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Abstract 

An architecture for a process-plant CAD 
presented to serve as the framework for the 
of a data model based on the notion of 
aggregation. Structures, operations and 
handling mechanisms are introduced. 

system is 
discussion 
molecular 
constraint 

1.- Introduction 

Computer Aided Design is emerging as one of the more 
interesting areas of application for database technology. 
Unfortunately, there still exists a divorce between the 
engineering and the database communities. In spite of the 
early efforts by the engineering community to apply 
databases to CAD, these were often frustrated by the 
prevailing state of the art in database technology. Since 
the database community engaged in CAD-databases many 
worthwile contributions have been made, but the current 
literature reflects the present situation: there are 
either position papers and requirement specifications 
with little information about possible solutions or one 
may find specific solutions to smaller subproblems, most 
of them strongly influenced by VLSI-CAD. While VLSI- 
CAD presents important problems there are many other 
engineering disciplines with requirements that at least 
match in complexity those of VLSI-CAD. Examples are 
shipbuilding, chemical process-plant design and aero- 
space-CAD, to name just a few. 

We consider it necessary at this time to specify an over- 
all systems architecture which truly reflects engineering 
design practice. This is important since a CAD system 
and its DBMS will only gain the acceptance of the 
engineering community if it can support currently 
accepted design practice. This design practice will have 
an effect on the necessary modeling constructs, the 
operators to support them, and the constraints imposed on 
them. Therefore, we shall present first an overall archi- 
tecture which was derived from the requirement analysis 
of a fully integrated industrial scale process plant 

design CAD system. The resulting architecture, which 
reflects the diversity of the data to be handled and their 
usage patterns, will have an effect on the modeling 
constructs. Molecular objects IBATD84J will be used 
and we shall present both a high level representation and 
a possible implementation model for them. The imple- 
mentation model is important since it will have a major 
effect on the operators. Finally, a possible option for 
constraint handling will be outlined. The molecular 
aggregation model is being developed as part of a project 
that aims at combining an object-oriented, message 
passing language, TM IGERM84, BUCA851, with an object 
oriented DBMS tailored for CAD requirements to form a 
complete, object-oriented programming environment for 
CAD. 

2.- The application realm & the programming 
environment 

Our application realm is chemical process plant design. 
It is beyond the scope of this paper to present a crash- 
course in plant design. For a description of how the 
engineering design proceeds in this application and how 
this affects a CAD system the reader can consult 
IRASH73, LEEM78a, LEEM78b, BUCABO, LEEM82j. 
Reference to engineering design practice will be made as 
we explain the architecture. 

The programming environment is the TM language, which 
has been described elsewhere IGERM84, BUCA85J. Here 
we will only summarire its main features to give some 
additional clues when reading the following sections. 
TM is an object-oriented, message passing language with 
data-typing and attribute inheritance. Everything in 
TM is an object. Objects can be grouped into classes 
and for each class there exists an administrator. 
Administrators act upon the members of the class they 
administer through responses. One of the convenient 
features of TM is, that responses can be added to an 
administrator without having to recompile the whole 
administrator. TM is also extensible in the LISP- 
sense, that is, new modules can be added and once they 
are accepted the language is considered extended. 
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3.-. Gross Architecture: The Databases -- 
ing to one criterion and any other clustering has to be 
done through indexing mechanisms. By extracting portions 
of the global database and structuring them according to 
the prefered access paths one can improve response-time 
markedly. The different levels of data-quality mentioned 
in the previous section represent a third important reason 
to create subdatabases. 

Logically one can distinguish the following databases in 
a plant design CAD system: 

* a project-wide approved database; 
* several workares databases: 
* a data dictionary and control database; 
* template and symbol databases; 
* master catalogues and support databases; 
* constraint bases. 

