
TllE TYPE CONCEPT IN OFFICE DOCUMENT KETRIEVAL +

* **
Barbie, F. and Rabitti, F.

* Dipartimento di Elettronica, Politecnico di Milan0
P.zza L. da Vinci, 32 20133 Milano, Itsly

** IEI - National Research Council
Via S. Maria, 46 56100 Pisa, Italy

Abstract ----

The problem of the retrieval by content
of office documents is addressed here.
Yowever, the retrieval by content is
greatly enhanced if the semantic role of
document objects can he described. For
this reason we introduce a conceptual
level of modeling resulting In the
definition of conceptual structures of
documents.
Type definition is essential for the
retrieval, hut since office document
structures tend to Rreatly differ from
instance to instance, we introduce the
concept of weak type, allowing the
definition of types at different levels
of detail (type hierarchies).
In this paper a modeling approach based
on these ideas is presented. Particular
emphasis is put on the type definition
and the use of types in query
formulation and processinR.

1. Introduction -

In office environment a very large
amount of information is manipulated in
form of documents.

+ The ideas exposed in this paper were
developed hy the authors during the
ESPRIT pilot project 28 entitled
“Development of a Mixed-mode Message
Filing Svstem (MHFS)“, however the views
exnressed here are those of the authors
and not necessarily those of the EEC’s
Information Technology Task Force.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

This information can be either in a
formatted form (as attributes in office
forms) or in a unformatted form (i.e.
text, image. and voice, or combinations
of them). It is important to study tools
for representing in a formal manner
office documents, in order to allow a
better handling of these documents by
automatic procedures implemented in
office information systems. In
particular, filing, distribution and
retrieval of office documents are basic
operations of all office procedures Ill.

Office documents a r e structurally more
complex than objects usually managed in
form processing systems t21
information retrieval systems 13;:
Increasing efforts in the office
automation are Riving more and more
importance to the new concept
electronic office documents 14;):
Electronic documents will he created and
manipulated at user workstations,
transmitted over communication networks,
archived in high-capacity file servers,
etc. The task of retrieving electronic
documents in this dynamic and distributed
environment hecomes rather difficult.

Retrieval by name is possible only for a
limited number of well known items (as on
the personal workstation). Retrieval by
location requires a careful organization
of the overall system and is not always
possible. In this framework retrieval by
content (i. .e. Riving some specification
of the presumed content of the wanted
documents) assumes an increasing
importance.

An electronic document has components
which may contain different types of data
and may be further structured into other
components (such as the body of a paper
that is composed of sections nnd
paragraphs and contains images and data
attributes emhedded in text).
In the following we will

Proceedings of VLDB 85, Stockholm 34

following we will refer to office
documents assuming for them the
electronic documents of the coming
office information systems.

The problem of modeling such documents
is receiving increasing attention in the
research. Implicit document definition
models can be recognized in several
different proposals about systems
managing office documents [5]. Among the
sys terns oriented to filing and
retrieval, the more common approach is
to extend the functions of database
management sys terns, adding the
capability to deal with. text, image etc.
in addition to the original formatted
data. Thus, the associated models are
usually extensions of well known
database models. Particular attention
has been given to the relational model
151 and the entity-relationship models
171.

In the BIG project (81 office documents
can he described in a conceptual schema
defined using a database-like model,
closely derived from the
entity-relationship model. An extension
is the introduction of text units and
picture units as attributes of entity
classes. These units do not present the
atomicity property of data attributes.
In fact the system allows operations on
their content. For example, operations
on text units, such as searching for
key-words, inserting and deleting
strings of characters, are defined in
the system. Moreover, the system
enforces principles such as data
non-redundancy, integrity etc. which are
more typical of database systems than of
document systems.

The TIGRE project 191 aims at the
implementation of a DBYlS with
capabilities for handling generalized
data. In this case texts and images are
hig sized objects while office documents
are considered as representative of
complex multi-media objects. In TIGHE a
data model has been defined as A typed
extension of the entity-relationship
model w h i c h includes the document
formalism as a type constructor. Two
categories Of abstractions are
supported: generalization and
aggregation. They are similar to those
defined in other semantic data models
[lo1 [ill. In the formalism to represent
structured documents, each document is
represented using a standard form which
takes into account its logical structure
and its presentation and semantic
attributes.

The type concept is a key factor to
understand the fundamental difference
between the document modeling approach
in editing/formatting systems and
filing/retrieval systems. A document
type for editor/formatter models is a
skeleton (specified either by its syntax
or by formatting commands) which can be
useful for creating new document
instances of that type without having to
start from scratch every time [12]. The
document type in systems oriented to
filing and retrieval iS the
specification of the structure and
components common to all the document
instances belonging to the same class.
Since all the documents belong to some
already defined type, it is possible to
implement better storage and access
methods. Moreover the retrieval can be
enhanced because the sys tern can
interpret the content of any component
of the document in a class (according to
the definition of the corresponding
type) l

This paper has the following structure:
in Section 2 we discuss the criteria
assumed in the definition of the
proposed model. In Section 3 we describe
the formalism for document structure
definition and the different levels of
document modeling. In Section 4 we
present the adopted concept of type,
outlining the resulting advantages in
document retrieval. In Section 5 we
hrief ly discuss other operations in the
model and the future work planned.

