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In applications such as banking, reservation 
systems, inventory, and command and control it is 
desirable to allow updates to replicated data 
even during communications delays or failures. We 
present a technique that allows each site to pre 
cess updates regardless of the state of the net- 
work -- to continue to update its own cow of the 
data and to process information about updates at 
other sites whenever it is available. Each site 
acts independently to revise its copy of the 
replicated data when it receives information 
about relevant updates. The process of merging 
newly received updates with those already pro- 
cessed is made more efficient by exploiting sim- 
ple semantic properties of the updates. 
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Re.Dlicated Llatabases, databases in which 
copies of critical data are stored at different 
sites, are useful for many applications (e.g., 
banking, reservation systems, command and co- 
troll that depend on the ability to retrieve data 
at all times. Replication offers two main advan- 
tages: efficiency -- many operations can be ban- 
dled locally thus reducing communications costs 
and delays (this efficiency gain must be balanced 
against the cost of replicating all updates), and 
reliability -- if one site is down, or has lost 
some of its data, the data is likely to be avail- 
able at another site. 

When data is up&ted at one site, that site 
must maintain mutual consistency by broadcasting 
the updates to all the other sites. Communica- 
tions failures, therefore, have a drastic effect 
on replicated databases. Although it is possible 
to handle communications failures by blocking 
updates at some sites until communications are 
restored [Alsberg76, Davidso&, Gifford79, 
Skeed4, Stonebraker78, Thanas791, such a solu- 
tion negates same of the reasons for using repli- 
cated databases in the first place. This paper 
describes a technique for sllcuing~~& 
m during communications delays and 
failures, with each site -a&&& restoring 
consistency of its own cow of the data when com- 
munications are restored. 

Each site determines the actions it must 
take to merge newly received updates into its 
local database. These actions may include undo- 
ing some updates already reflected in the local 
database, rerunning sane of these updates, and 
running new updates. The primary objective of 
the work presented here is to make this merge 
process more efficient by exploiting simple 
semantic properties of transactions (such as com- 
mutativity). Sites use this information to 
reduce, without comprauising correctness, the 
number of actions necessary for the merge, (More 
details and proofs of the theorems in this paper 
appear in [Blaustein851.) 
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For simplicity, this paper discusses the 
problem in terms of a twesite network, full data 
replication (a complete Copy of all data at each 
site), and "clean" communications failures (sites 
stop all processing when they fail, partitions 
are detected, etc.); but the results extend to 
the general problem of restoring replicated data 
at any nwnber of sites after any type of communi- 
cation delay. In a network in which mmuniCaUOn 

delays and failures may be frequent or difficult 
to detect, each site is always prepared to 
receive older updates fran other sites that may 
have been partitioned LBlaustein83, Sarin851. 
When a site receives information about updates at 
any other sites, it uses this information to 
restore any affected data. The new updates -- 
whenever and wherever they may have originated -- 
are treated as updates performed at a single 
other site during a ParUtiOn. This process is 
repeated at each site whenever information about 
other sites' updates is received. 

In a system that allows updates at all sites 
during a network partition, it is rather compli- 
cated to define the notions of consistency and 
correctness for the restored database state. Of 
course, mutual consistency of the copies of data 
is essential but not sufficient. The traditional 
approach of defining a correct database state as 
a state resulting fraP a serial execution of 
transactions is not possible if arbitrary tran- 
sactions are allowed on opposite sides of a par- 
tition. We will be looking for a weaker, but 
nonetheless useful, definition. A discussion of 
our correctness criteria follows sane fundamental 
definitions. 

1.1 &G& Definitions 

Transactions read and write sets of database 
values; they are an atanic collection of database 
operations (our definition is much more general 
than that in LFischer821). Because we assuae 
full data replication, each transaction can be 
executed at any site. For simplicity, we assuue 
all transactions are instances of uniquely named 
pre-defined transaction types and may be passed 
arguments when they are invoked; this assumption 
allows pre-determination of the semantic proper- 
ties of the transactions, thus improving the 
efficiency of the system, but it is not strictly 
necessary. 

A-is a sequence (i.e., a set ordered by 
local timestamp) of transactions that are exe- 
cuted at a &,~g& site. A log consisting of 
transactions Tl ,...,Tn is written [Tl,...,Tn]. 
The log of transactions executed at a particular 
site during a network partition is called the 
partition J&g for that site. 