So far we have only talked generically about subdatabases. 
These are actually of three different types based on their 
function: 

The reasons for separating these databases is the nature 
of the data and the kind of operations to be performed on 
them. We have to handle large amounts of data and of 
metadata; whether a database contains data or metadata 
is the first criterion for distinction among the data- 
bases that were listed above. Secondly, there is the 
temporality of data, and, finally, the usage patterns, i.e. 
read and write frequencies, number of users performing 
accesses, on-line vs. batch updating, archival needs, 
etc. In the remainder of this section we will analyse 
the function of each kind of database and their interplay. 
Figure 1 shows these databases and their interaction. 

3 1 The project-wide approved database A- 

The project-wide database is a monotonically growing 
collection of approved data. In engineering terms, 
approved data means data that have undergone several 
levels of verification and authorization, usually by the 
designer, the group leader, the project manager and the 
client’s representative. Traditionally, data are always 
kept on documents and these are legally binding. Any 
change that is made to approved data has to be recorded 
as a revision and the change has to be approved by the 
same approval hierarchy. Since a design rarely jumps back 
and forth between versions it is acceptable that old 
versions be offloaded in order not to clutter the data- 
base. Data that have not reached full approval have to be 
marked so, in order that derived designs be also regarded 
as tentative and subject to the final approval of the data 
they were derived from. The sire of the schema is usually 
a problem, since it comprises of the order of 10,888 
attributes. Even if there were no data-quality limitations 
to updating the full database, the sheer size of the 
schema and the data volume in a large project make it 
impossible to allow direct updates to the project-wide 
database other than the integration of final designs. 

32 Local and workarea databases A-- 

* local databases; 
* workarea databases; 
* scratchspaces. 

We have opted for naming them differently to clarify 
their different functions. However, it is possible to 
view them all just as workspaces. 

3.2.1 Local databases.- Local databases are extracts 
from the project-wide approved database and their content 
is defined by the application(s) a local database is 
intended for. The objects to be extracted are determined 
by the type of the application and by the instance of the 
application. For example, if a condenser has to be 
specified it is necessary to extract the already existing 
data for the heatexchanger (such as heat-duty generated 
in a process simulation) and also context data, such as 
the physical properties of the fluids to be handled, 
local parameters (e.g. atmospheric pressure) and other 
project-related information. We call all the data re- 
quired by an application its context. The local database 
will be physically restructured based on access data kept 
in the data dictionary to optimire performance for a 
particular application. 

The local database is a stable copy from which other 
copies may be generated through simple file copying on 
demand. This is much faster than carrying out a new 
extraction from the large project-wide database. Second, 
in the event a designer decides the design he/she has 
produced over the last hour is completely messed up, he/ 
she can start fresh from the stable local database and 
does not have to undo already committed changes. Finally, 
it is important to keep in mind the different levels of 
data quality and the verification process. Often it is 
easyest to verily a design by reexecuting the consolidated 
log of the designer’s transaction(s). The consolidated 
log is the log reduced to only those updates which have a 
lasting effect. If the supervisor discovers mistakes or 
has a better idea he can put on hold parts of the design 
he/she is checking. If this is done in the project-wide 
database it can cause serious disruptions. 

3.2.2. The workarea databases.- Workarea databases are 
copies of the local database in which the designer 
executes the necessary design actions. It is possible that 
two or three designers work in parallel and they may 
want each their own workarea. Workareas have to be 

The length of interactive engineering transactions has 
been used before as argument for generating subdatabases 
(HASR82, LORR83). In addition to this rather powerful 
reason one should not forget the usage patterns of the 
data, since multiple applications have to access the same 
data. No single database can efficiently support the 
multiple access paths required. In an object-oriented 
system, physical clustering will be possible only accord- 
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made compatible before integrating them into the 
project-wide database. 

3.2.3. Scratchspaces.- Often a designer has a wild idea 
he/she wants to test. Since these ideas may depend on 
previously executed design actions which are already 
committed in the workarea, he/she may want to generate 
one or more ‘what-if’ copies to test different design 
alternatives. While workareas have to be compatible 
among them, scratchspaces are usually discarded and at 
most one is promoted as the correct solution. 

3.3 The data dictionary --- 

The data dictionary has a double function: during the 
design of the CAD databases and during the usage of the 
system. The database design support data should be 
readily available to the database designer through a 
database design tool. However, once the database design 
is completed these data can be off-loaded and archived. 

