
UPDATIDG REE’LICATED DATA Dopulo COIIIIIICATIOBS PAILLUBES

Barbara T. Blaustein and Charles W. Kaufman

Computer Corporation of America, Alexandria, VA 22314
Computer Corporation of America, Cambridge, MA 02142

In applications such as banking, reservation
systems, inventory, and command and control it is
desirable to allow updates to replicated data
even during communications delays or failures. We
present a technique that allows each site to pre
cess updates regardless of the state of the net-
work -- to continue to update its own cow of the
data and to process information about updates at
other sites whenever it is available. Each site
acts independently to revise its copy of the
replicated data when it receives information
about relevant updates. The process of merging
newly received updates with those already pro-
cessed is made more efficient by exploiting sim-
ple semantic properties of the updates.

This research was supported by the Defense Ad-
vanced Research Project Agency of the Depart
ment of Defense and by the Air Force systems
Command at Rane Air BsveloIment Center under
Contract No. F30602-84-C-0112. The views and
conclusions contained in this document are
those of the authors and should not be inter-
preted as necessarily representing the official
policies, either expressed or implied, of the
Defense Advanced Research Projects Ageng or
the U.S. Gwerrment.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and ita date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

Re.Dlicated Llatabases, databases in which
copies of critical data are stored at different
sites, are useful for many applications (e.g.,
banking, reservation systems, command and co-
troll that depend on the ability to retrieve data
at all times. Replication offers two main advan-
tages: efficiency -- many operations can be ban-
dled locally thus reducing communications costs
and delays (this efficiency gain must be balanced
against the cost of replicating all updates), and
reliability -- if one site is down, or has lost
some of its data, the data is likely to be avail-
able at another site.

When data is up&ted at one site, that site
must maintain mutual consistency by broadcasting
the updates to all the other sites. Communica-
tions failures, therefore, have a drastic effect
on replicated databases. Although it is possible
to handle communications failures by blocking
updates at some sites until communications are
restored [Alsberg76, Davidso&, Gifford79,
Skeed4, Stonebraker78, Thanas791, such a solu-
tion negates same of the reasons for using repli-
cated databases in the first place. This paper
describes a technique for sllcuing~~&
m during communications delays and
failures, with each site -a&&& restoring
consistency of its own cow of the data when com-
munications are restored.

Each site determines the actions it must
take to merge newly received updates into its
local database. These actions may include undo-
ing some updates already reflected in the local
database, rerunning sane of these updates, and
running new updates. The primary objective of
the work presented here is to make this merge
process more efficient by exploiting simple
semantic properties of transactions (such as com-
mutativity). Sites use this information to
reduce, without comprauising correctness, the
number of actions necessary for the merge, (More
details and proofs of the theorems in this paper
appear in [Blaustein851.)

Proceedings of VLDB 85, Stockholm ‘LY

For simplicity, this paper discusses the
problem in terms of a twesite network, full data
replication (a complete Copy of all data at each
site), and "clean" communications failures (sites
stop all processing when they fail, partitions
are detected, etc.); but the results extend to
the general problem of restoring replicated data
at any nwnber of sites after any type of communi-
cation delay. In a network in which mmuniCaUOn

delays and failures may be frequent or difficult
to detect, each site is always prepared to
receive older updates fran other sites that may
have been partitioned LBlaustein83, Sarin851.
When a site receives information about updates at
any other sites, it uses this information to
restore any affected data. The new updates --
whenever and wherever they may have originated --
are treated as updates performed at a single
other site during a ParUtiOn. This process is
repeated at each site whenever information about
other sites' updates is received.

In a system that allows updates at all sites
during a network partition, it is rather compli-
cated to define the notions of consistency and
correctness for the restored database state. Of
course, mutual consistency of the copies of data
is essential but not sufficient. The traditional
approach of defining a correct database state as
a state resulting fraP a serial execution of
transactions is not possible if arbitrary tran-
sactions are allowed on opposite sides of a par-
tition. We will be looking for a weaker, but
nonetheless useful, definition. A discussion of
our correctness criteria follows sane fundamental
definitions.

1.1 &G& Definitions

Transactions read and write sets of database
values; they are an atanic collection of database
operations (our definition is much more general
than that in LFischer821). Because we assuae
full data replication, each transaction can be
executed at any site. For simplicity, we assuue
all transactions are instances of uniquely named
pre-defined transaction types and may be passed
arguments when they are invoked; this assumption
allows pre-determination of the semantic proper-
ties of the transactions, thus improving the
efficiency of the system, but it is not strictly
necessary.

A-is a sequence (i.e., a set ordered by
local timestamp) of transactions that are exe-
cuted at a &,~g& site. A log consisting of
transactions Tl ,...,Tn is written [Tl,...,Tn].
The log of transactions executed at a particular
site during a network partition is called the
partition J&g for that site.

