as required by
the tocal replacement policy.

{3) The page is not in memory: A disk read is

scheduled to bring the page from disk into a buffer

allocated from the global free list.  After the page

is brought into memory, proceed as in case 2.
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Note that the local replacement policics associated with
file instances do not cause actual swapping of pages.
Their real purpose is to maintain the image of a query’s
"working set”. Disk reads and writes arc issucd by the
mechanism that maintains the global table and the glo-
bal free list.

The load controller is activated when a file is
opened or closed. Immediately afier a file is opened,
the load controller checks whether xxl < N for all

!

active queries i and their file inslancéls j. If so, the
query is allowed o proceced; otherwise, it is suspended
and placed at the front of a waiting queuc. When a file
is closed, buffers associated with its locality set are
released back 1o the global {ree list. The load controller
then activates the first query on the waiting queuc if this
will not cause the above condition to be violated.

What remains to be described is how the QLSM s
used to sclect local replacement policies and estimate
sizes for the locality sets of cach file instance.

Straight Sequential (SS) References

For SS references the locality set size is obviously
1. When a requested page is nol found in the buffer,
the page is fetched from disk and overwrites whaltever is
in the buffer.

Clustered Sequential (CS) References

For CS references, i possible, all members of a
cluster (i.e. records with the same key) should be kept
in memory.  Thus, the locality set size cquals the
number of records in (he largest cluster divided by the
blocking factor (i.c. the number of records per page).
Provided that enough space is aliocated, FIFO and LRU
both yicld the minimum number of page laults.

Looping Sequential (LS) References

When a file is being repeatedly scanned in an LS
reference pattern, MRU s the best replacement algo-
rithm. It is beneficial to give the file as many buffers
as possible, up to the point where the entire file can fil
in memory. Hence, the locality set size corresponds (o
the otal number of pages in the file.

Independent Random (IR) References

When the records of a file are being randomly
accessed, say through a hash table, the choice of a
replacement algorithm is immaterial since all the algo-
rithms perform cqually well [King71]. Yao's formula
1Ya077}, which cstimates the total number of pages
referenced b oin a series of k random record accessces,
provides un (approximate) upper hound on the locality
set size. In those cases where page references are
sparse, there is no need to keep a page in memory atter
its initial reference.  Thus, (there are two reasonable
sizes for the locality set, 1 and b, depending on the
likelihood that each page is re-referenced. For exam-



k b

ple, we can deline r =

as the residual value of a

page. The locality set size is 1 if r ~ B. and b other-
wisel where Bis the threshold above which a page is
considered to have a high  probability 1o be  pe-
referenced,
Clustered Random (CR) References

A CR reference is similar 10 that of a4 CS refer-
ence. The only difference is, in a CR reference,
records in a “cluster” are not physically adjacent, but
randomly distributed over the file. The locality set size
in this case can be approximated by the number of
records in the largest cluster®
Straight Hierarchical (SH),
ences

H/SS, and H/CS Refer-

For hoth SH and H/SS references cach index page
is traversed onhy once. Thus the locality set size of
cach is 1 and a single buffer page is all that is nevded.
The discussion on CS references is applicable 10 H/CS
references, except that cach member in a cluster is now
a keyv-pointer pair rather than a data record.
lLooping Hierarchical (1.H) References
LH reference, an index is ropeatedly
the root to the leal level. In such a
near the root are more likely to be
Caonsider a