During operation the data dictionary has to contain the 
information about data definition, for example units in 
which the data are stored, the data usage information to 
support the clustering algorithms which determine how 
the data should be clustered in the local and workarea 
databases, data mailing lists which are used to support 
the update propagation mechanism and indicate whether a 
user has to authorize an update or whether simple 
notification is enough. The data dictionary will also 
contain the data usage information about who has 
checked out what object in order to be able to notify 
the users of any change that affects them. 

u Template database 

The lack of unique industry-wide standards forces an 
engineering company who is contracting for a specific 
client to adopt that client’s conventions when elaborating 
drawings or other documents. Each company has its own 
policy as to format of titleblocks (summary information 
about a piece of equipment which is included on a draw- 
ing), notes, labels, pipe-numbers, etc. This requires a 
special versatility of a CAD system and its database. A 
possible solution is through the use of metadata which 
define for each project the valid templates. These 
templates can be customixed from a more general 
template. For example, the titleblock for a pump may 
consist of an equipment number, an equipment name, a 
flowrate, the pressure difference between suction and 
discharge and the specific gravity of the fluid. Some 
companies want all this information on a drawing, others 
prefer only equipment number and its service. If the 
flowrate is included there is a variety of possible units in 
which it can be displayed (ft**3/sec,gpm, bpd) which could 
be different from the units in which the data are stored 
in the database. 

Another class of project specific templates, allthough 
these are strictly graphical, is the set of allowable 
symbols. 

Allthough the template database and the data dictionary 
both contain metadata, we consider it important to distin- 
guish them conceptually: the metadata in the data 
dictionary are fairly stable and reflect an engineering 
company’s policies. Template data are project-specific 
and have to be customized for each of an engineering 
company’s clients. This distinction is important since a 
major engineering company can have tens of projects 
active at one time. 

Q Catalogue and support databases 

In chemical process plant design one has to handle both 
one-of-a-kind components, such as the major pieces of 
equipment, and also standard components. The second 
class is common for piping components and structural 
items. For these standard engineering components there 
exist master catalogues, often produced by the 
corresponding professional societies. Out of this wealth 
of possible components it is common to select only a 
subset which is valid for a given project. This subset, 
called ‘piping specs’ in the case of the piping components, 
is arrived at through negotiations between the client and 
the engineering company and is, therefore, project specific. 
To save time it is also customary to tailor the specs of 
an old job to the client’s requirements. The piping or 
other specs are part of a design and can be viewed as 
value constraints for the standard components. These 
databases are both a help for the designer so that he can 
chose valid components from them and also a source of 
constraints for the validation mechanism. 

3.6 Constraint bases - 

Constraint bases are the repositories for constraints and 
exceptions to these constraints. More detail will be given 
in Section 8 when we talk about constraint handling. 
Suffice it to say here that constraints are stored as 
strings. The string is the description of the constraint 
and, particularly for project specific cosntraints, the 
reference values can be taken from the valid support 
databases. 

&= Documents 

Engineering design is carried through design documents. 
These documents, who are just different materializations 
of the data stored in the database have an existence in 
their own right and the document control information is 
an integral part of the project-wide database and the 
workareas. 

Documents often determine an application. For instance, a 
modification to a process such as the inclusion of a new 
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piece of equipment is done through the Process Flow- 
Sheet. Access control is best implemented through the 
documents. For control purposes the components of a 
drawing can be aggregated according to a variety of 
criteria, such as ‘all the pieces of equipment introduced 
through a document,‘, ‘all the instruments that appear on 
a drawing’, etc. Therefore, documents and all the other 
aggregations defined on them are considered as molecular 
objects. 

52x Molecular rKg,regation 

Molecular objects IBATD841 were introduced to allow easy 
manipulation of aggregates consisting of many, possibly 
heterogeneous objects. We shall call the basic, non-nested 
objects, atomic objects, and they are equivalent to the 
entities in the ER model. Molecular objects are objects 
of a higher degree of abstraction and can consist 
themselves either 01 atomic objects or other molecular 
objects of lesser degree of abstraction. The process by 
which molecular objects are formed is called molecular 
aggregation. 