Transactions executed at a particular site
during a network partition are called local tran-
sactions for that site. Other transactions are
-local for that site.

2

Logs map one database state to another.
Thus, given a database state D and a log
[Tl ,...,Tm], we denote the state produced by exe-
cuting the log in D as D([Tl,...,Tml). For brev-
ity, we may leave out the parentheses and simply
write DCTl,...,lml.

Two logs Ll and L2 are eauivalent Ll = L2,
if and only if (iff) for all databaL states D,
D(L1) = D(L2).

In this paper we assune that only pre-
defined update transactions are used, that the
database schema does not change during a parti-
tion, and that each site has its own (relatively
reliable or well-maintained) hardware clock.

The problem caused by a network partition is
illustrated in Figure 1. Before the partition,
sites X and Y have mutually consistent copies of
data. The database state D that exists at both

snav

I
D

Figure 1. The Problem
-

sites is called the&&&J,& &atabase state. Dur-
ing the partition, site X executes the log
[Tl ,...,Tjl and site Y executes the 1063
CTk ,...,nIll. Therefore when the prtition ends,
the sites are left with the divergent partitioned
database ,... f$&' Dx = NT1 ,... ,'Ul and
r>r= D[Tk . The goal is to devise an
autanatic procedure for restoring the consistency
of the copies. The procedure described in this
paper first uses the partition logs to define the
u m state Df -- the state that must exist
at all sites after the merge -- and then finds
&wxe Jam Lx and LY such that
Dx(Lx) = Dy(Ly) = Df.

The final merge state is defined in terms of
the initial state and a target&g that includes
all transactions executed during the mrtition.
If D is the initial state and T is the target
log, then the final merge state Df is D(T).

The key to the definition of the target log,
and hence the final merge state, is a system-wide
algorithm for ordering transactions. We do not
rely on an algorithm for synchronizing clocks at
the different sites (see, for example [Lam-
port78]); we do assune that there is some wav for

j t, :

3

all sites to anree on which transactions were
executed "before" which other transactions during
the network partition. We therefore assuae that
there are locally maintained clocks and some
system-wide "tie-breaking" algorithm for agreeing
on some ordering of transactions executed at dif-
ferent sites during the partition. (The algo-
rithm must preserve each site's local timestamp
order.) The system-wide algorithm makes it posai-
ble for all sites to agree on a target log
without an explicit negotiation. We do not
attempt to develop the details of a transaction
ordering algorithm in this paper, and we recog-
nize that different algorithms may result in very
different system behavior. We do assuue that
some such algorithm is used consistently within a
distributed database system.

A transaction Ti *-precedes another transac-
tion Tj if and only if Ti precedes Tj according
to an algorithm a. (We use "a-precede" rather
than "precede" to emphasize that we are not
necessarily dealing with actual time but that
precedence may be different for different algo-
rithms.) Throughout this paper, we assuue that
some algorithm a is used consistently, so we sim-
ply write "Ti a-precedes Tjn as "Ti<Tj". Unless
otherwise stated, we simplify notation by assup-
ing that, given transactions Ti and Tj, Ti<Tj.

1.2 Correctness sf J& Final- State

The target log is the key to our notion of
correctness. Operating on replicated data during
a network partition plays havoc with the idea of
transaction commitment. We never commit a trap
saction during a partition; aw transaction may
be backed out and rerun during the merge pr+
ce ss, and it may have a different result when
re-run than when run during the partition. What
we $n guarantee is that every transaction run
during the partition is included in the target
log and that these transactions appear in a pre
determined order (a-precedence). We neither emit
partitioned transactions fran the target log nor
change the order within the target log to &II-
plify the merge process.

Further, even though transactions are not
considered committed during a partition, they may
reflect actions in the real world that cannot be
changed. For example, once a person has with-
drawn money fran an autanatic teller, it is not
possible to change the fact that the money has
physically been transferred from the bank to the
custaner. For some applications, it is preferable
to compensate for actions taken during a parti-
tion than to prohibit transactions during the
partition. If the custauer withdrew more than his
balance because the local copy of the balance was
not up-tc-date during a partition, the bank may
perform the compensating action of requesting
payment of the amount overdrawn plus a penalty
charge. Therefore, sites may need to initiate
compensating transactions when certain situations

(such as a negative balance) are detected. Com-
pensating transactions serve the purpose of coun-
teracting the loss of serializability due to
operation during the partition: during a parti-
tion actions may be taken which do not reflect a
globally serial execution of transactions; but
when communications are restored, these situa-
tions will be detected and some new compensating
actions will be taken. The problem of multiple
sites issuing compensations for the same situa-
tion can be handled either by making all compen-
sations idempotent (i.e., writes that are
independent of the database state) or by using
some "election" protocol by which one site (or
its proxy) is designated to issue sane class of
compensating transactions. A database state in
which such compensations are reflected is deemed
to be consistent. Thus, instead of the cop
sistency constraint that no balance go below
zero, the constraint would be that if a balance
is below zero, a request for payment is issued.
(We ass11pe that the database would include a list
of requests issued.)