In an
traversed from
reference,  pages
accessed than those at the hottom [Ren76].
tree of height b and with a fan-om factor . Without
loss of generality, assume the tree is complete, e,
cuch non-leal node has f sons. During cach traversal
from the root at fevel 0 1o a leal at level h, one out of
the £ pages at level i s referenced. Therelore pages at
an upper level (which are closer 10 the root) are more
important than those at a lower level, Consequently, an
ideal replacement algorithm should keep the active
pages ol the upper levels ol a tree resident and multiplex
the rest of the pages in a scratch buffer. The congept of
“residual value” (defined for the IR reference patiern)

can be used to estimate how many levels should be kept
in memory. ;. Let by be the number of pages accessed al
level i as cs}lm.ucd by Yao's formula. The snzc of the

locality sct can he approximaied by (1+ \‘ b))+ 1,
il

where j is the fargest i such that Lb—b'- > 3. In many
]

cases, the root is perhaps the only page worth keeping

in memory, since the fan-out of an index page is usu-

ally high. I this is true, the LIFO afgorithm and 3-4

buffers may deliver a reasonahle fevel of performance

as the root is afways kept in memaory.

“©
A more accurate estimate can be derived by apphving Yao's
tormuta 1o caleulate the number of distinet pages relerenced in
cluster,

4. Evaluation of Buffer Management Algorithms

In this scction, we compare the performance of
the DBMIN algorithm with the hot set algorithm and
four other butfer management strategies in a multiuser
cnvironment.  The scction begins by describing the
mcthodology used for the evaluation. Next, implemen-
ttion details of the six butfer management algorithms
tested are presented.  Finaliy,  the resulis of some of
our experiments are presented. For a more compicte
presentation of our results, the interested reader should
examine {Chou83).

4.1. Performance Evahuation Methodolopy

There were three choices lor evaluating the dif-
ferent butfer management algorithms:  direct measure-
ment, analviical modeling,  and  simulation.  Direct
measurement, although feasible,  was climinawed as too
computationally expensive,  Analviic modeling,  while
quite cost-elfective, simply could not model the different
algorithms i sutficient detail while keeping the solu-
tions to the cquations tractable.  Consequently, we
choosc simulation as the basis for our evaluation,

Two types of simulations are widely used [Sher73):
trace driven simuliations which are driven by traces
recorded from a real svsiem, and distribution driven
simulations in which cvents are generated by o random
process with certain stochastic structure. A trace driven
model has several advantages, including creditability
and fine workload characterization which enables subtle
corrchutions of events to be presersed. However, select-
ing a “representative” workload s difficult in many
casvs.  Furthermore, it is hard 1o characterize the
interference and correlation between concurrent activi-
ties in g multiuser environment so that the trace data
can be properly treated in an ahiered model with a dif-
ferent configuration.  To avoid these problems, we
designed o hybrid simuliation model that combines
festures of both (race and  distribution  driven
models.  In this hybrid model, the behavior of cach
individual query is described by o trace string, and the
sysiem workload is dynamically synthesized by merging
the trace sirings of the concurrently execuling querics.

driven

Another component of our simulation model is a
simulator Tor database svstems which manages (hree
important resources: CPUL an 170 device, and memory.
When a new query arrives, a load controller (if it exists)
decides, depending on the availability ol the resources al
the time, whether 1o aclivate or delay the guery. After a
query s activated, it circulates in a loop between the
CPU and an 1/O device 1o compete for resources until il
finishies,  After a query terminates, another new query
is penerated by the workload model. An active query,
however, may be temporarily suspended by the load



controller when the condition of over-loading s
detected.

Although the page fault rate is frequently used to
measure the performance of a memory management
policy, minimizing thc number of page faults in a
multi-programmed  environment does not guaranlee
optimal system behavior. Thus, throughput, measured
as the average number of queries completed per second,
was chosen as our performance metric. In the follow-
ing sections, we shall describe three key aspects of the
simulation model (Figure 1): workload characleriza-
tion, configuration model, and performance measure-

menl.

4.1.1.

The first step in developing a workload was 10
oblain single-query trace strings by running querics on
the  Wisconsin  Storage Syslcm7 (WiSS) [Chou83].
While WiSS supports a number of siorage structures
and their related scanning operations, WiSS does not
directly support a high-level query interface; hence, the
lest queries were "hand coded”. A synthetic database
[Bitt83] with a well-defined distribution structure, was
used in the experiments.  Scveral types of cevents were
recorded (with accurate timing information) during the
execution of each query, including page accesses, disk
1/0’s, and file operations (i.c. opening and closing of
files).