2. - Issues in document modeling --

A suitable document model should
integrate the filing/retrieval and
editing/formatting typing approaches,
trying to satisfy two conflicting
criteria:

1. To be as flexible as possible,
because the structure of the office
documents iS impossible to
predetermine.

2. To provide as much knowledge as
possible about the structure of 3
given document. in order to assist
in the creation, filing and
retrieval of these documents.

The first criterion would lead to a
model without types (in the database
meaning), letting each document instance
have a structure defined for its owu,
like in usual document editors and
formatters, while the second criterium
would lead to a strongly typed document
model, like the ones for filing and

retrieval systems. This allows to
efficiently store and handle the
corresponding system objects (such as
records, forms or tuples), since the
system could take advantage of the
oh jects regularity and generate storage
structure an a per-type rather than
per-instance basis. Unfortunately, this
is not the case with more general
objects as office documents, since
similar docunents can have different
structures. Uowever the type concept is

still useful as it can aid in
formulating queries and creating and
modifying, documents.

An office document model should aim at a
type concept that is a good compromise
between the two above criteria trying to
obtain the advantages of both
database-oriented models (for filing and
retrieval onerations) and
editor-oriented models (for composition,
editing and presentation operations). A
type should be considered as being the
definition of all common properties of a
set of documents, letting a document
instance have a much more complex and
detailed structure.

In many existing document models the
internal structuring of documents has
heen optimized according to different
requirements for different operations,
such as transmission efficiency for
document interchange or access
efficiency for filing and retrieval. In
order to avoid several conversions of
the internal structure of a document
during its lifetime, it is apparent the
need of a unified model including all
the structuring aspects necessary For
the different operations. However, in
order to he useful, this model should be
widely accepted and understood. In fact,
if a document is generated in an office
system workstation, an internal
structure is associated to its visible
data elements. The internal structure is
transmitted together with the document.
If the receiving workstations or systems
do not know ahout that document model,
they could not interpret the internal
structure of the document and no further
processing could be performed on it. The
interchange of docunents is the
operation where the need of
standardization is more apparent. In
fact, when a document with its internal
structure iS encoded in some format at
one site, the same Format should be
known at the other side of the
transmission in order to decode and
reconstruct the document and the
internal StrlJCtUre.

A document may e(o through successive
editing operations after its creation.
Resides the document final form [13], it --
is necessary to store its revisable form
which can be further modi.fied.Art of
the internal structure should include
its syntactic components and is called
logical structure. --

Documents must be presented on physical
output devices by mapping the logical
structure into the external
representation. This is called the
rendition process 1131. The added
information necessary in this process
should be coupled to the logical
structure and should he included in the
internal structure (for instance, see
the template concept in (141). This
information is called layout structure
since it shows how the data elements
should fit the layout of the document at
presentation time.

Two modes of document retrieval should
be possible: retrieval by location and
retrieval by content. The first mode of
retrieval mimics the organization of
conventional offices, where docunents
are retrieved picking them from the
location where they were stored. In the
second mode of retrieval the user
specifies a query by treat iny: a
partially complete specification of the
tnternal structure and specifying some
conditions on the document content [151
[16]. In retrieval by content the
desired document must be addressed by
some of its characteristics. Among them,
a crucial role is played by the semantic
characteristics which describe the
meaning of the document composing
objects. This information constitutes
the conceptual structure that is defined
giving names to the semantic components
of a document. The conceptual structure
i.S added to the layout and logical
structures and complete the document
internal structure.

3. The office document model - --

As resulti.ng from the previous
discussion, in a off ice docunent we can
distinguish different .Level s of
structure. At a more general level, we
can see the document as composed of
semantic components. They reflect the
common understanding by the users of a
class Of similar documents. These
semantic components describe the
conceptual structure of the particular
document, which is also common to
several documents with the sa.me function

36

in the off ice organization (e.g. the
“meet tn,q subject” in a “meeting
announcement letter”, the “topics of
interest” in a “conference call for
papers”).

At R more superficial level, the
svntactic structure of the document is
apparent. ln fact, what is seen at the
surface is the composition of multimedia
data values i? the document. These
syntactic components constitute the
logical structure of the document (e.g.
section, nie chart, table, etc.). This
structure can sensibly vary even among
documents with the same semantic
structure whi le can he similar for
documents with different semantic
content. A clear distinction between the
two levels of conceptual structure and
logical structure is that the former
reflects the docunent content with
respect to an application environment
(and then it cannot be suh.ject to
standardization) wh i 1 e the latter
reflects the content of any office
document in any application environment
(and then it can be subject to
standardization).

In order to guide the presentation of a
multimedia docunlent, a layout structure
should be strictly associated to the
IoRical structure. The layout strut ture
shows how and where the logical elements
should he displayed in the physical
document. Logical structure and layout
structure should he defined according to
t h e international standards under
development [131.

For the definition of all these internal
structures we will follow the same
approach of syntax-directed editors
1171. Syntax-directed editors are very
f lexihle in defining document structures
[181. They can he exploited in i:;
def tnition of the logical, layout
conceptual structur+>s. However they
usually allow to operate on a per
instance hasis, that is in the
definl t ion of each document instance
structure. Instead we intend to explore
this approach as a formalism for a
complete definition Of a n office
document model ’ all its three
components (logilCn;ll, layout and
conceptual). This requires to operate
not only at the instance level, hut also
at the type level.

ln t h e following we i.ntroduce R
formali.sm hased on context-free gramnars
for the definition of the model. In
fact, different ,Tramiaars wi.11 he used
for the definition of the three

different I.evels of modeling. Since each
document structure is defined l)Y the
formalism of the corresponding modeling
level, these different grammars will
allow to clef ine the three different
structures of the documents. W e will
present the formalism in abstract terms,
implying that it will be applied to the
three different cases.

