
CASCADE HASHING

Peter Kjel lberg and Torben U. Zahle

Computer Science Department, University of Copenhagen
Si gurdsgade 41) DK-2200 Copenhagen N, Denmark

fibstract

Cascade Hashing is a new dynamic
hashing scheme which is based on Spiral
Storage.

The purpose of this paper is first
to give a unified exposition of Linear
Hashing, Spiral Storage and other dyna-
mic hashing schemes, and second to de-
scribe a new method for storing overflow
records. The method stores the overflow
records in the main file itself and
clusters overflow records from each pri-
mary bucket in one or very few overflow
buckets.

Calculations on the load of the file
promises search 1 engths very close to
one even for a storage utilization above
90X, which makes the method appear bet-
ter than any present dynamic hashing
scheme.

1. Introduction.

Since the early seventies, a number
of techniques have been described which
allow a hash file to change its size dy-
namical ly along with the changing number
of stored records.

The first proposals, named Expanda-
ble Hashing [Knot711 p Dynamic Hashi ng
CLars783 and Extendible Hash i ng
CFagi793, are al 1 based on the same
idea; when a bucket overf 1 ows, instead
of creating an overflow record, the file

Permirsion IO CODY without fee all or tmrr of this mat&al is cmnted
provtdrd that the co& are not-made or &rib&i for direct comkerctal
advantage, the VLDB copyright notice and the tttle of the publication and its
date appcor, and notice ir given that copying is by permtssion of the Very Large
Data Base Endowmtnt. To copy otherwiw, or to republish, requires a /et
and/or speck1 permission from the Endowment.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

is extended with a new bucket and the
records of the overflowing bucket are
solit between the old and the new buc-
ket . To keep track of the splitting, an
index or directory is created that grows
and shrinks with the size of the file.

Different kinds of tree structures
are used for the index, but Virtual
Hashing CLitw783 reduces the index to a
bit-table with one bit for each bucket

by introducing a series of hash f unc-
tions, one for each “1 eve1 ” of split-
ting. At any stage the primary bucket of
a record can be reached without accizs-
sing other buckets.

Virtual Hashing also allows for a
certain amount of overflow to defer
splitting. Versions of Extendible Hash-
ing with overflow are described in
CScho811 and ffamm823. A rather complex
version with an index of limited size is
found in CLome833.

In the late seventies methods were
invented which avoided indexes complete-
ly: Spiral Storage EMart and Linear
Hashing CLitw801. While Spiral Storage
has remained rather unnoticed, Linear
Hashing has drawn much attention. The
basis of these methods is still the
splitting of buckets, but instead of
splitting the buckets that overflow, the
buckets are split in linear order
0,1,2, thus reducing the index to a
si ngl e pointer showing which bucket is
to be split next.

ii near Hashi ng with Partial Expan-
si on5 CLars803 is a generalization of
Linear Hashing which gives better per-
f ormance. A further generalization of
Linear Hashing is given by Ramamohanarao
SC Lloyd CRama823.

CMull811 and CLars823 describe ver-
si ons of Linear Hashing and Linear Hash-
ing with Partial Expansions respective-
ly, where the overflow is stored in the
main file, as opposed to the earlier
versions where overflow was stored in a
separate overflow area.

Singapore, August, 1964

481

The schemes without indices will be
discussed in more detail later in the
paper.

The number of records which can be
stored in a bucket is called the blok
factor and denoted b; b’ is the blok
factor of a possible separate overf 1 ow
storage. If the main file and the sepa-
rate overflow storage contains M and M’
buckets respectively, the file can at
most hold bM+b’M’ records. When the
current number of records is x S then
x/(bM+b’M’) is called the storaqe utili-
zation, while t:/bM is call ed the oad 1
factor, denoted f. It may be noted, that
when a separate overflow storage is
used r the load factor can become greater
than one. When overflow is stored in the
main file, the 1 oad f ac:tor equals the
storage utilization.

In the present paper we will only
consider the so called “control 1 ed
split”, where a split is performed only
when the file has been filled to a cer-
tain limit, thus making the file size
grow linearly with the number of stored
records.

2. Conceptual Linear Hashinq.

First we describe Linear Hashing
briefly, introducing terms used in the
following descriptions.

Linear Hashi ng expands the file by
splitting the buckets one by one in
linear order 0,1,2,. .

When a bucket is spl it, approximate-
ly half of its records are removed and
restored in a new bucket at the end nf
the file. No index is needed) only a
sinqle pointer p showing which bucket to
split next. When all buckets in the file
are split, the pointer is reset to the
first bucket (0) and the process starts
over agai n r but now with a file twice as
large. The over-f 1 ow records are taken
care of by explicit pointers to a sepa-
rate overflow area.

We will only consider the case where
the initial file sire is 1.

After L camp 1 et ed doublinqs or ex-
pansi on5 of the file, its size is ZLX
is called the file level.

king a series of split functions
h,-(k) 9 one for each file level r where
each hL(k) hashes randomly on the inter-
val CC),2LC!, we get the hash function

(hL(k) if h,-(k) 1 p
h (1:) = ((1)

(hL+% (k) otherwise.

h(k) is a real number ; to get the

Proceedings of the Tenth International
Conference on Very Large Data Bases.

482

integer bucket number we use

H(k) = LhO::) j. (2)

In the following discussion we USE?

the real bucket number, and assume trun-
cation to get the integer bucket number.

Let D(k) distribute uniformly over
as large a number of buckets as needed.
Then an example of a Linear Hashing
function is shown in fig. 1.