Workload Synthesis

A trace string can be viewed as an array of event
records, cach of which has a tag ficld that identifies the
type of the event. There are six important event types:

[

[ Configuration Modcl - Database Sysiem Simulator I

‘ ]

Workload Mode! - Trace Strings '
|

Performance Mceasurement - Throughput

A Simulation Modcl lor Database Systems
Figure |

page read, page write, disk read, disk write, file open,
and file closc. Disk read and write events come in pairs
bracketing the time interval of a disk opcralions. The
corresponding rcecord formats in the trace string are:

T WiSS provides RSS-like [Astr76] capabilities in the UNIX
environment.
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Page read and write

[page read / write ] file ID ﬂage 1D { time stamp j

Disk read and write

|7di5k read / write ] file ID J page 1D I time stamp }

File open

[ﬁle open l file ID ] locality set size l replacement policy}

File close

file close I file ]DJ

The time stamps originally recorded were real (elapsed)
times of the system. For reasons to be explained laicr,
disk read and write events were removed from the
trace strings, and the time stamps of other events were
adjusted accordingly. In essence, the time stamps in a
modified trace string reflect the virwal (or CPU) times
of a query.

Since accuralte timing, on the order of 100 micro-
seconds, is required to record the events at such
detailed Jevel, the tracing were done on a dedicated
VAX-11/750 under a very simple operating kernel,
which is designed for the CRYSTAL multicompuier
system [DeWi84]. To reduce the overhead of oblaining
the trace strings, events were recorded in main memory
and writlen to a file (provided hy WiSS) afier tracing
had cnded.

In  the mulduser benchmarking  methodology
described in  [Borag4], three factors that affect
throughput in a multiuser environment were identified:
the number of concurrent qucricsq, the degree of data
sharing, and the query mix.

The number of concurrent queries (NCQ) in cach
of our simulation runs was varied from 1 to 32. To
study the effects of data sharing, 32 copies of the test
databasc were replicated.  Each copy was stored in a
separate portion of the disk. Three levels of data shar-
ing were defined according to the average number of
concurrent queries accessing a copy of the database:

(1) full sharing, all queries access the same data-

basc;

(2) half sharing, every two queries share a copy of

the database; and

(3) no sharing, cvery query has its own copy.

8 The version of WISS used for gathering the trace strings
does not overlap CPU and 1/O execution.

Y The term, multiprogramming level (MPL), was used in
{Bora84]. However, since it is desirable to distinguish the external
workload condition from the internal degree of multiprogramming,
" number of concurrent queries” (NCQ) is used here instead. Us-
ing our definitions, MPL == NCQ under 2 buffer manager with
load control.



The approach to query mix selection used in [Bora84]
is based on a dichotomy on the consumption of two sys-
tem resources, CPU cycles and disk bandwidth. For
this study, this classification scheme was extended 1o
incorporate the amount of main memory utilized by the
query (Table 1). After some initial testing, six queries
were chosen as the base queries for synthesizing the
multiuser workload (Table 2). The CPU and disk con-
sumptions of the queries were calculated from the
single-query trace strings, and the corresponding
memory requirements were estimated by the hot set
modei (which are almost identical to those from the
query locality set model). Table 3 contains a summary
description of the queries.

Al simulation time, a multiuser workload is con-
structed by dynamically merging the single-query trace
strings according to a given probability vector, which
describes the relative {requency of each query type.
The trace string of an active query is read and pro-
cessed, one event at a time, by the CPU simulator when
the query is being served by the CPU. For a page read
or write event, the CPU simulator advances the query’s
CPU time (according to the time stamp in the event
record), and forwards the page request to the buffer
manager. If the requested page is not found in the
buffer, the query is blocked while the page is being
fetched from the disk. The exact ordering of the events
from the concurrent queries arc determined by the
behavior of the simulated system and the time stamps
recorded in the trace strings.

