CASCADE HASHING

Feter kKjellberg

and Torben U.

Zahle

Computer Science Department, University of Copenhagen

Sigurdsgade 41,

Abstract
Cascade Hashing is a new dynamic
hashing scheme which is based on Spiral

Storage.

The purpose of this paper is first
to give a unified exposition of Linear
Hashing, Spiral Storage and other dyna-
mic hashing schemes, and second to de-
scribe a new method for storing overflow
records. The method stores the overflow
records in the main file itself and
clusters overflow records from each pri-
mary bucket in one or very few overflow
buckets.

Calculations on the load of the file
promises search lengths very close to
one even for a storage utilization above
90%, which makes the method appear bet-
ter than any present dynamic hashing
scheme.

1. Introduction.

Since the early seventies, a number
of techniques have been described which
allow a hash file to change its size dy-
namically along with the changing number
of stored records.

The first proposals, named Expanda-—
ble Hashing [Knot71l1, Dynamic Hashing
[Lars781] and Extendible Hashing
[Fagi791, are all based on the same
ideas; when a bucket overflows, instead
of creating an overflow record, the file

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

DK-2200 Copenhagen N,

481

Denmark

with a new bucket and the
records of the overflowing bucket are
split between the o0ld and the new buc-
ket. To keep track of the splitting, an
index or directory is created that grows
and shrinks with the size of the file.
Different kinds of tree structures
are used for the index, but Virtual
Hashing [Litw78] reduces the index to a
bit-table with one bit for each bucket

is extended

by introducing a series of hash func-
tions, one for each "level" of split-
ting. At any stage the primary bucket of

a record can be reached without acces-
sing other buckets.

Virtual Hashing also allows for a
certain amount of overflow to defer
splitting. Versions of Extendible Hash-
ing with overflow are described in
[SchoB1] and [TammB821. A rather complex
version with an index of limited size is
found in [Lome83].

In the 1late seventies methods were
invented which avoided indexes complete-
ly: Spiral Storage [Mart79] and Linear
Hashing [LitwB01l. While Spiral Storage
has remained rather unnoticed, Linear
Hashing has drawn much attention. The
basis of these methods is still the
splitting of buckets, but instead of
splitting the buckets that overflow, the
buckets are split in linear order
0,1,2,..., thus reducing the index to a
single pointer showing which bucket is
to be split next.

LLinear Hashing with Partial Expan-
sions [Lars80]1 is a generalization of
l.inear Hashing which gives better per-
formance. A further generalization of
Linear Hashing is given by Ramamohanarao
¥ Lloyd [RamaBZ1l.

[Mullgll and [Lars82) describe ver-—
sions of Linear Hashing and Linear Hash-
ing with Partial Expansions respective-
ly, where the overflow is stored in the
main file, as opposed to the earlier
versions where overflow was stored in a
separate overflow area.

Singapore, August, 1984

indices will be
detail later in the

The schemes without
discussed in more
paper.

The number of records which can be
stored in a bucket is called the blok
factor and denoted bi b" is the blok
factor of a possible separate overflow
storage. If the main file and the sepa-
rate overflow storage contains M and M*?
buckets respectively, the file can at
most hold bM+b*M* records. When the
current number of records is x, then
#/(bM+b* M) is called the storage utili-
zation, while x/bM is called the load
factor, denoted f. It may be noted, that
when a separate overflow storage is
used, the load factor can become greater
than one. When overflow is stored in the
main file, the load factor equals the
storage utilization.

In the present paper we will only
consider the so called "controlled
split”, where a split is performed only
when the file has been filled to a cer-
tain limit, thus making the file size
grow linearly with the number of stored

records.

2. Conceptual Linear Hashing.

First we describe
briefly, introducing terms
following descriptions.

Linear Hashing expands
splitting the buckets one
linear order 0,1,2,..

When a bucket is split,

Linear Hashing
used in the

the file by
by one in

approximate-

ly half of its records are removed and
restored in a new bucket at the end of
the file. No index is needed, only a

single pointer p showing which bucket to
split mext. When all buckets in the file
are split, the pointer is reset to the
first bucket (0) and the process starts
over again, but now with a file twice as
large. The overflow records are taken
care of by explicit pointers to a sepa-
rate overflow area.

We will only consider the case where
the initial file size is 1.

After L completed doublings or ex-
pansions of the file, its size is 2-. L

is called the file level.

Using a series of gplit functions
h(k), one for each file level, where
each h. (k) hashes randomly on the inter-—

val [0,2%[, we get the hash function

(hotk) if hot(k) 2 p

= ¢

(¢ hewa (k)

h (k) (1)

otherwise.
h (k)

Proceedings of the Tenth international
Conterence on Very Large Data Bases.

is a real numbers to get the

482

integer bucket number we use
Hk) = Lhao . (2)
In the following discussion we use

the real bucket number, and assume trun-—
cation to get the integer bucket number.

Let D(k) distribute uniformly over
as large a number of buckets as needed.
Then an example of a Linear Hashing
function is shown in fig. 1.

Average
load
—
012 e L+1 Sb+2
+
P
a) At the start of an expansion.
Average
load
P 1
£
=---0
1
t
PR VT SO R S S R S S S S R R
012 ¢ 2L 2L+1 2L+2
P
b) During an expansion.
L
D(k) mod 2 if D(k) mod 2> <
M z
r=h (k)= L1
D(k) mod 2 otherwise
where L= [logzMJ and p=M-2L
Fig.l. Linear Hashing.