Average
load

1 I 1

f "

: *r
012
4 2L 2Lt1 2Lt2

P
a) At the start of an expansion.

Average
load 1
12

--- -
7

f . .

012 ~
P

b) During an expansion.

r=h"(k)=
i

D(k) mod 2L if D(k) mod 2L 2 p

D(k) mod 2 Ltl
otherwise

whereL= [log 2 Ml and P=M-~~

Fig.1. Linear Hashing.

The height of the buckets in the
figure illustrates the load, where f is
the load factor of the file. Buckets
taller than 1 are overflowing; the quan-
tity above 1 is actual 1 y stored el5e-
where.

Note, that any split function
hL+, (1::) store5 k either in the same
bucket as the previous function h,-(k) or
in the bucket into which h,-(k) wa5
split.

As the file grows to a certain size
(M), it is possible ta determine the
level L and the split position p. In the
case of Linear Hashing we have L =
LlogsM_j and p = M - P-.

In the following we will mark the
hash function h(k) with a superscript M
to indicate how many buckets the file
contains: hn(k).

The split in Linear Hashing may be
thought of as a process where the first
bucket in the file is removed and it5
records restored in two new buckets
appended to the end of the file. Fig. 2

Singapore, August, 1984

shows this process, called Conceptual
Li near Hashi ng , which is the way we will
consider Linear Hashing in the rest of
the article.

d(k) is a function distributina the
records uniformly on the interval CO.lC.

Average

*
f -. tC

012
: *wr

2L 2L+1 2L+2
4 *
P 24

Average a) At the start of an expansion.

--- -_
1 I A
f a.

I
I
I

IllIll
----a-- I l I t;;‘:“‘. I . 1 . ..I,,#,

012 2L 4 2L+1 4 ir, L+2$
P 2P

2
b) During an expansion.

r=h"(k)= 2L(l+d(k)) if 2L(l+d(k))tp
2L+1

(l+d(kl) otherwise

where p=M and L= [log2pJ

Fig.Z. Conceptual Linear Rashing

When the first bucket (bucket 1) is
split, the file has doubled and consists
of the buckets C2,3>. When both of these
are split, the file has doubled again
and now consists of the but kets
C4,5,6,7>. This proces5 may be conti-
nued Y and after L completed ,expansi ons
the file consists of the buckets
{‘L A.. ,F+‘-l:..

At any time, the bucket to split
next, p, is the first bucket in the
file. The number of buckets in the file,
MY i5 p a5 well, so generally the file
consists of the bucket5 cp,. .,2p-13,.
When bucket. p is split, its records are
restored in the buckets 2p and 2p+l. The
file 1 eve1 L is a function of p:
L = Llognp_j.

Computer systems normally only allow
data areas to grow and shrink:: at one
end. Anyway r this problem is easy to
overcome, since a simple algorithm
exists, that transforms the (conceptual)
bucket numbers above to physical bucket
numbers or paqe numbers 0, 1,2,. . .

In fig. 3a the numbers of the exist-
i ng conceptual but kets are listed for
the first few M’s.

An algorithm transforming these to
page numbers must fullfil two criteria:

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Conceptual bucket number: n
1 2 3 4 5 6 7 8 9 10 11 12 13

Ml 1
2; 2 3
3 345
4 4567
5 56789
6 6 7 8 9 10
7 7 8 9 10

(a) Existing conceptual

11
11 12 13

bucket numbers

Actual bucket number: P(n)
0123456

Ml 1
2 2 3
3 4 3 5
4 4 6 5 7
586579
6 8 610 7 911
7 8 12 10 7 9 11 13

(b) Placement of conceptual buckets

Fig.3. Coticeptual to actual bucket
number transformation

1) All page numbers 0 to M-l must be
in use.

2) When a bucket is stored on a
page, it must remain on this page
throughout its entire lifetime.

These demands can eas* 1 y be met:
When the file is expanded the first of
the new bucket.5 is placed on the same
page as the bucket being removed, while
the second of the new buckets is placed
on the first free page (fig. 3b).

A glance at the coloumns of fig. 3b
i mmedi ate1 y unvei 1 s a pattern, that is
exploited in the following algorithm,
transforming a conceptual bucket number
n to page number P(n).

function P(n) 3 (alg. la)
inteqer n;
beqin

if n mod 2 = 0 then P(n) := P(n/2)
else P(n) := (n-1)/Z;

end;

Written without recursion the algorithm
is:

function P(n); (Ng. lb)
inteqer n;
beqin

inteqer m;
m := ni
while m mod 2 = 0 do m := m/2;
P(n) := (m-1)/2; -

end;

Singapore, August, 1984

483

3. Exponential Distribution Method.

Fig. 2 also i 11 ustrates the main
problem of Linear Hashing: Since each
split function hL (k) distributes the
records uniformly over its range of
buckets, then during an expansion of the
file the still unspl it buckets will
contain twice as many records as those
already split. Eeepi ng the load factor
constant (and preferably high) a chan-
ging amount of overflow records result
from the unsplit buckets and give rise
to changing per-f ormance.

The f 011 owing is based on two f unda-
mental ideas. First9 that it might crea-
te less overflow to have a skew distri-
bution of records, so that the buckets
which split late are not so full. Se-
cond, that it would be nice to choose a
distribution which let the performance
remain stab1 e.

Even though the average performance
of Linear Hashing is good, in many ap-
plications the number of records in a
file stabilizes for shorter or longer
peri ads, and the point of stabilization
may be where the performance is the
worst.