Query | CPU Usage | Number of | Hot Set Size
Number (seconds) Disk 10’s (4K-pages)

1 .53 17 3

1 .67 99 3

1 2.95 53 5

A% 3.09 120 5

\Y 3.47 35 17

\A 3.50 138 24

Representative Queries
Table 2

4.1.2. Configuration Model

Three hardware components are simulated in the
model: a CPU, a disk, and a pool of buffers. A
round-robin scheduler is used for allocaling CPU cycles
to competing queries. The CPU usage of cach query is
determined from the associated trace string, in which
detailed timing information has been recorded. In this
respect, the simulator’s CPU has the characteristics of a
VAX-11/750 CPU. The simulator’s kernel schedules
disk requests on a first-come-firsi-serve basis. In addi-
tion, an auxiliary disk queue is maintained for imple-
menting delayed asynchronous writes, which are ini-
tiated only when the disk is about to become idle.

The disk times recorded in the trace strings tend to
be smaller than what they would be in a "rcal” environ-
ment for two reasons: (1) the database used in the trac-
ing is rclatively small; and (2) disk arm movements are

Query | Query | Selec- | Access Path Join Access Path |
# Operators | tivity | of Selection | Method of Join
1 select(A) 1% clustered - -
Query CPU Disk Memory index
Type | Demand | Demand | Demand 1 selectyB) | 1% | non-clustered - -
I Low Low Low index
n Low High Low HI | select(A) | 2% clustered index clustered
m High Low Low join B index join index on B
v High High Low IV | selec(A’) | 10% sequential index | non-clustered
\\//] :::'g: ll_l‘o‘:'] :'g: join B scan join index on B
£ 8 g \Y% select(A) 3% clusiered nested sequential
_join B’ index loops | scan over B’
Query Classification Vi select(A) | 4% clustered hash | hash on result
Table 1 join A’ index join of select(A)

A,B:10K tuples; A’; 1K tuples; B’:300 tuples; 182 bytes per tuple.

Description of Base Queries
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usually less frequent on a single user system than in a
muhiuser environment.  Furthermore, requests [or disk
operations are affected by the operating conditions and
the butler management algorithm used. Therefore, the
disk times recorded were replaced by a stochastic disk
modcl, in which a random process on disk hcad posi-
tions is assumed. In the disk simulator, the access time
of a disk operation is calculated from the timing specifi-
cations of a Fujitsu Eagle disk drive [Fuji82]. On (he
average, it takes about 27.6 ms to access a 4K page.

The buffer pool is under the control of the buffer

manager using one of the buffer management algo-
rithms. However, the operating system can fix a buffer
in memory when an 1/O operation is in progress. The
size of the buffer pool for each simulation run is deter-
mincd by the formula:

vpitih;

1]

wpit
i

where p; is the ith element of the query mix probability
veetor and t; and h; arce the CPU usage and the hot scet
size of query i, respectively. The intent was to saturale
the memory at a load of cight concurrent queries so that
the effect of overloading on perlormance under different
buffer management algorithms could he observed.

4.1.3. Statistical Validity of Performance Measure-
ments

Balch means [Sarg76] was sclected as the method
for cstimating confidence intervals.  The number of
batches in cach simulation run was sct to 20, Analysis
of the throughput measurements indicates that many ol
the confidence intervals fell within E% of the mean.
For those experiments in which thrashing occurred, the
length of a batch was extended to ensure that all confi-
dence intervals were within 54 of the mean.,

4.2. Buffer Management Algorithms

Six huffer management algorithms, divided into
two groups, were included in the experiments. The
first group consisted of three simple algorithms: RAND,
FIFO, and CLOCK. They were chosen because they
arc typical replacement algorithms and are casy 10
implement. 1t is interesting 1o compare their perfor-
mance with that of the more sophisticated algorithms (o
sce il the added complexity of these algorithms is war-
ranted. Beside DBMIN, WS (the working sct algo-
rithm), and HOT (the hot set algorithm) were included
in the second group. WS is onc of the most cfficient
memory policies for virtual memory systems [Denn78].
It is intriguing 1o know how well it performs when
applied to database systems. The hot set algorithm was
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chosen (0 represent the algorithms that have previously
been proposed for database systems.

