THE TYPE CONCEPT IN OFFICE DOCUMENT RETRIEVAL +

Barbic, F.

* %

and Rabitti, F.

* Dipartimento di Elettronica, Politecnico di Milano

P.zza L. da Vinci,

32 20133 Milano, Italy

*% JEI - National Research Council
Via S. Maria, 46 56100 Pisa, Italy

Abstract

The problem of the retrieval by content
of office documents is addressed here.
However, the retrieval by content is
preatly enhanced if the semantic role of
document objects can be described. For
this reason we introduce a conceptual
level of modeling resulting in the
definition of conceptual structures of
documents.

Type definition is essential for the
retrieval, but since office document
structures tend to greatly differ from
instance to instance, we 1introduce the
concept of weak type, allowing the
definition of types at different levels
of detail (type hierarchies).

In this paper a modeling approach based
on these ideas is presented. Particular
emphasis 1s put on the type definition

and the use of types in query
formulation and processing.

l. Introduction

In office environment a very large

amount of information is manipulated in
form of documents.

+ The 1ideas exposed in this paper were

developed by the authors during the
ESPRIT pilot project 28 entitled
"Development of a Mixed-mode Message

Filing Svstem (MMFS)", however the views
exnressed here are those of the authors
and not necessarily those of the EEC’s
Information Technology Task Force.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

Proceedings of VLDB 85, Stockholm

This information can be either in a
formatted form (as attributes in office
forms) or in a unformatted form (i.e.
text, image, and voice, or combinations
of them). It is important to study tools
for representing in a formal manner
office documents, in order to allow a
better handling of these documents by
automatic procedures implemented in
office information systems. in
particular, filing, distribution and
retrieval of office documents are basic
operations of all office procedures [1].

Office documents are structurally more
complex than objects wusually managed in

form processing systems [2) or
information retrieval systems [31.
Increasing efforts in the office
automation are giving more and more

importance to the new concept of
electronic office documents [41.
Electronic documents will be created and
manipulated at user workstations,

transmitted over communication networks,
archived in high~-capacity file servers,
etc. The task of retrieving electronic
documents in this dynamic and distributed
environment hecomes rather difficult.

Retrieval by name is possible only for a
limited number of well known items (as on
the personal workstation). Retrieval by
location requires a careful organization
of the overall system and is not always
possible. In this framework retrieval by
content (i.e. giving some specification
of the presumed content of the wanted
documents) assumes an increasing
importance.

An electronic document has components
which may contain different types of data
and may be further structured into other
components (such as the body of a paper
that is composed of sections and
paragraphs and contains images and data
attributes embedded in text).

In the following we will

following we will refer to office
documents assuming for them the
electronic documents of the coming

office information systems.

The problem of modeling such documents
is receiving increasing attention in the
research. Implicit document definition
models <can be recognized in several
different proposals about systems
managing office documents [5]. Among the
systems oriented to filing and
retrieval, the more common approach 1is
to extend the functions of database
management systems, adding the
capability to deal with text, image etc.
in addition to the original formatted
data. Thus, the associated models are
usually extensions of well known
database models. Particular attention
has been given to the relational model
[4] and the entity-relationship models
171,

In the BIG project [8] office documents
can he described in a conceptual schema

defined wusing a database-like model,
closely derived from the
entity-relationship model. An extension
is the 1ntroduction of text wunits and
picture units as attributes of entity
classes. These units do not present the

atomiclty property of data attributes.
In fact the system allows operations on
their content. For example, operations
on text units, such as searching for
key-words, inserting and deleting
strings of characters, are defined in
the system. Moreover, the system
enforces principles such as data
non-redundancy, integrity etc. which are
more typical of database systems than of
document systems.

The TIGRE project [9] aims at the
implementation of a DBMS with
capabilities for handling generalized
data. In this case texts and images are

big sized objects while office documents
are considered as representative of
complex multi-media objects. In TIGRE a
data model has been defined as a typed

extension of the entity-relationship
model which includes the document
formalism as a type constructor. Two
categories of abstractions are
supported: generalization and
aggregation. They are similar to those
defined in other semantic data models

{10] [11]. In the formalism to represeat
structured documents, each document |is
represented using a standard form which
takes into account its logical structure
and its presentation and semantic
attributes.

35

The type concept 1is a key factor to
understand the fundamental difference
between the document modeling approach
in editing/formatting systems and
filing/retrieval systems. A document
type for editor/formatter models is a
skeleton (specified either by its syntax
or by formatting commands) which can be
useful for creating new document
instances of that type without having to

start from scratch every time (12]. The
document type in systems oriented to
filing and retrieval is the
specification of the structure and
components common to all the document
instances belonging to the same class.
Since all the documents belong to some

already defined type, it is possible to

implement better storage and access
methods. Moreover the retrieval can be
enhanced because the system can
interpret the content of any component

of the document in a class (according to
the definition of the corresponding
type).

This paper has the following structure:
in Section 2 we discuss the criteria
assumed in the definition of the
proposed model. In Section 3 we describe

the formalism for document structure
definition and the different levels of
document modeling. In Section 4 we
present the adopted concept of type,

outlining the resulting advantages 1in
document retrieval. In Section 5 we
briefly discuss other operations in the
model and the future work planned.