To remove performance oscillations
we must construct a hash function, which
gives the file the same load pattern for
any number of buckets. The function must
bias the record distribution so that the
1 ast bucket in the file contains approx-
imately ha1 f the records of the first
bucket. Then the two new buckets result-
ing from a split will fit nicely into
the biased load.

Average load
load
1' J n
f .. tt

The construction of a hash function
which creates the same skew distribution
of records for any number of buckets, is
not trivial though. If the most straigt-
forward biasing, a gradual 1 y decreasi ng
distribution, is used, the performance
will still oscillate.

However) the met hod named Spiral
Storage described in a university report

by G.N.N.Martin [Mart791 actual 1 y ‘i s
such a biased linear hashing scheme. And
furthermore the method turns out to be
quite simple!

Since Martin’s report in our opinion
is difficult to understand, and since
the method is not explained in terms si-
mi lar to other literature on hashing, we
will in the following summarize Martin’s
results using the terminology introduced
in section 2.

The essence of Spiral Storage i s1
that instead of the uniform distribution
resulting from the split functions
2’-(l+d(k)) I a biased distribution is
obtained using the split functions

(3)

i.e.
(2L.2”CkB

(if 2L.2d’k’ LP
h”(k) = z; (4)

(2”+1-2d’k’ otherwise

where p = M and L = Llog,p_l.

Average

4 4
P 2P

a) At the start of an expansion.
A-iera3e

4
2P

b) During an expansion. b) During an expansion.

Fig.4. Biased Linear Hashing.
r = h"(k)

C

2L 2d(k) if 2L 2d(k) L P
=

2 ~+l 2d(k) otherwise

where p = M and L = 1 logzPJ

Fig. 5. Spiral Storage.

Singapore, August, 1984

With such a biased load a constant
1 oad factor of 75% may be kept up with
hardly any overf 1 ow records, bringing
search lengths down to practically one.

Proceedings ot the Tenth International
Conference on Vety Large Data gases.

4 4
P 2P

a) At the start of an expansion.
Average

load
b

1.
f '.

012

484

In an earlier report CEje1841 we
have shown that the average load for a
given hash value r is:

f/ln2 . p/r
SO that for a given M and thus p, the
aver age 1 odd follows the inverse func-
tion l/r. This is the case for both
split functions, thus we have managed to
get a smooth 1 oad distribution with no
discontinuity at the intersection of the
two split functions.

Further it can be seen, that the
load at the start of the file (t---p) is
f/ln2 and the load at the end of the
file (r=2p) is i/2 * f/ln2.

It is interesting to note that (4)
actually produces a file with the sought
properties. The load of the 1 ast bucket
is (a little more than) half the load of
the first bucket and the relative dis-
tribution of the records within the file
does not change.

If the load at the start of the file
is set to 1 and the equation then solved
for f, then the maximum load factor of a
file which idealy has no overflow at all
can be found:

f/ln2 = 1 a:: = > + = ln2 = 0.6931.

Spiral Storage produces a constant
amount of overflow, the relative size of
which is derived in cKje1841. As well,
the average and maximum relative over -
flow size5 using Linear Hashing are de-
rived, using the same assumptions as for
Spiral Storage. The results are shown in
table 1. It is seen that Spiral Storage
not only removes the oscillations in
overf 1 ow size but also produces less
overf 1 ow than the aver age for Linear
Hashing !

f S.S. LH av. LH max
__^^_____------------------ --e--w

0.5OOC~ 0.0000 0. OOOC~ 0. OOC~O
0.6931 0. ~lo<t~l 1.6848 4.5408
0.75(30 0.4367 2.9871 6.7347
0. 8CKK) 1.4143 4.3741 8.7722
0.8506 2.8077 5.9421 10.8611
0. 9000 4.5179 7.6523 12.9687
0.9500 6.4702 9.4712 15.0727
1.0000 8.6071 11.3706 17.1573

Table 1. Relative amount of overf 1 ow
using Spiral Storage and Linear
Hash i ng (aver age and maximum)
for different load factors (f).
In pet.

To conclude this section we mention
that the hash function for Spiral Sto-
rage actually may be written as a single
expression:

1
t-lognp-d(k)1 + d(k)

H(k) = 2 (5)

Procemdlngs of the Tenth International
Conierence on Very Large Data bases. .-. 485

4. Splittino from several buckets.

F. -A. Larson has shown in CLars803,
that compared with Linear Hashing, a
better performance can be achieved using
a generalized Linear Hashing where an
expansion is done in a series of partial
expansions. Using two partial expansions
(which according to Larson is a good
compromi se in many cases) the method
works as. follows: In the first partial
expansion groups of two buckets are
split, moving a part (approx. l/3) of
their records to a new bucket (fig. ba).

Average
load

012
+ zL 2L+1 2L+2

P
a) During the first partial expansion.

Average

load

0 2
t zL 2 L+l 2L+2

P
bl During the second partial expansion.

Linear Bashing with 2 partial expansions. Fig.6.

When during this first partial ex-
pansi on all the original buckets have
been spl i t , the file has been expanded
to 1.5 times its original size. There-
after the second parti al expansion
starts, now splitting groups of three
buckets, moving appr ox. l/4 of their
records to the new bucket (fig. 6b).
When the second parti al expansion i 9
ended, the file has doubled, and the
method starts again with the first par-
tial expansion.

Ramamohanarao & Lloyd ICRama823 have
considered this idea and give another
met hod where the growth consists of
single expansions in which always groups
of s buckets are split (fig. 7a).