In order to describe a schema adequately it is necessary 
to be able to express it in the form of a language. There- 
fore, a definition is needed that can easily be expressed 
as a language, as opposed to purely graphical structures. 
The DDL constructs will be presented elsewhere. 

A molecular aggregate can be defined with very few 
concepts: objects and links. We avoid the term ‘role’ 
consciously, although the links carry the semantics of the 
association, because the notion of object-role has a 
definite meaning in Falkenb-erg’s object-role model 
(FALE’IBJ. Molecular aggregates do not impose the 
limitations of the object-role model. 

A molecular aggregate is the set, 

MA = { {objects},{links} } 

where the objects in the set of objects can be either 
atomic objects or molecular objects themselves. The links 
are the roles under which the objects are linked within 
that particular molecular aggregate. Then, a molecular 
aggregate will just be the set of triplets of the form 
(Mi,Oj,Lk). There exist situations in which L is the 
same for all triplets, for example, ‘component of’ 
relationships. fn other cases, different aggregation 
roles L can appear in the triplets that form a molecular 
aggregate. An example of this case is a flowsheet-drawing 
for which we want to identify those pieces of equipment 
that were newly introduced to the design through this 
particular drawing and also want to specify all the pieces 
of equipment that appear on the drawing, regardless of 
whether they existed before or not. Molecular objects 
are layered and have one molecular reference level which 
can have its own aggregate attributes and the constituent 
objects. 

In 1~~~~841 four classes of molecular aggregates 
were identified and it was shown that all were needed 
in a complex CAD environment. The classes of molecular 
aggregates are disjoint/non-disjoint and recursive/ 
non-recursive. It appears important at this point to 
mention that non-disjointness can be of two types: 
a) within one type of molecular aggregate two instances 
may share an instance of a constituent object; and 
b) two different molecular aggregates may have the same 
object as a constituent. Both cases can be handled 
adequately with this formalism. 

Disjoint Molecular Aggregates: These occur when all 
links in a molecular aggregate are 1:N and no cycles are 
formed. The molecular aggregate is disjoint with respect 
to other aggregates if no constituent object forms part 
of another aggregate. 

Non-Disjoint Molecular Aggregates: Internal non-dis- 
jointness occurs when at least one link is M:N; external 
non-disjointness occurs when at least one constituent 
object in the aggregate is also a constituent object of 
another aggregate. 

Recursive Molecular Aggregates: There exists at least 
one link that originates and ends with the same object 
LYPe. 

Non-Recursive Molecular Aggregates: There exists no link 
that originates and ends with the same object type. 

This simple but yet powerful definition of molecular 
aggregation leads us directly to an implementation model 
hased on binary relations. 

6.- Implementation model for rsg(reKates 

The implementation model that underlies the discussion of 
the operators is quite simple: every record or atomic 
object (equivalent to entities in the ER sense) has its 
unique internal id. Aggregates are formed through binary 
relations of the internal ids of the records involved. The 
binary relations can be easily held in a B-tree and can 
also be compressed [BUCA831. 

This storage structure has definite advantages: no pointer 
space has to be reserved in advance, no foreign key 
attributes have to be defined, aggregates can be crested 
dynamically from already existing records. The use of 
binary relations also offers some distinct advan@es over 
n-ary relations: deep component hierarchies can be 
represented economically without repeating the id of the 
uppermost records, binary relations are easily COmpreSSd 

and no problems with null values arise in the linkage 
relations since a component object is only connected when 
it is instantiated or after the database has been 
populated. 

For the first implementation we are restricting OUR3dveS 

to binary relations because of their simplicity and 
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because we have already developed software for efficient 
handling of binary relations. If irreducible n-ary 
relations are needed by the applications, then we can 
expand the system, but this means that some of the 
operators will have to be redefined. 