The height of the buckets in the
figwe illustrates the load, where f is
the load factor of the +Ffile. Buckets
taller than 1 are overflowingi the guan-

tity above 1 is
wheare.

Note, that any split function
M+ (k) stores k either in the same
bucket as the previous function ho (k) or
in the bucket into which ho(k) was
split.

As the file grows
M, it 1is possible
level L and the split position p.
case of Linear Hashing we have
llog=M]| and p = M - 2+,

In the +following we will mark the
hash function h(k) with a superscript M
to indicate how many buckets the file
contains: h™(k).

actually stored else-

to a certain size
to determine the
In the
L =

The split in Linear Hashing may be
thought of as a process where the first
bucket in the file is removed and its
records restored in two new buckets
appended to the end of the file. Fig. 2

Singapore, August, 1984

shows this process, called Conceptual
Linear Hashing, which is the way we will
consider Linear Hashing in the rest of
the article.

di{k) is a Ffunction distributing the
records uniformly on the interval [0, 1,

Average
lgad
1 4= A

"

Ade b A Ak

U TS W S T DA U S WY)
-+

2 PRl

+ 4
P 2p

Average a} At the start of an expansion.

load

A

1
£

1

T

‘ — e e . e

! 1
' !
]

+

. U

BN U SRR
—+

YIRS o

2L+2

4
T

01z o1 +

2 2
P 2p 2
b) During an expansion.

n o [etasam i 2Maeamo)>p
r=h (k)= L+1 -
2 (1+d(k)) otherwise

where p=M and L= [logzpj
Fig.2. Conceptual Linear Hashing

When the first bucket (bucket 1) is
split, the file has doubled and consists
of the buckets {2,3Y. When hoth of these
are split, the +file has doubled again
and now consists of the buckets
{4,5,6,7. This process may be conti-
nued, and after L completed expansions
the file consists of the buckets

£y
A i B

At any time, the bucket to split
next, p, 1is the first bucket in the
file. The number of buckets in the file,

M, is p as well, so generally the file
consists of the buckets {p....2p-13.
When bucket p is split, its records are

The
p:

restored in the buckets 2p and Zp+1.
file level L is a function of

L = [log=p |-

Computer systems normally only allow
data areas to grow and shrink at one
end. Anyway, this problem is easy to
overcome, Ssince a simple algorithm
exists, that transforms the (conceptual)
bucket numbers above to physical bucket
numbers or page numbers 0,1,2,...

In fig. 3Ja the numbers of the exist-—
ing conceptual buckets are listed for
the first few M s.

An algorithm transforming these to
page numbers must fullfil two criteria:s

Proceedings of the Tenth International
Conference on Very Large Data Bases.

r

L+2

483

_Conceptual bucket number: n
1234567891011 12 13
Mit1

2 23

3 345

4 4567

5 567809

6 6 789 10 11

7 7 8 9 10 11 12 13

(a) Existing conceptual bucket numbers

Actual bucket number: P(n)
0 1 2 3 4 5 6
M1}

212 3

314 3 5

414 6 5 7

518 6 5 7 9

618 610 7 9 11

7181210 7 9 11 13

(b) Placement of conceptual buckets

Fig. 3. Conceptual to actual bucket
number transformation

1) All page numbers O to M-1 must be
in use.

2) When a bucket is stored on a
page, it must remain on this page
throughout its entire lifetime.

These demands can easily be met:
When the file is expanded the first of
the new buckets is placed on the same
page as the bucket being removed, while

the second of the new buckets is placed
on the first free page (fig. 3Jb).

A glance at the coloumns of fig. 3b
immediately unveils a pattern, that is
exploited in the <following algorithm,
transforming a conceptual bucket number
n to page number F((n).

function F(n)3j (Alg. ta)

integer ni

Written without recursion the algorithm

is:
ib)

function Fn)s (Alg.

inteqer n3
beqgin

integer ms

m := ni

while m mod 2

F(n) = (m—1)
ends

Singapore, August, 1984

3. Exponential Distribution Method. The construction of a hash function
which creates the same skew distribution

Fig. 2 also illustrates the main of records for any number of buckets, is
problem of Linear Hashing: Since each not trivial though. If the most straigt-
split function he(k) distributes the forward biasing, a gradually decreasing
records uniformly over its range of distribution, is used, the performance
buckets, then during an expansion of the will still oscillate.
file the still unsplit buckets will
contain twice as many records as those However, the method named Spiral
already split. kKeeping the load factor Storage described in a university report
constant (and preferably high) a chan- by G.N.N.Martin [Mart791 actually ’is
ging amount of overflow records result such a biased linear hashing scheme. And
from the unsplit buckets and give rise furthermore the method turns out to be
to changing performance. quite simple!

The following is based on two funda- Since Martin’s report in ow opinion
mental ideas. First, that it might crea- is difficult to understand, and since
te less overflow to have a skew distri- the method is not explained in terms si-
bution of records, so that the buckets milar to other literature on hashing, we
which split late are not so full. Se- will in the following summarize Martin's
cond, that it would be nice to choose a results using the terminology introduced
distribution which let the performance in section 2.
remain stable.