2. Issues in document modeling

A suitable document model should
integrate the filing/retrieval and
editing/formatting typing approaches,
trying to satisfy two conflicting
criteria:

l. To be as flexible as possible,

because the structure of the office

documents is impossible to
predetermine.
2., To provide as much knowledge as

possible about the structure of a
given document, in order to assist
in the creation, filing and

retrieval of these documents.

first criterion would 1lead to a

without types (in the database
letting each document instance
defined for 1its own,
like in usual document editors and
formatters, while the second criterium
would lead to a strongly typed document
model, 1like the ones for filinyg and

The

model
meaaning),
have a structure

retrieval systems. This allows to
efficiently store and handle the
corresponding system objects (such as
records, forms or tuples), since the
system could take advantage of the
ohjects regularity and generate storage
structure on a per-type vrather than
per—instance basis. Unfortunately. this
is not the «case with more general
objects as office documents, since
similar documents can have different
structures. However the type concept is
still useful as it can aid in
formulating queries and creating and

modifying documents.

An office document model should aim at a
type concept that 1is a good compromise
between the two above criteria trying to
obtain the advantages of both
database-oriented models (for filing and
retrieval operations) and
editor-oriented models (for composition,
editing and presentation operations). A
tvpe should be considered as being the
definition of all common properties of a
set of documents, letting a document

instance have a much more complex and
detailed structure.

In many existing document models the
internal structuring of documents has
been optimized according to different
requirements for different operations,
such as transmission efficiency for
document interchange or access

efficiency for filing and retrieval. In
order to avoid several counversions of
the internal structure of a document
during its lifetime, it is apparent the
need of a unified model 1including all
the structuring aspects necessary for
the different operations. However, in
order to be useful, this model should be
widely accepted and understood. Tn fact,
if a document is generated in an office
system workstation, an internal
structure is associated to its visible
data elements. The internal structure is
transmitted together with the document.
If the receiving workstations or systems
do not know about that document model,
they conld not interpret the internal
structure of the document and no further

processing could be performed on it. The
interchange of docunents is the
operation where the need of
standardization 1is more apparent. In
fact, when a document with its internal
structure 1is encoded in some format at
one site, the same format should be
known at the other side of the
transmission {in order to decode and
reconstruct the document and the

internal structure.

36

A document may go through successive
editing operations after 1its creation.
Besides the document final form [13], it
is necessary to store its revisable form

which can be further modified. A part of
the internal structure should include
its syntactic components and is called

logical structure.

Documents must be presented on physical
output devices by mapping the 1logical
structure into the external
representation. This is called the
rendition process [13]. The added
information necessary 1in this process
should be coupled to the logical
structure and should be included in the
internal structure (for 1instance, see
the template concept in [l4]). This
information 1is called layout structure
since it shows how the data elements
should fit the layout of the document at
presentation time.

Two modes of document retrieval should
be possible: retrieval by location and
retrieval by content. The first mode of
retrieval mimics the organization of
conventional offices, where docunents
are retrieved picking them from the
location where they were stored. In the
second mode of retrieval the user
specifies a query by creating a
partially complete specification of the
internal structure and specifying some
conditions on the document content [15]
[16]. In retrieval by content the
desired document must be addressed by
some of its characteristics. Among thenm,
a crucial role is played by the semantic
characteristics which describe the
meaniag of the document composing
objects. This information constitutes
the conceptual structure that 1is defined
giving names to the semantic components
of a document. The conceptual structure
is added to the 1layout and 1logical
structures and complete the document
internal structure.

3. The office document model

As resulting from the previous
discussion, in a office document we can
distinguish different levels of
structure, At a more general level, we

can see the document as composed of
semantic components. They reflect the
common understanding by the users of a
class of similar documents. These
semantic components describe the
conceptual structure of the particular

docunent, which is also common to
several documents with the same function

in the office organization (e.g. the
"meeting sub ject" in a "meeting
announcement letter", the "topics of
interest" in a ‘"conference <call for
papers').

At a more superficial level, the
syntactic structure of the document 1s
apnarent. In fact, what 1s seen at the

surface is the composition of multimedia

data values in the document. These
syntactic components constitute the
logical structure of the document (e.g.
section, nie chart, table, etc.). This
structure can sensibly wvary even among
documents with the sane semantic
structure while can be similar for
documents with different semantic

content. A clear distinction between the

two levels of conceptual structure and
logical structure 1is that the former
reflects the docuntent content with

respect to an application environment

(and then 1t cannot be subject to
standardization) while the latter
reflects the content of any office
document in any application environment
(and then it can be sub ject to

standardization).

the presentation of a
a layout structure

In order to guide
multimedia document,
should be strictly associated to the
logical structure. The layout structure
shows how and where the logical elements
should be displayed 1in the physical
document. Losical structure and layout
structure should be defined according to
the international standards under
development [13].

¥For the definition of all these internal

structures we will follow the same
approach of syntax-directed editors
[17). Syntax-directed editors are very
flexible in defining document structures
[18]. They <can be exploited 1in the
definition of the 1logical, layout and
conceptual structures. However they
usually allow to operate on a per
instance basis, that is in the

document instance
intend to explore

definition of each
structure. Instead we

this anproach as a formalism for a
complete definition of an office
document model in all its three
components (logical, layout and
conceptual). This requires to operate

not only at the instance level, but also

at the type level.

In the following we introduce a
formalism based on context-free gramnars

for the definition of the model. In
fact, different gsrammars will be wused
for the definition of the three

37

different levels of modeling. Since ecach
document structure is defined by the
formalism of the corresponding modeling

level, these different grammars will
allow to define the three different
structures of the documents. We will

present the formalism in abstract terms,
implying that it will be applied to the
three different cases.

Let us assume to adopt a context-free
grammar G for the specification of a
docunent structure (either logical,

layout or conceptual);
G=(N,T,R,P)
where:
N is the set of non-terminal symbols,
T is the set of terminal symbols,
R in N is the root symbol
P is the set of grammar productions.