7.- Operators 

For a data model to be useful beyond the highest level of 
conceptual modeling it is necessary to specify operations 
that are permitted on the data structures. We shall 
discuss here operations for aggregation, i.e. the formation 
and population of molecular objects, insertion and deletion 
within a single database, and extraction and reintegration 
operations among the project-wide and workarea databases 
specified in the overall architecture. 

7J Aggreagtion operations 

Several cases of molecular aggregation can be identified: 

1) The definition of the molecular object exists and 
it is formed upon insertion of the instances of the 
component objects. 

2) The definition of the molecular object exists in 
generic terms but it is only instantiated once the 
values for the aggregation criterion have been 
specified. Once the criterion has been specified, 
the molecular object is instantiated from already 
loaded instances of the component objects. 

3) The definition of the molecular object does not 
exist and has to be created and registered first. 
Once it has been accepted by the system the 
molecular object can be instantiated according to 
the criteria of the previous case. 

7.1.1 Aggregation upon insertion. This case requires 
that first the identifier for the molecular object be 
inserted (the attributes of the molecular object are 
optional). Then the mapping between the molecular level 
and the component objects is established for each triplet 
(molecule(i), object(j), link(k)) as a function of 
link(k). Two subcases have to be distinguished: 

* The binary relation representing link(k) already 
exists, in which case only a new instance of the 
pair (Mid,Objectid) is inserted. 

* The binary relation representing link(k) does not 
exist already, in which case the binary relation is 
first instantiated and then the id-pair is inserted. 

An example of case 1 could be a drawing and every 
instance of an object used on it, like pieces of equipment, 
is automatically linked to the drawing. 

In addition to this automatic linking there is the need for 
conditional linking at the moment of storage, for instance 
depending on an existence criterion. An example is the 
aggregation formed under the role ‘all the equipment first 
introduced through an application’. In this case, first the 
existence of the present instance of equipment has to be 
tested, if it fails, the aggregation proceeds and an 
id-pair is introduced in the binary relation representing 
the ‘first introduced’ role. If existence is true, no 
aggregation occurs. This is rather an insertion operation. 

7.1.2 Aggregation after loading. A posteriori population 
of a molecular object, is more interesting. Assume the 
database has already been populated with pieces of equip- 
ment, pipelines, valves, instruments, etc. during the 
design tasks leading up to the Piping and Instrumentation 
Diagram level. After the initial layout new units are 
created based on spatial boundaries and assigned to 
different designers. The generic criterion of subdivision 
is already known and used in the definition of the 
molecular objects representing these new units but the 
exact values are only provided later. 

The actions to be taken are then: scanning of the 
instances of the component objects and insertion of 
id-pairs into the binary relation corresponding to the 
specified aggregation role. 

7.1.3 Dynamic definition of aggregates. This case is 
included for flexibility and can arise when a designer 
wants to group according to an aggregation role not 
contemplated before. An example could be the definition 
of the ‘cooling water network’ or any other criterion 
which may have only temporal validity. The actions to be 
taken are: definition of the new molecular object, 
instantiation of the molecule’s id, creation of a new 
binary relation representing the role of aggregation and 
then the actions of case 2. Should the necessary data for 
the evaluation of the aggregation criterion not be 
available in the database, then manual linkage is possible. 
The proposed storage structure supports this case since no 
external attributes have to be defined in the constituent 
records nor is it necessary to reserve additional pointer 
space within the component records. 

As a corollary one can postulate that a good database 
design will anticipate the required aggregations and, 
therefore, can define them in the schema and does not 
need a dynamic schema definition capability. However, 
since a database designer who is really conversant with 
the application seems to be rare, and because of the 
desirability to define non-essential but convenient 
aggregates dynamically, this option is supported since 
it is associated with little overhead in this model. 

Q Insertion operations 

Insertion can be of two kinds: insertion of atomic 
objects, in which case no further action has to be 
taken, or insertion of atomic objects belonging to a 
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molecular object. In this case insertion consists of the 
actions described above under aggregation operations 
(automatic and conditional). 