Even though the average performance The essence of Spiral Storage is,
of Linear Hashing is good, in many ap- that instead of the uniform distribution
plications the number of records in a resulting from the split functions
file stabilizes for shorter or longer 2% (1+d(k)), a biased distribution is
periods, and the point of stabilization obtained using the split functions
may be where the performance is the
worst. he (k) = 2L-2d k> (3

To remove performance oscillations
we must construct a hash function, which i.e.

gives the file the same load pattern for eebiel A1 34

any number of buckets. The function must if 2b-2dcr 20

]
-~~~

bias the record distribution so that the h™ (k) 4)
last bucket in the file contains approx- 2b+r-2ack> gtherwise
imately half the records of the first
bucket. Then the two new buckets result- where p = M and L = Llogzpj.
ing from a split will it nicely into
the bis=ed load.
Average
Average load
load) . [____7
1 L A\ [A]
el [A]} £
et " il e i et bt ||."“Jl|njlljl;lll)l:Jfr
012 2 L Lt ,L+2 12 5 PR Lt
4 4
+ 4)
P 2p P
a) At the start of an expansion. a) At the start of an expansion.
Average T~ A\{erzge I\
< - ~ oa
loac ~
1 ~ ! .
1 4 i]\ 1 T R 7\
£ ! £ !
! ~ - - I R R R e e
| = -~ ' --=
[} I)
L1 AIIL!IAI | 77.-;..;;3‘:: ““‘"3"‘ ',"""'111‘1|IJ'4_1‘
012 L + L1 4 42 012 oL 4 oLl 23 M2
P 2p P P
b) buring an expansion. b) During an expansion.
ig.4. Biased Li Hashing.
Fig Biased Linear Hashing " oL 2d(k) if ok 2d(k) >p
r = h (k)
. . 2L+1 2d(k) otherwise
With such a biased 1load a constant
load factor of 75% may be kept up with where p = Mand L = | 1092PJ
hardly any overflow records, bringing
search lengths down to practically one. Fig. 5. Spiral Storage.
Proceedings of the Tenth International Singapore, August, 1984

Conference on Very Large Data Bases.
484

In an earlier report (KjelB84]1 we
have shown that the average load for a
given hash value r is:

£/1n2 « p/r
S0 that for a given M and thus p, the
average load follows the inverse func-—
tion 1/r. This 1is the case for both
split functions, thus we have managed to
get a smooth load distribution with no
discontinuity at the intersection of the
two split functions.

Further it can be seen, that the
load at the start of the file (r=p) is
f/1n2 and the load at the end of the
file (r=2p) is 1/2 * f/1n2.

It is interesting to note that (4)
actually produces a file with the sought
properties. The load of the last bucket
is (a little more than) half the load of
the first bucket and the relative dis-
tribution of the records within the file
does not change.

If the load at the start of the file
is set to 1 and the equation then solved
for £, then the maximum load factor of a
file which idealy has no overflow at all
can be found:

#/1n2 = 1 <=3 4§ = 1n2 = Q,6931.
Spiral Storage produces a constant

amount of overflow, the relative size of
which is derived in [Kjel84]. As well,
the average and maximum relative over-
flow sizes using Linear Hashing are de-

rived, using the same assumptions as for
Spiral Storage. The results are shown in
table 1. It is seen that Spiral Storage
not only removes the oscillations in
overflow size but also produces less
overflow than the average for Linear
Hashing!

f S.5. LH av. LH max
0.5000 Q.a000 0.00Q0 Q. 0000
0.6%31 0. 0000 1.6848 4.5408
0.73500 0.4367 2.9871 6.7347
0.8000 1.4143 4.3741 8.7722
0.8500 2.8077 5.9421 10.8611
0.9000 4.517%9 7.6523 12,9687
0. 9500 6.4702 9.4712 15.0727
1. 0000 8.6071 11.3706 17.1573

Jable 1. Relative amount of overflow

using Spiral Storage and Linear

Hashing (average and maximum)
for different load factors (f).
In pct.

To conclude this section we mention
that the hash function for Spiral Sto-
rage actually may be written as a single
expressions

L [[1ogzp-dtk) | + d(mJ

H () 3

Proceedings of the Tenth International
Conterence on Very Large Data Bases.

4. Splitting from several buckets.

F.-A.Larson has shown in [Lars80)],
that compared with Linear Hashing, a
better performance can be achieved using
a generalized Linear Hashing where an
expansion is done in a series of partial
expansions. Using two partial expansions
(which according to Larson is a good
compromise in many cases) the method
works as follows: In the first partial
expansion groups of two buckets are
split, moving a part (approx. 1/3) of
their records to a new bucket (fig. 6a).

Average
load
| e savmm—")
1 - L ;
f
= - -1
012 2L 2L+1 2L+2
+
a) During the first partial expansion.
Average
load
18 7 | T .
£ - f
- r
L+2
0 12 2L 2L+1
P

485

b) During the second partial expansion.

Fig.6. Linear Hashing with 2 partial expansions.

When during this first partial ex-
pansion all the original buckets have
been split, the file has been expanded
to 1.5 times 1its original size. There-
after the second partial expansion
starts, now splitting groups of three
buckets, moving approx. 1/4 of their
records to the new bucket (fig. 6b).
When the second partial expansion is
ended, the +file has doubled, and the
methaod starts again with the first par-
tial expansion.