When all buckets are split, a new
expansion starts, again splitting groups
of s buckets. Since the file size is not
always divisible by s, a number of empty
“round-up buckets” are added to the file
(fig 7b).

It is obvi ous r that both methods
give better search performance than
Linear Hashing since less overflow oc-
curs. In Linear Hashing the still un-

Singapore, August, 1994

Average
load

Average
load

0 + ++

P "round-up buckets"

Fig.7. Ramamohanarao and Llbyd's Linear Hashing (s=3)
at two consecutive expansions.

split buckets contain twice as many
records as the split buckets. With 2
parti al expansi on5 the ratio is 3: 2
during the first partial expansion and
4: 3 during the second. With Kamamohana-
rao % Lloyd’s method the ratio is always
(5+1) :5.

It is more surprising, that when the
number of partial expansi on5 (respec-
tively the value of s) is reasonable,
also insertions are faster than with
Linear Hashing, despite the fact that a
split is more expensive! The reason i 5,
that the increased cost of splitting is
more than outweighed by the decrease in
overflow chain lengths.

But still the per-f ormance osci 11 a-
tes, and in both cases the hash function
is more complicated than with Linear
Hashing.

It can be expected that splitting
from sever al buckets in Spiral Storage
(in the following called General i ned
Spiral Storage) also wi 11 show an impro-
ved performance for both search and
insertion times. Furthermore it does not
show any of the inconveniences of the
general i zed Linear Hashing schemes
above.

Generalized Spiral Storage resembles
the method of Ramamohanarao & Lloyd (but
is actual 1 y even more general) . The
performance is the same for any number
of buckets, the hash function is no more
complicated than that of simple Spiral
Storage and it does not need any “round-
up buckets”.

The idea of the generalized Spiral
Storage is very straightforward: Each
expansion is performed by i 1 adding a
number of buckets, say t,* to the high
end of the file and 2) removing some
number, say s, from the low end of the

Proceedings of the Tenth lnternatlonal
Conference on Very Large Data Bases.

file, distributing the records of the 5
removed buckets on the the t new buc-
kets! WE! say, that 5 buckets split into
t, or equivalently that 1 bucket splits
into t/s. When t=2 and s=l this is the
simple Spiral Storage.

Let g = t/s. In the general case the
“file level” is defined a5 L = LlW,PJ.
Note, that now L is not the number of
doubl ings of the file. (Actually, in-
creasing L by one is equivalent to an
ex pansi on of the file by a factor gr
which general 1 y is not an integral num-
ber of buckets!)

If, again, d(k) is a function dis-
tributing al 1 records uniformly on the
interval CO, 1 I: 9 then

(gL-gdqk’
(if gL-gd<k> 2 p

h’.‘(k) = *: (6)
(Q L-c%. 9 d ‘k, otherwise

where p = M/ (g-1) and L = Llog,p-A,

is the hash function for general ized
Spiral Storage.

a) During an expansion.

L d(k) L d(k)

r=h"(k) =
58 q if q 9 tp -

q L+l qdtk) otherwise

t L+2
qP q

where p=!!
q-1

and L=[loq$]

Fig.8. Generalized Spiral Storage with q=$.

The average load for a given hash value
r is (fKje1841):

f (g-l)/ln(g) - p/r
which means that we get a smooth load
distribution in the general case too.

The load at the start and at the end
of the file is f (g-1) /In(g) and
l/g - f (g-1) /In (g) respectively. This
means that when e.g. g = 3/2 the load of
the last bucket of the file is (a little
more than) two thirds the load of the
first bucket.

What we have achived is a more even
record distribution over the file, redu-
cing the number of overflow records; the
price is a greater number of accesses to
perform a split.

Singapore, August, 1984

Average

Fig.9. The average load of a genera-
lized Spiral Storage file,
for a selection of (s,t)-pairs.

The cases where t = s+l are equiva-
lent to those of Hamamohanarao t Lloyd:
Each split produces one extra bucket. In
other cases more than one bucket results
from each split (thus provoking a split
more seldom) but are in all other re-
spects no more complicated. E.g. the
case (s,t) = (3,5) produces two extra
buckets by splitting three (which may be
thought of as splitting 1 bucket into
5/3 bucket three times) and actually in
all respects it acts as a compromise
bet ween (1,2) and (2,3) (two times 1
into 3/2).

Again, we can find the maximum load
factor of a file which ideally has no
overflow by equalling the load at the
start of the file (shown above) with 1
and solving for f:

f = ln(g)/(g-1).

s,t f m-I
----__-------

1 ,2 0.6931
-?= .A, J 0.7662
2,3 0. 8109
597 0.8412
394 0.8630
4’
5::

0.8926
0.9116

Table 2. Maximum load factor for genera-
lized Spiral Storage without
overf 1 ow for a selection of
5, t-pairs.

As with simple SpiPal Storage the
relative amount of overf 1 ow is deri ven
in CKje1841:

Proceedings ot the Tenth International
Conterence on Very Large Data Bases.

f

I

1 ,2 3. 5 2.3 5,7 3,4 4,s 596
---- -----------------------s----------
0. 70 0.01
0. 75 0. 44
0. 80 1.41 0.18
0 . 85 2.81 1.02 0.27 0.02
0.90 4.52 2.40 1.29 0.66 0.30 0.02
0.95 6.47 4.22 2.93 2.11 1.55 0.85 0.46
1 .oo 8.61 6.36 5.06 4.20 3.59 2.79 2.28

Table 3. Relative amount of overf I ow
using general i red Spiral Stora-
ge for a selection of s,t-pairs
and different load factors (f).
In pet.

