DATABASE DESIGN TOOL.S:=

AN EXFERT SYSTEM AFFPROAaCH

Mokrane BOUZEGHOUB,

Georges GARDARIN

Elisabeth METAIS

Frojet SABRE

Laboratoire MASI,

Institut de Programmation

Université Paris VI, 4, place Jussieu 75230

and

INRIA, BF.105 78153 Le Chesnay Cedex France

ABSTRACT: In this paper, we report on
the implementation of SECSI, an expert
system for database design written in
Frolog. Starting +from an application
description given with either a subset
of the natural language, or a formal
language, or a graphical interface,
the system generates a specific
semantic networi portraying the
application. Then, using a set of
design rules, it completes and
simplifies the semantic network up to
reach flat normalized relations. All
the design is interactively done with
the end-user. The system is
evolutive in the sense that it also
offers an interactive interface which
allows the database design expert to
modify or add design rules.

i. INTRODUCTION

Today,
widely
their

relational technology is
spread. Many users are designing
databases with the relational
model. However, using the relationnal
model as & conceptual design tool is
somewhat controversial [KENT79]. Indeed,
the relational concepts of domain,
attribute, relation, referential
constraint, functional and multivalued
dependencies are neither simple to use
nor sufficient to capture the semantics
of the user®s applications. To enhance
the semantics, integrity constraints may
be used, but their expression is not
always easy nor natural for the
end-user.

To capture the semantics of the real
world with more preciseness and
naturalness, many researchers have

Proceedings of VLDB 85, Stockholm

proposed several so~called semantic data
models, such as SHM [SMIT771, SHM+
[BRODB11, RM/T [CODD791, SDM [HAMMBOI],
TAXIS [MYLOB13, LAURA [BROWBZ1, MORSE
[BOUZB3al. Objects are generally
assembled together using some kind of
constructs borrowed from semantic
networks used in Artificial
Intelligence. Except some differences in
the formalization and the way of
expressing certain constraints, these
models offer similar concepts of object,
classification, aggregation,association,
and generalization.

Using semantic data models is far
from being sufficient to make the design
process easy for large applications.
Indeed the design process is an
iterative, long and tedious task. It is
characterized by a certain
indetermination in the way of choosing
data stuctures and constraints. Several
different schemas may describe the same
reality. The design process 1is also
characterized by an intuitive and
empirical methodology. Consequently, the
quality of the schema obtained is
heavily dependent on the database
administrator’'s experience and insight
in the database design.

methodology produces a
schema, it 1is not
trivial at all to translate it into a
physical database schema. The conceptual
to physical schema mapping is dependent
from both the user application (e.g. the
transactions) and the database system
(relational ,network). Consequently, an

Even 1if a
"good" conceptual

accurate and efficient internal schema
is difficult to produce from a good
conceptual schema without automatic

tools and human interactions.

Several
been
COBRB84,

design tools have already
proposed [CERIBZ, DAVIBSX, WASSB2,
TAHNS84, DAENB4] for database
design. Some of them are attractive and
original, but most of them suffer from
the following shortcomings:
(1) They are not completly integrated;
in other words, they do not constitute a
complete system but a set of sparse
programs which rarely interface each
other.
(2) They are not evolutive; some change
in the design rules often implies
reprogramming the whole tool.

At the
from this

beginning of 1982, starting

analysis of the database
design state of the art, we proposed a
new approach based on expert systems
techniques [BOUZ83bl. This approach is
supported by an original tool called
SECSI (an acronym for Systéme Expert en
Conception de Systémes d’Informations)
which has been implemented in PROLOG, on
top of SABRE, a relational database
management system. The system is
strongly based on a semantic data model
[(BOUZ83al, the relational technology and
certain artificial intelligence
techniques as expert systems.

An
program
domain
exists

system is an intelligent
which is devoted to a specific
of application and where there
enough knowledge to infer one or
several solutions, but where there does
not exist any precise or performant
algorithm which performs the same
results. This approach is chatacterized
by an original architecture which
distinguishes between :

- a knowledge base which contains
concepts, facts, rules and skills,

-~ an inference engine which is a set of

expert

management techniques of the knowledge
base,)
- and a friendly external interface by

which the end—-user interacts with the
system.

The power of an expert system is
characterized by the content of its
knowledge base and its capabilities to
work as efficiently as possible like a

human expert [LAURB1, HAYEBZI].

SECSI is intended to have the same
characteristics of the expert systems,
but it is not designed to replace the
human expert. Its knowledge base is
organized as modules of rules; a set of
modules compose an abstract level of
knowledge; going down the levels offers
gradual refinement of knowledge. Thus
the knowledge base is specified in such

a way that it is easy to integrate new
degsign rules and to update the existing
ones as s00N as the knowl edge
progresses. SECSI is not designed as a
black box providing useful services but
as an open system which is able to
explain and to transfer its expertise to
the end-user and to learn new
lkznowl edge.

The purpose isg
present the
implementation

of this paper to
architecture and the
of SECSI. This paper is
organized as follows. In section 2, we
introduce the objectives and the
architecture of SECSI. In section 3, we
present the various external interfaces
of SECSI. The section 4 is devoted to
the internal representation of knowledge
which is based on a specific semantic
network and production rules. They are
both represented by Prolog clauses. In
section 5, we detail the logical design
process which is currently implemented.

2. OBJECTIVES AND ARCHITECTURE OF SECSI

2.1. OBJECTIVES

SECSI has been designed as an
integrated intelligent tool for helping
the user in the tedious process of
database design. The design of SECSI was
directed by the <Ffollowing specific
abjectives :

(1) To constitute a knowledge base
composed of all useful concepts and
algorithms developped in the relational
theory and in the semantic data models
area. This will be especially helpful
for common designer who are not
necessarily expert in database design
theory. This knowledge base may also
include some experimental and specific
rules related to the user’s experience
in database design and to a specific
domain of application (banking,
reservation, medicine...).

(2) To define an interactive
methodological environment which permits
to perform as far as possible the design

steps with incomplete specifications,
and which permits to backtrack to any
step in order to change some
specifications or to integrate new

information.

(3) To identify for each design step the
general or specific principles of
reasonning, and to provide as detailed
explanations as possible about these
principles, the models, and the rules on

which they are based
(4) To build an open system of tools

which enables in one hand to integrate

new
rules,

theoretical concepts
and in the other
transfert its expertise both
usual use and via explanations
Justifications of its results.
(3) To facilitate interaction with the
human designer by offering him a
semantically rich and easy to use
interface.

and design
hand to
via its
and

This tool is qualified as an expert
system in the sens that:
-~ it offers an evolutive knowledge base,

~ it accepts incomplete specifications,
—- it justifies and explains its results,
-~ it permits to backtrack to any design
step in order to change specifications
or to ask for explanations.