Ramamohanarao & Lloyd [RamaB2] have
considered this idea and give another
method where the growth consists of
single expansions in which always groups
of s buckets are split (fig. 7a).

When all buckets are split, a new
expansion starts, again splitting groups
of s buckets. Since the file size is not
always divisible by s, a number of empty
"round—-up buckets" are added to the file

(fig 7b).

It is obvious, that both methods
give better search performance than
Linear Hashing since less overflow oc-

curs. In Linear Hashing the still un-

Singapore, August, 1984

4:% during the second. With Ramamchana-
rao & Lloyd’ s method the ratio is always
(s+1):s.

It is more surprising, that when the
number of partial expansions (respec-
tively the value of s) is reasonable,
also insertions are faster than with
Linear Hashing, despite the fact that a
split is more expensive! The reason is,
that the increased cost of splitting is
more than outweighed by the decrease in
overflow chain lengths.

But still the performance oscilla-
tes, and in both cases the hash function
is more complicated than with Linear
Hashing.

It can be expected that splitting
from several buckets in Spiral Storage
{in the following called Generalized
Spiral Storage) also will show an impro-
ved performance for both search and
insertion times. Furthermore it does not
show any of the inconveniences of the
generalized Linear Hashing schemes
above.

Generalized Spiral Storage resembles

the method of Ramamochanarao & Lloyd (but
is actually even more general). The
performance is the same for any number

the hash function is no mare
than that of simple Spiral
it does not need any "round-

of buckets,
complicated
Storage and
up buckets".
The idea of
Storage is very
expansion is performed by

the generalized Spiral
straightforward: Each
1) adding a

number of buckets, say t, to the high
end of the file and 2) removing some
number, say s, from the low end of the

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Average
load
Sy
f 4
I — g
qlllllljl‘ljllll‘ljll‘r
0+
P
Average
load
4 ; : H
1
£1] | o §
lﬂ.“.,.lJA.A;‘Lv_gr
04 t4
p "round~up buckets"
Fig.7. Ramamohanarao and Lloyd's Linear Hashing (s=3)
at two consecutive expansions.
split buckets contain twice as many
records as the gplit buckets. With 2
partial expansions the ratio is 3J:2
during the first partial expansion and

486

distributing the records of the s
removed buckets on the the t new buc-—
kets'! We say, that s buckets split into
t. or equivalently that 1 bucket splits
into t/s. When t=2 and s=1 this is the
simple Spiral Storage.

file,

t/s. In the general case the
"file level" is defined as L = [loggp].
Note, that now L is not the number of
doublings of the file. (Actually, in-
creasing L by one is equivalent to an
expansion of the +file by a factor g,
which generally is not an integral num-
ber of buckets!)

Let g =

1f, again, d(k) is a function dis-
tributing all records uniformly on the
interval [0,1[, then
(gt--ga
{ if gb-gee> 2 p
hM(k) = < (&)
{ gtrt-g@<+?> ogtherwise
where p = M/(g-1) and L = | loggp |,

is the hash function for generalized

Spiral Storage.

Average I~
lopd RIS 4
] S 7,
T I3
£ | -
| h
s e -
012 L 4 L+t t L+2
9 g
gp
a) During an expansion.
L d(k L d(k
Y

L+1

g
r=hM(k) =
g

where p=gﬁ_1 and L=|_10quJ

a(k) :
g otherwise

Fig.B. Generalized Spiral Storage with g=% .

The average load for a given hash value

r is ([kKjelB841):
f(g-1)/1n(g) - p/r
which means that we get a smooth load

distribution in the general case too.

The load at the start and at the end
of the file is f{g-1)/1In{(g) and
1/9 - f(g—-1)/1n(q) respectively. This
means that when e.g. g = 3/2 the load of
the last bucket of the file is (a little
more than) two thirds the load of the
firrst bucket.

What we have achived
record distribution over the file, redu-
cing the number of overflow records; the
price is a greater number of accesses to
perform a split.

is a more even

Singapore, August, 1984

Average
logad

NS

Fig.9. The average load of a genera-
lized Spiral Storage file,
for a selection of (s,t)-pairs.

The cases where t = g+1 are equiva-
lent to those of Ramamohanarao % Lloyd:
Each split produces one extra bucket. In
other cases more than one bucket results
from each split (thus provoking a split
more seldom) but are in all other re-
spects no more complicated. E.g. the
case (s,t) = (3,5) produces two extra
buckets by splitting three (which may be
thought of as splitting 1 bucket into
5/3 bucket three times) and actually in
all respects it acts as a compromise
between (1,2) and (2,3) (two times 1
into 3/72).

Again, we can find the maximum load
factor of a file which ideally has no
overflow by equalling the 1load at the
start of the file (shown above) with 1
and solving for +:

f = 1n(g)/(g-1).

S.t 'fm-n

1,2 0.46931
FaS 0.7662
2,3 0.8109
5.7 | 0.8412
3.4 0.863F0
4,5 | 0.8926
5,6 | 0.9116

Table 2. Maximum load factor for genera-
lized Spiral Storage
overflow for a selection of
s, t—pairs.