Insertion is always carried out first in a workarea 
database which is an extraction from the project-wide 
database (see 7.4). If an object is to be inserted but 
it exists already, then the extraction mechanism can be 
invoked to avoid redundant insertions. 

‘7.3 Deletion operations 

Deletion operations become difficult in the moment one 
accepts non-disjoint molecular objects. We distinguish 
three cases: 

1) Elimination of a free-standing atomic object. 
2) Elimination of an atomic object that is a 
component of a molecular object. 

3) Elimination of a molecular object. 

7.3.1 Elimination of free-standing atomic objects. This 
operation is straightforward and consists only in 
eliminating an instance of the object. However, in order 
to know whether an object is a free-standing atomic 
object it is necessary to check in the dictionary the 
definitions of the molecular objects to see whether an 
atomic object is part of any molecular object. This 
information can either be held at the TM dictionary level 
or at the data dictionary level, whichever proves more 
efficient. Like any other deletion operation, free- 
standing atomic objects can only be eliminated through 
the application by which they were created. 

7.3.2 Elimination of a component atomic object. This 
deletion operation has two subcases which have their 
nature in the way engineering design is done. For each 
design object there exists one responsible person or 
group, usually the one who introduced that object. There- 
fore, this person or group is the only one authorized to 
kill or eliminate that object from the database. Everybody 
else can use that object and manipulate it, some can up- 
date it or specify additional detail, but they cannot 
delete it from the database. Therefore the two subcases 
are: 

1) Deletion of an object by a non-creator. 
2) Deletion of an object by its creator. 

Deletion of an object by a non-creator of that object is 
strictly a disconnection from the molecular object that 
had this atomic object as a component. The action to be 
taken is the elimination of the corresponding id-pair 
from the binary relation representing that role. 

Deletion of an object by its creator means eventually the 
actual elimination from the database. However, this can- 
not occur without warning to those responsible for 
molecular objects that use the atomic object to be 
deleted. Therefore, first an ‘intention to delete’ has 

to be issued. The actions here require that all molecular 
objects that include the object to be deleted be traced 
and receive a message, so that the object can be dis- 
connected from those molecular objects. Once it is dis- 
connected from all other molecular objects, then the one 
issuing the ‘intention to delete’ can actually proceed 
and drop it. At a first glance, this procedure appears 
to be cumbersome but it corresponds to engineering design 
practice and avoids that objects simply vanish and leave 
holes in other portions of the design, particularly in 
those cases were one object can have different 
representations. In addition, this procedure is mostly 
applicable at the project-wide database level. Within 
the workareas, where most deletions occur, this 
situation will arise rarely. 

7.3.3 Elimination of a molecular object. Elimination 
of molecular objects can be of two types: the molecular 
object is not part of another molecular object, or it is 
part of another molecular object. 

The first case implies that the label portion of the 
molecular object be deleted as well as all the instances 
of id-pairs in which the id of the molecular object 
appears. Depending on the aggregation roles, this means 
that component objects with no existence of their own 
(weak entities) be deleted as well. An example of this 
case is the elimination of a pipeline. Eliminating the 
pipeline means also eliminating its components, such 
as valves, fittings, pieces of pipe, etc. However, it 
is important to realize that the necessary checks have 
to be performed in order not to leave other pipelines 
dangling or a pump discharging into the air. 

The second case, elimination of a molecular object which 
is part of another molecular object, has to be treated 
first as if the molecular object was a component atomic 
object. Once the ‘intention to delete’ has cleared, then 
the case is reduced to the elimination of a non- 
component molecular object. The ‘intention to delete’ 
has to trigger the update propagation mechanism that 
alerts other users who may be affected. An example of 
this case is the deletion of a valve that is a component 
in a pipeline. The valve itself is a molecular object 
with its own components. The initial clearing process 
is used to alert the affected parties, that they may 
have to perform some adjustments manually. If the valve 
is eliminated at the piping and instrumentation level 
and the deletion is automatically propagated, it may 
leave a hole in the pipeline and it requires replacing 
two pieces of pipe and flanges explicitly by a new, 
single piece of pipe. These changes involve design 
decisions and should not be carried out automatically. 
There is no effect whether a molecular object is 
recursive or non-recursive, since recursivity is 
meaningful mostly for modeling purposes. For implement- 
ation we have distinct objects but of the same type. 
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7.4 Extraction and Reintegration ..- - 

Extraction and reintegration are two operations that 
involve more than one database. We will use here the 
relationship that exists between the project-wide data- 
base and a local database. 