Transactions executed at a particular site 
during a network partition are called local tran- 
sactions for that site. Other transactions are 
-local for that site. 
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Logs map one database state to another. 
Thus, given a database state D and a log 
[Tl ,...,Tm], we denote the state produced by exe- 
cuting the log in D as D([Tl,...,Tml). For brev- 
ity, we may leave out the parentheses and simply 
write DCTl,...,lml. 

Two logs Ll and L2 are eauivalent Ll = L2, 
if and only if (iff) for all databaL states D, 
D(L1) = D(L2). 

In this paper we assune that only pre- 
defined update transactions are used, that the 
database schema does not change during a parti- 
tion, and that each site has its own (relatively 
reliable or well-maintained) hardware clock. 

The problem caused by a network partition is 
illustrated in Figure 1. Before the partition, 
sites X and Y have mutually consistent copies of 
data. The database state D that exists at both 
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Figure 1. The Problem 
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sites is called the&&&J,& &atabase state. Dur- 
ing the partition, site X executes the log 
[Tl ,...,Tjl and site Y executes the 1063 
CTk ,...,nIll. Therefore when the prtition ends, 
the sites are left with the divergent partitioned 
database ,... f$&' Dx = NT1 ,... ,'Ul and 
r>r= D[Tk . The goal is to devise an 
autanatic procedure for restoring the consistency 
of the copies. The procedure described in this 
paper first uses the partition logs to define the 
u m state Df -- the state that must exist 
at all sites after the merge -- and then finds 
&wxe Jam Lx and LY such that 
Dx(Lx) = Dy(Ly) = Df. 

The final merge state is defined in terms of 
the initial state and a target&g that includes 
all transactions executed during the mrtition. 
If D is the initial state and T is the target 
log, then the final merge state Df is D(T). 

The key to the definition of the target log, 
and hence the final merge state, is a system-wide 
algorithm for ordering transactions. We do not 
rely on an algorithm for synchronizing clocks at 
the different sites (see, for example [Lam- 
port78]); we do assune that there is some wav for 
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all sites to anree on which transactions were 
executed "before" which other transactions during 
the network partition. We therefore assuae that 
there are locally maintained clocks and some 
system-wide "tie-breaking" algorithm for agreeing 
on some ordering of transactions executed at dif- 
ferent sites during the partition. (The algo- 
rithm must preserve each site's local timestamp 
order.) The system-wide algorithm makes it posai- 
ble for all sites to agree on a target log 
without an explicit negotiation. We do not 
attempt to develop the details of a transaction 
ordering algorithm in this paper, and we recog- 
nize that different algorithms may result in very 
different system behavior. We do assuue that 
some such algorithm is used consistently within a 
distributed database system. 

A transaction Ti *-precedes another transac- 
tion Tj if and only if Ti precedes Tj according 
to an algorithm a. (We use "a-precede" rather 
than "precede" to emphasize that we are not 
necessarily dealing with actual time but that 
precedence may be different for different algo- 
rithms.) Throughout this paper, we assuue that 
some algorithm a is used consistently, so we sim- 
ply write "Ti a-precedes Tjn as "Ti<Tj". Unless 
otherwise stated, we simplify notation by assup- 
ing that, given transactions Ti and Tj, Ti<Tj. 

1.2 Correctness sf J& Final- State 

The target log is the key to our notion of 
correctness. Operating on replicated data during 
a network partition plays havoc with the idea of 
transaction commitment. We never commit a trap 
saction during a partition; aw transaction may 
be backed out and rerun during the merge pr+ 
ce ss, and it may have a different result when 
re-run than when run during the partition. What 
we $n guarantee is that every transaction run 
during the partition is included in the target 
log and that these transactions appear in a pre 
determined order (a-precedence). We neither emit 
partitioned transactions fran the target log nor 
change the order within the target log to &II- 
plify the merge process. 

Further, even though transactions are not 
considered committed during a partition, they may 
reflect actions in the real world that cannot be 
changed. For example, once a person has with- 
drawn money fran an autanatic teller, it is not 
possible to change the fact that the money has 
physically been transferred from the bank to the 
custaner. For some applications, it is preferable 
to compensate for actions taken during a parti- 
tion than to prohibit transactions during the 
partition. If the custauer withdrew more than his 
balance because the local copy of the balance was 
not up-tc-date during a partition, the bank may 
perform the compensating action of requesting 
payment of the amount overdrawn plus a penalty 
charge. Therefore, sites may need to initiate 
compensating transactions when certain situations 