The only problem left in making the
general i zed Spiral Storage work is a
generalization of algorithm I, transfor-
mi ng the conceptual bucket numbers to
(physical) page numbers. The algorithm

works exactly as alg.1 and is given here
without further comments.

The algorithm transforms the concep-
tual bucket number n to page number F(n)
in the case where s buckets are split
into t:

function F(n); (Alg. 2a)
inteqer n;
beqi n

&f- n mod t < s
then F(n) :=

F(Ln/t_]-s + n mod t)
else F(n) :=

Ln/tJ- (t-s) + (n-s) mod t;
edi

Written without recursion the algorithm
is:

function F(n); (Alg. 2b)
inteqer n;
beqin

inteqer m;
m := n;
while m mod t <: s do -

P(ny
:= Lm/tJ-s + m mod t;
:= Lm/tJ. (t-s) + (m-s) mod t;

end;

It may be noticed that in the cases
where t = s+l alg.2 reduces to:

function F(n) ; (Alg. 3)
inteqer n;
beain

u n mod t # s
then F(n) := F(Ln/tJ-s + n mod t)
else F(n) := (n-s) /t;

end;

Finally we mention that the hash
function for generalized Spiral Storage
may also be written as a single expres-
sion:

Singapore, August, 1994

487

1
rloQ,p-d O:)l+d (k)

H+‘(k) = g 1 (7)

where p = M/(g-1).

5. Overflow handlinq.

The easiest way to treat the over-
flow problem is of course simply to
avoid any overflow at. all. Recause of
the biased distribution of records in
the file, we must expect an overflowing
bucket to be located at the beginning of
the file, and we may simply split buc-
kets up to and including the one that
overflows. This scheme, however, has two
major disadvantages which both stem from
the fact that a rather long sequence of
splits can result from a single inser-
tion:

- The load factor of the file may
drop heavi 1 y.

- Very 1 ong insertion times may
occur now and then.

For this reason 7 and in order to
increase the 1 oad factor beyond the
values 1 i sted in table 2, a new scheme
for handling overflow records is descri-
bed in the fallowing.

The main purpose of the method is to
incorporate the overflow in the main
file, thus reducing the data area to one
single file growing 1 inearly in size
with the number of stored records.

As mentioned in the introduction two
Linear Hashing schemes with overflow in
the main file have been described by
Mul 1 i n CMu11811 and Larson CLarsB23.
Both methods chain the overflow records
to the primar’y bucket. The difference
between the two is, that while tlullin
uses the empty’ space in other buckets
for the averf low, Larson sets every k’th
bucket aside entirely for overflow.

Larson cone 1 udes his article by
advi si ng , that overflow records be clus-
tered in one or a few overflow buckets.
This is the second purpose of the pre-
sent method. To ach i ve this goal the
method uses !, like Mullin, the empty
space in other buckets for overflow, but
instead of chaining single over f 1 ow
records, it chains overf 1 ow buckets,
i.e. the empty space in a bucket is used
entirely for over f 1 ow from one other
bucket.

The success of this idea is due to
the b i ased record distribution. The
overflow is gathered at the “low” end of
the file, while the empty space is
gathered at the “high” end.

The method works as follows:

Proceedings of the Tenth lnternatlonal
Conference on Very Large Data Bases.

(a) allocating the first overflow bucket

(b) allocating the second overflowbbucket,
transferring the records from the previous

kc) allocating the second overflow bucket,
chaining to the previous

Fig. 10. Chaining overflow buckets
in Cascade Hashing.

When insertion of a record is at-
tempted (fig. l&a) into a full primary
bucket (A) r the hAhest numbered bucket
sat+ th an uncluttered overflow space (E)
15 allocated, the record is inserted
herein, and this new overflow bucket i 5
chained to the primary bucket. hdditio-
nal records with primary bucket A are
inserted into the overflow bucket B a5
long as space is available.

When there is no more room in R, a
new overflow bucket (C) is selected the
same way: The highest numbered bucket
with an uncluttered overflow space.

Since C usual 1 y is higher numbered
t.han k (the file has presumably been
spl it a number af times because of the
insertions) Y then it may be expected
that the overflow space in C is larger
than that in B, and then usual 1 y u
overflow records of A can be stored in
C, thus keeping the length of A’s over-
flaw chain to 1. Therefore, if possible,
the overflow records in E are transfer-
red to C and the chain is relinked (fig.
1Ob) I we say that the overflow records
cascade from H to c. Further overf 1 ow
records are inserted using the same
mechanism.

If C cannot contain aa overf 1 ow
records, then only the new record is
inserted in C, and C is chained to B
(fig. 1Oc).

Singapore, August, 1994

The purpose is to keep the overflow
chains short. As the main operation on a
hash file is searching, it is profitable
to reorganize the overflow chains dLrring
insertion and deletion in order to re-
duce search time - as long as the reor-
ganizations do not seriously affect the
insertion- and deletion-times.

There are two other important ways
to keep the chains short. First, during
insertion, no record shall be an over-
flow record unless its primary bucket is
full of its own records. If the primary
bucket is fLll1 P but contai ns overf 1 ow
records from another bucket, the “stran-
gers” are pushed out and inserted else-
were.

Second r all buckets in a chain,
except for the last, mLLst be full. When
a record i s de1 eted !, some other record
from the end of the chain is brought
back to fill out the hole.