Productions have the form:
A -> "alpha"

where A 1is a non-terminal (in N) and
"alpha" is a string of terminals (in T)
and non-terminals (in N). A is the left
hand side (LHUS) of the production,
"alpha'" is the right hand side (RUS) of
the production. Only two forms of
productions are allowed: in the first
the RUS is a string of non-terminals, in

the second the RHUS is one terminal. The
first is called a non-terminal
production while the second a terminal
production. These restrictions on the
format of productions do not restrict

the power of the context-free grammar,
For the specification of the productions
we use an extended BNF representation,
where each production has the format:

<A => <B.1> [+]...<B.N>[+]
where <B.1> are non-terminal symbols
which can be optionally tagged by a "+"
if they are repeating.

The document structure (either logical,
layout and conceptual) is called
Structure Tree, which 1is conceptually
equivalent to the parse-~tree containing
all the productions of G applied from
t he root symhol until the complete
document is obtained.

The Structure Tree is composed of
branches. A branch is a subtree of only
one level in depth (this means that an
upper node 1is connected by an edge to
several lower nodes), shaped according
to the productions in P of G, and having
the nodes labelled with unique

identifiers IDs.

B is defined as instantiation
iff:

The branch
of the production PN

- 1ts upper node is the instantiation
of the non-terminal symbol in the
LLAS of the production PN,

- Its lower nodes are the
instantiations of the non-terminal
symbols (in the same order,

established by the connectiag edge)
in the RHS of the production PN,

The node corresponding to a repeating
svmbol may or may not be repeating. In
the former case it 1is tagged by a "+",
i.e. TID+. Notice that for the branches
instantiating terminal productions the
lower level contains only one node which
is the instantiation of a terminal
symbol. We assume 1in this case that ID
is the actual value (or pointer to) of
the data item represented by the
terminal symbol.

A Structure Tree 1is composed by set of
branches which correspond to the
productions exploited in the generation
of a document or type. The root of the
tree 1is the I instantiating the root
symbol R of G. Then the branches can bhe
incrementally added to the structure
tree according to the granmar
productions. We can notice that in the
Structure Tree only one cdge can depart
fron a node instantiating a
non-repeating symbol, while more edges
(each corresponding to a branch) can
depart from a node instantiating a
repeating symbol.

We define a leaf node as a node with no
exiting edges. A terminal node is a leaf
node instantiation of a terminal symbol.
A live node is a node which can generate
a new branch according to the
productions of the grammar. A live node
is essentially a spring for new subtrees

in the Structure Tree. Hence, a
non-terminal 1leaf node 1{is alive (that
is, it can he a spring for new

subtrees), while any live node that {is
not leaf must be repeating. A partial
example of a grammar and a derivated
Structure Tree 1is shown in Fig.l.a and
Fiz.l.b.

Restrictions are dynamic limitations for
the introduction of new branches in the
Structure Tree. Restrictions are
expressed in form of special statements
attached to some nodes in the Structure
Tree. Restriction statements are useful
in the instance creation (or in the
specification of more detailed types)
starting from types, since they can
impose restrictions in this process.
This can be a puidance for less
experienced users who cannot manage the
full power of the grammar productions.

GRAMMAR PRODUCTIONS

............... P5: B b
PlA BCHD D d
‘P2 C FG+ P7: H h
P3 C H+JK+ P8 : I i
i 1L L 2
Fig. 1.2
STRUCTURE TREE
A1
|
52 cs I
. - —_
N IO = AT 611
— \ [| !
x h h x x
T 1 T 1-16

live node :

any node : x

Fig. 1.b

For this reason. restriction statements
are meaningful only as part of type
structure trees. Different types of
restrictions are Introduced.

Quality restriction on nodes

We can restrict the set of
productions in P of G which can bhe
used to instantiate a new branch
starting from a live node. A
special statement 1is attached to
the node saying that a new branch
in the Structure Tree must bhe the

instantiation of one of the
productions enlisted in the
restriction statement (see

Fie.2.a).

Nualitv restriction on subtrees

We can pre-define difterent
subtrees (conmposed of several
levels of branches) starting from a
live node. In this case, this

restriction statement says that if
a subtree 1is to be generated from
this live node, 1its structure is
bound to be like one of the
pre-defined subtrees (see Fig.2.b).

Quantity restriction on nodes
We can restrict the number of
branches which can be generated
from a i

repeating node ia the

Structure Tree. A special
restriction statement 1s introduced
saying that at wmost MAX branches
departing from this repeating node
can bhe present at 217 time 1in the
Structure Tree (see Fig.2.c).

-
*]
F-2 63+ F4 65 | ™
PoF e i
L I
Fig. 2.a
cie
e {RESTRICTION 2]
Frm————— P A - | . e 4
1 1
: I I ;
' B J K . F o6 ,
] ' I 1 [}
i [F‘T/Fj;\Tiﬂ :
XX x xx :!:ILILIL.:
e O :
Fig. 2.b
-1+
~._ [RESTRICTION 3]
e
S
F2 63 a5 ke MAKIODY
il
Fig. 2.c
C-1+
“%a. [RESTRICTION 4]
"’#*
F-2 6-3+ TSEss,
r---_..>:.:_ .-
: X:4 s
:
1-4 -5 I-6 L-7 ! Fogr 1
: 4 o
)] [
i I v oL}
e -
N]
M '
Fig. 2.d e bt 4
OQuantity restriction on subtrees
We can predefine a subtree
(composed of several levels of
branches) starting from a live
node. In this case, this
restriction statement says that in

the specialization/instantiation
process either this live node will
penerate a null element (that is,
applying the terminal production
<X>=->[NULL]), or will generate a
suhtree whose structure is bound to
be like the predefined subtree, If

the 1live node 1is repeating, the
quantity restriction on subtrees
can specify the maximum number of

pre~defined
from this

replications of the
subtree which can depart
live node (see Fig.2.d).