To sum up, then, mutual consistency is
guaranteed by requiring that all sites eventually
reach the final merge state. Internal consistency
is maintained by issuing any necessary compensat-
ing transactions. The final merge state is
defined through the target log, and the target
log is required to include all partitioned trar+
sactions in a globally agreed-upon order.

2. Restorituz Divergent Database States

2.1 JlnitialmLPgS

Once each site is informed about all the
partitioned transactions, it can independently
generate the final merge state. To achieve the
final merge state, each site generates and exe-
cutes a different merge log. This section shows
how a site generates an initial merge log and
then transforms it to produce a more efficient
final merge log.

To achieve the final merge state it may be
necessary for a site to undo, or rollback, the
effects of a local partitioned transaction. When
this occurs, a rollback transaction will be
included in the final merge log. The rollback
transaction used may depend on the state in which
the original transaction was executed.

A transaction Ti' is called the rollback of
a transaction Ti iff given the state D in which
Ti was executed D[Ti,Ti'] = D. When Ti' is a
rollback of Ti in m database state (i.e.,
[Ti,Ti'] = [I), it may also be called an inverse
of Ti.

4

Merge logs contain two categories of tran-
sactions: rollback transactions for transactions
that appeared in the site's partition log, and
f-d transactions that appear in the target
log. (Forward transactions includa local and
non-local partitioned transactions.) In what fol-
lows, Ti, Tj, etc. refer to a transaction,
either forward or rollback. If we need to refer
specifically to a forward transactionwe use Ti";
a rollback transaction is denoted bu Ti'. We
match forward and rollback transactions by their
subscripts: a transaction denoted Tit is the
rollback for the transaction denoted Ti-.

A merge log M is correct for an initial
state D, a partition log P, and a target log T
iff D([P,M]) = D(T), the final merge state.

Using this definition, then, our goal is to
execute correct merge logs at each site. The
interesting problem, and the focus of the rest of
the paper, is to generate 9fficien.t correct merge
logs.

Once the target log is defined, it is
trivial to define a correct merge log for each
site. Suppose we have a target log T and an ini-
tial state D. Then, for a site Xwith partition
log [Tl ,...,Tnl, a correct merge log is
(['h-P ,...,Tl'I,T) (i.e., [Tn’ ,...,Tl’] cow
catenated with T), where Tll,...,Tnl are the
rollback transactions for Tl,...,Tn. This merge
log is called the a merge log for X. (The
action prescribed by the initial merge log is
similar to cycle breaking in optimistic coti
currency control; see for example CBadal79, Bhar-
gava82, Davidson82, Kung791.J

To define an efficient merge log, each site
begins with its initial merge log and exploits
pre-defined semantic properties of the transac-
tions in the log to transform it into a shorter,
and so more efficiently executed, equivalent
u merge log. The merge log at each site can
be transformed independently of the others.

2.2 LQeTransformations

Our goal in transforming the initial merge
log is to delete transactions that have no effect
on the final state produced. We do this by
exploiting semantic properties of the transac-
tions in the target log. Consider the following
two examples:

1. Suppoe that during a partition site X
processes transaction Tl, fixing Boston as the
location of delivery truck 458; and site Y
processes transaction T2, fixing Annapolis as the
location of the same delivery truck. (We assune
that the ordering algorithm places Tl previous to
T2, yielding the target log [Tl,T21.) At site X,
the partition log is simply [Tl], so the initial
merge log would be [Tl',Tl,'R]. But notice that
this log can bs shortened without affecting the

resulting database state: the log says to roll-
back Tl and immediately rerun it -- therefore
having no effect on the database state. So, we
can delete both Tl' and Tl fras the log, leaving
the final merge log [T2]. For site Y, the situa-
tion is even better. Note that since l2 follows
Tl in this target log, nAnnapolisw -rites
cgoaton;” i.e., the log CT1 ,'I21 = [T2l. There-
fore, rather than executing the initial merge log
[T2',Tl,T2] at site Y, we can simply execute the
log [T2’,!I21. By the reasoning above, we can
then delete both T2’ and T2 frau the merge log --
site Y needs to do nothing to achieve the final
merge state.