As with
relative amount
in [K;jel841]:

Proceedings of the Tenth International
Conference on Very Large Data Bases.

simple Spirtal Storage the
of overflow is deriven

without

0.85 | 2.81 1.02 0.27 0.02

0.90 [4.52 2,40 1.29 0.66 0.30 0,02

0.95 | 6.47 4.22 2.93 2.11 1.55 0.85 0.46
1.00 | B.61 6.36 5.06 4.20 3.59 2.79 2.28

Jable 3. Relative amount of overflow
using generalized Spiral Stora-
ge for a selection of s,t-pairs
and different load factors (f).
In pct.

The only problem left in making the
generalized Spiral Storage work is a
generalization of algorithm 1, transfor-
ming the conceptual bucket numbers to
(physical) page numbers. The algorithm
works exactly as alg.l and is given here
without further comments.

The algorithm transforms the concep-
tual bucket number n to page number F(n)
in the case where s buckets are split
into t:

function F(n)s
integer nj
begin
if n mod t <

then F((n) :

F(n/t]s + n mod t)
else P(n) =

Ln/t] (t-s) + (n-s) mod t;

(Alg. 2a)

nw

ends

Written without
is:

recursion the algorithm

function F(n)3
integer ng
beagin
integer ms
m 2= N3
while m mod t < s do
m:=|m/t]l-s + m mod ts
F(n) = | m/t |- (t-s) + (m—s) mod t;
ends

(Alg. 2b)

It may be noticed that in the cases
where t = s+1 alg.2 reduces to:

function P(n);
integer ns

(Alg. ™)

beqin
if nmod t # s
then F(n) := F(Ln/t]-s + n mod t)
else P(n) := (n-s)/t}

ends

Finally we mention that the hash
function for generalized Spiral Storage
may also be written as a single expres-—
sion:

Singapore, August, 1984

L rlog,p—d(kﬂm(k)J
g

HM (k) =

where p = M/ {(g—-1).

S. Overflow handling.

treat the over-
course simply to

The easiest way to
flow problem is of
avoid any overflow at all. Because of
the biased distribution of records in
the Ffile, we must expect an overflowing
bucket to be located at the beginning of

the file, and we may simply split buc-
kets up to and including the one that
overflows. This scheme, however, has two

major disadvantages which both stem from
the fact that a rather long sequence of
splits can result from a single inser-—
tion:

-~ The load
drop heavily.

~ Very long
occur now and then.

factor of the file may

insertion times may

For this reason, and in order to
increase the load factor beyond the
values listed in table 2, a new scheme

for handling overflow records is descri-
bed in the following.

The main purpose of the method is to
incorporate the overflow in the main
file, thus reducing the data area to one
single file growing linearly in size
with the number of stored records.

As mentioned in the introduction two
Linear Hashing schemes with overflow in
the main file bave been described by
Mullinmn [MullB1l and Larson [LarsB8Z].
Roth methods chain the overflow records
to the primary bucket. The difference
between the two is, that while Mullin
uses the empty space in other buckets
for the overflow, Larson sets every k" th
bucket aside entirely for overtflow.

Larson concludes his article by
advising, that overflow records be clus-
tered in one or a few overflow buckets.
This is the second purpose of the pre-
sent method. To achive this goal the
method uses, like Mullin, the empty
space in other buckets for overflow, but
instead of chaining single overflow
records, it chains overflow buckets,
i.e. the empty space in a bucket is used

entirely for overflow from one other
bucket.

The success of this idea is due to
the biased record distribution. The

overflow is gathered at the "low" end of
the +file, while the empty space is
gathered at the "high" end.

The method works as follows:

Proceedings of the Tenth International
Conference on Very Large Data Bases.

488

BEL

4
£ g
Z I |+ @]
.4 : = 3

(b) allocating the second overflowbbucket,
transferring the records from the previous

- B g a .\
3 £ = Z ' +

==
I o P

1
b
& -

¢ E:

&

» 3 ¢ A “ ¢
(c) allocating the second overflow bucket,
chaining to the previous

Fig. 10. Chaining overflow buckets

in Cascade Hashing.

When insertion of a record is at-
tempted (fig. 10a) into a full primary
bucket (A, the highest numbered bucket
with an uncluttered overflow space (B)
1s allocated, the record is inserted
herein, and this new overflow bucket is
chained to the primary bucket. Additio-
nal records with primary bucket A are
inserted into the overflow bucket E as
long as space is available.

When there is no more room in B, a
new overflow bucket (C) is selected the
same way: The highest numbered bucket
with an uncluttered overflow space.

Since C usually is higher numbered
than B (the file has presumably been
split a number of times because of the
insertions), then it may be expected
that the overflow space in C is larger
than that in B, and then usually all
overflow records of A can be stored in
C. thus keeping the length of A's over-
flow chain to 1. Therefore, if possible,
the overflow records in B are transfer-—
red to C and the chain is relinked (fig.

10b), we say that the overflow records
cascade From B to C. Further overflow
records are inserted using the same
mechanism.

If C cannot contain all overflow
records, then only the new record is
inserted in C, and C is chained to B
(fig. 10c).

Singapore, August, 1984

The purpose is to keep the overflow
chains short. As the main operation on a
hash file is searching, it is profitable
to reorganize the overflow chains during
insertion and deletion in order to re-
duce search time — as long as the reor-
ganizations do not seriously affect the
insertion—- and deletion-times.