Let us assume to adopt a context-free
grammar G Eor the specification of a
document structure (either logical,
layout or conceptual);

G=(N,T,R,P)
where :
N is the set of non-terminal symbols,
T is the set of terminal symbols,
R in N is the root symbol
P is the set of grammar productions.

Productions have the form:
A -> “alpha”

where A is a non-terminal (in N) and
“alpha” is a string: of terminals (in T)
and non-terminals (in N). A is the left
hand side (LIIS) of the production,
“alpha” is the right hand side (US) of
the production. Only two forms of
productions are allowed: i. n the first
the R:lS is a string, of non-terminals, in
the second the RIIS is one terminal. The
first iS called a non-terminal
production while the second a terminal
production. These restrictions 0 11 the
format of productions do not restrict
the power of the context-free grammar.

For the specification of the productions
We II s e ia n extended HNF representation,
where each production has the for,iiat:

<A> -> <i).l> [+]...<H.N>[+j
where <K.i> are non-terminal symbols
which can be optionally tagged by a “+”
if they are repeatin<<.

The docunent structure (either logical,
layout and conceptual) is called
Structure Tree, which is conceptually
equivalent to the parse-tree containing
all the productions of G applied from
the root symhol until the complete
document is obtained.

The Structure Tree iS composed oE
branches. A branch is a subtree of only -
one level in depth (this means that an
upper node is connected by an edge to
several lower nodes), shaped according
to the productions in P of G, and havink:
the nodes labelled with II II i q u e
identifiers IDS.

The branch I3 is defined as instantiation
of the production P?I iff:

37

- Its upper node is the instantiation
of the non-terminal symbol in the
1, H s of the production PN.

- Its 1 ower nodes are the
tnstantiati.ons of the non-terminal
symbols (in the frame order,
established hy the connecting edge)
in the RHS of the production PN.

The node corresponding to a repeating
svmbol may or may not he repeating. In
the Former case it is tagged by a ‘r+r’,
7 .e. ‘CD+. wotice that for the branches
instant iat Lng terminal product ions the
lower level contains only one node which
is the instantiation of a terminal
symhol. We assume in this case that In
is t!le actual value (or pointer to) of -- -
the data ttem represented bY the
terml nal symbol.

4 Structure Tree is composed by set of _-- -
branches which correspond to the
productions exploited in the generation
of a document or type. The root of the
tree is the 13 instantiattng the root
symbol P of G. Then the branches can be
incrementally added to the structure
tree according to the grammar
productions. we can notice that in the
Structure Tree only one edge can depart
from a node instantiating a
non-repeating symbol, while more edges
(each corresponding to a branch) can
depart from a node instanttating a
repenting symbol.

We define a leaf node as a node with no
exi. t lng edges. A termi.nal node is a leaf
node instantiation of a terminal symbol.
A live node is a node which can generate
a new branch according to the
productions of the grammar. A live node
is essentially a spring for new subtrees
in the Structure Tree. Hence,
non-terminal leaf node is alive (tha:
is, it can he a spring for new
subtrees), while any ltve node that is
not leaf must he repeatin?. A partial
example of a grammar and a derivated
Structure Tree is shown in Fig. 1.a and
rig.1.h.

Restrictions are dynamic limitations for
the introduction of new branches in the
Structure Tree. Restrictions R r e
expressed in form of special statements
attached to some nodes in the Structure
Tree. Restriction statements are useful
in the instance creation (or in the
specification of more detailed types)

starting from types, since t!ley can
impose restrictions in this process.
This can he a guidance For less
experienced users who cannot manaRe the
flill power of the qrammar productions.

GWR PROCUCTIONS

. P5:B b

PI A BCtD P6:D d
.P2 c FG + P7:H h
P3 c H+JKt PB:I i
P4:G IL P9:L L

Fig. 1.a

STRUCTURE TREE

A-l

b--v----B-2
c:3

I
J * -. I I I

:)I-7,: J-8 K-9 F-10 G-11

I..
1-16

I

:-L-17+'
fi'

1 L f.

live node : ?:‘;

my node : x

Fig. 1.b

For this reason. restriction statements
are meaningful only as part of tyl)e
structure trees. Different types of
restrictions are introduced.

Ouality restriction on nodes -----
!J e can restrict the set of
productions in P of G which can he
used t 0 instant iate a new branch
starting from a live node. A
special statement is attached to
the node saying that a new branch
in the Structure Tree must he the
instantiation of one of t h e
productions enlisted in the
restriction statement (see
Fis.2.a).

Oualitv restriction on subtrees _--
!J e can pre-de f ine -different
subtrecs (composed of several
levels of branches) starting from a
live node. In this case, this
restriction statement says that if
a subtree is to he Renerated from
this live node, its structure is
hound to be like one of t h e
pre-defined subtrres (see Fig.2.b).

Ouantity restriction on nodes -.-
W e can restrict the number of
branches which can be generated
from a repeating node in the

38

Structure Tree. A special Restrictions are very useful in the type
restriction statement is introduced definition. They allow to define type
saying that at most MAX branches characteristics inside structure trees,
departing from this repeating node so resulting in a common representation
can be present at ~7’1.7 time in the of types and instances via Structure
Structure Tree (see Fig.2.c). Trees.