2. Suppose that, during a partition, site X
records the shipuent of 50 widgets to the central
warehouse by processing transaction T3: add 50
to the nrrmber of widgets in the warehouse. Dur-
ing the same partition site Y processes transac-
tion T4, adding 75 to the number of widgets in
the warehouse. Suppose that the ordering algo-
rithm results in the target log [T3,T41.
Although the initial merge log for site Y is
[TII’,T3,T4], we know that T3 and T4 m, that
iS GT3,T41 = [T4,T31. Therefore, we can
transform the initial merge log to be
[T4',T4,'f31. Just as in the previous emample,
then, we can then delete T4 1 and T4, leaving the
final merge log [T31. Similarly for site X.
Thus, each site merely executes the partitioned
transaction fran the other site to obtain the
final merge state.

To help determine which transactions safely
may be deleted, we characterize ordered pairs of
transactions. The order of the transactions in a
merge log determines vhich ordered pair we use to
transform that merge log: if Ti a-precedes Tj in
a merge log we consider the characterization of
the pair (Ti, Tj). We consider every ordered pair
of transactions to be either an ovexwCi!ie pair, a
mative pair, or aconflictinn pair.

e An ordered pair of transactions (Ti,Tj) is an

EYY
pair (Tj overwrites Ti) iff

t = [RI.

e The ordered pair (Ti, Tj) is GUU!$tative iff

1. [Ti,Tjl = CT.j,Til

2. neither (Ti,Tj) nor (Tj,Ti) is an
overwrite pair. For example, the tran-
sactions

Tl : if x > 0 then x := x + 1
T2: x := 0

do not fulfill this condition and, even
though [Tl ,‘E’] = [T2,Tl], (Tl,l’Z!) is&
characterized as commutative.

e The ordered pair (Ti,Tj) is anflicting iff it
is neither an overwrite pair nor a commutative
pair.

5

To determine whether a particular pair of
transactions is an overwrite pair, a commutative
pair, or a conflicting pair, we must of Course
analyze the actual values of the transactions’
arguments and the values read by the transac-
tions. This analysis may be very detailed, or it
may be nothing more than a “worst case” based on
the transactions’ types and their roles (rollback
or forward) and positions in the merge log. More
study is needed to decide how muoh analysis
should be‘ done at the time of the database merge,
as opposed to the basic characterization done
when a transaction type is defined, and to deter-
mine when the cost of analyzing transactions
offsets the losses involved in using the “worst
case” analysis. In any case, once pairs of tran-
sactions are characterized, the characterizations
can be used to delete transactions fran the ini-
tial merge log.

We begin with the initial merge log and sue
cessively delete transactions to yield new merge
logs. There are two main situations in which we
delete transactions. The first is when transac-
tions in an overwriting pair are adjacent; deletr
ing the overwritten transaction preserves the
correctness of the merge log. The second situa-
tion is a bit more complicated. Under certain
conditions, we can show that when a rollback
transaction is immediately follcwed by its match-
ing forward transaction, the two transactions
taken together do not affect the final database
state : both can be deleted. When a log meets
the conditions necessary for this double dele-
tion, we say it is m.

A merge log [Tl , . . . ,Ti, Tj’ ,. . . I that is
correct for target T and partitioned state Dx is
regular iff for each rollback transaction Tj’ in
the log, Dx[Tl ,..., Ti,Tj*,Tj’] = Dx[Tl ,... ,Til.

Essentially, regularity ensures that roll-
back transactions operate correctly. Each roll-
back transaction is responsible for restoring
values that existed in a particular state during
the partition, and the order in which these tran-
sactions are executed can be critical. Aegul ar-
ity enforces this order by prescribing that each
rollback transaction has the correct effect, i.e.
that its effects are nullified by running its
corresponding forward transaction immediately
following. Each log transformation, then, must
preserve regularity (the role of regularity in
governing the interaction of transformations is
discussed in Section 3.3).

Commutativity is also essential for log
transformations. Given a regular merge log L, we
use commutativity to find (whenever possible) an
equivalent log L’ in which either transactions in
an overwriting pair are adjacent, or in which a
rollback and its matching forward transaction are
adjacent. The definition of an overwriting pair
a- the definition of regularity allcms us to
delete either the overwritten transaction or the
rollback and its forward transaction,

respectively. This deletion produces a new merge
log L”. In the next section we prove that, as
long as some minor restrictions are respected, Ln
is both correct and regular; therefore the pro-
cess of deleting transactions may continue.

3. TranaforminaMeraemUsinnGraDhs

3.1 l45235kLPgGraPhs

We use a graph to describe the properties
that hold between pairs of transactions in a
merge log. Graph transformations that delete
nodes in the graph mimic log transformations that
delete transactions in the corresponding merge
1 og. After defining the graph of a merge log, we
define some graph transformations and prove that
they are correct. The graph transformations
presented here
believe that
applicable and

- _
are not an exhaustive set, but we
they are among the most generally
powerful.