There are two other important ways
to keep the chains short. First, during
insertion, no record shall be an over-
flow record unless its primary bucket is
full of its ogwn records. 1If the primary
bucket is full, but contains overflow

records from another bucket, the '"stran-
gers" are pushed out and inserted else-
were.

Second, all buckets in a chain,

except for the last, must be full. When
a record is deleted, some other record
from the end of the chain is brought
back to fill out the hole.

Algorithms for insertion, deletion,
splitting and grouping are included as
appendix A.

We still need to
method works for all cases. In [KjelB4]
we show, that the relative number of
overflowing buckets, assuming a perfect
distribution, is

f/1n(g)—-1/(g-1).

verify, that this

This is illustrated in table 4. The
table shows, that there will be at least
one free bucket Ffor each overflowing
bucket, and usually many more.

f 1,2 3,59 2,2 5,7 3,4 4,5

0.70 1.0

0.75 .2

0.80 | 15.4 6.6

0.85 | 22.6 16.4 9.6 2.6

0.90 | 29.8 26.2 22.0 17.5 12.8 3.3

0.95 | 37.1 36.0 34.3 32.3 Z0.2 25.7

1.00 | 44,3 45.8 46.6 47.2 47.6 48.1

Table 4. Relative number of overflowing
buckets for a selection of
(s,t)—pairs and different load
factors (f). In pct.

it may still happen, that
are not distributed
so there is a risk

Of course,
the actual records
uniformly with d(k),
that no free overflow bucket can be
found when needed. This problem can be
solved by allowing the overflow chains
to coalesce, i.e. that overflow chains
from several primary buckets use the
same overflow bucket [Vitt82,Knut731].
But this is probably not worth the
trouble: a much easier solution is to
perform one or more splits. Eventually
some free space will result.

Proceedings of the Tenth International
Conterence on Very Large Data Bases.

489

This soclution may cause the load
factor to drop below the wanted level,
but that ought not to occur. Actually,
if it does, it is merely a warning that
either the load factor is set too high
or the used distribution function d(k)
is not uniform enough! (The extra split-
ting can be seen as "graceful degrada-
tion".)

A typical situation is shown in figq.
11,

Average

load

' L TS S
2 , 2 2p 2

Fig. 11. A typical situation with £ = 0,8 and g = 2.

012

We conclude this section with a few
more results., In [KjelB4] we derive the
number of the last bucket in the file
(N awe) When a bucket neuars first over-
flows. Choosing Niaee as overflow bucket
for nNeui1zs we then derive the highest
load factor fma.x at which this overflow
bucket can hold the overflow of nNeuis
throughout the entire lifetime of Nsuira.
These load factors are tabellized in the
first coloum of table 5S. Thus with a
load factor up to ¥ any bucket only
needs one overflow bucket, and this
overflow bucket never needs to be moved!

In practice the records do not
distribute ideally, and thus some buc-
kets need more overflow space. But there
ig still room in the file for cascading
the overflow records forward to another
bucket.

For this
cords stored

reason the number of re-—
in second (or higher) over-
flow bucket may be assumed to be negli-
gible, and thus, by calculating the
expected amount of overflow records and
the expected number of overflowing buc-

kets, we may state an expected length of
successfull and unsuccessfull search.
This is also done in table S - we will

let the figures speak for themselves.

At present, work is in progress
simulating the method with stochastic
input.

Singapore, August, 1984

s, t s 0 =1-1 On us
1.2 0.8568 3.0 1.030 23.6 1.3236
I, 5 0.899% 2.4 1.024 26.0 1.260
2,3 Q.922 2.0 1.020 27.35 1.275
Sa7 0.9369 1.7 1.017 8.5 1.285
3.4 0.9469 1.4 1.014 29.2 1,292
4,5 00,9597 1.1 1.011% J0.1 1.301
S.6 0.9675 1.0 1.010 30.7 1.307
Table 5. Maximum load factor for Cascade
Hashing with ane fixed overflow-bucket
per primary bucket for a selection of

s, t—pairs.

At

these maximum load factors the table

further shows:

0 :
55

On:

uss

6.

Relative amount of overflow (in pct)
Expected search length successfull
search.

Relative number ot overflowing
buckets (in pct.)

Expected search length unsuccessfull
search.

Conclusion

tal

In this paper a new linear hashing

scheme, called Cascade Hashing, has been
described. It is based on two fundamen-
ideas:

1) That a biased distribution of
records is used -~ like in Spiral
Storage, and

2) That the overflow records from a
bucket are clustered and stored

in the main file.

Calculations seem to indicate that

the performance with respect to success-—

full search, unsuccessfull search, in-
sertion and deletion 1is superior to
other known dynamic hashing schemes.
Acknowl edgements

The authors would like to thank Per-—

Ake Larson,

who first introduced us to

the report of G.N.N.Martin.

University
out
Hashing With

Bent Pedersen at the
for pointing
Linear
and

Also thanks to

of Copenhagen
similarities between
Fartial Expansions

the

generalized Spiral Storage.

References

Fagi79 Fagin,

Ronalds Nievergelt,
Fippenger, Nicholasi Strong, H.
Raymond — Extendible Hashing - A
Fast Access Method for Dynamic
Files. ACM Trans. on Database
Systems 4, (Sep. 1979), 315-
344

Proceedings of the Tenth Internationail
Conference on Very Large Data Bases.