L-3

: F Ia
: :

: :
L,---------J N

Fig. 2.a L-.- --.______:

L . - - - - - - - - -- -. ---. -;

Clt
_---__

--__
[RESTRICTION 2]

I
--._

:-----
I ;

---------7

?l I

j I++

i
Lt I

L- - ---.- . ..______.

Fig. 2.b

c-1+

Fig. 2.c

Fig. 2.d
i.-- - -- ._..__ --- .;

Ouantity restriction on subtrees _-
We can predZi:lne a subtree
(composed of several levels of
branches) starting from a live
node. In this case, this
restriction statement says that in
the specialization/instantiation
process either this live node will
generate a null element (that is,
applyinr: the terminal production
<X>->[NULL]), or will generate n
suhtree whose structure is bound to
be like the predefined subtree. If
the 1 ive node Is repeating, the
quantity restriction on suhtrees
can specify the maximum number of
replications of the pre-defined
suhtree which can depart from this
live node (see Fig.2.d).

3.1 Type and instance concepts --

Having formally presented the adopted
model, it is possible to define the
concept of document type and instance in
the new meaning of this document
modeling approach.

A Structure Tree corresponds to a pure
instance iff there are no live nodes in
it. Since terminal nodes are leaf nodes
which are not alive, in a pure instance
Structure Tree all leaf nodes are
terminals. Intuitively, - - any document
instance has a “complete” structure
tree, that is, a structure tree where
all the possible top-to-bottom paths
starting from the root node are
completed up to a leaf node whose ID is
a multimedia data value, instantiation
of a terminal symbol.

A Structure Tree corresponds to a tYpe
iff there is at least one live node in
it. This type concept is more general
than the usual data modeling concept
[19] of type for formatted data. In fact
it is comprehensive of the type concept
of both strongly typed and weakly typed
data models. The instantiation or
specification process on a type is
adding new branches in the Structure
Tree as instantiations of grammar
productions and with the restriction
statements already in the Structure
Tree. We define a strong type as a type - --
which can only be instantiated by adding
terminal nodes. We define a weak type as
a type which can be instantiated by
adding any node (also non-terminal).

This concept of strong type is
equivalent to the type concept at the
schema level of data base models. In
fact, instantiating a strong type can
only consist in adding multimedia data
values of specific types, which is
equivalent to adding terminal nodes to
the Structure Tree. Instantiation of H
s tronp, type is a DML operation in the
data base terminology.

The concept of weak type is more
general. Since non-terminal nodes can he
added to the Structure Tree, composed
objects can be added during the
instantiation process. These document

39

components correspond to new subtrees of
any complexity. (Restrictions on
suhtrees can impose limits to this
freedom.) Thus, the instantiation of a
weak tvpe may correspond to a phase of
tvpp definition, at schema level, in
data base models. This is a DDL
operatton in the data base terminology.
Tt can be combined to a DML operation,
if values are also defined. It is clear
that in this approach, using the partial
specification process on the structure
trees, there can he complex hierarchies
of inclusion among weak types. They may
be, in the general case, non-tree-like
hierarchies.

The flexibility resulting from the weak
type concept is necessary because of
characteristics of the objects
(multimedia documents in the office) to
model. The Flexibility required, as for
adding new complex components (i.e. a
new section with tables and graphics),
cannot be given by strong types.
Moreover the system can exploit the
complex hierarchies of weak types by
keeping catalogs of system enf arced
types. These system types can he useful
for the document instantiation, giving
the user flexible document skeletons;
for the query definition, ITiVillE the
user flexible query-by-example
skeletons; for querv processing, IF the
document search is restricted within a
certain type (the most specific type
applfcahle for the query).

The flexibility of this typing approach
al lows types For the different classes
of documents in the office environment
to he defined. Strong types are suitable
for dill form-like documents (i.e. those
with a very stable structure). Weak
types are more suitahle for less
structured objects, such as letters,
memos, reports, brochures and other
office documents containing tables,
graphics, images, voice comments and
conversations. In this case, the
possibility of establishing hierarchies
on weak types is very useful.

Since structure trees can represent the
internal structures of both types and
instances, it is possible to query types
as we1 1 as instances. In fact a query
specification contains a partial
structure tree well
conditions on data atalues (app~S~ri.n~o~~
terminals in the partial. structure
tree). Query resolution consists in the
natching the part ial structure and
satisfying the terminal conditions. This
same process can he applied on structure
trees of both instances and types.

querying types can be very useful i n
this environment since there is no well
formed, consistent, complete schema as
in data base systems, but a “sparse” set
of interrelated types. Consequent Ly the
user may have to choose between many
different types when performing an
operation.

Naming is a crucial prohlem for a system
adopting this approach. Different names
can he defined for types and tyl)e
components which are structurally and
conceptually very similar. A system may
support support certain types keeping
catalogs of type and component names,
with classes of synonyms.

3.2. Levels in document modeling -- ---

We have already said that there are
three levels in document mode Ling :
conceptual, logical and layout. They are
described with the same grammar-based
formalism hut they are essentially
different. Also different are the three
resulting structure trees. However these
trees are interconnected since, at the
end, they aim at descrihl.ng the same
objects: the off ice documents.