39

Restrictions are very useful in the
definition. They allow to define type
characteristics inside structure trees,
so resulting in a common representation
of types and instances via Structure
Trees.

type

3.1 Type and instance concepts

Having formally presented the adopted
model, it 1is possible to define the
concept of document type and instance in
the new meaning of this document
modeling approach.

A Structure

Tree corresponds to a pure

instance 1ff there are no live nodes in

it. Since terminal nodes are leaf nodes
which are not alive, in a2 pure instance

Structure Tree all leaf nodes are
terminals. Intuitively, any document
instance has a ‘'"complete'" structure
tree, that 1is, a structure tree where
all the possible top-to-bottom paths
starting from the root node are

completed up to a leaf node whose ID is
a multimedia data value, instantiation
of a terminal symbol.

A Structure Tree corresponds to a type
iff there is at least one live node in
it. This type concept is more general
than the wusual data modeling concept
[19] of type for formatted data. In fact
it is comprehensive of the type concept

of both strongly typed and weakly typed
data models. The instantiation or
specification process on a type is

adding new branches 1in the Structure
Tree as instantiations of grammar
productions and with the restriction
statements already in the Structure
Tree. We define a strong type as a type
which can only be instantiated by adding
terminal nodes. We define a weak type as
a type which can be instantiated by
adding any node (also non-terminal).

This concept of strong type is
equivalent to the type concept at the
schema level of data base models. 1In
fact, instantiating a strong type can
only consist in adding multimedia data
values of specific types, which is
equivalent to adding terminal nodes to

the Structure Tree. Instantiation of a
strong type is a DML operation in the
data base terminology.

The concept of weak type is more
general. Since non-terminal nodes can be
added to the Structure Tree, composed
objects can be added during the
instantiation process. These document

components correspond to new subtrees of
(Restrictions

any conplexity. on
subtrees can impose limits to this
freedom.) Thus, the 1instantiation of a
weak tvpe may correspond to a phase of
tvpe definition, at schema 1level, in
data base models. This is a DDL
operation in the data base terminology.
It can be combined to a DML operation,

if values are also defined. Tt is clear
that in this approach, using the partial
snecification process on the structure
trees, there can be complex hierarchies
of inclusion among weak types. They may
be, in the general case, non-tree-like
hierarchies.

The flexibility resulting from the weak
type concept 1is necessary because of
characteristics of the objects

(multimedia documents in the office) to

model. The flexibility required, as for
adding new complex components (i.e. a
new section with tables and graphics),
cannot be gliven by strong types.
Moreover the system can exploit the
complex hierarchies of weak types by
keeping catalogs of system enforced
tvpes. These system types can be useful
for the document instantiation, giving
the user flexible document skeletons;
for the query definition, giving the
user flexible query-by-example
skeletons; for query nrocessing, 1if the

document search is restricted within a
certain type (the most specific type
applicable for the query).

The flexibility of this typing approach

allows types for the different classes
of documents in the office environment
to be defined. Strong types are suitable

for all form-like documents (i.e. those
with a very stable structure). Weak
types are more suitable for less
structured objects, such letters,
memos, reports, brochures and other
office documents containing tables,
egraphics, 1images, voice comments and
conversations, In this case, the
possibility of establishing hierarchies

on weak types is very useful.

as

Since structure trees can represent the
internal structures of both types and
instances, it is possibhle to query types
as well as instances. In fact a query
specification contains a partial
structure tree as well as some
conditions on data values (appearing as
terminals in the partial structure
tree). Query resolution consists in the
natching the partial structure and
satisfving the terminal conditions. This
same process can be applied on structure
trees of both instances and types.

Lo

Nuerying types can be very useful in
this environment since there is no well
formed, consistent, complete schema as
in data base systems, but a '"sparse" set
of interrelated types. Consequently the
user may have to choose between many
different types when performing an
operation.

Naming is a crucial problem for a system

adopting this approach. Different names
can he defined for types and type
components which are structurally and

conceptually very similar. A system may

support support certain types keeping
catalogs of type and component names,
with classes of synonyms.

3.2. Levels in document modeling

We have already said that there are
three levels in document modeling:
conceptual, logical and layout. They are

with the same
but they are essentially
Also different are the three
structure trees. However these

described grammar-based
formalism
different.

resulting

trees are Interconnected since, at the
end, they aim at describing the same
objects: the office documents.