(such as a negative balance) are detected. Com- 
pensating transactions serve the purpose of coun- 
teracting the loss of serializability due to 
operation during the partition: during a parti- 
tion actions may be taken which do not reflect a 
globally serial execution of transactions; but 
when communications are restored, these situa- 
tions will be detected and some new compensating 
actions will be taken. The problem of multiple 
sites issuing compensations for the same situa- 
tion can be handled either by making all compen- 
sations idempotent (i.e., writes that are 
independent of the database state) or by using 
some "election" protocol by which one site (or 
its proxy) is designated to issue sane class of 
compensating transactions. A database state in 
which such compensations are reflected is deemed 
to be consistent. Thus, instead of the cop 
sistency constraint that no balance go below 
zero, the constraint would be that if a balance 
is below zero, a request for payment is issued. 
(We ass11pe that the database would include a list 
of requests issued.) 

To sum up, then, mutual consistency is 
guaranteed by requiring that all sites eventually 
reach the final merge state. Internal consistency 
is maintained by issuing any necessary compensat- 
ing transactions. The final merge state is 
defined through the target log, and the target 
log is required to include all partitioned trar+ 
sactions in a globally agreed-upon order. 

2. Restorituz Divergent Database States 

2.1 JlnitialmLPgS 

Once each site is informed about all the 
partitioned transactions, it can independently 
generate the final merge state. To achieve the 
final merge state, each site generates and exe- 
cutes a different merge log. This section shows 
how a site generates an initial merge log and 
then transforms it to produce a more efficient 
final merge log. 

To achieve the final merge state it may be 
necessary for a site to undo, or rollback, the 
effects of a local partitioned transaction. When 
this occurs, a rollback transaction will be 
included in the final merge log. The rollback 
transaction used may depend on the state in which 
the original transaction was executed. 

A transaction Ti' is called the rollback of 
a transaction Ti iff given the state D in which 
Ti was executed D[Ti,Ti'] = D. When Ti' is a 
rollback of Ti in m database state (i.e., 
[Ti,Ti'] = [I), it may also be called an inverse 
of Ti. 
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Merge logs contain two categories of tran- 
sactions: rollback transactions for transactions 
that appeared in the site's partition log, and 
f-d transactions that appear in the target 
log. (Forward transactions includa local and 
non-local partitioned transactions.) In what fol- 
lows, Ti, Tj, etc. refer to a transaction, 
either forward or rollback. If we need to refer 
specifically to a forward transactionwe use Ti"; 
a rollback transaction is denoted bu Ti'. We 
match forward and rollback transactions by their 
subscripts: a transaction denoted Tit is the 
rollback for the transaction denoted Ti-. 

A merge log M is correct for an initial 
state D, a partition log P, and a target log T 
iff D([P,M]) = D(T), the final merge state. 

Using this definition, then, our goal is to 
execute correct merge logs at each site. The 
interesting problem, and the focus of the rest of 
the paper, is to generate 9fficien.t correct merge 
logs. 

Once the target log is defined, it is 
trivial to define a correct merge log for each 
site. Suppose we have a target log T and an ini- 
tial state D. Then, for a site Xwith partition 
log [Tl ,...,Tnl, a correct merge log is 
(['h-P ,...,Tl'I,T) (i.e., [Tn’ ,...,Tl’] cow 
catenated with T), where Tll,...,Tnl are the 
rollback transactions for Tl,...,Tn. This merge 
log is called the a merge log for X. (The 
action prescribed by the initial merge log is 
similar to cycle breaking in optimistic coti 
currency control; see for example CBadal79, Bhar- 
gava82, Davidson82, Kung791.J 

To define an efficient merge log, each site 
begins with its initial merge log and exploits 
pre-defined semantic properties of the transac- 
tions in the log to transform it into a shorter, 
and so more efficiently executed, equivalent 
u merge log. The merge log at each site can 
be transformed independently of the others. 