Algorithms for insertion, deletion,
splitting and grouping are included as
appendi e CI.

We still need to verif yr that this
method works for al 1 cases. In CEje1841
we show, that the relative number of
overflowing buckets, assuming a perfect
distribution, is

f/in(g)-l/(g-11.
This is illustrated in table 4. The
table shows, that there will be at least
one free but ket for each overflowing
bucket I and Llsual ly many more.

f 1 ,2 3,s 2,s 597 374 475
___________-------_----------------

0.70 1 . O
0.75 8.2
0.80 15.4 6.6
0. 85 22.6 16.4 9.6 2.6
0. 90 29.8 26.2 22.0 17.5 12.8 3.3
0.95 37.1 36.0 34.3 32.3 30.2 25.7
1 . 00 44.3 45.8 46.6 47.2 47.6 48.1

Table 4. Rel at i ve number of overf 1 owing
buckets for a’ selection of
(s,t)-pairs and different 1 oad
factors (f). In pet.

Of course, it may still happen, that
the actual records are not distributed
uniformly with d(k), so there is a risk
that no free over f 1 ow bucket can be
found when needed. This problem can be
solved by allowing the overflow chains
to coalesce, i.e. that overf 1 ow chains
from several pr i mary buckets use the
same overf 1 ow bucket CVi ttf32,Enut731.
BLlt this is probably not worth the
troLLb1 ei a much easier solution is- to
perform one or more splits. Event.ual 1 y
some free space wi 11 r-esul t.

Proceedings of the Tenth International
conference on Very Large Data Bases.

489

This solution may c aLLse the load
factor to drop below the wanted level,
but that ought not to occur. CIctual ly,
if it does, it is merely a warning that
either the load factor is set too high
or the used distribution function d(k)
is not uniform enough! (The extra split-
ting can be seen as “graceful degrada-
tion”.)

CI typical situation is shown in fig.
11.

Average

Fig. 11. A typical situation with f = 0,8 and g = 2.

We conclude this section with a few
more results. In CKje1843 we derive the
number of the last bucket in the file
(n lr..t) when a bucket niull first over-
flows. Choosing nl,,* as overflow bucket
for bull, we then derive the highest
load factor f,,, at which this overf 1 ow
bucket can ho1 d the overflow of n+ulr
throughout the ent.ire lifetime of neUrl.
These load factors are tabellized in the
first coloum of table 5. Thus with a
load factor up to f any bucket only
needs one overf 1 ow bucket r and this
overflow bucket never needs to be moved!

In practice the records do not
distribute ideally, and thus some buc-
kets need more overflow space. Rut there
is still room in the file for cascadi nq
the overflow records forward to another
bucket.

For this reason the number of re-
cords stored in second (or higher1 over-
flow bucket may be assumed to be negli-
gible, and thus, by cal cul at i ng the
expected amount of overflow records and
the expected number of overflowing buc-
kets, we may state an expected length of
successful 1 and unsuccessful 1 search.
This is also done in table 5 - we will
let the figures speak for themselves.

At present, work is in progress
si mu1 ati ng the met hod with stochastic
input.

Singapore, August, 1994

57 t

152
335
2 , 'T.
537
354
495
596

f mrrc

0. 8568 3. 0
0.8993 2. 4
Cl.9224 3 - L.V
0. 9369 1.7
0. 9469 1.4
0.9597 1.1
0 * 9675 1 . 0

0 ss ORJ
-we--_-_ -------

1.030 37 & d-3.

1.024 26. 0

1 . (:Qc! 27.5
1 . 0 1 7 28.5
1.014 29.2
1 . 0 1 1 30.1
1 . 0 10 30. 7

u5

1.236
1.260
1 375 .*
1.285
1 .292
1.301
1.307

Table 5. Maximum load factor for Cascade
Hashing with one fixed overflow-bucket

per primary bucket for a rjelection of
5, t-pairs.
At these maximum load factors the table
further shows:
0 : Relative amount of overflow (in pet)
5s: Expected search 1 ength successful 1

search.
a,: Relative number of overflowing

buckets (in pet.)
u5: Expected search length unsuccessful 1

search.

6. Conclusion

In this paper a new linear hashing
scheme, cdl led Cascade Hashing, has been
described. It is based on two fundamen-
tal ideas:

1) That a b i ased distribution of
records is used - like in Spiral
Storage, and

2) That the overflow records from a
bucket are clustered and stored
in the main file.

Calculations seem to indicate that
the per-f ormance with respect to success-
full search r unsuccessful 1 search r in-
sertion and deletion is super i or to
other known dynamic hashing schemes.

fkknowl edaements A

The authors would like to thank Per-
Ake Larson, who first introduced us to
the report of G.N.N.Martin.

Also thanks to Bent Pedersen at the
University of Copenhagen for pointing
out the similarities bet ween Linear
Hashing With Partial Expansions and
generalized Spiral Storage.