The conceptual structure describes the

semantic components of the documents,
giving names to these components. Names
are useful in defining the type-level
part of the document structure and,

being meta-level information (as they do

not appear on the document as values)
they correspond to names that are
assigned in data base systems at the DDL
level. Name catalogs should be
maintained by the system in order to
facilitate the users in naming choices.
Since the form of document conceptual

structure depends on the semantic of the

document, the syntax for defining it
must be very flexible. A meta-grammar
should allow any semantic component’s

hierarchical decomposition, giving names

(i.e. meta-names) to these hierarchical
semantic categories. The meta-grammar
basic production, defining semantic

components, should be like:
{semantic_component> ->
{component_name> {semantic_component>+

We have already stressed the importance
of standards for the logical modeling
level as well as for the strictly
related layout modeling level, which is

necessary for the presentation of the
logical structure. In Ffact, an Office
Nocument Architecture (ODA) [13] is in
the process to be standardized by the

Manifacturers
International
Organization (IS0) and the
international organization
The ODA will give a
of the docunent
logical structure)
device-independent
the document

Computer
(ECMA), the

Furopean
Association
Standards
CCITT (the
for communication).
formal description
composition (in the
and a formal
description of
presentation/rendition (through the
ltayout structure). In this manner, it
will achieve the gpoals of standard
document interchange and document
presentation on different devices. The
ODA will also 1include the standard
formats for the multimedia data elements
contained in the office documents, such
as characters elements, geometric
elements, photographic elements, etc.
The «erammar definition for the logical
level and 1layout 1level of this model
will he defined according to the
specification lanpuage of the ODA. A
simple example of conceptual, logical
and lavout structures is given in Fig.3.

3.2.1, The ODA sub-model

In the ODA sub-model, the nodes 1in the
logical structure tree and the layout
structure tree are called logical
objects and layout objects. Terminal
nodes are called basic objects, while
non-terminal nodes are called composite
objects., Only basic objects have
portions of the document content (i.e.
multimedia data elements) directly
associated. Therefore the document
content is divided into content portions
which correspond, from the logical
view-point, to basic 1logical ohjects,
and from the layout view=-point, to basic
layout objects. The content of a basic
ohject is always of a single multimedia
data type. The bhasic objects can have a
further internal structuring, called
sub-architecture, which also will be
standardized. However, since
sub~architectures have no relationship
with their exterior (they only concern
editors, printers, scanners), they are

not part of the model.

Pure tree structures are not sufficient
to express all office document
structures (e.qg. tables with nested
elements) at logical and layout modeling
level. Therafore, 1in addition to the
hierarchical order it 1is necessary to
specify the organizational order among
the constituents of the composite
ohjects. A constructor defines how a
composite object is built by its
constituents and which selectors can be
used to access the constituents [13].

L1

Since in the model formalism only the
hierarchical tree structure can be
specified using the grammar productions,
the constructors in the logical and
layout structure tree cannot be directly
expressed in the structure {itself. A
solution 1is to represent a one-level
subtree with a particular coanstructor as

a two-level subtree in which the first
level is a branch whose RHS node
specifies the constructor, and the

second level is a branch whose RHS nodes
specify the constituent nodes. There are
three types of constructors:

1. The SEQUENCE constructor specifies a

sequential order for the
constituents of an object. The
constituents are of the same type

and are sequentially accessible.

2. The ARRAY(n) constructor specifies a
n-dimensional orthogonal matrix-like
order for the constituents. They can

be of the same type or different
types. They are directly accessible:
the selectors are n-tuples of

indices.

3. The AGGREGATE constructor specifies

no particular order of the
constituents, which can be of the
sane type or different types. They
are directly accessibles by

constituents names.

Any object is also characterized by its
properties. A property (e.g. the number
of a section) is of a certain property
type and has a certain property value.
Property types and value ranges are
standardized. Property types must be
described in the grammar of the logical
and layout levels of the model as
special symbols associated to the object
symbol in the RHS of a production. In a
logical or layout structure tree,
property values will be the RHS of a
simple branch whose LHS is the property
type node. This node 1is 1linked to the
object node as RHS of the same branch.

Most layout objects are two-dimensional
ares of rectangular form, called hoxes.
Composite boxes are composed of basic
boxes and/or other composite boxes.
Basic boxes are called blocks. All boxes
have properties ot type size, position,
character font, background color, etc.

component of a
according to ODA, is
contain
documents
set of

Another important
document structure,
the document profile. It
information for handling tha
as a whole and consist of a
attributes. The values of these
attributes may or may not appear 4s
document component (i.e. basic logical

CALL FOR PAPERS

(CONCEPTUAL
LEVEL)

CONFERENCE

IDENTIFICATION

CONFERENCE
CONTENT

CONFERENCE
ORGANIZATION

CONFERENCE
NAME

P
CDNFE
DA

RENCE LIST OF
TE TOPICS

IO

\

CONFERENCE)
LOCATION

() (]) ()
. CHATRMAN il 1060

!
PROGRAM IMPORTANT
COMMITIEE DATES

LOGICAL DOCUMENT

(LOGICAL
[;] LEVEL)
TEXT ATTRIBUTES | | PICTURES
PARAGRAPH STRING DATE PICTURE
L2 l | | [l I | | l Lz _-}-]
I | [

BLOCK

-- BLOCK

LAYOUT DOCUMENT

Conceptual, Logical, Layout Structure Trees

Fig. 3

L2

(LAYOUT
LEVEL)

objects). This means that attributes
such as document name, author, date may
also appear in some part of the physical
document, but may also be 1internal
attributes useful for other purpose such

s A
ana

4 -

£21
Lilliitg

mer 4

P o
inaexing,
etc.

"o a +
as agcunentc

retrieval, {interchange,

4. Using types for document retrieval

As seen in Section 3, a weak concept of
tvpe 1s necessary in the proposed model
because of the need of flexibility 1in
the office document definittion,
manipulation and retrieval. While a
docunent instance 1is composed by the
data values and internal structures of
the physical document, a document type
in our model is a subset of the internal
structures common to a class of document
instances. A document type 1is still
represented by its internal structures,
where live nodes show where and how (see

also the restrictions) components and
data values <can be added to obtain
instances. When types are enforced by
the system 1in order to support the
retrieval-by-content process, the
conceptual structure plays an important
role in the type definition. When types
are mainly exploited for document
creation/modification, the 1logical and

are more relevant (see
and "gallev" in

layout structures
the concepts of "style"
JANUS [20]).

