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fibstract 

Cascade Hashing is a new dynamic 
hashing scheme which is based on Spiral 
Storage. 

The purpose of this paper is first 
to give a unified exposition of Linear 
Hashing, Spiral Storage and other dyna- 
mic hashing schemes, and second to de- 
scribe a new method for storing overflow 
records. The method stores the overflow 
records in the main file itself and 
clusters overflow records from each pri- 
mary bucket in one or very few overflow 
buckets. 

Calculations on the load of the file 
promises search 1 engths very close to 
one even for a storage utilization above 
90X, which makes the method appear bet- 
ter than any present dynamic hashing 
scheme. 

1. Introduction. 

Since the early seventies, a number 
of techniques have been described which 
allow a hash file to change its size dy- 
namical ly along with the changing number 
of stored records. 

The first proposals, named Expanda- 
ble Hashing [Knot711 p Dynamic Hashi ng 
CLars783 and Extendible Hash i ng 
CFagi793, are al 1 based on the same 
idea; when a bucket overf 1 ows, instead 
of creating an overflow record, the file 
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is extended with a new bucket and the 
records of the overflowing bucket are 
solit between the old and the new buc- 
ket . To keep track of the splitting, an 
index or directory is created that grows 
and shrinks with the size of the file. 

Different kinds of tree structures 
are used for the index, but Virtual 
Hashing CLitw783 reduces the index to a 
bit-table with one bit for each bucket 

by introducing a series of hash f unc- 
tions, one for each “1 eve1 ” of split- 
ting. At any stage the primary bucket of 
a record can be reached without accizs- 
sing other buckets. 

Virtual Hashing also allows for a 
certain amount of overflow to defer 
splitting. Versions of Extendible Hash- 
ing with overflow are described in 
CScho811 and ffamm823. A rather complex 
version with an index of limited size is 
found in CLome833. 

In the late seventies methods were 
invented which avoided indexes complete- 
ly: Spiral Storage EMart and Linear 
Hashing CLitw801. While Spiral Storage 
has remained rather unnoticed, Linear 
Hashing has drawn much attention. The 
basis of these methods is still the 
splitting of buckets, but instead of 
splitting the buckets that overflow, the 
buckets are split in linear order 
0,1,2, . . . . thus reducing the index to a 
si ngl e pointer showing which bucket is 
to be split next. 

ii near Hashi ng with Partial Expan- 
si on5 CLars803 is a generalization of 
Linear Hashing which gives better per- 
f ormance. A further generalization of 
Linear Hashing is given by Ramamohanarao 
SC Lloyd CRama823. 

CMull811 and CLars823 describe ver- 
si ons of Linear Hashing and Linear Hash- 
ing with Partial Expansions respective- 
ly, where the overflow is stored in the 
main file, as opposed to the earlier 
versions where overflow was stored in a 
separate overflow area. 
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The schemes without indices will be 
discussed in more detail later in the 
paper. 

The number of records which can be 
stored in a bucket is called the blok 
factor and denoted b; b’ is the blok 
factor of a possible separate overf 1 ow 
storage. If the main file and the sepa- 
rate overflow storage contains M and M’ 
buckets respectively, the file can at 
most hold bM+b’M’ records. When the 
current number of records is x S then 
x/(bM+b’M’) is called the storaqe utili- 
zation, while t:/bM is call ed the oad 1 
factor, denoted f. It may be noted, that 
when a separate overflow storage is 
used r the load factor can become greater 
than one. When overflow is stored in the 
main file, the 1 oad f ac:tor equals the 
storage utilization. 

In the present paper we will only 
consider the so called “control 1 ed 
split”, where a split is performed only 
when the file has been filled to a cer- 
tain limit, thus making the file size 
grow linearly with the number of stored 
records. 

2. Conceptual Linear Hashinq. 

First we describe Linear Hashing 
briefly, introducing terms used in the 
following descriptions. 

Linear Hashi ng expands the file by 
splitting the buckets one by one in 
linear order 0,1,2,. . 

When a bucket is spl it, approximate- 
ly half of its records are removed and 
restored in a new bucket at the end nf 
the file. No index is needed) only a 
sinqle pointer p showing which bucket to 
split next. When all buckets in the file 
are split, the pointer is reset to the 
first bucket (0) and the process starts 
over agai n r but now with a file twice as 
large. The over-f 1 ow records are taken 
care of by explicit pointers to a sepa- 
rate overflow area. 

We will only consider the case where 
the initial file sire is 1. 