The conceptual structure describes the
semantic components of the documents,
giving names to these components. Names
are useful in defining the type-level
part 0 f the document structure and,
being meta-level information (as they do
not appear on the document as values)
they correspond to naines that are
assigned in data base systems at the DDL
level. Name catalogs should be
maintained by the system in order to
facilitate the users in naming choices.
RI nce the form of document conceptual
structure depends on the semantic of the
document, the syntax for defining it
must he very flexible. A meta-grammar
should allow any semantic component’s
hierarchical decomposition, giving names
(i .e. meta-names) to these hierarchical
semantic categories. The meta-grammar
basic production, defining semantic
components, should he like:

<semantic-component> ->
<component-name> <semantic- component>+

We have already stressed the importance
of standards for the logical modeling
level as well as for the strictly
related layout modeling level, which is
necessary for the presentatfon of the
logical structure. In fact, an Off ice
Document Architecture CODA) [13] is in
the process to be standardized by the

40

F.uronean Computer Manifacturers
Association (ECMA), the International
Standards Organization (ISO) and the
CCITT (the international organization
for communication). The ODA will give a
formal description of the document
composition (in the logical structure)
and a formal device-independent
description of the document
presentation/rendition (through the
layout structure). In this manner, it
will achieve the goals of standard
document interchange and document
presentation on different devices. The
ODA will also include the standard
formats for the multimedia data elements
contained in the office documents, such
as characters elements, geometric
elements, photographic elements, etc.
The qrammar definition for the logical
1 eve1 and layout level of this model
will he defined according to t h e
snecification languap,e of the ODA. A
simple example of conceptual, lorJica1
and lavout structures is given in Fig.?.

3.2.1. The ODA suh-model --- ---~

Tn the ODA sub-model, the nodes in the
logical structure tree and the layout
R tructure tree are called logical
objects and layout objects. Terminal
nodes are called basic objects, while
non-terminal nodes are called composite
objects. Only basic objects have
port ions of the document content (i.e.
multimedia data elements) directly
associated. Therefore the document
content is divided into content portions
which correspond, from the logical
view-point, to basic logical objects,
and from the layout view-point, to basic
layout objects. The content of a basic
object is always of a single multimedia
data type. The basic objects can have a
further internal structuring, called
suh-archi tecture, which also will be
standardized. However, since
suh-archi tee tures have n 0 relationship
with their exterior (they only concern
editors, printers, scanners), they are
not part of the model.

Pure tree structures are not sufficient
to express all off ice document
structures (e.5. tahles with nested
elements) at logical and layout modeling;
level. Therefore, in addition to the
hierarchical order it is necessary to
specify the organizational order among
the constituents of the composite
oh jects. A constructor defines how a
composite ohjec t is built by its
constituents and which selectors can be
used to access the constituents [13).

Since in the model formalism only the
hierarchical tree structure can be
specified using the grammar productions,
the constructors in the logical and
layout structure tree cannot be directly
expressed in t Ii e structure itself. A
solution is to represent a one-level
subtree with a particulnr constructor as
a two-level subtree in which the first
level is a branch whose RHS node
specifies the constructor, a n d the
second level is a branch whose R!iS nodes
specify the constituent nodes. There are
three types of constructors:

1. The SEQLJZNCE constructor specifies a
sequential order for the
constituents of an object. The
constituents are of the same type
and are sequentially accessible.

2. The ARRAY(n) constructor specifies a
n-dimensional orthogonal matrix-like
order for the constituents. They can
he of the same type or different
types. They are directly accessible:
the selectors are n-tup1es of
indices.

3. The AGGREGATE constructor specifies
no particular order of the
constituents, which can be of the
sane type or different types. They
are directly accessibles by
constituents names.

Any object is also characterized by its
properties. A property (e.g. the number
of a section) is of a certain property
type and has a certain property value.
Property types and value ranges are
standardized. Property types must be
described in the grammar of the logical
and layout levels of the model as
special symbols associated to the object
symbol in the RHS of a production. In a
logical or layout structure tree,
property values will be the RHS of a
simple branch whose LHS is the property
type node. This node is linked to the
object node as RHS of the same branch.

Most layout objects are two-dimensional
ares of rectangular form, called boxes.
Composite hoxes are composed of basic
hoxes and/ or other composite hoxes.
Sasic boxes are called blocks. All boxes
have properties ot type size, position,
character font, background color, etc.

Another important component 0 f a
document structure, according to ODA, is
the document profile. It contain
information for handling tha documents
as a wllole and consist of a set 0 f
attributes. The values of these
attributes may or may not appear kiS

document component (i.e. basic logical

41

CALL FOR PAPERS

LOGICAL DOCUMENT

r

(LAYOUT
LEVEL)

Conceptual, Logical, Layout Structure Trees

Fig. 3

42

objects). This means that attributes
such as document name, author, date may
also appear in some part of the physical
document, but may also be internal
attributes useful for other purpose such
SS document indexing, filing and
retrieval, interchange, etc.

4. Using types for document retrieval - ---

As seen in Section 3. a weak concept of
type is necessary in the proposed model
hecause of the need of flexihility in
the office document definition,
manipulation and retrieval. While a
document instance is composed hy the
data values and internal structures of
the physical document, a document type
in our model is a subset of the internal
structures common to a class of document
instances. A document type is still
represented by its internal structures,
where live nodes show where and how (see
also the restrictions) components a n d
data values can he added to obtain
instances. When types are enf arced by
the system in order to support the
retrieval-by-content process, the
conceptual structure plays an important
role in the type definition. When types
are mainly explot ted for document
creation/modification, the logical and
layout structures are more relevant (see
the concepts of “style” and “galley” in
.JANUS [201).