LOGICAL STRUCTURE

CONCEPTUAL STRUCTURE

BASIC LOGICAL OBJECTS

BASIC LAYOUT 0BJECTS

LAYOUT STRUCTURE

Relationships among irternal structures
Fig. 4
three different

The relations among the

L3

structures are shown in Fig.4. Layout
and logical structures are orthogonal,
while conceptual structure intersects at
a certain level the logical structure.

It is important to highlight some
properties of conceptual and logical
structures. For each document internal

structure, the leaves of the conceptual
tree represent the semantic objects at
the lowest level that is relevant in the
application context. These objects are
also described in the logical structure,
where their syntactical composition is
specified. Hence, it is possible to link
the conceptual leaves to the
corresponding logical nodes . Four
categories of links can bhe identified:

1. 1-1 Link

A ?onceptual leaf is 1linked to one
and only one logical node. In this
case a logical (composite or basic

object) plays the role described by
the conceptual leaf. For instance, a
piece of text plays the role of
introduction in a business letter.

2. 1-N Link
A conceptual leaf 1is linked to
several logical objects. This case
happens when the conceptual leaf 1is

a complex object and its semantics
is embedded in different logical
objects. For instance, the

description of some characteristic
in a business report may span over
several sections or over several

paragraphs of one section.

3. N-1 Link

Several conceptual leaves are linked
to one logical object. In this case
the logical object plays different
semantic roles within the document.
For instance, in a hardware product
announcement a picture can be
considered as the histogram of costs
of a video display and an example of
its resolution capabilities.

4, N-N Link

This case 1is the most complex and
includes both the previous cases 2)
and 3).
The type specification is mainly
conceptual, but can contain some logical
aspects and even some actual values of

the physical document (the lowest level
of the logical structure). For instance,
let us consider that the type "Corporate
business letter" is enforced by the
system. 1Its structure mainly describes
the conceptual objects that are common
to all the instances of these letters.
However, it is also possible to specify
some logical <characteristics, as the
presence of the 1logo, and even some
values such as the sender address that

is common to all the instances.
Moreover, if the 1logo and the address
alwavs appear in the same portion of the
physical page, 1t is also possible to
think to include the corresponding
lTayout information in the type
definition. Another possibility to
include in the type definition some
attributes of the document profile. This
can he accomplished 1linking the 1leave
clements of the concep structure to
selected contained in the
document profile according to the O0ODA
standard. In Fig.4 the dashed part
represents the possible extension of the
type specification.

is

hoa
e

attributes

In the following we will consider first
the way in which types can be defined
explicitly by the Office System
Administrator or semi-automatically by
the system. Then we will briefly
describe the advantages of the weak
typing approach in query specification
and query processing.

4.1. Explicit type definition

definition as
operation 1is essentially an a-priori
operation, as in database environment.
The Office System Administrator, who f{is
an expert of the application
environment, will design the types
specifying their structures, and give
names to types., Type structures will
have live nodes. Restrictions associated
to live nodes will constrain the user
when sub=-structures or data values are
to be added during document creation or
query formulation for that type. These
types will be inserted 1in a system
catalogp, and so they will made
available to the office users all
the document operations.

The type an explicit

be
for

The flexibility of the
will allow to define
different classes of documents in the
office environment. Strong types are
suitable for all form-like documents,
with very stable structure. Live nodes,
in this case, can only generate data
values (using terminal grammar
productions). Weak types are more
suitable for less structured objects, as
all kinds of letters, reports, brochures
etc., which may contain tables, graphics,
images, voice comments and
conversations, Live nodes, in this case,
can generate various forms of new
structures (using any grammar production
and obeying to the associated
constraints).

approach
types for the

typing

Ly

4.2. Implicit type definition

Since 1t 1is always difficult to define
a-priori all and only the document types

that are actually useful 1in an office
environment, given its dynamic
operational characteristics, it is

useful to allow also the type definition
as an a-posteriori operation. This
second mode of type definition, which is
made possihle by this modeling approach,
can be partially supported by the
system. During office lifetime, the
conceptual and logical structures of all
the instances can be compared and the
regularities of these structures can be
synthesized 1in new type structures.
These structures are actually proposals
of conceptual and/or logical structures
that can fit a number of instances
greater than some threshold value. This
can be accomplished at regular intervals
by some background process, which then
reports to the Office System
Administrator for confirmation and
assistance (e.g. defining names of new
types, names of internal conceptual
components, exact positioning of live
nodes and assoclated restrictions,
etc.).

definition includes also
a-posteriori type assignment and
reorganization. In fact, the internal
structures of the document instances can
be compared with already defined types,

Implicit type

other than those they where <created
from. In this case, document instances
can bhe re-assigned to catalogued types
which are more specialized than their

original types.

Proposals of type definition can also be

derived from the analysis of the
documents coming from outside the office
via electronic mail and even in
facsimile form. In the last case, the
common characteristics will be only
lopical or layout such as the presence
of a table or a plcture on several
coming instances. The table in Fig.5

summarizes these situations,

4.3. Hierachies of types

It is not reasonable to imagine the type
catalog as a single level, static and
completely defined schema as in database

systems. A more probable situation is
one in which <complex hierarchies of
types and subtypes exist and are
connected by relations similar to the
"is a" relationship of database wmodels
f19].