0f course, all these objectives are
far from being thoroughly reached with
the current implementation. However, the
architecture of GSECSI allows us to

pursue them.

2.2. SYSTEM ARCHITECTURE

The general architecture of SECSI is
portayed in figure 1. Like most expert
systems [LAURBZ2 ,HAYEB41], SECSI is
organised around an expert knowledge
hase composed of a set of design rules
(BR) and a set of facts (BF). The set of
rules captures the design methodology
while the set of facts describes the
user’s application. In the current

BASE OF

EXPERT INFERENCE

INTERFACES BASE OF ENGINE

FACTS

v

META-BASE

Fig.l: General architecture of SECSI.

version of
inference engine of
the set of design rules, this inference
aengine carries out the deduction

process. It first generates a normalized

SECSI, Prolog acts as the

the system. Using

8l

schema
relations

yiwdiial
Vil Luad

relational
permanent

o L

composed of a set of
with their keys, a

el d i s e d e Lo e
wT Frwicauiwiia WU S vew 71 Wi

the formers by given queries, and a set
of integrity constraints. The integrity
constraints include domains, referential
and inclusion constraints. It should be
extended to more general constraints in
the near future.

o am e
-2 A%

A SECSI session 1is organized in
steps. Whenever a step is activated, the
system may aslk for complementary
information and the end-user may ask for
explanations. Whenever a schema has been

generated by SECSI, the user can
desagree with the result. In this case,
the session may be restarted at any of

the design steps according to the user
request. As soon as the schema satisfies
the user’s needs, the design process is
terminated and the schema is stored in
the Sabre meta-base.

The external interfaces address two
different experts : the expert in
database design (shortly refered here as
the expert) and the specialist in the
specification of applications (shortly
refered here as the end-user). The
expert is responsible of the creation
and the modification of the base of
design rules. The end-user is in charge
of the creation and the modification of
the base of facts describing the
application. In the following, we
explain in more details the various
interfaces and the corresponding process
of SECSI (Figure 2).

__ NTRL

ACCEPT > SHORT

T BRAPHICS

™ FRON GRAPHICS
LEARN
/ T FRON PRODUCTIONS

SECST

Fig.2: Interfaces and processes of SECSI

SECSI offers the LEARN function to
expert and the ACCEPT, RUN and HELF
to the end-user (see figure

enables the expert to

the
functions

2. LEARN

introduce and 'update the design rules.
Such rules are introduced by using
either graphical interface or production

rules. In the first version they are
directly written in Prolog. ACCEPT
enables the end-user to introduce, to

list and to update the description of an
application. Three languages are offered
to the end-user by the ACCEPT process :
a restricted natural language
(ACCEPT-NATURAL), a simple declarative
language (ACCEFPT-SHORT) and & graphical
interface (ACCEFT-GRAFHICS). The DESIGN
process vyields a normalized relational
schema from an application description
(RUN) and brings out explanations about
the produced schema and the applied
rules (EXFLAIN) ., HELF informs and
assists the end-user about the model
used, the applied design rules and the
functioning of the system itself
(HELF-DESIGNER). Also, we plan that this
module may help students learning data
models and database design
(HELF-STUDENT) from predefined rules and
examples.
2.3. THE LIMITS OF THE SYSTEM
The database design methodology may

be seen as three complementary phases:

(1) view specification and integration

(2) logical schema design and

(%) physical schema design.
The first version of SECSI which is
described in this paper is only
concerned by the second phase (i.e.
logical design) including some aid in
schema specification and consistency
verification. The objective of this
first version is to learn expert systems
and to show through one design phase how
do they apply to database design.
We are specifying a second and a third
version for view integration and
physical design.

Currently,
the design

the system only helps in
of the data structure and
integrity rules, that is the passive
components of an information system. It
is of no help for the transaction design
phase. However, G8ECSI does not ignore
the influence of potential transactions
hoth on the conceptual and the physical
structure of the database. Indeed, the
physical design process should integrate
information about transaction
frequencies, volumes and required level
of response time for the main
transactions.

85

3. END-USER AND EXPERT INTERFACES
3.1. HOW TO DESCRIBE AN APPLICATION

To specify the data structures of an
application, the end-user may choose
between three types of interfaces: a
simple but formal declarative language,
a restricted subset of the natural
language and a graphical interface. He
may also use two or all of them.

language is derived
language type
functional

The declarative
both from programming
declarations and from
language constructs (see for example
DAFLEX [SHIPB11). It is defined by a
very simple grammar which is illustrated

by the example given figure 3I. This
gQrammar permits to declare I18-A
relationships: STUDENT : PERSON,

Nn-ary associations between entities:
ENROLLED (STUDENT , COURSE) ,
including hierarchies as in the network
and in the hierarchical model
EMFLOYEE (DEFPARTMENT) ,
attributes that characterise
with their basic types:

NAME (FERSON) ¢+ TEXT,
and some constraints as functional and
multivalued dependencies:

NAME (DEFARTMENT) -> ADDRESS (DEFARTMENT) .

entities

EMPLOYEE : PERSON. NAME (PERSON) : TEXT.

STUDENT : PERSON. ADDRESS (DEPARTMENT) : TEXT.
STAFF : EMPLOVEE. NAYE (DEPARTMENT) = (MATH,DB).
TEACHER : EMPLOYEE. SSN(EMPLOYEE) : INTEGER.

SALARY (ENPLOYEE) : REAL.
TEL(TEACHER) : INTEGER.
ADDRESS (TEACHER) : TEXT.
FREE-GIFT(STAFF) : REAL.
NUMBER (STUDENT) : INTEGER.
DATE (ENROLLED) : INTEGER.
NUMBER(CLASS) : INTEGER.
NAME (COURSE) @ TEXT.

INSTRUCTOR : TEACHER.
PROFESSOR : TEACHER.
HERD-OF-GECTION : STAFF.
DIR-OF-LABORAT : STAFF, TEACHER.

RESPONSIBLE (PROFESSOR,,COURSE) .
GIVEN_BY (CLASS, INSTRUCTOR) .

ENROLLED (STUDENT , COURSE) . DAY (COURSE) : TEXT.
EMPLOYEE (DEPARTMENT) . HOLR (COURSE) : INTEGER.
CLASS (COURSE) . ROOM(COURSE) : INTEGER

NAME (DEPARTMENT) -> ADDRESS (DEPARTMENT).
SSN(EMPLOYEE) -> NAME(EMPLOYEE), SALARY(EMPLOYEE).
NAME (COURSE) -> ROOM(COURSE), DAY{(COURSE), HOUR(COURSE).