LOGICAL STRUCTURE

CONCEPTUAL STRUCTURE

BASIC LOGICAL OBJECTS

BASIC LAYOUT OBJECTS

LAVOUT STRUCTURE

Relationships rmng internal structures

Fig. 4

The relations among the three different

structures a r e shown in Fig.4. Layout
and logical structures are orthogonal,
while conceptual structure intersects at
a certain level the logical structure.
It is’ important to highlight some
properties of conceptual and logical
structures. For each document internal
structure, the leaves of the conceptual
tree represent the semantic objects at
the lowest level that is relevant in the
application context. These objects are
also described in the logical structure,
where their syntactical composition is
specified. Hence, it is possible to link
the conceptual leaves to the
corresponding logical nodes. Four
categories of links can he identified:

1. l-l Link ---
A conceptual leaf is linked to one
and only one logical node. In this
case a logical (composite or basic
object) plays the role described by
the conceptual leaf. For instance, a
piece of text plays the role of
introduction in a business letter.

2. 1-N Link ---
A conceptual leaf is linked to
several logical objects. This case
happens when the conceptual leaf is
a complex object and its semantics
is embedded in different logical
objects. For instance, the
description of some characteristic
in a business report may span over
several sections or over several
paragraphs of one section.

3. N-l Link ---
Several conceptual Leaves are linked
to one logica’l object. In this case
the logical object plays different
semantic roles within the document.
For instance, in a hardware product
announcement a picture can be
considered as the histogram of costs
of a video display and an example of
its resolution capabilities.

4. N-N Link ---
This case is the most complex and
includes both the previous cases 2)
and 3).

The tyi)e specification IS mainly
conceptual, hut can contain some logical
aspects and even some actual values of
the physical document (the lowest level
of the logical structure). For instance,
let us consider that the type “Corporate
business letter” is enf arced by t h e
system. Its structure mainly describes
the conceptual objects that are common
to all the instances of these letters.
However, it is also possible to specify
some logical characteristics, A s the
presence of the lOE0, and even some
values such as the sender address that

43

is common to all the instances.
Yoreover, if the logo and the address
alwavs appear in the same portion of the
physical page, it is also possible to
think to include the corresponding
1 ayout information in the type
definition. Another possibility is to
incl.ude in the type definition some
attributes of the document profile. This
can he accomplished linking the leave
elements of the conceptual structure to
selected attributes contained in the
document profile according to the ODA
standard. In Fig.4 the dashed part
represents the possible extension of the
type specification.

Tn the following we will consider first
t h e way in which types can be defined
explicitly by t h e Office System
Administrator or semi-automatically by
the system. Then we will briefly
describe the advantages of t hc weak
typing approach in query specificat ion
and query processing.

4.1. Explicit type definition -_ --

The type definition as n n explicit
operation is essentially an a-priori
operation, as in database environment.
The Office System Administrator, who is
an expert of the application
environment, will design the types
specifying their structures, and Rive
names to types. Type structures will
have live nodes. Restrictions associated
to live nodes will constrain the user
when suh-structures or data values are
to be added during document creation or
query formulation for that type. These
types will he inserted in a system
catalog, and so they will he made
available to the office users for all
the document operations.

The flexibility of the typing approach
will allow to define types for the
different classes of documents in the
office environment. Strong types are
suitahle for all form-like documents,
with very stable structure. Live nodes,
in this case, can only generate data
values (using terminal grammar
product ions). V e a k types are more
suitable for less structured objects, as
all kinds of letters, reports, brochures
etc. which may contain tables, graphics,
images, voice comments and
conversations. Live nodes, in this case,
can generate various forms of new
structures (using any grammar production
and obeying to the nssociated
constraints).

4.2. Implicit type definition -- --

Since it is always difficult to define
a-priori all and only the document types
that are actually useful in an office
environment, given its dynamic
operational characteristics, it iS
useful to allow also the type definition
as an a-posteriori operation. This
second mode of type definition, which is
made possihle by this modeling approach,
can be partially supported by the
system. During off ice lifetime, the
conceptual and logical structures of all
the instances can be compared and the
regularities of these structures can be
synthesized in new type structures.
These structures are actually proposals
of conceptual and/or logical structures
that can fit a number of instances
greater than some threshold value. This
can be accomplished at regular intervals
by some background process, which then
reports to the Office System
Administrator for confirmation and
assistance (e.g. defining names of new
types, names of internal conceptual
components, exact posit Coning of live
nodes and associated restrictions,
etc.).

Implicit type definition includes also
a-posteriori type assignment and
reorganization. In fact, the internal
structures of the document instances can
be compared with already defined types,
other than those they where created
from. In this case, document instances
can be re-assigned to catalogued types
which are more specialized than their
original types.

Proposals of type definition can also be
derived from the analysis of the
documents coming from outside the office
via electronic mail and even in
facsimile form. In the last case, the
common characteristics will he only
logical or layout such as the presence
of a table or a picture on several
coming instances. The table in Fig.5
sumnariees these situations.

4.3. Hierachies of types -- --

It is not reasonable to imagine the type
catalog as a single level, static and
completely defined schema as in database
systems. A more probable situation is
one in which complex hierarchies of
types <and subtypes exist and are
connected by relations similar to the
“is aI8 relationship of database models
[19T.