2.2 LQeTransformations 

Our goal in transforming the initial merge 
log is to delete transactions that have no effect 
on the final state produced. We do this by 
exploiting semantic properties of the transac- 
tions in the target log. Consider the following 
two examples: 

1. Suppoe that during a partition site X 
processes transaction Tl, fixing Boston as the 
location of delivery truck 458; and site Y 
processes transaction T2, fixing Annapolis as the 
location of the same delivery truck. (We assune 
that the ordering algorithm places Tl previous to 
T2, yielding the target log [Tl,T21.) At site X, 
the partition log is simply [Tl], so the initial 
merge log would be [Tl',Tl,'R]. But notice that 
this log can bs shortened without affecting the 

resulting database state: the log says to roll- 
back Tl and immediately rerun it -- therefore 
having no effect on the database state. So, we 
can delete both Tl' and Tl fras the log, leaving 
the final merge log [T2]. For site Y, the situa- 
tion is even better. Note that since l2 follows 
Tl in this target log, nAnnapolisw -rites 
cgoaton;” i.e., the log CT1 ,'I21 = [T2l. There- 
fore, rather than executing the initial merge log 
[T2',Tl,T2] at site Y, we can simply execute the 
log [T2’,!I21. By the reasoning above, we can 
then delete both T2’ and T2 frau the merge log -- 
site Y needs to do nothing to achieve the final 
merge state. 

2. Suppose that, during a partition, site X 
records the shipuent of 50 widgets to the central 
warehouse by processing transaction T3: add 50 
to the nrrmber of widgets in the warehouse. Dur- 
ing the same partition site Y processes transac- 
tion T4, adding 75 to the number of widgets in 
the warehouse. Suppose that the ordering algo- 
rithm results in the target log [T3,T41. 
Although the initial merge log for site Y is 
[TII’,T3,T4], we know that T3 and T4 m, that 
iS GT3,T41 = [T4,T31. Therefore, we can 
transform the initial merge log to be 
[T4',T4,'f31. Just as in the previous emample, 
then, we can then delete T4 1 and T4, leaving the 
final merge log [T31. Similarly for site X. 
Thus, each site merely executes the partitioned 
transaction fran the other site to obtain the 
final merge state. 

To help determine which transactions safely 
may be deleted, we characterize ordered pairs of 
transactions. The order of the transactions in a 
merge log determines vhich ordered pair we use to 
transform that merge log: if Ti a-precedes Tj in 
a merge log we consider the characterization of 
the pair (Ti, Tj). We consider every ordered pair 
of transactions to be either an ovexwCi!ie pair, a 
mative pair, or aconflictinn pair. 

e An ordered pair of transactions (Ti,Tj) is an 

EYY 
pair (Tj overwrites Ti) iff 

t = [RI. 

e The ordered pair (Ti, Tj) is GUU!$tative iff 

1. [Ti,Tjl = CT.j,Til 

2. neither (Ti,Tj) nor (Tj,Ti) is an 
overwrite pair. For example, the tran- 
sactions 

Tl : if x > 0 then x := x + 1 
T2: x := 0 

do not fulfill this condition and, even 
though [Tl ,‘E’] = [T2,Tl], (Tl,l’Z!) is& 
characterized as commutative. 

e The ordered pair (Ti,Tj) is anflicting iff it 
is neither an overwrite pair nor a commutative 
pair. 
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To determine whether a particular pair of 
transactions is an overwrite pair, a commutative 
pair, or a conflicting pair, we must of Course 
analyze the actual values of the transactions’ 
arguments and the values read by the transac- 
tions. This analysis may be very detailed, or it 
may be nothing more than a “worst case” based on 
the transactions’ types and their roles (rollback 
or forward) and positions in the merge log. More 
study is needed to decide how muoh analysis 
should be‘ done at the time of the database merge, 
as opposed to the basic characterization done 
when a transaction type is defined, and to deter- 
mine when the cost of analyzing transactions 
offsets the losses involved in using the “worst 
case” analysis. In any case, once pairs of tran- 
sactions are characterized, the characterizations 
can be used to delete transactions fran the ini- 
tial merge log. 

We begin with the initial merge log and sue 
cessively delete transactions to yield new merge 
logs. There are two main situations in which we 
delete transactions. The first is when transac- 
tions in an overwriting pair are adjacent; deletr 
ing the overwritten transaction preserves the 
correctness of the merge log. The second situa- 
tion is a bit more complicated. Under certain 
conditions, we can show that when a rollback 
transaction is immediately follcwed by its match- 
ing forward transaction, the two transactions 
taken together do not affect the final database 
state : both can be deleted. When a log meets 
the conditions necessary for this double dele- 
tion, we say it is m. 

A merge log [Tl , . . . ,Ti, Tj’ ,. . . I that is 
correct for target T and partitioned state Dx is 
regular iff for each rollback transaction Tj’ in 
the log, Dx[Tl ,..., Ti,Tj*,Tj’] = Dx[Tl ,... ,Til. 