Jzl.!xsLag Granh Definition: The graph of a
merge log L, Graph(L), is the directed acyclic
graph (N,O u C u A), where

e N is a set of nodes representing transactions
that appear in L (for simplicity nodes have
lower case nsmes that correspond to the tram
sactions they represent -- so, node ti
represents transaction Ti, tjl represents Tj’,
etc.) .

e 0 (for novetwritew) is the set of directed
edges {(ti, tj) Iti and tj are nodes in N, Ti
a-precedes Tj in L, and Tj overwrites Ti).

e C (for %onflictn) is the set of directed
edges ((ti, tj) Iti and tj are nodes in N, Ti
a-precedes Tj in L, and Tj conflicts with Ti).
(It is occasionally useful to distinguish cer-
tain conflict edges in each merge log graph:
R (for “read”) is the set of conflict edges
(t1,t.Z) such that T2’s read-set intersects
Tl *s write-set. These edges will be used in
the RDD Transformation Rule, Section 3.2.)

e A (for “added”) is the union of the set of
directed edges.

{(tit ,tj”) Iti’ and tj- are nodes in N,
Ti’ a-precedes Tj- in L, (ti’,tj-) is
neither an overwrite nor a conflict
edge, and there is an overwrite or wn-
flict edge between ti’ and tj- (Ti- is
the transaction rolled back by Tit)).

and the set of directed edges.

{ (ti’ ,tjl)ltil and tj’ are nodes in N,
Tit a-precedes Tj’ in L, (ti’,tjl) is
neither an overwrite nor a conflict
edge, and there is an overwrite or

6

conflict edge between ti- and tj-).

This restricted use of commutativity is aimi-
lar to [Grahsm841, and its necessity is illus-
trated later in Section 3.3.

We use dotted arrows to designate overwrite
edge% double solid arrtms for conflict edges,
and single solid arrOws for added edges (O-, C-,
and A-edges respectively). Figure 2 is an illus-
tration of a merge log graph.

INITIAL STATE: wldpts = 1000

LOCAL TRANSACCIONS NONLOCAL TRANSACCIONS
Tl : widgsts := wldgsts + 100

l2: widgsts := 1500
a* R': widgsts := 1000

Tj : uidgsts := mid&eta - 500

Figure 2. Example of a Merge Log Graph

There is a J&JJ from a node ti to a node tk
iff: 1) there is an edge (of any type) fran ti to
tk (a trivi& path), or 2) there is some node tj
such that there is an edge frcm ti to tj and a
path fran tj to tk. In the previous example,
then, there is a path frau tl to t3.

We will only talk of equality between graphs
representing the same transactions, so because of
OW naming convention for nodes, two graphs
G= (N,O u C u A) and Gt = (N',O' u C' u At) will
be w, G = G', iff N = NV, 0 = Of, C = Cl, and
A = A'.

Merge log graphs define special sets of
equivalent logs: logs comprised of the same
group of transactions, but showing every permuta-
tion of order allrmed by commutativity. Our
transformation strategy, then, is to start with a
merge log L and find a log L1 such that
Graph(L) = Graph(L'), where L' includes a pertic-
ular pair of transactions adjacent to each other.
We then show that one or both of these transac-
tions can be deleted from L' to produce an
equivalent log Ln. We continua this jrocsss

until we can no longer delete transactions.

To pursue this strategy, we must show that

izaph(F?
pick any log L' such that

= Graph(Lt) without compromising
correctness.

A merge log graph is correct for an initial
database state D, a partition log P, and a target
log T if it is the graph of a correct merge log
for D, P, and T.

J&&J Correctnwaeorem: Let G be a graph
that is correct for an initial database state D,
a partition log P, and a target T. Then every
log L such that Graph(L) = G is correct for D, P,
and T.

We rely on commutativity to find equivalent
merge logs in which a particular pair of transac-
tions are adjacent. The following lemma
describes this situation in terms of a merge log
graph.

&mu&&ativity J&~F@: If there is no non-
trivial path between two nodes ti and tj in a
merge log graph Graph(L), then there is a log
L' = L, such that Graph(L') = Graph(L), in which
Ti and Tj are adjacent.

As we mentioned above, and will illustrate
below, the notion of regularity is essential to
the transformation strategy. Here we extend this
notion to graphs and shcw that every log with a
graph equal to the graph of an initial merge log
is regular. We will prwe that the transforma-
tions preserve regularity.

A merge log graph G is regular if every log
L such that Graph(L) = G is regular.

w m J'heorem: Let L be the
initial merge log for an initial database state
D, a partition log P, and a target log T. Then
Graph(L) is regular.

In the next section we define three merge
log graph transformations which allaw us to
delete nodes frao the graph while preserving
correctness.