Fig.3: Example of the declarative
lanquage description.

The mnatural language based interface
offers a very restricted subset of
French which makes the specification
readable and easily communicable. In
fact, it appeared quickly not feasible
to start with very complesx
specifications in French. One reason is
that natural language understanding is
very complex and constitutes a vast

domain of research in itself; another is
that an information system designer is
an expert who has his own jargon and who
needs synthetic and unambiguous powerful

+omle

tonle inetsad of subject—~verbh-comnlemant

uuuuuuuu LAl o) N M UET - WIS W
sentences. Hence, we limited our ;atural
language interface to a strict
translation in a more natural form of
our declarative language. An example
corresponding to a sample of the
previous declarative language interface

is given in figure 4.

EMPLOYEES AND STUDENTS ARE PERSONS.

nATArT Avm v Aresean Ane

ViR rr.rmw HN IERUIEID HIE ERPLOYEES.

INSTRUCTORS AND PROFESSORS ARE TEACHERS.

DEPARTMENT ADDRESS AND NAMES ARE TEXTS.
EMPLOYEE’SSN IS AN INTEGER.

ENPLOYEE SALARY 15 A REAL.

A PROFESSIR IS RESPONSIME OF A COURSE.
A CLASS 15 GIVEN BY AN INSTRUCTOR.
A STUDENT IS ENROLLED IN ONE OR MORE COURSES.

A DEPARTMENT NAME DETERNINES A DEPARTMENT ADDRESS.
AN EMPLOVFE*SGN DETERMINEG AN FMPLOVEE’S NANE,

AN ENPLOYEE’SSN DETERMINES A SALARY.

Fig.4: An example of description
in_natural language,

‘ PERSON I DEPARTMENTl

o -
a- a "8

NAME
‘EMPLOYEq
/ / \\;nuv

lSTUDENTl STAFF TEACHER
\
NUMBER FREE QIFT \' .
TEL JDoness
HEAD OF HEAD OF
secrlou\ LABORAT\ Nsrnucx] [~oressod
[enroLieo | LGIVEN-BY! hFSPONSMLE!
A
B; g 7/ //ﬂ
U R [/
DATE =
[cLass leet—x{Counse]
L_F—J L_W_AK_F—VJ

~
) A

i 3
al STl A
. R

. o . . 3
NUMBER NAME DAY HOUR ROOM

Fig.5: An example of the graphical

interface,

[@]
()N

The graphical interface may be either
a direct implementation of the semantic
network we utilize to represent the
internal knowledge, or one of the
traditional data models such as the
Entity Relationship model and the
Codasyl network data model. An example
of a semantic network corresponding to

the previous example in figurel is given
in figure 9S. The semantics of the
different arces will be explaned in
secstion 4.

3.2. HOW TO SPECIFY DESIGN RULES

As for the end-user, the experts need
powerful languages to specify their
expertise in database design. We
anvieioan to offer the ‘="P'="+= twe +\,/pec_='
of interfaces : a declarative language
based on if-then statements and a
graphical tool for expressing mappings
between two types of semantic network.

The declarative 1l anguage should
accept statements of the Fform:

IF CONDITION THEN ACTION.
The condition expresses a relationship
between two objects. Fossible
relationships are:
-~ AGGREGATION OF / ATTRIBUTE OF,
CLASS OF 7/ INSTANCE OF,
GENERALIZATION OF / SPECIALISATIDN oF,
ASSOCIATION OF / PARTNER OF,
- EQUIVALENT TO.

1

i

For example, suppose we have to specidfy
as a design rule the inheritance
property in the generalization
hierarchies; it can be written as the

production rule portrayed in figure 6.

IF X IS A GENERALIZATION OF X1
AND A IS AN ATTRIBUTE OF X
AND X IS A PARTNER OF R

THEN A IS AN ATTRIBUTE OF Xi

AND X1 IS A PARTNER OF R.

in a declaratlve +orm.

The graphical interface is a very
convenient tool to express mapping rules

hatwaon tynes of cemantic netword

hetween types
As the conceptual modeling is often a
question of schema representation and
schema mapping, this latter facility is
very important. We shall see later that
most of the design rules are mapping
rules, thus having facilities to
visualize these rules will probably
increase the friendliness of the system.
Generating rules from examples may also

be an attractive issue. many

+
WO

However ,

rules cannot be expressed by agraph
transformations; in this case production
rules should be used.

1 1
r r r
X isfii\\) § I X In

a —

]

Al A2 A3 a a

Al A2 A3 Al A2 A3
X . xn

Fig.7: An example of rule expressed as

a qraph transformation,

The
compiled,
generated.

two preceding interfaces will be
and processible rules will be
In the first version of SECSI
which is currently running, these two
interfaces are not vyet implemented;
rules are directly represented as Frolog
clauses.
4. INTERNAL REPRESENTATION OF KNOWLEDGE
As stated before, we have two types of
knowledge: facts and rules. To represent
this knowledge, we use a combination of

two models: semantic networks to
represent facts and production rules to
represent application constraints and

design rules. The following sub-sections
deal with these two kind of models.
4.1. INTERNAL REPRESENTATION OF FACTS

To implement the base of facts, we
use a specific kind of semantic network
because of the privileged position of
this tool between database models and
rnatural languages. Our semantic network
presented hereafter contains most of the

concepts of semantic data models like
aggregation, generalization and
classification. The main differences
with these models are, first, the
formalization with a few basic
constructs (a, r, c, g); second, the
categorization of the different nodes

and arcs and the distinction between two

types of aggregation (aggregation of
attributes called aggregation, and
aggregation of entities called
association). Moreover, several

constraints may be added on each kind of
arcs and nodes.

87

We
formal
model .

are now going to present a more

definition of this semantic data
Our semantic network is defined
as a triple (NC,AC,IC) where NC stands
for the category of nodes, AC the
category of arcs and IC the category of
constraints, such that for each element
¥ of AC, there exists an application :

f: NC X NC -———-— » {True,Falsel}
such that f(niynj) is true if there
exists an arc of class ¥ between ni and

nj, and false otherwise. The elements of
NC can be classified in two ways :

(1) Atomic objects (attributes and

values) and molecular objects (entities
and instances).

(2) Classes (attributes or entities) and
elements of classes {(values or
instances).

The elements of these different

categories of nodes are connected by the
following categories of arcs:

- Aggreqation arc denoted a(X,Y)
specifies that X is a part of Y or that
Y has the property X. This arc links an
atomic object to a molecular ohject. For
example, using the application portrayed
figure 5, we can write a(NAME,PERSON),
a (ADDRESS ,PERSON) .