INPUT MODE PROCECURE oUTPUT
TYPE FROM TYPE CATALOG NEW TYPE
EDITING

SELECT A TYPE,THEN REFINE
INSTANCE ’
AUTGACMOUS DEFINITION NEW INSTANCE

NO CCNCEPTUAL

STRUCTURE RECOGNITION OF TYPE + LINK TO TYPE
ELECTRONIC MAIL

WITH CONCEPTUAL COMPARISCN OF INTERNAL NEW INSTANCE

STRUCTERE STRUCTURES + TYPE PROPOSAL

NEW INSTANCE/TYPE

SEGMENTATION
8LOCK RECOGNITION NEW
FACSIAILE CHARACTER RECOGNITION S
COMPARISCY OF LCGICAL AND T
LAYOUT STRUCTURES

Instances and types in document input

Fig. §

The more general types are at a higher
level of the thierarchy and several
conceptual or logical subtypes are
origined from them by refining some
objects. For instance, a possible type
can be "Product announcement letter'" and

two possible subtypes are "Hardware
products”™ and "Software products". Thus,
in docunent creation and query

specification, the most specific type
(or subtype) 1is chosen and then 1its
internal structure is refined until the
basic objects and the actual values of
document data.

Fach instance 1is 1linked to the most
specific type that 1is present in the
type catalog and that fit its structure.
If an instance is structurally modified,
it may happen that 1its structure does
not fit any more the type specification.
In that case, the 1link s shifted
towards the higher levels in the type
hierarchy until the consistence bhetween
instance and type is realized. In
Fig.6.a the type hierarchy and the links
with the set of instances are shown.

4.4, Query specification

The query specification in our approach
is very similar to the document instance
definition. In fact, in a query
specification {1t 1is possible to have
conditinns on the internal structures
(logical, layout and conceptual) as well
as conditions on data f{tems of the
wanted documents (see Fig.7).

TYPE HIERARCHY

)

INSTARCES

-

—®

®

()

/1)

————e I5-A RELATIONSHIP BETWEEN TYPES

LINK INSTANCE-TYPE
fig. 6.a

oo
& O

Example of type hierarchy in query processing

Fig. 6.b

TALL FOR PAPERS)

CORFERENCE LIST OF THPORTANT
LOCAT 10N ToPICS DATES
l { (araar-2)
SUBMISSION
* EUROPE / # USA BB AL DEADL INE/ > 9/ %785
PAPER_SUBMISSION

L5

The system

matching

process we

@l

SNEN : undefined structures

Query specification
Fig. 7

is then asked to select the
document instances. In this
implement the retrieval by

content on documents.

Moreover,
catalog.

conditions

the user can query the type
In this case, the query

refer to types. The selected

tvne is the most specific 1ia the type
catalog containing the desired
characteristics. A further step 1is then

possible, 1i.e. the user can refine and
extend the selected type specification
by using the model tools for the

definition of the {nternal structures of
the document instances. The result is a

type specification that in general |is
not present in the type catalog, but can
be useful in query processing for
restricting the class of matching
instances. Some undefined areas are
allowed in the type specification. These
undefined areas «can match with any
structure portions of the stored
documents, while the defined areas are
reauired to match exactly (both for

structures and data value conditions).

4.5, Ouery processing

The quety processing problem is similar,

in principle, to the partial subtree
matching problem found in semantic
network interfaces to database systems.

During query processing the established
relations between 1instances and types
can he used for narrowing the number of
instances that must be checked for
matching. First, the most specific type
matching the conditions is identified by

comparing the corresponding structures,
then all the instances directly linked
to the type are matched. At this point,
the system goes down in the type
hierarchy and, for each (sub)type,
checks first the ¢type definition and
possibly the 1linked instances., In this
way the instances that are linked to a
non-matching (sub)type are quickly
disregarded. Let us imagine the
situation of Fig.h.b in which a type
hierarchy is shown. We can select T2 as
the starting type specification in the
auery specification and enrich its

structure according to T4 and not to T5.
Nuring query processing it is sufficient

to start from the instances directly
linked to T4. Moreover, if the structure
of T4 does not match the query, all the

instances linked to T6 and to its
subtypes can be disregarded. Sometimes
query processing can be perforped even
more efficiently 1if the storage files
containing the specified data item
values are searched first and then the

structures are compared.

Yhen the specified condition 1is complex,
it 1is worthwhile to start different
parallel processes for matching it.
Thus, one process can search the storage
files <containing the document data,

L6

select the
and the
When a document

while another process can
matching Structures
correspondent instances.
is retrieved, it is immediately
displayed at the workstation and, while
the user is examining it, the system can

proceed in the query processing.

Moreover, in this approach the user can
decide to dynamically change the filter
or to choose a retrieved document type
as a new filter (i.e. substituting data
values with conditions on them and
leaving undetermined other components).
This is a very flexible environment for
dynamic query definition by the user.

5. Conclusions and future work

Office documents, as will be wused in
future office information systems, can
have very complex structures. Moreover,
these structures tend to differ fron
instance to instance, S0 making
impossible a strict type definition for
classes of documents, In the modeling
approach for office documents presented
here, we have tried to be as flexible as
possible in order to allow a suitable
representation for the document
structure and content, as well as for
operations such as editing/formatting,

interchanging, presentation, and
especially filing and retrieval.