Essentially, regularity ensures that roll- 
back transactions operate correctly. Each roll- 
back transaction is responsible for restoring 
values that existed in a particular state during 
the partition, and the order in which these tran- 
sactions are executed can be critical. Aegul ar- 
ity enforces this order by prescribing that each 
rollback transaction has the correct effect, i.e. 
that its effects are nullified by running its 
corresponding forward transaction immediately 
following. Each log transformation, then, must 
preserve regularity (the role of regularity in 
governing the interaction of transformations is 
discussed in Section 3.3). 

Commutativity is also essential for log 
transformations. Given a regular merge log L, we 
use commutativity to find (whenever possible) an 
equivalent log L’ in which either transactions in 
an overwriting pair are adjacent, or in which a 
rollback and its matching forward transaction are 
adjacent. The definition of an overwriting pair 
a- the definition of regularity allcms us to 
delete either the overwritten transaction or the 
rollback and its forward transaction, 

respectively. This deletion produces a new merge 
log L”. In the next section we prove that, as 
long as some minor restrictions are respected, Ln 
is both correct and regular; therefore the pro- 
cess of deleting transactions may continue. 

3. TranaforminaMeraemUsinnGraDhs 

3.1 l45235kLPgGraPhs 

We use a graph to describe the properties 
that hold between pairs of transactions in a 
merge log. Graph transformations that delete 
nodes in the graph mimic log transformations that 
delete transactions in the corresponding merge 
1 og. After defining the graph of a merge log, we 
define some graph transformations and prove that 
they are correct. The graph transformations 
presented here 
believe that 
applicable and 

- _ 
are not an exhaustive set, but we 
they are among the most generally 
powerful. 

Jzl.!xsLag Granh Definition: The graph of a 
merge log L, Graph(L), is the directed acyclic 
graph (N,O u C u A), where 

e N is a set of nodes representing transactions 
that appear in L (for simplicity nodes have 
lower case nsmes that correspond to the tram 
sactions they represent -- so, node ti 
represents transaction Ti, tjl represents Tj’, 
etc. ) . 

e 0 (for novetwritew) is the set of directed 
edges {(ti, tj) Iti and tj are nodes in N, Ti 
a-precedes Tj in L, and Tj overwrites Ti). 

e C (for %onflictn) is the set of directed 
edges ((ti, tj) Iti and tj are nodes in N, Ti 
a-precedes Tj in L, and Tj conflicts with Ti). 
(It is occasionally useful to distinguish cer- 
tain conflict edges in each merge log graph: 
R (for “read”) is the set of conflict edges 
(t1,t.Z) such that T2’s read-set intersects 
Tl *s write-set. These edges will be used in 
the RDD Transformation Rule, Section 3.2.) 

e A (for “added”) is the union of the set of 
directed edges. 

{(tit ,tj”) Iti’ and tj- are nodes in N, 
Ti’ a-precedes Tj- in L, (ti’,tj-) is 
neither an overwrite nor a conflict 
edge, and there is an overwrite or wn- 
flict edge between ti’ and tj- (Ti- is 
the transaction rolled back by Tit)). 

and the set of directed edges. 

{ (ti’ ,tjl)ltil and tj’ are nodes in N, 
Tit a-precedes Tj’ in L, (ti’,tjl) is 
neither an overwrite nor a conflict 
edge, and there is an overwrite or 
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conflict edge between ti- and tj-). 

This restricted use of commutativity is aimi- 
lar to [Grahsm841, and its necessity is illus- 
trated later in Section 3.3. 

We use dotted arrows to designate overwrite 
edge% double solid arrtms for conflict edges, 
and single solid arrOws for added edges (O-, C-, 
and A-edges respectively). Figure 2 is an illus- 
tration of a merge log graph. 

INITIAL STATE: wldpts = 1000 

LOCAL TRANSACCIONS NONLOCAL TRANSACCIONS 
Tl : widgsts := wldgsts + 100 

l2: widgsts := 1500 
a* R': widgsts := 1000 

Tj : uidgsts := mid&eta - 500 

Figure 2. Example of a Merge Log Graph 

There is a J&JJ from a node ti to a node tk 
iff: 1) there is an edge (of any type) fran ti to 
tk (a trivi& path), or 2) there is some node tj 
such that there is an edge frcm ti to tj and a 
path fran tj to tk. In the previous example, 
then, there is a path frau tl to t3. 