7.4.1 Extraction. The extraction operation allows us to 
establish a local database that contains all the necessary 
data to work on a specific application (or several of them 
if we specify them). The necessary data for an application 
is the context and was explained previously. It is kept as 
part of the data dictionary, were it should have been 
gathered during the database design phase. (Our database 
design tool jBUCA821 contains some basic information on 
data usage and we are expanding it to handle molecular 
aggregates.) 

The actions to be executed are: Given the context 
specification in the data dictionary, follow the 
necessary links and extract the required instances. Use 
the heuristics from the data dictionary to determine the 
best clustering for the application and genera& a new 
local database with the extracted data in the preferred 
clustering and with the necessary access paths. Mark all 
the objects in the project-wide database that were 
extracted, so that any update can be propagated. Ex- 
tracted objects remain in the project-wide database and 
are available to other applications. 

Extraction has a variant that is invocated when we try 
to insert a new object. In order not to introduce objects 
into a workarea in duplicate form, the insertion process 
can verify first the existence of the object in the 
project-wide database. If it exists, then that object is 
extracted and inserted into the local and workarea data- 
bases. 

7.4.2 Reintegration. Reintegration is the process by 
which an object that was either modified or freshly 
inserted into a workarea database is transfered to the 
project-wide database after it has been approved. 

The actions to be executed are: First the inkntion to 
reintegrate is declared. This intention puts a lock on 
the object in the project-wide database, so that no new 
extractions can be carried out. Once the lock has been 
granted, the update is broadcast to those users in whose 
context that object appears while the update is queued 
waiting for the OK from affected users. Then the update 
is carried out in the database freeing the object again 
for new extractions. 

7.5 Other operators -- 

It is interesting to observe that in object-oriented 
systems like TM everything is an object. Programs can 
be grouped into classes which are themselves ad- 
ministered by an administrator. This is an interesting 

parallel to semantic nets ILEVH791 and it is worthwile 
exploring how more complex operations can be integrated 
as programs. 

&= Constmint Hmdlin~ 

A large portion of a design engineer’s time is spent 
applying constmints. These constraints can take the form 
of design codes, such as TEMA for heakxchangers or 
ASME Section VIII for pressure vessels, passing 
through the constraints set down in the piping or 
structural specs to rather ill-defined rules of thumb 
and company or personal preferences. It is in these 
constraints were much of engineering knowledge is stored. 
It is safe to assume that it is impossible to specify all 
constraints up-front, i.e. during design and start-up of 
a CAD system. Therefore, we need a system that allows 
us to define constraints dynamically. Since constraint 
checking is rather time-consuming and often long 
response times disrupt a designer’s train of thought it 
is necessary that constraint checking operaks on request. 
In our proposed architecture the constraint verification 
will intervene at the local level when a designer wants 
to check his/her design, at the supervision stage during 
approval and at a global level upon reintegration of an 
object into the project-wide database. Another necessary 
capability is exception handling. Engineering design 
often consists in weighing contradictory criteria 
selecting a solution that may violate one or several 
constraints. The system must be able to register these 
exceptions and not block progress everytime it comes to 
that conscious constraint violation. However, at the 
approval stage it must flag any exception. 

A quick glance at the types of constraints we have to 
handle shows us that we can distiguish between: 

* type checking constraints; 
* property inheritance constraints; 
* range checking constmints; 
* value matching constraints; 
* consiskncy constraints. 

Type checking is done in our environment at the TM 
language level, which serves as a homogeneous language 
for data definition, data manipulation and application 
programming. The language provides for class definition 
which may be of any complexity, allowing for nested 
objects. This type-checking mechanism can be applied 
here. The property inheritance constraints are also 
handled by the language’s class definition capability. 