44

INPUT NODE

npr

EDlli!iG

PROCEWRE OUTPUT

FROW TYPE CATALOG NEY TYPE

INC.WX
SELECi A lYPE,THEN REFINE

AUTEl;iWiS UEFINITION
NEW INSTANCE

NO C:!&EPTUAL
STRUCTURE RECOGNITION OF TYPE NEU INSTANCE/TYPE

+ LINK TO TYPE

ELECTRONIC MAIL

WITH C3XCEPTUAL
STRUCXRE

COMPARIW OF INTERNAL
STRUCTURES

SEGHENiATION

NEY INSTANCE
+ TYPE PROPOSAL

FACSRILE
BLOCK RCCOGNITIO~
CHARACTER RECOGNITION
C0MPARX.g OF LCGICAL AliD

LAYOUT STRUCTURES

NEU INSTANCE
+ TYPE PROPOSAL

Instances and types in dowrent input

Fig. 5

The more general types are at a higher
level of the hierarchy and several
conceptual or lop,ical subtypes are
origined from them by ret: inine some
obJecta. For instance, a possible type
can be “Product announcement letter” and
two possible suhtypes are “Hardware
products” and “Software products”. Thus,
in docunen t creation and query
specification, the most specific type
(or subtype) is chosen A 11 d then its
internal structure is refined unttl the
basic objects and the actual values of
document data.

Each instance is linked to the most
specific type that is present in the
type catalog and that fit tts structure.
If an instance is structurally modified,
it may happen that its structure does
not fit any more the type specification.
In that case, t h e link is shifted
towards the higher levels in the type
hierarchy until the consistence hetween
instance and type is realized. In
Fig.6.a the type hierarchy and the links
with the set of instances are shown.

4.4. Ouery specification -- -

The query specification in our approach
is very similar to the document instance
definition. In fact, in a query
specification it is possible to have
conditions on t Ii e internal structures
(lop,ical, layout and conceptual) as well
as conditions on data items of the
wanted documents (see Fig.7).

TYPE HIERARCHY I INSTANCES

I

- IS-A RELATIONSHIP GETYEEN TYPES

- LINK INSTPNCE-TYPE

Fig. 6.a

Example of type hierarchy in query processing

Fig. 6.b

CALL FOR PAPERS w
I I

Query specification

Fig. 7

The system is then asked to select the
matching document instances. In this
process we implement the retrieval hy
content on documents.

Moreover, the user can query the type
catalog. In this case, the query
conditions refer to types. The selected

45

tyac is the most specific in the type
catalog containing the desired
characteristics. A further step is then
posstble, i.e. the user can refine and
extend the selected type specification
h y using the model tools for the
definition of the internal structures of
the document instances. The result is a

type specification that in general is
not present in the type catalog, but can
he useful in query processing for
restrictin? the class of matching
instances. Some undefined areas are
allowed in the type specification. These
undefined area5 can match with any
structure portions of the stored
documents, while the defined areas are
reoui red to match exactly (both for
structures and data value conditions).

4.5. nuery processing --

The query processing problem Is similar,
in principle, to the partial. subtree
matching problem found in semant tc
network interfaces to database systems.
During query processing the estahlished
relat inns hetween instances R n d types
can he used for narrowing the number of
instances that must be checked for
matching. First, the most specific type
matching the conditions is identified by
comparing the corresponding structures,
then all the instances directly linked
to the type are matched. At this point,
the system a-5 down in the type
hierarchy and, for each (subltype,
checks first the type definition and
possibly the linked instances. In this
way the instances that are linked to a
non-matching (suh)type are quickly
d isregarded. Ce t IIS imagine the
situation of Fig.6.h in which a type
hierarchy is shown. We can select T2 as
the starting type specificatton in the
query specification and enrich its
structure according to T4 and not to T5.
nurinr: query processing it is sufficient
to start from the instances directly
1 inked to T4. Moreover, if the structure
of TL, does not match the query, all the
instance5 linked to Th and to its
suhtypes can be disregarded. Sometimes
query processing can be performed even
more eff icientlg if the storage files
containing the specified data item
value5 are searched first and then the
structures are compared.

Vhen the specified condition is complex,
it is worthwhile to start different
parallel processes for matching it.
Thus, one process can search the storage
Files containing the document data,

while another process can select the
matching structures and the
correspondent instances. When a document
is retrieved, it is immediately
displayed at the workstation and, while
the user is examining it, the system can
proceed in the query processing.

Moreover, in this approach the user can
decide to dynamically change the filter
or to choose a retrieved document type
as a new filter (i.e. substituting data
value5 with conditions on them and
leaving undetermined other components).
This is a very flexible environment for
dynamic query definition by the user.

5. Conclusions and future work - --- - ___- --

Office documents, as will be used in
future office information systems, can
have very complex structures. Moreover,
these structures tend to differ from
i.nstance to instance, 50 making
impossible a strict type definition for
classes of documents. In the modeling
approach for office documents presented
here, we have tried to he as flexible as
possible in order to allow a suitable
representation for the document
structure and content, as well as for
operation5 such as editing/formatting,
interchanging, presentation, and
especially filing and retrieval.

In this paper we have focused on the
office document retrieval. However,
other operation5 necessary in office
environment can be supported by this
model. For example, document
modification mean5 to operate on the
document internal structures, according
to grammar rule5 and restrictions, as
well as on multimedia data values.
Document rendition, on all possible
display/printing devices, means to
present the document data values, which
are basic logical objects, according to
the specificat ions contained in the
layout structure. Document input may be
a critical operation in our model. In
fact t h e sys tern must llnderstand a n d
internally reproduce the structurrs of a
document when it .i 5 entered. If t Ile
document is entered through an
interactive document editor the user can
take advantage of the already defined
document types and can be helped by the
interactive system that knows about
admissible actions l t every step of the
process. If the document is presented to
the system in facsimile format, it is
necessary to scan and parse the document
as a compiler would parse a projgram.