We will only talk of equality between graphs 
representing the same transactions, so because of 
OW naming convention for nodes, two graphs 
G= (N,O u C u A) and Gt = (N',O' u C' u At) will 
be w, G = G', iff N = NV, 0 = Of, C = Cl, and 
A = A'. 

Merge log graphs define special sets of 
equivalent logs: logs comprised of the same 
group of transactions, but showing every permuta- 
tion of order allrmed by commutativity. Our 
transformation strategy, then, is to start with a 
merge log L and find a log L1 such that 
Graph(L) = Graph(L'), where L' includes a pertic- 
ular pair of transactions adjacent to each other. 
We then show that one or both of these transac- 
tions can be deleted from L' to produce an 
equivalent log Ln. We continua this jrocsss 

until we can no longer delete transactions. 

To pursue this strategy, we must show that 

izaph(F? 
pick any log L' such that 

= Graph(Lt) without compromising 
correctness. 

A merge log graph is correct for an initial 
database state D, a partition log P, and a target 
log T if it is the graph of a correct merge log 
for D, P, and T. 

J&&J Correctnwaeorem: Let G be a graph 
that is correct for an initial database state D, 
a partition log P, and a target T. Then every 
log L such that Graph(L) = G is correct for D, P, 
and T. 

We rely on commutativity to find equivalent 
merge logs in which a particular pair of transac- 
tions are adjacent. The following lemma 
describes this situation in terms of a merge log 
graph. 

&mu&&ativity J&~F@: If there is no non- 
trivial path between two nodes ti and tj in a 
merge log graph Graph(L), then there is a log 
L' = L, such that Graph(L') = Graph(L), in which 
Ti and Tj are adjacent. 

As we mentioned above, and will illustrate 
below, the notion of regularity is essential to 
the transformation strategy. Here we extend this 
notion to graphs and shcw that every log with a 
graph equal to the graph of an initial merge log 
is regular. We will prwe that the transforma- 
tions preserve regularity. 

A merge log graph G is regular if every log 
L such that Graph(L) = G is regular. 

w m J'heorem: Let L be the 
initial merge log for an initial database state 
D, a partition log P, and a target log T. Then 
Graph(L) is regular. 

In the next section we define three merge 
log graph transformations which allaw us to 
delete nodes frao the graph while preserving 
correctness. 

3.2 U Transformations 

The graph transformations in this section 
mimic the log transformations illustrated above. 
Overwritten transactions, on which no other tran- 
sactions depend, are deleted, as are pairs of 
rollback and forward transactions that have no 
net effect on the log. All the transformations 
preserve the correctness of the merge log, and 
regularity ensures that they may be applied in 
arw order. However, follcming the heuristic of 
deleting pairs of transactions, instead of single 
overwritten transactions, whenever there is a 
choice will result in a shorter final merge log. 
We are currently working on other similar heuris- 
tics. 

54 



The transformation rule which deletes 
overwritten transactions is the most simple, and 
so it is presented first. 

Overwrite Deletion (QQ) Transformat&uJB&: 
Let G=(N,O u C) be a merge log graph with two 
nodes ti and tj- such that the only path frcm ti 

tj- is single 
= (N',O' u Cfau Al) where: 

overwrite edge. 

N’ = N-Iti) 
0’ = f(tk,tm) 1 (tk,tm) is an element of 0, 

and tk and tm are in N') 
C' = {(tk,tm)I(tk,tm) is an element of C, 

and tk and tm are in NV1 
A' = {(tk',tm)I(tk',tm) is an element of A, 

and tk' and tm are in N'-{ti']} 

The graph in Figure 2 has two overwrite 
edge % but only nodes tl and t2 meet the cri- 
terion in the OD Transformation Rule. The rule 
states that we can delete node tl, yielding the 
graph in Figure 3. 

Graph in Figure 2 
After OD Transformation 

Figure 3. Example of OD Transformation 

The proofs that this rule and the ones that 
follow preserve graph regularity are cmitted 
here; they appear in [Blaustein851. 

The next two transformation rules prescribe 
the deletion of pairs of rollback and forward 
transactions that have no net effect on the final 
database state. The first rule is actually a 
special case of the second, but one which comes 
UP sufficiently often to merit a special discus- 
sion. Because the special case is more simple, 
it is presented first. 