Jurgs

-
=y

490

KjelB4

Enot71

Enut73

l.ars778

l.ars80

LarsB82

Litw78

LitwB0O

Lome83

Mart79

Mull81l

Rama82

Scho81

Kjellberg, Peters
U. Cascade Hashing.
port 84/6.
University of Copenhagen,
hagen, Denmark, 1984
Knott, Gary D. - Expandable Open
Addressing Hash Table Storage and
Retrieval. Froc. 1971 ACM-
SIGFIDET MWorkshop on Data De-
scription, Access and Control,
San Diego, California, November
11~12, 1971, pp. 187-206

krnuth, Donald E. The Art of
Computer Frogramming, Vol. 3/Sor-
ting and Searching. Addison-
Wesley, Reading, Massachusetts,
1973
lLarson,
ing. BIT 18,
Larson, Fer-Ake
with partial

Zahle, Torben
DIKU rap-
Institute of Datalogy,
Copen—

Per—~Ake

Dynamic hash—
(1278), 184-201

- Linear hashing
wpansions. Froc.
6th Int. Conf. on Very Large Data
Bases, Montreal, Canada, October
1-3%, 1980, pp. 224-231
Larson, Fer—-Ake A single—file
versian of linear hashing with
partial expansions. Froc. 8th
Int. Conf. on Very Large Data
Rases, Mexico City, September,
1982, pp. 300-309

Litwin, Witold - Virtual Hashing:
A Dynamically Changing Hashing.
Froc. 4th Int. Conf. on Very
Large Data Bases, West-Rerlin,
Germany, September 3-15, 19748,
pp. S517-523

Litwin, Witold - Linear hashing :
A new tool for Ffile and table
addressing. Froc. 6th Int. Conf.
on Very Large Data Rases, Mon-—
treal, Canada, October 1-3, 1980,
pp. 212-22

Lomet,

David K.
Exponential Hashing.
on Database Systems 8,
1983), 136-1465

Martin, G. N. N.
rage: Incrementally augmentable
hash addressed storage. Univ. of
Warwick, Theory of Computation
Report no.27. Coventry, England,
March 1979

Mullin, James

- Bounded Index
ACM Trans.
1, (Mar.

- Spiral sto-

K. = Tightly Con-
trolled Linear Hashing Without
Separate QOverflow Storage. BIT
21, 4, (1981), 390-400
Ramamohanarao, kK.; Lloyd, John W.
Dynamic Hashing Schemes. The
Computer Journal 4, (Nov.
1982), 478-48S

Scholl, Michel - New File Organi-
zations Rased on Dynamic Hashing.
ACM Trans. on Database Systems 6,
1, (Mar. 1981), 194-211

258,

Singapore, August, 1984

TammB2 Tamminan, Markku - Extendible
Hashing with Overflow. Inf. Froc.
Letters 15, 5, (Dec. 1982), 227-
232

Vitt82 Vitter, Jeffrey Scott - Implemen-
tations for Coalesced Hashing.
Comm. ACM 25, 12, (Dec. 1982),
?11-926

Appendis A

Below we give algorithms for inser-—
tion, deletion, splitting and grouping.
In order to make the algorithms <cimple,
we have assumed that a sufficiently
large number of buckets can be in core
simul taneously, and in a number of situ-
ations more sophisticated solutions to
the treatment of special cases have been
left out, although they could have saved
accesses.

Some details in the implementation
will be discussed briefly at the end of
the appendix.

The algorithms presupposes the exis—
tence of the parameters s, t and p, as
these are uwsed earlier in this papet,
i.e. the file contains the (g-1)p buc-
kets with numbers Ps~-sgp-—-1 (where
g=t/s), and a split is performed by
removing s buckets and adding t buckets.

The algorithms refer to a number of

"bucket types":
/R VR] 1
1 AEED H UL
a b - el

cl c2 c3 c4 d el

Brecords with the same hashed key value
as Lhe record/bucket currently treated

B records with another hashed key value

D emply space

Fig 12. Bucket types.

Algorithm I (Insertion of recotd k)

11 [Split] If the maximum load factor is
exceeded, then perform a split.

12 [Searchl Search for key k. If the key
is found insertion terminates unsuc-
cessfully. (The search ends with the
last bucket in the overflow chain for
k — maybe the primary bucket - as
current.) Let B <~ current bucket. (R
can be of any type but cl and cZ.)

Proceedings of the Tenth International
Conference on Very Large Data Bases.

[Bucket type a or d, insertl] If B is
of type a or d (there is room for k
in the primary bucket) then insert k
in B and terminate.

[Bucket type el or e2] If B is of
type el or el (the primary bucket is
full, but contains overflow from
another bucket) then

14.1 [Select an overflow record] Se-

lect one of the *foreign® over-
flow records in B, say k%, and
remove it (temporarily!)

I14.2 [Insertl Insert k in B.
I4.3 [Reorg. and find end of chain for

k1
I14.7.1 1+ B is of type el and k7 was
the only overflow record in
B, then let B <- the previous
bucket in the chain for k’.
14.2.2 If B is of type e2 then
I4.3.2.1 If k¥ was the only over-
flow record in R then
link B out of the chain
for k°.
14.3.2.2 Follow the chain for k°
to the end and let B <-
the last bucket in the
chain.