~ Association arc denoted r(Y,Z)

specifies that Y is involved in the
association Z. An association connects
molecul ar objects (entities ar
instances). For example, the binary

relationship ENROLLED (STUDENT ,COURSE)
may be written as:

r (STUDENT , ENROLLED) ,

r (COURSE ,ENROLLED) .

arc denoted c(X,Y)
specifies that X is an element of the
class Y. Classification are not
recursive and can only link a value to
its attribute class or an instance to
its entity-class. For example, we have

c(PARIS,ADDRESS) ,

¢ (<COMPUT-SCE FARIS»,DEFARTMENT)
where <COMFUT.SC. PARIS> is a tuple
representing an instance of DEPARTMENT.

- Classification

arc denoted giY,2)

is a sub~class of Z. It
the well-known is-a

may be used recursively

- Generalisation
specifies that Y
corresponds to
relationship. It

in a hierarchy of objects and has the
transitivity property. For example, we
have in the given application,

g (STUDENT ,FERSON) and g (FROF,TEACHER) .

- Equivalence arc denoted e(Z1,712)
specifies that two nodes are equivalent.

This arc is especially useful when it is

important to see the
different wWays.
@ (STUDENT ,PUFIL),

specify that
FUFIL are

assume that

same object in
For example,
e (STUDENT , SPORTSMAN)
STUDENT, SPORTSMAN and
equivalent classes if we
all students practice one
sport. More generally, e(X,Y) is
equivalent to the two following
assertions g(X,Y) and g(Y,X).

The previous arcs can be interpreted
in the reverse direction respectively as
particularization (p), partnership (o),
instantiation (i), specialization (s)
and equivalence (e) arcs.

Some constraints have to be added to
these arcs and nodes to enhance the
semantics of the preceding network. Most
of them may be expressed by additional
nodes and/or arcs, or by appropriate
expressions of predicates. We list
hereafter some types of these
constraints

-~ Domain constraint: Each attribute has
a domain which is extensionally defined

by enumerating its values, or
intensionally defined as a basic data
type (integer, real, or text). Moreover,

data type values can be constrained by
any predicate.

- Intersection constraint: There is an

intersection between two classes X1 and

X2 when it exists a third class X3 such
that the predicates g(X3,Xx1) and
g9(X3,X2) hold. For example, with the

university application, the two classes

STUDENT and INSTRUCTOR intersect because
g (STUD-INSTR,STUDENT)

and g {(STUD-INSTR,INSTRUCTOR).

- Union constraint:

respect to

It specifies

expressed with

a generalization hierarchy.
whether the union of all

specialization classes is equal or not

to the root class of the hierarchy. Let

X1,..Xn be the subclasses of X and let

I, Ii be repectivelly the elements of X

and Xi, then if UJ Ii = I, X is called
a completely “ specialized class,
otherwise X is called a partially

specialized class.

~ Cardinality constraint:This constraint
is associated with r arcs and a/p arcs
(keep in mind that p is the reverse of
a). Cardinalities are represented by a
pair of values (m,n) which specifies on
the one hand whether the relationship is

total (m>0) or partial (m=0), and on the
other hand whether the relationship is
functional (n=1) or not (n>*1). For

88

example, 1if r (STUDENT,ENROLLED) has the
cardinality (1,4), this means that a
student has at least one enrollment and
at most 4 enrollments. If p(TEACHER,TEL)
has the cardinality (0,2) then it means
that a teacher may have zero, one or two

telephone numbers. In general, the
relevant values are O or 1 for m and 1
or N for n (with N>1).

— Functional dependency constraint: We
consider here functioral dependencies
between attributes of the universal
relation schema composed of all the
attributes of a semantic network. As in
our semantic network we do not assume
the uniqueness of attribute names, we
qualify each attribute by the name of
its entity. For example, a possible
functional dependency is :

NAME (DEFARTMENT) ——>ADDRESS (DEFPARTMENT) .

4.2. INTERNAL REPRESENTATION OF RULES

Three important classes of

rules have been distinguished.

design

The Ffirst class includes consistency
enforcement rules and structural
transformation rules which act upon the

semantic network. Consistency
enforcement rules enable the system to
verify and to maintain the consistency
of the conceptual model described with

network. Structural
rules enable the system
the semantic network in a
optimized relational

the semantic
transformation
to transform
normalized and/or
aschema.

The second class of rules collects
general knowledge. First, this category
includes the definition of the types of
arces and nodes of the semantic network
and the general properties of these
types. Second, it also contains the
definition of relational concepts (i.e.
relation, attribute, domain functional
dependency) and properties (i.e.
Armstrong’s inference rules and normal
forms). Finally, as we manipulate sets
and lists of objects, general knowledges
about set theory and lists are also
included in this second class.

The third class of rules is composed
of a hierarchy of meta-rules which
control the sequence of design steps and
select the rules to apply at each step
and the facts over which these rules
operate.

All these classes of rules are

encoded in Prolog. Figure B portrays the

rule

a and a
g and

=3 P ReaL&anwS

inheritance

in

of figure 7 expressed

ara nredicatog which
are Y Wi

]
Frolog. ich

olog.
specify respectively the generalization
and aggregation arcs. r refers to an
association.

inheritance <- g (¥X1,%xX), a(XA,xX),
insert_clause(a(%A,¥X1)})),
delete_clause(a(xA,%X)).
inheritance <— g (¥X1,%X), r(xX,xR),
insert_clause(r (¥X1,%R)),
delete_clause(r (¥X,XR}).

Figq. 8 : The inheritance rule in Prolog

axample is a meta-rule which
depth—~first strategy to
search and suppress generalisation
hierarchies (see figure 9. s is the
specialization arc of the semantic
network, %, vy, 2, w are Prolog variables
standing for the node of the
generalization hierarchy; transform is a
structural transformation rule.

Another
describes a

depth (xx) <- s(¥X,Xy),
s(Xy,Xz),
/7y
depth (Xy).
depth (Xx) <{— s(¥w,Xx),
insert_clause{(father (¥Xw,%¥x)),
transform(xx).
depth (%x) <- father (Xw,Xx),
depth (Xw) .
depth (¥x)<{—-delete_clause(father (Xxy, %z)).

An example of a meta-rule
expressed in Frolog.

Fig.9:

One well-known principle of expert
system design is that the modularity and

the independence of rules greatly
enhance the evolutivity of the system.
This is a good philosophy. But

when we have a large base
this important principle

performances of the
when the Frolog
not provide a
strategy. That is

unfortunately,
of knowledge,
decreases the
system, especially
interpreter does
sophisticated search
some cases we have turned aside

why in
from this principle. Indeed, as in some
design steps several rules have some

overlapping premises, we have choosed to
bhuilt trees composed of these premises
and where each path from the root down
to the leaves corresponds to a given
rule.