3.2 U Transformations

The graph transformations in this section
mimic the log transformations illustrated above.
Overwritten transactions, on which no other tran-
sactions depend, are deleted, as are pairs of
rollback and forward transactions that have no
net effect on the log. All the transformations
preserve the correctness of the merge log, and
regularity ensures that they may be applied in
arw order. However, follcming the heuristic of
deleting pairs of transactions, instead of single
overwritten transactions, whenever there is a
choice will result in a shorter final merge log.
We are currently working on other similar heuris-
tics.

54

The transformation rule which deletes
overwritten transactions is the most simple, and
so it is presented first.

Overwrite Deletion (QQ) Transformat&uJB&:
Let G=(N,O u C) be a merge log graph with two
nodes ti and tj- such that the only path frcm ti

tj- is single
= (N',O' u Cfau Al) where:

overwrite edge.

N’ = N-Iti)
0’ = f(tk,tm) 1 (tk,tm) is an element of 0,

and tk and tm are in N')
C' = {(tk,tm)I(tk,tm) is an element of C,

and tk and tm are in NV1
A' = {(tk',tm)I(tk',tm) is an element of A,

and tk' and tm are in N'-{ti']}

The graph in Figure 2 has two overwrite
edge % but only nodes tl and t2 meet the cri-
terion in the OD Transformation Rule. The rule
states that we can delete node tl, yielding the
graph in Figure 3.

Graph in Figure 2
After OD Transformation

Figure 3. Example of OD Transformation

The proofs that this rule and the ones that
follow preserve graph regularity are cmitted
here; they appear in [Blaustein851.

The next two transformation rules prescribe
the deletion of pairs of rollback and forward
transactions that have no net effect on the final
database state. The first rule is actually a
special case of the second, but one which comes
UP sufficiently often to merit a special discus-
sion. Because the special case is more simple,
it is presented first.

D 1 tioo (l8.Q) Transformation
&&:?%?GzO ueCeu A) be a regular merge log
graph such that there are nodes ti' and ti' with
no nor+trivisl Pam between them.
DND(G) = (N',O' u Cl u Al) where

N' = N-{ti' ,ti-1
0' = {(tk,tm) I(tk,tm) is an element of 0,

and tk and tm are in N')
C' = {(tk,tm)l(tk,tm) is an element of C,

and tk and tm are in N'I
A' = {(tk',t.m)l(tk',tm) is an element of A,

and tk' and tm are in N')

The graph in Figure 4 meets the condition of
the the DED Transformation Rule; t2' and t2 can
be deleted.

INITIAL STATE: widmts * 500

LOCAL TRANSA'3IONS NCNLOCAL TRANSACTIONS
Tl : widgets := widgets + 300

T2: vldpts := wldgsts + 200
Iso l-21: u1dpt.s :. 500

Figure 4. Example of DND Transformation

With a little additional information, this
rule can be relaxed to allow double deletions in
more cases. (The DND transformation is a special

of
ztw. 1

the Relaxed Double Deletion (RDD) rule
Using R-edges (the set of C-edges

(tl ,t2) such that T2's read-set intersects Tl's
write-set), and keeping track of which nodes
represent local transactions and which non-local,
we can better determine which transactions have
the same effects when rerun as they did when
originally run during the partition. A local
node tj is a reneater if there is no pth con-
sisting entirely of R-edges frau a non-local node
to tj. Essentially, then, a repeater has the
same effect when run during the merge as it had
when run during the partition, i.e., repeaters
read the same values both times. With the notion
of repeaters, we can relax the DND Transformation
Rule as follcws:

J&&&Double Deletion (J&D) Transformation
m: Let G=(N,O u C u A) be a regular merge log
graph having nodes ti' and ti' such that:
for every node tj such that (tj,ti-) is in C,

1. either tj is a repeater or tj is overwritten
by a repeater tk with an edge to ti-, and

55

8

2. all paths frctn ti' to tj include an A-edge

Then RDD(G) = (N',O' u C' u At) where

N' = N-{ti.',ti"}
0' = ((tk,tm)!(tk,tm) is an element of 0,

and tk and tm are in N')
Cl = {(tk,tm)I(tk,tm) is an element of C,

and tk and tm are in N')
A' = {(tk',tm) 1 (tk',tm) is an element of A,

and tk' and tm are in N')

Figure 5 shows an example of the RDD rule
(nodes t5' and t5 to be deleted). Only the most
relevant edges are shown for clarity and R-edges
appear as thick black arrows. Node W is a
repeater. There are conflict edges frau ti, t2,
t4' and t6’ to t5; since t4 overwrites t2, t4'
and t6’, the first condition of the RDD rule is
met. Since all paths fran t5' to these nodes
include an A-edge, the second condition is met as
well. Therefore, t.5' and t5 may be deleted. Note
that this transformation now makes it possible to
use the fact that T6 overwrites T4 to delete t4.