I14.4 [Switch to insertion of k1 Let k

<= k. (B is now known to be of
type b, c3 or c4.)
[Bucket type c3, insertl If B is of
type c3 (R has room for k) then in-
sert k and terminate.
[Select new overflow bucket]l (B is
now of type b or c4.) Select a new
overflow bucket B*. If none is found
then perform a split, write a warning
to the maintenance staff and return
to IZ2.
[Insertl Insert k in RB",
[Reorg. chainl If B is an overflow
bucket and B® can contain all over-
flow records in B, then move the
overflow records from B to B and let
B <- the predecessor to B in the
chain. Repeat I8 as long as possible.

19 [Link] Link B to B.

Algorithm D (Deletion of record k)

D1 C[Searchl Search for key k. If the key

is not found deletion terminates
unsuccessfully. (the search ends with
the bucket containing k as current.)
Let B <— current bucket.

[Deletel] Delete k from B.

[Simple deletion] If B is of type a,
b, ¢3, c4, d or el (no chains need
reorganization after the deletion of
k) then go to D7. (In case ¢3, c4, d
and el an action similar to I8 may be
performed.)

Singapore, August, 1984

D4 [Find end of chainl (B is now of type
cly, €2 or e2. The overflow chain
needs treorganization.) Follow the
chain emanating from B to the end;
let B* <- the last bucket in the
chain.

DS [Select a recordl] Select an overflow
record in B°, say k°. Remove k* from
B". If Ik was the only overflow re-
cord in B* then link B’ out of the
chain.

Dé6 [Restore k1 Insert k' in B. (The
"hole™ after k is filled.)

D7 [Groupl If the load Ffactor now is
below minimum, then perform a group-
ing.

Algorithm 9 (Splitting)

51 [Scan buckets to be split] Let B be
bucket number p, p+i, ceavs pPrs—-1
repeatedly. For each bucket do

S1.1 [Readl Read B. (It
primary bucket type,
c2, €3 and c4.)
[Read own overflowl If B is of
type ¢l then a1l overflow buckets
in its chain are read, the over-—
flow records are removed (but
saved for later!) and the buckets
rewritten with the overflow space
marked as empty.

can be of any
i.e. all but

S51.2

51.7%7 [(Reorg. "foreign® overflow chainl
If Bis of type d, el or e2 (this
situation should be extremely

rare) the B is linked out of the
chain and the “foreign® overflow
records put aside for a while.

52 [Incrementl Let p <~ p+s.
53 [Rehashl Rehash all records, inclu-
ding own overflow records from S51.2

overtlow
(The records hash

but excluding *foreign®
records from S1.73,
to the new buckets gp-t,...gp-1.) If
some of the new buckets should
overflow (this should be a rare situ-
ation) then the overflow is put aside
for a while. -

[Rewritel Rewrite the new buckets.
[Insert overflowl Use algorithm I to
insert overflow records put aside in
S1.2 or 83 - if any.

854
55

Algorithm G (Grouping)

Gl [Scan buckets to be groupedl] Let B be
bucket number op~t,...gp~1 repea-
tedly. For each bucket do

Gl.1 [Readl Read bucket E. (It can be

of any type but ¢, ¢33 and c4.)
[Kead own overflowl If B is of
type cl then all overflow buckets
in the chain are read, the over-
flow recaords are removed (but
saved for later!) and the buckets
rewritten with the overflow space
marked as empty. (This situation
should be rare.)

Proceedings of the Tenth International
Conterence on Very Large Data Bases.

G1.2

492

G1.3 [Move “foreign® overflowl If R is

of type d, el or e2 then
G1.3.1 If B is of type el then link
B out of the chain, follow
the chain to the end and let
B* «<- last bucket in the
chain. If B is of type d or
el then let B" <~ the prede-

cessor to B in the chain.
Select a new overflow bucket
| . I+ none is found then
recreate the initial situa-
tion, write a warning to the
maintenance staff and termi-—
nate.

Insert as many of the over-—

flow records from B in Be as

possible, link Bs to R and
let B° ¢- PBg. Repeat G1.3.2-

G1.3.3 until all overflow re-

cords in B are restored.

G2 [Decrement] Let p <~ p-s.

G3 [Rehashl Rehash all records, inclu-
ding own overflow records from G1.2.
(The records hash to the new buckets
Pas-apts—1.)

G4 [Rewritel For each of
kets, let it be R, do

G4.1 [Rewrite primary bucket] Rewrite

B .

[Rewrite overflowl Store overflow

records from B using the same

-

procedure as 61.3.2-G1.3.3.

G1.3.2

G1.3.3

the new buc-—

G4.2

Implementation details
The overflow chain

singly or a doubly linked list. Either
structure has both advantages and dis-—
advantages. The doubly linked list needs
more accesses to update pointers while
the singly linked list needs more acces-
ses to find the predecessor in the list
(but it is easily done, simply by hash-

can be either a

ing the key af any record and reading
through the chain +from the primary
bucket).

The algorithms use simple solutions

to the reorganisation of overflow
chains. Since all buckets in a chain
usually must be read anyway, a more

refined solution may always minimize the
number of used overflow buckets!

In order to select a new overflow
bucket, all buckets with an empty over-
flow space can be linked together. This
means fast selection but also accesses
in other places to maintain the chain.
If the buckets are not linked together
the selection may be speeded up by main-
taining a pointer to the highest bucket
number known to possibly have a free
overflow space.

Singapore, August, 1984