5. THE LOGICAL DESIGN PROCESS

The logical design process generates,

from an external
application, a
stored as a
associated constraints. Then,

normal form relational schema with
associated integrity constraints isg
produced. The global process is divided
in steps which are more precisely
described below.

description of an
sound conceptual schema
with

semantic network with

a fourth

This process
combination

is performed in a
of a forward and a backward

chaining. The general principle is to
successively transform a given
specification, trying all the rules
until no rule is applicable. This is the

definition
— — e
At earn
backward

of the forward chaining. But

‘‘‘‘ step, we may use a
chaining to enforce a
consistency constraint for example, or
to verify that a given information is
not redundant (i.e. not derivable from
another information). This is especially
the case of functional dependencies.

S5.1. THE STEPS OF THE METHODOLOGY

The first step is called the
verification step. It performs the
validation of the application

description in order to generate a sound
and consistent conceptual schema. In
addition to the syntactic controls, this
step checks and solves the problem of
homonymous and synonymous informations.
It also detects generalization cycles.
The system tries to evacuate the
possible inconsistencies with the
end-user ‘s help.

The
relational

is called the
step. It performs the
interactive acquisition of constraints
and the choice of first normal form
relations. Constraints such as
intersection and union of classes,
cardinalities of relationships
(aggregation and association) and
functional dependencies between
attributes are acquired. Normal form
relations are constructed by suppressing
generalization hierarchies and
separating multivalued attributes.

second step

The last is called the

normalisation step. Normalization is
carried out using both the functional

dependencies between attributes given in

step

the initial specification, and the
cardinalities of associations which
allow the system to infere some
functional and multi-valued
dependencies. The normalization process
is composed of two phases : partial

using local <functional
(between attributes of the
wame entity), and total normalization
using global functional dependencies
(between attributes different
eantities).

mormalization
dependencies

of

The result of the logical design
process 1is & set of 4NF relations with
their keys (both unique and multiple
keys), a set of virtual relations with
their deriving relational queries, and a
set of constraints including domain
constraints and inclusion constraints
(in particular, referential inteqgrity
constraints). The methodology is
characterized by a sequence of steps
which alternatively require algorithmic
tasks (e.g. verification and
normalization) and human decisions (e.g.
acquisition of constraints and choice of

entities and relationships). The
following paragraphs describe in more
details how steps two and three are

implemented to produce a normalized

relational schema.

5.2 PRODUCTION OF A NORMALIZED
RELATIONAL SCHEMA

Starting with a sound semantic
network, the production of a normalized
relational schema is performed during
the relational and the normalization
steps, as stated above. Each step is
composed of three actions. The
relational step eNCOMpasses the

following actions :

K1) The supression of the generalization
hierarchies.

R2) The acquisition of aggregation
constraints (cardinalities) and the
separation of multivalued attributes to
obtain INF relations.

R3) The acquisition of functional
dependencies between attributes of each
INF relation.

The normalization step includes the
following actions :

N1) A partial normalization process
using a simplified synthesizing
algorithm [BEER791].

N2) The acquisition of association
constraints (cardinalities) and the
suppression of the association arcs.

N3) A complete normalization process
using the decomposition algorithm
LFAGI77, ZANIB11J.

In the first version of SECSI, these
six actions are processed in the given
order. However, the order of the first
three actions may be changed. The chosen

90

order has the
cardinalities and functional
dependencies more precisely. Indeed, a
functional dependency which is valid for
the TEACHER attributes is not
necessarily valid for the FERSON
attributes. For example, we may have
NAME (TEACHER) —— *ADDRESS (TEACHER) and not
NAME (FERSON) —— *ADDRESS (FERSON) . It is
the same problem for cardinalities which

advantage of getting

may hold at the sgpecialization levels
and not at the generalization levels.
But changing the action order could
improve performances because attributes
are not duplicated by inheritance
properties and the dialogue of the
constraints acquisition would be

In the second version of SECSI,
some meta-rules to decide

interesting to begin by
step R1, R2 or R3I. These meta-rules are
essentially based on the number of
attributes and specialization entities.
The next sub-sections detail each of the
preceding actions.

shorter.
we implement
wether 1t is

5.2.1 The suppression of generalization

hierarchies
The problem is to choose between
different nodes of a generalization

hierarchy which node(s) must be kept as
possible relation(s) and which one must
be replaced either by new attributes, or
virtual relations, or integrity

e, (a) nvr;un@
SNt —’)
hf/ N
INSTAUCTN! [Lmj:‘j
[;733 v
'
P
.

.

~ s
'\b)o
MAME ADDR TEL
.
L2 (Y ,
' [

PR
b e

nAME ADDR TEL

TEACUFR

2 ADOR TRt

i “

INSTRUCTOR

PECARTHFNT

THSTRUCTOR) ‘ rln"ssnl‘

Fig.10: Examples of structural
transformations of generalization
hierarchies.

‘ nrrAlrmn{

rROTESTOR

constraints. The ageneral principle is to
keep the "more semantically referenced”
nodes (i.e. the nodes which are
surraounded by the greatest number of
arcs). The main criterias used are the

number of
number of

specialization nodes, the

specific attributes of each
node, the intersection and the union
constraints, and the depth of the
hierarchy. For example:

IF X HAS MORE THAN 3 SPECIALIZATION ENTITIES
AND THESE SPECIALISATIONS HAVE NO SPECIFIC ATTRIBUTES
AND THESE SPECIALIZATIONS DD NOT PARTICIPATE TD ANY ASSOCIATION
AND THERE I5 NO INTERSECTION BETWEEN THESE SPECIALISATIONS
AND THE UNION OF SPECIALIZATION CLASSES 1S EQUAL TD THE
GENERAL IZATION CLASS
THEN ADD A NEW ATTRIBUTE NAMED "ROLE" 1O THE AGBREBATION OF X
WHICH DDMAIN IS THE SEQUENCE OF NAMES OF THE
SPECIALIZATION ENTITIES,
DELETE THE SPECIALIZATION ENTITIES OF X.
This rule is illustrated in figure 10b.
5.2.2. The acquisition of aggregation
cardinalities
cardinalities are
end-user in his
acquired by a
dialogue such as the

First, certain
given by the
specification or
question—answering
following one :

SECST > COULD ANY TEACHER HAVE SEVERAL ADDRESSES?

USER ¢ YES.

SECST > COULD ANY TEACHER HAVE SEVERAL PHONE NUMBERS?
USER { YES.