D 1 tioo (l8.Q) Transformation 
&&:?%?GzO ueCeu A) be a regular merge log 
graph such that there are nodes ti' and ti' with 
no nor+trivisl Pam between them. 
DND(G) = (N',O' u Cl u Al) where 

N' = N-{ti' ,ti-1 
0' = {(tk,tm) I(tk,tm) is an element of 0, 

and tk and tm are in N') 
C' = {(tk,tm)l(tk,tm) is an element of C, 

and tk and tm are in N'I 
A' = {(tk',t.m)l(tk',tm) is an element of A, 

and tk' and tm are in N') 

The graph in Figure 4 meets the condition of 
the the DED Transformation Rule; t2' and t2 can 
be deleted. 

INITIAL STATE: widmts * 500 

LOCAL TRANSA'3IONS NCNLOCAL TRANSACTIONS 
Tl : widgets := widgets + 300 

T2: vldpts := wldgsts + 200 
Iso l-21: u1dpt.s :. 500 

Figure 4. Example of DND Transformation 

With a little additional information, this 
rule can be relaxed to allow double deletions in 
more cases. (The DND transformation is a special 

of 
ztw. 1 

the Relaxed Double Deletion (RDD) rule 
Using R-edges (the set of C-edges 

(tl ,t2) such that T2's read-set intersects Tl's 
write-set), and keeping track of which nodes 
represent local transactions and which non-local, 
we can better determine which transactions have 
the same effects when rerun as they did when 
originally run during the partition. A local 
node tj is a reneater if there is no pth con- 
sisting entirely of R-edges frau a non-local node 
to tj. Essentially, then, a repeater has the 
same effect when run during the merge as it had 
when run during the partition, i.e., repeaters 
read the same values both times. With the notion 
of repeaters, we can relax the DND Transformation 
Rule as follcws: 

J&&&Double Deletion (J&D) Transformation 
m: Let G=(N,O u C u A) be a regular merge log 
graph having nodes ti' and ti' such that: 
for every node tj such that (tj,ti-) is in C, 

1. either tj is a repeater or tj is overwritten 
by a repeater tk with an edge to ti-, and 
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2. all paths frctn ti' to tj include an A-edge 

Then RDD(G) = (N',O' u C' u At) where 

N' = N-{ti.',ti"} 
0' = ((tk,tm)!(tk,tm) is an element of 0, 

and tk and tm are in N') 
Cl = {(tk,tm)I(tk,tm) is an element of C, 

and tk and tm are in N') 
A' = {(tk',tm) 1 (tk',tm) is an element of A, 

and tk' and tm are in N') 

Figure 5 shows an example of the RDD rule 
(nodes t5' and t5 to be deleted). Only the most 
relevant edges are shown for clarity and R-edges 
appear as thick black arrows. Node W is a 
repeater. There are conflict edges frau ti, t2, 
t4' and t6’ to t5; since t4 overwrites t2, t4' 
and t6’, the first condition of the RDD rule is 
met. Since all paths fran t5' to these nodes 
include an A-edge, the second condition is met as 
well. Therefore, t.5' and t5 may be deleted. Note 
that this transformation now makes it possible to 
use the fact that T6 overwrites T4 to delete t4. 

INITIAL STATE: widgsta = 2 
tp_order = 0 
overloaded * f3a 
urgeat~order * false 

LOCAL TRANSACTIONS NONLOCAL TRANSACTIONS 
l-1 : if widats < 50 

then t4_order := 500 
l-2: widest8 := 10 

T3: if vid@ts < 10 
then urgent~order := true 

a0 n': ul-gent~order := false 
T4 : uidgsts := 1000 

IO Tb': widgets :r 2 
lS: if wld@ts > 800 

then overloaded := true 
a0 l-51: overloaded := falss 

3’6: wldgsts :* 40 
#) T6’: uld&.eta :x 1000 

Figure 5. Example of RDD Transformation 

The next section discusses how the defini- 
tions of A-edges and regularity ensure that the 

log transformations presented here work together 
correctly. 

3.3 UteractUw nf Definitions 

So far, we have considered separately each 
step in the process of transforming an initial 
merge log into a final one. Presented this way, 
the reasons for some of the definitions, espy- 
cially regularity and A-edges, may have seemed 
somewhat peculiar. There are important, and 
sametimes subtle, interactions among the dif- 
ferent steps of the transformation process, and 
these interactions motivate the definitions of 
the transformation rules, commutativity, and 
regularity. This section illustrates the way in 
which the steps described in previous sections 
combine to transform merge logs. 

At a high level, the process of log 
transformation begins with the follcwing steps at 
each 

1. 

2. 

3. 

4. 

site. 