46

Completely automatic scanning and
parsing is in most cases unfeasible
unless a type is explicitly associated
to the facsimile documents l>Y the
operator. If the document is sent by
electronic mail from another system, we
must suppose that it complies to the ODA
standard. Therefore, Logical and layout
structure should be included in the
trasmission and should be understood by
t h e system. The conceptual structure
would he present only if the sending
system knows about our model.

Future studies will deal with formal
specifications of operations on office
documents (both those concerned with
standards and those concerned only with
retrieval functions). An important topic
will be the investigation of methods for
fast access to document internal
structures for an effective
implementation of retrieval by content.
For this purpose, also efficient
representations in storage of these
modeling, structures (i.e. u s i n g bit
patterns) will be studied. The proposed
model will he Eurther studied and
evaluated in the context of a project in
the nrea of "Office Systems" entitled
"Development of a boxed-mode ffessage
Filing System (?lYPS)", which is part of
the European Strategic Programme for
Research in Information Technology
(ESPRIT).

REFERENCES -

[l] Tsichritzis, D. and Christodoulakis,
s., "Message files", ACM Trans.
Office Information Syst. Vol. l(l),
pp.88-9X (Jan. 1983).

[Z] Cehani, N., "The potential of forms
in office automation", IEEE Trans.
on Commun. Vol. Corn-30(l),
pp.lZO-125 (Jan. 1982).

(31 Croft, W.B., "Applications of
information retrieval techniques for
the office", Proc. 6 t h ACY-SIGIR
Conference on qescarch and
Development in Information
Retrieval, pp. 18-23 (1983).

[4] Limh, J.O., "Integration of media
for office services", Office
automation conference digest,
pp.753-355 (Yarch 1981).

151 ?racchi, G. and Pernici, B., "The
design requirements of office
systems", ACM Trans. Office
Information Syst. Vol. 2(Z),
pp.151-170 (April 1984).

[6] Schek, H.-J., "Nested transactions
in a combined IKS- DUNS
Architecture", Proc. 3rd Joint
ACM-BCS Symposium on Research and
Developement in Information
Retrieval (1984).

[7] Adiba, M., Nguyen, G., "Information
processing for CAD/VLSI on a
generalized data management system",
Proc. Tenth Int. Conf. on Very Large
Data Bases (1984).

[8] Crampes, J.B., Chrismet, C.Y.,
Zurfluh, G., "The BIG project",
Proc. 2nd International Conf. on
Databases (Sept. 1983)

[9] Lopez, M., Velez, F., "Modeling and
handling generalized data in the
TIGRE project", Working Paper, IMAG,
St. Martin d'llerrs, France (1034).

[101 Smith, J.X. and Smith, D.C.P.,
"Database abstractions: Aggregation
and generalization", ACM Trans.
Database Syst. Vol. 2(2), pp.105-133
(June 1977).

[II] Brodie, M.L., "Data abstraction,
databases and conceptual modelling",
Proc. Sixth Int. Conf. on Very Large
Data Bases, pp.lOli-108 (1980).

iI21 Furuta, R., Scofield, J., and Shaw,
A., "Document formatting systems:
Survey, concepts and issuesU,
Conput. Surv. Vol. 14(3), pp.417-472
(Sept. 1932).

[13] Horak, W. and Kronert, G., "An
object-oriented office document
architecture model for processing
and interchange of documents", Proc.
2nd ACY SLGOA Conf. (1984).

[14] Gibbs, S. and Tsichritzis, D., "A
data nodelling approach for office
information systems", ACM Trans.
Office Information Syst. Vol. l(3),
pp.299-319 (1983).

[15] Tsichritzis, D., Christodoulakis,
S * * Economopoulos, P., Faloutsos,
C * , Lee, A., Lee, D., Vandenbroek,
J and iloo, .)
o;J!ice filing

C "A multimedia
system", Proc. Ninth

Int. Conf. on Very Large Data 13ases
(1983).

[IhI Tsichritzis, D., Thanos, C.,
Rabitti, F., Christodoulakis, S.,
Gibbs, S., Hertino, E., Fedeli, A.,
Faloutsos, C., Economopoulos, P.,

"Desi;J,n isuues of a file server for
multimedia documents", Proc. 1st
ESPRIT Technical Week (Sept. 84).

(171 Mcyrowitz, N. and van Dam, A.,
"Interactive editing systems: Part I
and Part II", Comput. Surv. Vol.
14(3), ~~-321-415 (Sept. 1982).

47

I131 ‘irascr, C.W., "Syntax-directed
editing of general data structures",
Proc. ACM Symposium Text
Yanipulation, pp. 17-21 (Junoen 1981).

[191 Tsichritzis, D. and Lochovsky, F.,
"Data Models", Prentice-Hall,
Englcwood Cliffs, N.J. (1982).

[201 Chamberlin, D.D., King, J.C.,
Slutz, D.R., Todd, S.J.P. and Wade,
S.U., "JANUS: An interactive system
for document composition", Proc. ACM
Symposiun on Text Yanipulation,
pp.82-91 (.June 1981).

48