References

Fagi Fagin, Ronald; Nievergelt, Jurg;
Pi ppenger .r Nicholas; Strong, H.
Raymond - Extendible Hashing - Cs
Fast Ckcess Method for Dynamic
Files. CICM Trans. on Database
Systems 4, 3, (Sep. 1979), 315
344

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Kje184 Kjellberg, Peter; Zahle, Torben
u. - Cascade Hashing. DIKU rap-
port 84/6. Institute of Datalogy,
University of Copenhagen, Copen-
hagen . Denmar 1: Y 1984

Knot71 Knott, Gary D. - Expandable Open
Addressing Hash Table Storage and
Retrieval. Proc. 1971 ACM-
SIGFIDET Workshop on Data De-
scription, Access and Control,
San Diego, California, November
11-12, 1971 P pp. 187-206

Knut73 Knuth, Donald E. - The FIrt of
Computer Programming, Vol. 3/Sor-
ting and Searching. Addison-
Wesley, Reading, Massachusetts,
1973

Lars78 Larson, Per-Ake - Dynamic hash-
ing. BIT 18, 2, (1978), 184-201

Lars80 Larson, F’er-Aike - Linear hashing
with partial expansions. Proc.
6th Int. Conf. on Very Large Data
Bases r Montreal II Canada, October
l-3, 1980, pp. 224-231

L.arsS2 Larson, Per-Ake - A single-file
version of 1 i near hashing with
partial expansions. Proc. 8th
Int. Conf. on Very Large Data
Bases s Mexico City, September,
1982 r pp - 300-309

Litw78 Litwin, Witold - Virtual Hashing:
A Dynamically Changing Hashing.
Proc. 4th Int. Conf. on Very
Large Data Bases 5 West-Berlin,
Germany, September 13-15, 1978,
PP. 517-523

Litw80 Litwin, Witold - Linear hashing :
A new too1 for file and table
addressing. Proc. 6th Int. Conf .
on Very Large Data Bases, Mon-
treal, Canada, October l-3, 1980,
pp. LL 212-733

Lome Lomet r David H. - Hounded Index
Exponent i al Hashing. ACM Trans.
on Database Systems 8, 1, (Mar.
1983) g 136-165

Mart79 Martin, G. N. N. - Spiral sto-
rage: Incrementally augmentable
hash addressed storage. Univ. of
Warwick, Theory of Computation
Report no. 27. Coventry, England,
March 1979

Mu1181 Mullin, James
trolled Li nearK. Ha;hT~~“‘:~t~~~;
Separate Overflow Storage. BIT
21 4 (1981) F
RaAambhanarao,

390-400
Rama K.; Lloyd, John W.

- Dynamic Hashing Schemes. The
Computer Journal 25, 4, (Nov.
1982), 478-485

Scho81 Scholl, Michel - New File Organi-
zations Based on Dynamic Hashing.
ACM Trans. on Database Systems 6,

1, (Mar. 1981), 194-211

Singapore, August, 1994

490

Tamm82 Tamminan, Markku - Extendible
Hashing with Overflow. Inf. Froc.
Letters 15, 5, (Dec. 1982) r 227-
27.2

Vitt82 Vitter, Jeffrey Scott - Implemen-
tations for Coalesced Hashing.
Comm. ACM 25, 12, (Dec. 1982) :,
91 l-926

Aopendi x A

Below we give algorithms for inser-
tion, deletion, splitting and grouping.
In order to make the algorithms simple,
we have assumed that a sufficiently
large number of buckets can be in core
si mu1 taneousl yr and in a number of situ-
ati on5 more sophi st i cated sol ut i ons to
the treatment of special cases have been
left out, al though they could have saved
accesses.

Some details in the implementation
wi 11 be discussed briefly at the end of
the appendix.

The algorithms presupposes the exis-
tence of the parameters s, t and pa as
these are used earlier in this paper,
i.e. the file contains the (g-1)p buc-
kets with numbers Pr..rQP-1 (where
g-t/s)) and a split is performed by
removing s buckets and adding t buckets.

The algorithms refer to a number of
“bucket types”:

. b cl c2 c3 c4 d cl e2

q records u,Ch the same hashed key value

8, the record/bucket currently treated

q records with another hashed key value

El l mpty rp.cs

Fiq 12. Bucket types.

Algorithm I (Insertion of record u
11 [Split] If the maximum load factor is

exceeded r then perform a split.
12 [Search7 Search for key k. If the key

is found insertion terminates unsuc-
cessfully. (The search ends with the
last bucket in the overflow chain for
k - maybe the primary bucket - as
current.) Let B (- current bucket. (B
can be of any type but cl and ~2.)

Proceedings of the Tenth International
Conference on Very Large Data Bases.

13 CEUcket type a or d, insert1 If E is
of type a or d (there is room for k
in the primary bucket) then insert I::
in E and terminate.

14 [Bucket type el or e21 If B is of
type el or e2 (the primary bucket is
full, but contains over f 1 ow from
another bucket) then

14.1 [Select an over-f 1 ow record1 Se-
lect one of the ’ f orei gn’ over-
flow records in E, say k’) and
remove it (temporarily!)

14.2 [Insert3 Insert k in B.
14.3 CReorg. and find end of chain for

1::’]
14.3.1 If B is of type el and I:’ was

the only overf 1 ow record in
B, then let B cc- the previous
bucket in the chain for k’ .

14.X.2 If b is of type eZ then
14.X.2. 1 If k’ was the only over-

flow record in E then
link H out of the chain
f or k ’ .

14.3.2.2 Fol low the chain for k’
to the end and let B <-
the last bucket in the
chain.

14.4 [Swit.ch to insertion of k’l Let k

15

I6

17
I8

19

C’- k’. (B is , now known to be of
type b, c3 or ~4.1

[Bucket type c3, insert 3 If H is of
type c3 (B has room for k) then in-
sert k and terminate.
CSel ect new overf 1 ow but ket 1 (I3 is
now of type b or ~4.) Select a new
overflow bucket H’. If none is found
then perform a split, write a warning
to the maintenance staff and return
to 12.
[Insert] Insert k in E’.
CReorg. chain1 If R is an overflow
bucket and EC’ can contain all over-
flow records in EI, then move the
overf l.ow records from B to R’ and let
R <- the predecessor to H in the
chain. Repeat 18 as long as possible.
CLinkI Link H’ to H.