SECSI > IS THE PHONE-NUMBER DEPENDANT ON THE ADDRESS?
USER < NO.

SECSI > AND INVERSELY?

USER < YES.

SECSI > FOR EACH ADDRESS IS THERE ONE OR SEVERAL TEACHERS?
USER < DNE.

Some other cardinality constraints
may be inferred from the functional
dependencies. For example, if the

functional dependency:
NAME (DEFARTMENT) —— *ADDRESS (DEFARTMENT)
is qiven in the description and if the

departement has only one name, then
SECSI infers that the department has
only one address.

At the end of this dialogue, the

system has transformed the base of facts

(i.e. the semantic network) and provides
the first normal form relations by
applying transformation rules as those
illustrated in figure 11.

The previous dialogue is very
important because it prevents some
multivalued dependencies to occur. In &

sense, it prepares the schema
But it may appear as a
to "normalize in
first mnormal form
if we interprete the

certain
for being in 4NF.
surprising approach
ANF " during the
process. Indeed,

Q“,

multivalued dependencies as an
independency of two sequences of
attributes (or as two merged but

different objects), this phenomenon is
detected and solved during the previous
dialogue and non-trivial multivalued
dependencies does not hold Ffurther.
However, we shall see later that this
approach is not sufficient to detect all

the possible multivalued dependencies.

TEACHER

AR N .
, K I,' v “\‘ . @ , ?
AR Y
AR AN Y '
L]) ’
/ 3 ~ ’
v, ‘.' b4 L%
MAHE ADDR TEL e
-\.;
TEL
TEACUER
TR i v
VRN
1 \
LI U R (b)
'l ;v ——
[LY
YA
14 Y iV
N)

ADDR TFL

structural
transformation of

Fig.11: Examples of

agqaregation

3.2.3. The acquisition of functional

dependencies
Functional dependencies can be
acquired from four different sources:
(1) the user s description of the
application explicitely specifies
certain functional dependencies,
(2) the cardinalities of the aggregation
arcs enable the system to infere
functional dependencies. For example, if
an EMFLOYEE has only one 8SN and only
one ADDRESS, and for each SSN there is
one EMFLOYEE, then SECSI infers the
functional dependency SSN—-->ADDRESS.
This is a direct application of the
transitive inference rule of functional
dependencies if we assume that EMFLOYEE
plays a role of an attribute : i+
S8N ——:> EMPLOYEE and EMFPLOYEE-—I ADDRESS
then SSN --> ADDRESS,
(3) a dialogue with the end-user 1s also
possible. As for cardinalities, SECSI
asks questions of the form :

SECSI > DOES THE NAME OF EMPLOYEE DETERMINE HIS SALARY?

USER < NO.
SECSI > DO NAME AND ADDRESS OF EMPLOYEE DETERMINE HIS SALARY?

During this dialogue, the system is

directed by Armstrong®s inference rules
which enable SECSI to derive new
functional dependencies from those given
by the user. The system asks questions
only for those functional dependencies
it could not derive. However, even in
this case, this dialogue phase may
somewhat appear very tedious and
tiring for the user. Thus instead of
searching for possible functional
dependencies, we try first to search for
impossible dependencies. This is done
with the help of some examples of tuples
given by the end-user. For vample,
SECSI asks the following questions:

as

SECST » PLEASE, WOULD YOU BIVE ME SOME EXAMPLES OF TUPLES
OF THE RELATION TEACHER(SSN,NAME ,ADDRESS,TEL),
{5 TUPLES AT MOST)?

USER ¢ 1234 DUPONT PARIS 2224775

{ 1234 DUPONT MARSEILLE 662532

{ 2500 DURAND GRENOBLE BB4542

{ 3000 PERRIER PARIS 2740785

< 3000 PERRIER LYON 426830

<.

From these tuples of the TEACHER
relation, SECSI infers that the

following functional dependencies do not

hold: NAME --» ADDRESS, ADDRESS -—» TEL,
ADDRESS ~~> NAME, NAME --> TEL,

(SSN,NAME) —--» ADDRESS.

Thus the number of possible candidate

dependencies is reduced. However, from
this extension of the relation TEACHER,
SECSI can say nothing about SSN--:>NAME,
TEL~~-*ADDRESS,...Another way to avoid
the combinatory explosion in functional
dependencies acquisition is to reduce
the number of attributes in the left
hand side of functional dependencies.
Indeed, it does not practically appear
as an important constraint to limit this
number to four or Five attributes.
Figure 12 synthesizes the functional
dependency acquisition principle.

ARMSTRONG S
INFERENCE RULES

l

SECSI
INFERENCE
ENGINE

73
l

|
USER’S COMPLEMENTARY
INFORMATION

MINIMAL COVERING
- oF
FUNCT. DEPENDENC.

ENTITY ATTRIBUTES
CARDINALITIES —»f
EXAMPLES

Acquisition of Functional
Dependencies.

Fig.12:

92

S5.2.4. Partial normalization process
This process is considered as partial
because it concerns only the attributes
and functional dependencies of a unique
entity and it does not handle functional
dependencies between attributes of
different entities which are not already

acquired. This process 1is also called
partial as it 1is only applied for
entities which do not appear as targets

of association arcs (r).

This normalization

on the

process is based
second version of the
synthesinzing algorithm of L[BEER791.
During the previous dialogue phase,
whenever a functional dependency holds,
SECSI applies the membership algorithm
which consists of testing whether a
functional dependency is implied or not
by those already existing in the base of

facts., Then the minimal covering is
progressively built and third normal
form relations deduced with all their

possible keys.

not
the
the
not

Although the Frolog language is
adapted to this type of algorithms,
efficiency remains acceptable as
number of attributes of an entity is
generally very high.

S5.2.9. Acquisition of association
cardinalities

Association cardinalities are either
given in the initial description of the
application or interactively acquired
from the end-user with the following
dialogue:

SECSI > MAY EACH PROFESSOR BE RESPONSIBLE OF ONLY ONE
OR SEVERAL COURSES?
USER < SEVERAL.
SECSI > MAY EACH COURSE HAVE ONLY ONE OR SEVERAL RESPONSIBLES?
USER < ONE.
SECSI > DOES ANY COURSE EXIST WITHOUT A RESPONSIBLE?
USER < NO.
This dialogue determines the (m,n)
couples aof values from which SECSI
infers some functional and multivalued
dependencies. For example, the dialogue
above produces two couples of
cardinalities (O,N) and (1,1) from which
SECSI infers functional dependencies:
ey (COURSE) —— *key (FROFESSOR) .
key variable is later replaced by
corresponding keys found in the
process. I+ the user
little Ffamiliar with the
may introduce directly his
cardinalities +to avoid the

The
the
normalization
becomes a
system, he
couples of

preceding dialogue.