INITIAL STATE: widgsta = 2
tp_order = 0
overloaded * f3a
urgeat~order * false

LOCAL TRANSACTIONS NONLOCAL TRANSACTIONS
l-1 : if widats < 50

then t4_order := 500
l-2: widest8 := 10

T3: if vid@ts < 10
then urgent~order := true

a0 n': ul-gent~order := false
T4 : uidgsts := 1000

IO Tb': widgets :r 2
lS: if wld@ts > 800

then overloaded := true
a0 l-51: overloaded := falss

3’6: wldgsts :* 40
#) T6’: uld&.eta :x 1000

Figure 5. Example of RDD Transformation

The next section discusses how the defini-
tions of A-edges and regularity ensure that the

log transformations presented here work together
correctly.

3.3 UteractUw nf Definitions

So far, we have considered separately each
step in the process of transforming an initial
merge log into a final one. Presented this way,
the reasons for some of the definitions, espy-
cially regularity and A-edges, may have seemed
somewhat peculiar. There are important, and
sametimes subtle, interactions among the dif-
ferent steps of the transformation process, and
these interactions motivate the definitions of
the transformation rules, commutativity, and
regularity. This section illustrates the way in
which the steps described in previous sections
combine to transform merge logs.

At a high level, the process of log
transformation begins with the follcwing steps at
each

1.

2.

3.

4.

site.

Define the target log

Use the target log to generate the initial
merge log

Use semantic properties of transactions to
graph the initial merge log

Apply the OD, DND, and RDD graph transforma-
tions until no more transformations are po*
sible

All logs represented by the resulting graph are
guaranteed to be correct.

The definitions of commutativity, A-edges,
and regularity are essential to ensure that all
the steps work together correctly: that each
transformation leaves the graph (log) in a state
in which any other applicable transformation will
produce a correct graph (log). In particular,
A-edges were introduced to ensure that the
transformations result in regular graphs. Once
all other transformations are made, houever, A-
edges may be ignored in a final step which
transforms the log into a correct, J&&m reau-
l&C, final merge log. This section gives some
examples that illustrate the way in which the
definitions of the transformations, added edges,
commutativity, and regularity interact, and it
defines the final step in the log transformation
process.

A-edges impose necessary restrictions on the
transformations. In the example in Figure 6, the
added edge between t2' and tl serves to ensure
that the DND Transformation Rule does not apply
to t2' and t2, thus guaranteeing that 'I2 reads
the value of widgets written by Tl.

56

9

INITIAL STATE: to-order = 100

LOCAL TRANSACTIONS NONLOCAL TRANSACTIONS
Tl : wldgsts := 1500

T2: to_OTder :* 5000 - wid&etrs
80 R': to-order :r 100

l3: vidgsts :s 1200

Figure 6. Necessity of A-Edges

The notion of regularity ensures that for-
ward transactions see the effects of their own
rollback transactions. The example in Figure 7
illustrates the problem that occurs when regular
ity is not maintained (for example, by ignoring
the requirement in the OD Transformation Rule
that only forward transactions may overwrite).
l-2' overwrites T3*, but deleting t3' "orphans"
t3: it can no longer be deleted using the DND
Transformation. T3 would then be included
(without T3') in the incorrect final merge log.

INITIAL STATE: widmts = 1000

LOCAL TRANSACTIONS NONLOCAL TRANSACTIONS
Tl : wldgsts :r wid(pts + 100

l-2: wld@ts :r wldmts + 300
a0 T2': wldgsts :r 1000

73: wid,yta :r rldgts - 700
00 T3': wldgsts := 1300

Figure 7. Use of Regularity

The preceding examples illustrate some res-
trictions that ensure that succs ssive

transformations operate correctly. These rez+
trictions, though, may be eased in a final pass
through the log. Certainly, rollback transac-
tions may be used to overwrite other rollback
transactions as long as all OD, DND, and RDD
transformations have been made. Furthermore, the
A-edges have no more purpose in such a case, and
they may be ignored in performing final
overwrites (notice that the overwritten transac-
tions would all be rollbacks). In Figure 6, for
example, while the A-edge fran t.2' to tl is
important, there is no reason to include T2' in
the final merge log: no transaction reads the
value of teorder and it is overwritten by T2.
Therefore, t2' can bs deleted in the final
transformation.