All the algorithms in the first group arc global
algorithms in the sense that the replacement discipline
is applied globally o all the buffers in the system.
Common to all three algorithms is a global table that
contains, for cach buffer, the identity of the residing
page, and a flag indicating whether the buffer has an
17O operation in progress. Additional data structures or
flags may be needed depending on the individual algo-
rithm. Implementations of RAND and FIFO arc typi-
cal, and need no further cxplanation. The CLOCK
algorithm used in the experiments gives preferential
treatment to dirty pages, i.c. pages that have been modi-
fied. During the first scan, an unreferenced dirty page
is scheduled for writing, whereas an unreferenced clean
page is immediately chosen for replacement. If no suit-
able buffer is found in the first complete scan, dirty and
clean pages are treated equally during the second scan.
Nonc of the three algorithms has a built-in facility for
load conirol. However, we will investigate later how a
load controlicr may he incorporated and what its effects
arc on the performance of these algorithms.

The
policics,

algorithms in the second group are all local
in  which replacement decisions are made
locally. ‘There is a local table associated with cach
query or file instance for maintaining its resident set.
Buffers that do not helong to any resident set are placed
in a global LRU list. T'o allow for data sharing among
concurrenlt queries, a global table, similar to the one for
the global algorithms, is also maintained by cach of the
local algorithms in the second group. When a page is
requested, the global table is scarched first, and then
the appropriate local table is adjusted if necessary.  As
an oplimization, an asynchronous wrile operation is
scheduled whenever a dirty page is released back 1o the
global free hist. Al three algorithms in the sccond
group busc their load control on the (estimated) memory
demands of the submited queries. A new query s
activated if there is sufficient free space left in the sys-
tem. On the other hand, an aclive query is suspended
when  over-commitment of main memory has  been
detected. We adopled the deactivation rule implemented
in the VMOS operating sysiem [Foge74] in which the
fauling process (i.c. the process that was asking tor
more memory) is chosen for suspcnsion“). In the fol-
lowing scction, we discuss implementation  decisions
that are pertinent to cach individual algorithm in the
second group.

10 we wiso implemented the deactivation rule suggested by
Opderbech and Chu [Opde74] which deactivites lhe‘ pr(we\\‘\\nh
the least accumulated CPU time. However, no noticeable differ-
ences in performance were obsen ed.



Working Set Algorithm

To make WS more competilive, a two-parameter
WS algorithm was implemented. That is, cach process
is given onc of the two window sizes depending on
which is morc advantageous to it. The two window
sizes, 7y = 10ms and 1 = 15Sms, were determined
from an analysis of working sct functions on the
single-query trace strings. Insiecad of computing the
working sct of a query after each page access, the algo-
rithm re-calculates the working set only when the query
encounlers a page fault or has used up its current time
quantum.

Hot Set Algorithm

The hot set algorithm was implemented according
1o the outline described in [Sace82]. The hot set sizes
associated with the base queries were hand-calculated
according to the hot set model (see Table 2 above).
They were then stored in a table, which is accessible to
the buffer manager at simulation time.

DBMIN Algorithm

The locality set size and the replacement policy for
cach file instance were manually determined.  ‘They
were then passed (by the program that implemented the
query) to the trace string recorder at the appropriate
points when the single-query trace strings  were
rccorded. At simulation time, the DBMIN algorithm
uses the information recorded in the trace strings to
determine the proper resident set size and replacement
discipline for a file instance ar the time the file is
opened.