The decision of suppressing
association arcs depends on the number
of arcs involved in each association,
the cardinality of each association arc
y and the number of attributes of this
association. When associations are
organized 1into a hierarchy, a meta-rule
specifies the strategy to search this
hierarchy. Figure 13 shows some
transformation rules depending on the
cardinalities of r. Whenever an arc r is
@liminated, a referential constraint is
created between the association and the
involved entity, or between the involved
entities.

I

TEACHER

COURSE

IYEACNEN I l COURSE I
L]

qR
a

a,’ [
’]
!
‘ .
CLASSH# COURSE#

’

Examples of structural
transformations of associations.

Fig.13:

5.2.6. Complete normalization process

The suppression of association arcs
moves attributes from one entity to
another and introduces new functional
and multivalued dependencies that make
not normalized.

some relations Thence,
SECSI has to proceed another
normalization process based on the
decomposition algorithm TFAGI7Z7,

ZANIB11. This process concerns all the
entities which are not yet normalized by
the partial normalization process (i.e.
entities which are the targets of r
arcs) .

The principle of these algorithms is
to eliminate by projection all the
functional and multivalued dependencies

whose the left hand side is not the key
of the relation. The process is finite

hut the relation schemas obtained depend

93

on the order in which dependencies are
considered. As in the partial
normalization process, the efficiency

remains acceptable as generally,
entities have not more than two or three
dozens of attributes.

5.3. The final results

described
obtain the

When the design
above is terminated,
following results:

process
we

(1) A set of basic relations in 4NF and

the various keys of these relations.
Figure 14 shows the normalized
relational schema produced from the

university example portrayed in the same
figure. Notice that in the results some
new attributes appears (e.g.
TEACHER.ROLE and STAFF.ROLE) which were
not in the initial description. They
have been created to replace
specialization entities which have been
suppressed during the action 5.2.1 of
the design. Some other attributes are
duplicated in different relations; they
replace the association arcs r that have
been deleted in the design action 5.2.6
These attributes are prefixed by the
first three characters of the name of
the entity from where they have been
derived (CLA.NUMBER,COU.NAME,STU.NUMEBER)
or by the association which has caused
the attribute migration. Also in the
same example, there are some surprising
names of relations FREE-GIFT-STAFF,
ADDRESS-TEL-TEACHER coming from the

normalization process. These will later
be renamed with the user’s help (for
example put LOCATION instead of

ADDRESS-TEL-TEACHER.
relation are specified. As for relation
names, some attributes composing the
keys may be prefixed by entity names.

The key(s) of each

) A set of virtual relations and the

definition of the corresponding
relational queries which permit to
derive them from the database real
relations. These virtual relations

correspond to some entities given in the
initial description and which have
disappeared during the design process.
However, with respect to the user, these
objects (e.g. FERSON, EMFLOYEE) which
exist in the real world must exist in
the conceptual schema exactly as other

objects (STUDENT,COURSE). Notice that
all the transformed entities are not
necessarily replaced by virtual

some of them are replaced by
(2.9. INSTRUCTOR,
sometimes, both

relations;
role attributes
FROFESSOR) . However ,

and roles are
the semantics of
HEAD_OF _LABO). In
figure 14,

relations
necessary to capture
the real world (e.g.
the example portrayed
relational queries
represented by relational operators.

virtual

33 RELATIONS
ENROLLED (CLA-NUMBER COU-NAME STU-MUMBER DATE)
TEACHER { DEP-NAME SALARY NAME SSN TEA-ROLE)
STAFF (DEP-NAME SALARY NAME SSN STAROLE)
STUDENT { NAME NUMBER)
COURGE (TEA-GSN ROOM DAY NAME HOMR)
CLASS (NUMBER COU-NAME TEA-SSN)
DEPARTMENT (ADDRESS NAME)
FREE-GIFT-STAFF (STA-S5N FREE-GIFT)
ADDRESS-TEL-TEACHER (TEA-SSN TEL ADDRESS)

#% CONSTRAINTS
key (ENROLLED) : CLA-NUMBER COU-NAME STU-NUMBER
key(TEACHER) : SSN
key(STAFF) : SSN

key (STUDENT) : NUMBER

key (COURSE) : NAME
key(CLASS) : COU-NAME NUMBER

key (DEPARTMENT) : NAME

key (FREE-BIFT-STAFF) : STA-SSN FREE-GIFT
key (ADDRESS-TEL-TEACHER) : TEA-SSN ADDRESS

$% VIRTUAL RELATIONS
PERSON = UNION(STUDENTCNAME] TEACHERINAME] STAFFINAYE])
ENPLOVEE = UNION(STAFF TEACHER)
DIR_OF_LABD = REST(JOIN(STAFF TEACHER
/ STAFF.ROLE = TEACHER.ROLE)
/ TEACHER.ROLE = *DIR_OF_LABO®)

¥ DOMAIN CONSTRAINTS
STAFF.ROLE = (DIR_OF_LABO HEAD OF SECTION)
TEACHER.ROLE = (DIR_OF _LABD INSTRUCTOR PROFESSOR)
COURSE. NAME = { AI DB MATH)

3% REFERENTIAL AND INCLUSION CONSTRAINTS
ENROLLED. CLA-NUMBER = CLASS. NUMBER
ENROLLED.CLA-NAME = CLASS.NAYE

STAFF.DEP-NAME = DEPARTMENT . NAME
FREE-_GIFT-STAFF.STA-55N = STAFF.SSN
ADDRESS-TEL-TEACHER. TEA~GSN = TEACHER.SSN

#3 OTHER SEMANTIC CONSTRAINTS
COURSE, TEA-SSN = TEACHER.SSN AND TEACHER.ROLE = “PROFESSOR"
CLASS, TEA-55N = TEACHER.SSN AND TEACHER.ROLE = "INSTRUCTOR®
Fig.14: An example of application run
with SECSI.

of constraints like domains
and other general semantic

Domain constraints are
relevant for new attributes generated
during the design process (especially
roles). Referential dependencies are

(Z) A set

referential
constraints.

gl

generated to replace the real world
associations. They are essential
information without which relational
joins of tables cannot be done
efficiently and the database integrity
cannot be maintained. BSemantic
congtraints are all other constraints

composed of a conjunction or disjunction
of predicates and which capture a given
semantics graphically expressed in the
semantic network or in the user’s
application in general. All these
constraints are expressed in a specific
language described in [SIMD841, that is
the language of the SABRE system.