Alqorithm D (Deletion of record k)
Dl [Search] Search for key k. If the key

i Cj not found deletion terminates
w-bsuccessf ull y. (the search ends with
the bucket containing k as current.)
Let B .:Z- current bucket.

D2 [Delete] Delete k from B.
D3 [Simple deletion1 If B is of type a,

b, C3, c4, d or el (no chains need
reorganization after the deletion of
k) then go to D7. (In case c3, c4, d
and el an action similar to 18 may be
performed.)

Singapore, August, 1984

491

D4 [Find end of chain3 (EI is now of type
cl, c2 or eZ. The overflow chain
needs reorganization.) Follow the
chain emanating from B t0 the end;
let E" <:- the last bucket in the
chain.

D5 [Select A record7 Select an overflow
recnrd in b’ 5 say It’. Remove I::’ from
R’. If I,:” was the only overflow re-
cord in R” then link 8" out of the
chain.

D6 CRestore k’1 Insert k’ in B. (The
‘hole’ after k is filled.)

D7 CGroup7 If the 1 oad factor now is
be1 ow minimum,
ing.

then perform a group-

Alqorithm S (SolittinQ
Sl CScan buckets to be split1 Let E be

bucket number p Y p+i, . ..I p-5-1
repeated1 y. For each bucket do

S1.l CReadl Read B. (It can be of any
primary bucket type, i.e. all but
cZ7 c.3 and ~4.)

S1.2 [Read own overf low3 If R is of
type cl then all overflow buckets
in its chain are read, the over-
flow records are removed (but
saved for later ! 1 and the buckets
rewritten with the overflow space
marked as empty.

S1.3 CReorg. 'foreign' overflow chain1
If H is of type d, el or eZ (this
situation should be extremely
rare) the H is linked out of the
chain and the 'foreign" overf I ow
records put aside for a while.

S2 CIncrementl Let p i:- p+s.
S3 CRehashl Rehash all records, i ncl u-

ding own overflow records from S1.2
but excluding 'foreign? overf 1 ow
records from Sl.3, (The records hash
to the new buckets gp-t,..,gp-1.) If
some of the new buckets should
overflow (this should be a rare situ-
ation) then the overflow is put aside
for a while.

.

S4 [Rewrite] Rewrite the new buckets.
S5 [Insert overf low7 Clse algorithm I to

insert overf 1 ow records put aside in
sj, 3 or ST - *A .-I if any.

Alqorithm G (Grouoina)
Gi [Scan bucket-5 to be grouped1 Let E be

bucket number gp-t,..,gp-l repea-
tedly. For each bucket do

Gl.1 [Read1 Read bucket 8. (It can be
of any type but c2, c3 and ~4.)

Gl .2 CKead own overf low1 If R is of
type cl then al 1 overflow buckets
in the chain are read, the over-
flow records are removed (but
saved for later!) and the buckets
rewritten with the overflow space
marked as empty. (This situation
should be rare.)

Proceedings of the Tenth lntematlonal
Conterence on Very Large Data Bares.

61.3 [Move 'foreign' overflow1 If B is
of type d9 ei or e2 then

61.3. 1 If B is of type e2 then 1 ink
I3 out of the chain, follow
the chain to the end and let
R” ‘;- lacjt bucket in the
chain. IfE is of type d or
el then let H’ C- the prede-
cessor to H in the chain.

Gl .3.2 Select a new overflow bucket
B If none is
ri;reate the

found then
initial 5i tua-

tion, write a warning to the
maintenance staff and termi-
nate.

61.3.3 Insert as many of the over-
flow records from EC in H, as
possible, link M, to B’ and
let 8’ <I:- R,. Repeat 61.X.3
61.3.3 until all overflow re-
cords in B are restored.

G2 [Decrement3 Let. p q’-- p-s,
G3 CRehashl Rehash all records. inclu-

ding own overflow records from 61.2.
(The records hash to the new buckets
p...Pp+s-l.)

G4 CRewrite For each of the new buc-
kets, let it be H’, do

64.1 [Rewrite primary bucket 1 Rewrite
E' rn

G4.2 [Rewrite overflow1 Store overflow
records from H” using the same
procedure as 61.3.2-61.3.3.

Implementation details
The overf 1 ow chain can be either a

singly or a doubly linked list. Either
structure has both advantages and dis-
advantages. The doubly 1 i nk:ed I. i st needs
more accesses to update pointers whi 1 e
the singly linked list needs more acces-
485 to find the predecessor in the 1 ist
(but it is easily done, simply by hash-
ing the key af any record and reading
through the chain from the primary
but i:et) .

The algorithms use simple Ejoluti on5
to the reorganisation of overflow
chains. Since all buckets in a chain
usual 1 y must be read anyway r a more
refined s;olcction may always minimize the
number of used overflow buckets!

In order to select a new overflow
bucket, al 1 buckets with an empty over-
flow space can be 1 inked together. This
means fast selection but also accesse5
in other places to maintain the chain.
If the buckets are not linked together
the se1 ection may be speeded up by main-
taining a pointer to the highest bucket
number known t0 possjibly have a free
overflow space.

Slngapore, August, 1994

492