4.3. Simulation Results

Although comparing the performance of the algo-
rithms for different query types provides insight into the
efficiency of cach individual algorithm, it is more
interesting to compare their performance under a work-
load consisting of a mixture of query types'!. Three
query mixes were defined to cover a wide range of
workloads:

M1 - in which all six query types are cqually likely

1o be requested;

M2 - in which onc of the two simple queries (1 and

I is chosen hall the time;

M3 - in which the two simple querics have a com-

hined probability of 75% .
The specific probability distributions for the threc query
mixcs is shown in Table 4.

" The performance of the single query type tests are con-
tained in JChou85]. In general, the behavior of the algorithms for

these tests are similar to the three mixes.
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Query | Type | Type | Type | Type | Type | Type
Mix 1 I n v \ Vi
Ml 16.67 16.67 16.67 16.67 16.66 16.66
M2 | 25.00 | 25.00 | 12.50 | 12.50 | 12.50 | 12.50
M3 | 37.50 | 3750 | 6.25 | 6.25| 625 | 6.25

(in % )

Composition of Query Mixes
Table 4

The first sct of tests were conducted without any
data sharing between concurrently execuling querics.
In Figure 2, the throughput for the six buffer manage-
ment algorithms is presented for cach mix of querics.
In cach graph, the x axis is the number of concurrent
querics (NCQ) and the y axis is the throughput of the
system measured in queries per second. The presence
of thrashing for the three simple algorithms is cvi-
dent!?. A rclatively sharp degradation in performance
can be observed in most casecs. RAND and FIFO
yielded the worst performance, although RAND s
perhaps more stable than FIFO in (he sense than its
curve is slightly smoother than that of FIFO. Before
severe thrashing occurred, CLOCK was gencerally better
than both RAND and FIFQ,

WS did not perform well because it failed to cap-
wre the main loops of the joins in queries V and VI
Its performance improved as the frequency of queries V
and VI decreased. The efficiency of the hot set algo-
rithm was close to that of DBMIN. When the sysiem
was lightly loaded, DBMIN was only marginally better
than the rest of the algorithms.  However, as the
number ol concurrent queries increased to 8 or more,
DBMIN provided more throughput than the hot sct
algorithm by 7 10 13% ' and the WS algorithm by 25 t0
45% .

Effect of Data Sharing

To study the clfects of data shuring on the perfor-
mance of the algorithms, (wo more scts of experiments,
cach with a different degree of data sharing, were con-
ducted. The results are plotted in Figures 3 and 4. 1t
can be observed that, for cach of the algorithms, the
throughput increases as the degree of data sharing
increases.  This reinforees the view that allowing for
data sharing among concurrent queries is imporiant in a
multi-programmed databasce system [Reit76] [Borag4].

12 Data points for the three simple algorithms were gathered
only up to 16 concurrent gqueries as it is very time-consuming 10
gather throughput measurements with & + 5% confidence interval
when the simulated system is trapped in a thrashing state.

13 The percentages of performance ditference were calculaed
relative to the better algorithm.
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The relative performance of the algorithms for half
data sharing is similar to that for no data sharing.
However, it is not the case for full data sharing. For
query mixes M1 and M2, the efficiencies of the dif-
ferent algorithms were close. Because every query
accessed the same copy of the database, it was easy for
any algorithm to keep the important portion of the
database in memory. With no surprises, RAND and
FIFO performed slightly worse than other algorithms
due to their inherent deficiency in capturing locality of
reference. For query mix M3, however, the perfor-
mance of the different algorithms again diverged. This
may be attributed to the fact that small queries dom-
inated the performance for query mix M3. The "work-
ing” portion of the database becomes less distinct as
many small queries are entering and leaving the system.
(In contrast, the larger queries, which intensively
access a limited set of pages over a relatively long
period of time, played a more important role for query
mixes M1 and M2.) Therefore, algorithms that made
an effort 1o identify the localities performed better than
those that did not.