In this paper we have focused on the
office document retrieval, However,
other operations necessary in office
environment can be supported by this
model. For example, document
modification means to operate on the
document internal structures, according
to grammar rules and restrictions, as
well as on multimedia data values.
Document rendition, on all possible
display/printing devices, means to
present the document data values, which
are basic logical objects, according to
the specifications contained in the
layout structure. Document input may be
a critical operation in our model. 1In
fact the system must understand and

internally reproduce the structures of a
document when it is entered. If the
document is entered through an
interactive document editor the user can

take advantage of the already defined
document types and can be helped by the
interactive system that knows about

admissible actions at every step of the
process., If the document is presented to
the system in facsimile format, it is
necessary to scan and parse the document
as a compiler would parse a program.

Completely automatic scanning and

parsing is in most cases unfeasible
unless a type 1s explicitly associated
to the facsimile documents by the
operator. If the document 1is sent by

mail from another system, we
that it complies to the 0ODA
logical and layout

clectronic
must suppose
standard. Therefore,

structure should be 1included in the
trasmission and should be understood by
the system. The conceptual structure
would be present only 1if the sending
system knows about our model.

Future studies will deal with formal
specifications of operations on office
documents (both those concerned with

standards and those concerned only with
retrieval functions). An important topic
will be the investigation of methods for
fast access to document internal
structures for an effective
implementation of retrieval by content.
For this purpose, also efficient
representations in storage of these
modeling structures (i.e. using bit
patterns) will be studied. The proposed
model will be further studied and
evaluated in the context of a project in
the area of "Office Systems'" entitled
"Nevelopment of a Moxed-mode Message
Filing System (MMFS)", which 1is part of
the FEuropean Strategic Programme for
Research in Information Technology
(ESPRIT).

REFERENCES

[1}] Tsichritzis, D. and Christodoulakis,
S., '"Message files", ACM Trans.
Office Information Syst. Vol. 1(1),
pp.88-98 (Jan. 1983).

[2] Gehani, N., "The potential of forms
in office automation", IEEE Trans.
on Commun. Vol. Com=-30(1),
pp.120-125 (Jan. 1982).

[3] Croft, W.B., "Applications of

information retrieval techniques for

the office", Proc. 6HAth ACM-SIGIR
Conference on Research and
NDevelopment in Information

Retrieval, pp. 18-23 (1983).

[4] Limb, J.0., "Intepration of media
for office services", Of fice
automation conference digest,
pp.353-355 (March 1981).

{5] 3racchi, G. and Pernici, B., "The
design requirements of office
systems”, ACM Trans., Office
Information Syst, Vol. 2(2),

pp.151-170 (April 1984).

b7

transactions
IRS-DBMS

3rd Joint
Research and
Information

"Nested

[6] Schek, H.-J.,
in a combined
Architecture", Proc.
ACM~-BCS Symposium on
Developement in

Retrieval (1984).

Adiba, M., Nguyen, G., "Information
processing for CAD/VLSI on a
generalized data management systenm",
Proc. Tenth Int. Conf. on Very Large
Data Bases (1984).

J.B.,

.
G.,

(71

(8] Chrismet, c.Y.,
“The BIG project",
International Conf. on

1983)

Crampes,
Zurfluh,
Proc. 2nd
Databases (Sept.

Lopez, M., Velez, F., "Modeling
handling generalized data in the
TIGRE project"”, Working Paper, IMAG,
St. Martin d'Veres, France (1084).

Smith, J.M. and Smith, D.C.P.,
"Database abstractions: Aggregation
and generalization", ACM Trans.
Database Syst. Vol. 2(2), pp.105-133
(June 1977).

Brodie, M.L., "Data abstraction,
databases and conceptual modelling',
Proc. Sixth Int. Conf. on Very Large
Data Bases, pp.105-108 (1980).

Furuta, R., Scofield, J.,
A., "Document formatting
Survey, concepts and
Comput. Surv. Vol, 14(3),
(Sept. 1982).

Horak, W. and
object-oriented office
architecture model for
and interchange of documents",
2nd ACM SIGOA Conf. (1984).

Gibbs, S. and Tsichritzis,
data modelling approach for
information systems', ACM
NDffice Information Syst. Vol.
pPP.299-319 (1983).

Tsichritzis, D.,
S., Economopoulos,
C., Lee, A., Lee, DND., Vandenbroek,
J., and Voo, C., "A multimedia
office filing system”", Proc. Ninth
Int. Conf. on Very Large Data Bases
(1983).

Tsichritzis,
Rabitti, F., Christodoulakis,
Gibbs, S., Bertino, E., Fedeli,
Faloutsos, C., Economopoulos,
"Design isuues of a file server
multimedia documents™, Proc.
ESPRIT Technical Week (Sept. 84).

and

(9]

f10]

(1]

[12] and Shaw,
systems:
issues",

Pp.417-472

[13] Kronert, G., "An
document
processing

Proc.

[14] D., "A
office
Trans.

1(3),

[15] Christodoulakis,

P., Faloutsos,

[16] D., Thanos, C.,
S.,
A.,
P.,
for

Ist

Dam, A.,
Part 1
Vol.

[17) Meyrowitz, N. and van
"Interactive editing systems:
and Part 1II", Comput. Surv.

14(3), pp.321-415 (Sept. 1982).

18] Fraserx, C.W., "Syntax-directed
editing of pgeneral Aata structures',
Proc. ACM Symposium on Text
Manipulation, pp.17-21 (June 1981).

f19) Tsichritzis, D. and Lochovsky, F.,
"Data Models", Prentice~Hall,
Englewood ClLiffs, N.J. (1982).

{20] Chamberlin, D.D., King, J.C.,
Slutz, D.R., Todd, S.J.P, and Wade,
B.W.,, "JANUS: An interactive system
for document composition'", Proc. ACM
Symposiun on Text Manipulation,
Ppp.82-91 (June 1981).

L8