What we shall describe with some more detail is the 
constraint handling mechanism for range checking, value 
matching and consistency constraints. Figure 2 shows 
schematically the components of the constraint handling 
mechanism and their function. The constraint handling 
mechanism consists of the Constraint Handler, an 
Exception Definition Module and Constraint Bases for 
Universal Constraints, Privak Constraints and 
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Exceptions. Table 1 illustrates these constraints. For 
example, a universal range checking constraint would be 
(0 4 x 4 1) where x is a mole lrsction. On the other hand 
it is general practice that water be never allowed in a 
heatexchanger to exceed 120 degrees F (a universal 
constraint). However in a plant where the water has a 
high cardonate concentratibn it may be necessary to 
restrict the temperature to 100 degrees F to avoid scaling. 
This would be a private constraint that only applies to 
this project. An exception could be that in spite of the 
private constraint limiting temperatures to 100 degrees 
in Chat plant, for a certain application it is justifiable 
to allow 110 degrees F. Similarly, for value matching one 
can identify the universal constraint as all the pipe 
schedules available. A private constraint taken from the 
pipe spec may indicate that only pipes of schedule 40 and 
80 are allowed. Consistency constraints involve two or 
more database attributes or objects and can be of any 
degree of complexity. Here we show only the consistency 
relationship between design and operating pressures. 

Exceptions have both a new constraint value and a realm 
of applicability. For instance, we may change the 
maximum water temperature to 110 degrees F (the new 
constraint) for a specific exchanger or an entire plant 
(the realm of applicability). 

Table 1: Examples of Cons!raints 

Proj. Spec. Tcm, < 100°F 4030 PD > 1.1 Pop 
Constraints are associated with database objects. How- 
ever, since the constraints are only to he invoked upon 
demand, we consider it useful Co keep the constraints in 
separate constraint bases. This has the added advantage, 
that we can substitute sets of constraints, particularly 
those that are project-specific. For example, a vessel 
can be designed according Co ASME Section VIII or 
according to DIN standards. In addition, a company may 
have its own design norms. The mechanism we are 
proposing allows us Co use for one project one code and 
for another project the other. In addition, we can specify 
more than one constraint base to be active at a given 
time. This mechanism permits to enforce the more 
restrictive set of norms on Cop of the industry-wide 
design norms. The constraint handler, if activated, will 
check first in the private constraint base, since this is 
the more restrictive. If no violation occurs the database 
action can proceed. If a violation occurs, the exception 
base is checked. If an exception exists and is fulfilled 
processing proceeds, if it does not exist the user is 
asked to define an exception which is then registered 
and stored or to change his action on the database. If no 
private constraint exists, the universal constraint base 
is checked following the same steps as in the previous 
case. This strategy reduces constraint base accesses CO 
a minimum. 

Exception T-1 < 1lO’F 120,Plant A PD >1.05 Pop 

t0n5:,. 

Honaltr 

TM allows Chat an administrator receives a string which 
is interpreted and executed. This allows us to store 
constraints as strings. When the constraint handler gets 
it, he executes it, possibly invocating other 
administrators (i.e. the class code associated with a 
class of objects). For each constraint a particular 
action is required. This means that new constraints 
require new responses. The response-adding mechanism of 
TM, mentioned in Section 2 and explained in [GERM841, 
allows us to add new constraints and their responses 
dynamically. 
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9.- Current Strtus rnd Future Work ---w-P 

The language TM is currently undergoing its third 
experimental implementation and work is underway to 
include necessary database constructs. The CAD system 
outlined in this paper will serve as a test for the 
language and as a source for expansion of its capa- 
bilities. The database portion is in the design phase 
and work is proceeding in the definition 01 the DDL 
of molecular objects, storage structures for molecular 
objects, clustering criteria based on access patterns 
obtained from a database design tool, and the 
implementation of the constraint handler in primary 
storage only at this time. The present report is only 
a general overview and further work is needed in the 
areas listed above. 
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