&6.CONCLUDING REMARKS AND FURTHER
RESEARCH DIRECTIONS

We have described the main features

of an eupert system for database design.
This system is written in PROLOG and
runs on MULTICS at INRIA. The main
ariginalities of the system are :
1) It does integrate a complete
methodology for database design,
starting from a naive description of the
application and using intensively
dialogues with the end-user.

(2) It is strongly based on a semantic
data model which is implemented as a
semantic network in the system.

(3) It encompasses most of the simple
theory about database design (e.qg.
normalization, dependency inference
rules ...) which is expressed as FROLOG
clauses.

(4) It is evolutive in the sense that we

can add new design rules in the system.

(3) It is a tool integrated in the
relational DEMS SABRE in order to
facilitate database design and

creation.

Mowever, the system is far from being
complete. Many points have to be
improved including the graphical
interface, the expert interface, the

design algorithms and the explanation of
the decisions... Further steps which are

not yet addressed in the current
implementation are the view integration
and the physical design. New versions

integrating these aspects are currently
in specification.

The stbstantial results already
achieved with the first version of SECSI
lead us to state that expert systems are
very suitable to database design. They
introduce a new design style in the
manner of directing the dialogues,
correcting the inconsistencies and
Jjustifying the results. They also

new capabilities for database
Expert systems may also
in database

introduce
restructuring.

open new possibilities
teaching.
REFERENCES
[BADAB1] BARR A. s DAVIDSON J.

Representation of Enowledge (in Handbook
of Al, Barr % Feigenbaum ed., Comp. Sce
Depart., Stanford University)

CBEER72] BEERI Cuy BERNSTEIN F.A.
"Computational problems related to the
desian of normal form relation schemes'
ACM Transact On Databases, vol4,nbl,

march 1979.

[BOUZ83al BOUZEGHOUR M. 'MORSE: A
Functional Query languaqge and its
semantic data model. INRIA RRZ70 and
Froceed of B84 Trends and Application
conf on Databases, IEEE-NBS Gaithersburg
(usa) , 1984.

[BOUZB83bl BROUZEGHOUE M. et GARDARIN G.
"The desian_ of an expert system for
gdatabase design" in New Applications of
Databases. Gardarin and Gelenbe edit.
Academic Press 1983.
[BOUZB41 ROUZEGHOUB
METAIS M. "SECS5I: Une application des
systemes experts a la conception des
hases de donnees relationnelles”" Actes
col logque internat. d*Intelligence
Artificielle, Marseille oct. 1984.

M., GARDARIN G.,

CBROWB31 EROWN & STOTT-FARKER LAURA: A
formal Database model and her Logical
Resign Methodology Froceed. VLDE Conf,
Florence 1983,

CBROD81 1] BRODI M.L. "On Modelling

Behavioural Semantics of Data HBases
(Proceed of 7th VLDB Conf IEEE 1981)

CBROD8B41] BRODIE M., MYLOFOULOS J.,
GSCHMIDT Y. On_ Conceptual Modellings
FPerspectives from Artificial

Intelligence, Data Bases and Frogramming

languages. Springer—-Verlag, NY 1984.
[CARLS831] CARLIS J.Va, MARCH S&.T.,

DICKSON G.W. Physical Database Design: A
DSss Approach. in Information and
Management &6(1983).

[CERIB31 CERI S, (edit) "Methodoloqy and
Tools for Database Design. North Holland
1983.

CLCHEN761 CHEN F.P. "The Entity
Relationship Model = Toward a Unified
View of Data" (ACM TODS V1, N1, March
1976)

CCOBB8B41 COBE R.E. 4 FRY J.F. and TEOREY

T.J. "The Database Designer’s Workbench.
Information System Sces nb 32, 1984.
CLCODD791 ConD E.F. Extending the
Database FRelational Model to capture
more Meaning. ACM Trans. On Databas
Systems, 4,4, Dec 79.

CDaENn841] Database Engineering Revue

95

vol7 nb4, decB84. Special issue on
Database Desiqn Aids, Methods and
Environments.

[DAVIB3] DAVIS C.G. et al (edit) Entity
Relationghip Apptroach to Software
Engineering. North Holland Fubl. Co
19873,

[FAGI771 FAGIN R. Multivalued
DPependencies and a New Normal Form for
Relational Databases. ACM Trans.

Database Systems, vol2,nbZ sept 77.
[GARDB2]1 GARDARIN G. "Bases de Données:

les systémes et leuwrs langages" edit.

Eyrolles Faris 1983,

[GARDB3]1 GARDARIN G. et al Desian of a
multipraocessor Relational Database
System. Proceed IFIF Cogress, Faris Sept
19873,

CHAMMB1] HAMMER N. and MclLLEOD D. Data
Base Description with SDM: A& Semantic
Data Model (ACM TODS Vé6, N3, Sept 81)
CHAYEB31 HAYES~ROTH F., WATERMAN D.A.,
L.LENAT D.EB. Building Expert Systems
Addison-Wesley pub. Co. Inc. 1987
CHAYEB41 HAYES-ROTH F, The Knowledge
Based Expert Systems a tutorial.
Computer revue voll7, nb?, Sept 1984.

C[KENT791 FENT W. Limitations of
Record—-Rased Information Models. ACM
Trans. Database Systems 4,1,1979.
CLAURB2] LAURIERE J.L. Les systémes
experts (AFCET TSI No 1| et 2 1982)
CMYLOB801 MYLOFQULOS J. BERNSTEIN F,.A.
WONG H.K.T. A_language facility for
designing database intensive
applications" ACM TODS volS,nb 2, 1980.

[SHIPB11 SHIFMAN D.W. The Functional
Data Model and the Data Language DAFLEX
ACM TODS V&, N1, MAR 81

[SIMO841 SIMON E. and VALDURIEZ
Design and Implementation of
Extendible Integrity Subsystem
SIGMOD 1984, ACM Ed.

CsMIT77)} SMITH J.M. and SMITH D.C.P.
Data Bases Abstractions Aqgreqation and
Generalization ACM TODS June 77

F.
an
ACHM

CLTAHNB4]1 Tan TAHN JOO, TAN KAH POH, GOH
AH MOI, DATADICT: A data analysis and
logical database design tool. Froceed.
VLDE Conf. Singapore, Aug 1984,

LULMABO] ULLMAN J.D. "Principles of

computer Sce Press,

Database Systems"

1980.

[WASSB82]1 WASSERMAN A.I., and SCHNEIDER
H.J. editors Automated tools for
Information System Design, North Holland
Fubl. Co. 1982.

CZANIB11 ZANIOLO C and MELKANOFF M.A. On

the Design of Relational Database
Schemata. Trans. Database Systems ACM,
vol &, nb 1, march 1981.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