So, the final step in the transformation
process is:

5. Ignoring A-edges, delete all rollback trap
saction nodes tit such that the only path
between ti' and a node tj is a single 0-edgs

4. Conclusion

The need to update replicated data during
network partitions requires different correctness
criteria and update protocols than may be used
for distributed databases in which blocking is
tolerable. In our approach, each site acts
independently to revise replicated data when it
receives information about relevant updates that
were made at other sites. The information may
describe updates that were made previous to other
updates already reflected in the site's database,
and thus it may bs necessary to roll back or re-
run some transactions to merge these updates.
Depending on the resulting values, the cop
sistency constraints may prescribe issuing some
compensating transactions. We rely on a system-
wide ordering algorithm to ensure that each site
will eventually reach the same database state
when it has been informed of the same set of
updates.

The main thrust of the research is to merge
local transaction logs with logs of new updates
efficiently, by exploiting simple semantic pr*
perties of pre-defined transactions. The concepts
of regularity and ad&d edges are used to capture
critical and sometimes subtle dependencies among
transactions. More work is needed to determine
new and useful transformations (in particular, we
are beginning work on transactions which
overwrite only part of the data written by
another transaction), to investigate modifica-
tions needed for partially replicated data, and
to design efficient implementations of these
strategies.

Sunil Sarin and Umesh Dayal have been
closely involved with our work; they have mntri-
buted greatly to the direction and presentation
of our work. Dan Ries and Hector Garcia-Molina
were instrmental in the development of many of
the ideas presented here. We thank the VLDB Pro-
gram Committee for their valuable comments.

5. References

[Al&erg761
Al&erg, P. and Day, J. "A Principle for Resi-
lient Sharing of Distributed Resources," m.
sf && Second m. &f. pi Software
Enaineerim, Pittsburgh, October 1976.

[Bada
Badal, D. nCorrectness of Concurrency Control
and Implications in Distributed Databases,"

%t--=
Conference, Chicago, November

.

[Bhargava821
Bhargava, B. nResiliency Features of the
Optimistic Concurrency Control Approach for
Distributed Database Systems," m. af m
Second Svmv s-9~ Reliab&i&y bnPistribut d

Pittsburghe, S ftw rg
J>y :982.

&$ Databa Svstemg,

[Blaustein83]
Blaustein, B., Garcia-Molina, H., Ries, D.,
Chilenskas, R., and Kaufman, C. "Maintaining
Replicated Databases Even in the Presence of
Network Partitions," m. nf m m EASCON
C nference, Washington, D.C., September 1983. 0

[Blaustein85]
Blaustein, B. and Kaufman, C. "Distributed
Updates Without Blocking," CCA Technical
Report, to appear.

[Davidson821
Davidson, S. "An Optimistic Protocol for Par-
titioned Distributed Databases," PhD Thesis,
Dept. of Electrical Engineering and Computer
Science, Princeton University, August 1982.

[Davidsor&4]
Davidson, S.B., Garcia-Molina, H. and Skeen,
D. "Consistency in a Partitioned Network: A
Survey, n Technical Report ms-CIS-84-04,
University of Pennsylvania, August, 1984.

[Fischer821
Fischer, Michael J. and Michael, Alan. "Sac-
rificing serializability to attain high avai-
lability in an unreliable network," &M
SIGACT-SIGMODSymDosiumm-pfU
hi,eSvstems, 1982, PP. 70-75.

[Gifford791
Gifford, D. "Weighted Voting for Replicated
Data," ODerat&g Svstems Review, Vol. 13, No.
5, December 1979.

[Graham841
Graham, M., Griffeth, N., and Moss, E.
"Recovery of Actions and Subactions in a
Nested Transaction System," Technical Report
GIT-X3-84/12, Georgia Institute of Technol-
ogy, March 1984.

[Ku%791
Kung, H. and Robinson, J. "On Optimistic
Methods for Concurrency Control," mc. &QB
191p, Rio de Janeiro, October 1979.

lLamport.781
Lamport, L. "Time, Clocks, and the Ordering of
Events in a Distributed System,"-. Qf the

B, Vol. 12, No. 7,
fTgY”“““” ’ .

[Sarin851
Sarin, S., Blaustein, B., and Kaufman, C.
"System Architecture for Partitiot+Tolerant
Distributed Databases," to appear.

[Skeeti
Skeen, D. and Wright, D. "Increasing Availa-
bility in Partitioned Database Systems," m.
pfA?EFourthAnnualmSIGACT/SICEIOD svmpo-
u--es of Database Svstems, Water-
loo, Ontario, April 1984.

CStonebraker781
Stonebraker, M. "Concurrency Control and Con-
sistency of Multiple Copies of Data in Distri-
buted INGRFS," m. nf m _Th;lrp Berkeley
WorkshoD 91) Distributed B&a liam3ement ml
-Networks, San Francisco, August 1978.

[Thomas791
Thomas, R. "A Majority Consensus Approach to
Concurrency Control for Multiple Copy Data-
bases," mwacti ns 9~ Database
Vol. 4, No. 2, June 19079.

Svstems,