Effect of Load Control

As was observed in the previous experiments, the
lack of load control in the simple algorithms had led 10
thrashing under high workloads. It is interesting to find
out how effective those algorithms will be when a load
controller is incorporated. The "50% rule” [Lero76],
in which the utilization of the paging device is kepl busy
about half the time, was chosen partly for its simplicity
of implementation and partly because it is supported by
empirical evidence [Denn76].

A load controller which is based on the "50%
rule” usually consists of three major components:

(1) an estimator that measures the utilization of
the device,

(2) an optimizer that analyzes the measurements
provided by the estimator and decides what load
adjustment is appropriate, and

(3) a control switch that activates or deactivates
processes according to the decisions made by the
optimizer.

In Figure 5, the effects of a load control mechanism on
the three simple buffer management algorithms is
shown. A set of initial experiments established that
throughput was maximized with a disk utilization of
87%. With load control, every simple algorithm in the
experiments out-performed the WS algorithm. The per-
formance of the CLOCK algorithm with load control
came very close to that of the hot set algorithm. How-
ever, the resulls should not be interpreted literally.
There are several potential problems with such a load
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control mechanism which arise from the feedback
nature of the load controlier:

(1) Run-time overhead can be expensive if sampling is
done too frequently. On the other hand, the
optimizer may not respond fast enough to adjust
the load effectively if analyses of the measurements
are not done frequently enough.

(2) Unlike the predictive load controllers, a feedback
controller can only respond after an undesirable
condition has been detected. This may result in
unnecessary process activations and deactivations
that might otherwise be avoided by a predictive

load control mechanism.

A feedback load controller does not work well in
an environments with a large number of small
transactions which enter and leave the system
before their effects can be assessed. This effect
can be seen in Figure 5 as the percentage of small
queries increases. Note that the so-called "small
queries” (i.e. queries I and H) in our experiments
still retrieve 100 tuples from the source relation.
The disadvantages of a feedback load controller are
likely to become even more apparent in a system
with a large number of single-tuple queries.

5. Conclusions

In this paper we presented a new algorithm,
DBMIN, for managing the buffer pool of a relational
database management system. DBMIN is based on a
new model of relational query behavior, the query
locality set model (QLSM). Like the hot set model,
the QLSM allows a buffer manager to predict future
reference behavior. However, unlike the hot sct model,
the QLSM separales the modeling of referencing
behavior from any particular buffer management algo-
rithm. The DBMIN algorithm manages the butfer pool
on a per file basis. The number of buffers allocated to
cach file instance is based on the locality set size of the
file instance and will varies depending on how the file is
being accessed. In addition, the buffer pool associated
with cach file instance is managed by a replacement
policy that is tuncd 10 how the file is being accessed.

We  also presented a  performance  evaluation
methodology for evaluating buffer management algo-
rithms in a multiuser environment. This methodology
employed a hybrid model that combines featurces of both
trace driven and distribution driven simulation models.
Using this model, we compared the performance of six
buffer management algorithms. Severe thrashing was
observed for the three simple algorithms: RAND,
FIFO, and CLOCK. Although the introduction of a
feedback load controller alleviated the problem, it
created new potential problems. As expected, the three
more sophisticated algorithms - WS, HOT, and



DBMIN - performed better than the simple algorithms.
However, the WS algorithm did not perform as well as
"advertised” for virtual memory systems [Denn78].
The last two algorithms, HOT and DBMIN, were suc-
cessful in demonstrating their efficiency. In com-
parison, DBMIN provided 7 to 13% more throughput
than HOT over a wide range of operating conditions for
the tests conducted.

In [Chou85]} we also examined the overhead asso-
ciated with each of the WS, HOT, and DBMIN algo-
rithms. Based on our analysis, the cost of the WS algo-
rithm is higher than that of HOT unless the page fault
rate is kept very low. In comparison, DBMIN is less
expensive than both WS and HOT as less usage statis-
tics need to be maintained.
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