Define the target log 

Use the target log to generate the initial 
merge log 

Use semantic properties of transactions to 
graph the initial merge log 

Apply the OD, DND, and RDD graph transforma- 
tions until no more transformations are po* 
sible 

All logs represented by the resulting graph are 
guaranteed to be correct. 

The definitions of commutativity, A-edges, 
and regularity are essential to ensure that all 
the steps work together correctly: that each 
transformation leaves the graph (log) in a state 
in which any other applicable transformation will 
produce a correct graph (log). In particular, 
A-edges were introduced to ensure that the 
transformations result in regular graphs. Once 
all other transformations are made, houever, A- 
edges may be ignored in a final step which 
transforms the log into a correct, J&&m reau- 
l&C, final merge log. This section gives some 
examples that illustrate the way in which the 
definitions of the transformations, added edges, 
commutativity, and regularity interact, and it 
defines the final step in the log transformation 
process. 

A-edges impose necessary restrictions on the 
transformations. In the example in Figure 6, the 
added edge between t2' and tl serves to ensure 
that the DND Transformation Rule does not apply 
to t2' and t2, thus guaranteeing that 'I2 reads 
the value of widgets written by Tl. 
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INITIAL STATE: to-order = 100 

LOCAL TRANSACTIONS NONLOCAL TRANSACTIONS 
Tl : wldgsts := 1500 

T2: to_OTder :* 5000 - wid&etrs 
80 R': to-order :r 100 

l3: vidgsts :s 1200 

Figure 6. Necessity of A-Edges 

The notion of regularity ensures that for- 
ward transactions see the effects of their own 
rollback transactions. The example in Figure 7 
illustrates the problem that occurs when regular 
ity is not maintained (for example, by ignoring 
the requirement in the OD Transformation Rule 
that only forward transactions may overwrite). 
l-2' overwrites T3*, but deleting t3' "orphans" 
t3: it can no longer be deleted using the DND 
Transformation. T3 would then be included 
(without T3') in the incorrect final merge log. 

INITIAL STATE: widmts = 1000 

LOCAL TRANSACTIONS NONLOCAL TRANSACTIONS 
Tl : wldgsts :r wid(pts + 100 

l-2: wld@ts :r wldmts + 300 
a0 T2': wldgsts :r 1000 

73: wid,yta :r rldgts - 700 
00 T3': wldgsts := 1300 

Figure 7. Use of Regularity 

The preceding examples illustrate some res- 
trictions that ensure that succs ssive 

transformations operate correctly. These rez+ 
trictions, though, may be eased in a final pass 
through the log. Certainly, rollback transac- 
tions may be used to overwrite other rollback 
transactions as long as all OD, DND, and RDD 
transformations have been made. Furthermore, the 
A-edges have no more purpose in such a case, and 
they may be ignored in performing final 
overwrites (notice that the overwritten transac- 
tions would all be rollbacks). In Figure 6, for 
example, while the A-edge fran t.2' to tl is 
important, there is no reason to include T2' in 
the final merge log: no transaction reads the 
value of teorder and it is overwritten by T2. 
Therefore, t2' can bs deleted in the final 
transformation. 

So, the final step in the transformation 
process is: 

5. Ignoring A-edges, delete all rollback trap 
saction nodes tit such that the only path 
between ti' and a node tj is a single 0-edgs 

4. Conclusion 

The need to update replicated data during 
network partitions requires different correctness 
criteria and update protocols than may be used 
for distributed databases in which blocking is 
tolerable. In our approach, each site acts 
independently to revise replicated data when it 
receives information about relevant updates that 
were made at other sites. The information may 
describe updates that were made previous to other 
updates already reflected in the site's database, 
and thus it may bs necessary to roll back or re- 
run some transactions to merge these updates. 
Depending on the resulting values, the cop 
sistency constraints may prescribe issuing some 
compensating transactions. We rely on a system- 
wide ordering algorithm to ensure that each site 
will eventually reach the same database state 
when it has been informed of the same set of 
updates. 

The main thrust of the research is to merge 
local transaction logs with logs of new updates 
efficiently, by exploiting simple semantic pr* 
perties of pre-defined transactions. The concepts 
of regularity and ad&d edges are used to capture 
critical and sometimes subtle dependencies among 
transactions. More work is needed to determine 
new and useful transformations (in particular, we 
are beginning work on transactions which 
overwrite only part of the data written by 
another transaction), to investigate modifica- 
tions needed for partially replicated data, and 
to design efficient implementations of these 
strategies. 
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