After L camp 1 et ed doublinqs or ex- 
pansi on5 of the file, its size is ZLX 
is called the file level. 

king a series of split functions 
h,-(k) 9 one for each file level r where 
each hL(k) hashes randomly on the inter- 
val CC),2LC!, we get the hash function 

( hL(k) if h,-(k) 1 p 
h ( 1: ) = ( (1) 

( hL+% (k) otherwise. 

h(k) is a real number ; to get the 
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integer bucket number we use 

H(k) = LhO::) j. (2) 

In the following discussion we USE? 

the real bucket number, and assume trun- 
cation to get the integer bucket number. 

Let D(k) distribute uniformly over 
as large a number of buckets as needed. 
Then an example of a Linear Hashing 
function is shown in fig. 1. 

Average 
load 

1 I 1 

f " 

: *r 
012 
4 2L 2Lt1 2Lt2 

P 
a) At the start of an expansion. 

Average 
load 1 
12 

--- - 
7 

f . . 

012 ~ 
P 

b) During an expansion. 

r=h"(k)= 
i 

D(k) mod 2L if D(k) mod 2L 2 p 

D(k) mod 2 Ltl 
otherwise 

whereL= [log 2 Ml and P=M-~~ 

Fig.1. Linear Hashing. 

The height of the buckets in the 
figure illustrates the load, where f is 
the load factor of the file. Buckets 
taller than 1 are overflowing; the quan- 
tity above 1 is actual 1 y stored el5e- 
where. 

Note, that any split function 
hL+, (1::) store5 k either in the same 
bucket as the previous function h,-(k) or 
in the bucket into which h,-(k) wa5 
split. 

As the file grows to a certain size 
(M), it is possible ta determine the 
level L and the split position p. In the 
case of Linear Hashing we have L = 
LlogsM_j and p = M - P-. 

In the following we will mark the 
hash function h(k) with a superscript M 
to indicate how many buckets the file 
contains: hn(k). 

The split in Linear Hashing may be 
thought of as a process where the first 
bucket in the file is removed and it5 
records restored in two new buckets 
appended to the end of the file. Fig. 2 
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shows this process, called Conceptual 
Li near Hashi ng , which is the way we will 
consider Linear Hashing in the rest of 
the article. 

d(k) is a function distributina the 
records uniformly on the interval CO.lC. 

Average 

* 
f -. tC 

012 
: *wr 

2L 2L+1 2L+2 
4 * 
P 24 

Average a) At the start of an expansion. 

--- -_ 
1 I A 
f a. 

I 
I 
I 

IllIll 
----a-- I l I t;;‘:“‘. I . 1 . ..I,,#, 

012 2L 4 2L+1 4 ir, L+2$ 
P 2P 

2 
b) During an expansion. 

r=h"(k)= 2L(l+d(k)) if 2L(l+d(k))tp 
2L+1 

(l+d(kl) otherwise 

where p=M and L= [log2pJ 

Fig.Z. Conceptual Linear Rashing 

When the first bucket (bucket 1) is 
split, the file has doubled and consists 
of the buckets C2,3>. When both of these 
are split, the file has doubled again 
and now consists of the but kets 
C4,5,6,7>. This proces5 may be conti- 
nued Y and after L completed ,expansi ons 
the file consists of the buckets 
{‘L A.. , . . . .F+‘-l:.. 

At any time, the bucket to split 
next, p, is the first bucket in the 
file. The number of buckets in the file, 
MY i5 p a5 well, so generally the file 
consists of the bucket5 cp,. .,2p-13,. 
When bucket. p is split, its records are 
restored in the buckets 2p and 2p+l. The 
file 1 eve1 L is a function of p: 
L = Llognp_j. 

Computer systems normally only allow 
data areas to grow and shrink:: at one 
end. Anyway r this problem is easy to 
overcome, since a simple algorithm 
exists, that transforms the (conceptual ) 
bucket numbers above to physical bucket 
numbers or paqe numbers 0, 1,2,. . . 

In fig. 3a the numbers of the exist- 
i ng conceptual but kets are listed for 
the first few M’s. 

An algorithm transforming these to 
page numbers must fullfil two criteria: 
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Conceptual bucket number: n 
1 2 3 4 5 6 7 8 9 10 11 12 13 

Ml 1 
2; 2 3 
3 345 
4 4567 
5 56789 
6 6 7 8 9 10 
7 7 8 9 10 

(a) Existing conceptual 

11 
11 12 13 

bucket numbers 

Actual bucket number: P(n) 
0123456 

Ml 1 
2 2 3 
3 4 3 5 
4 4 6 5 7 
586579 
6 8 610 7 911 
7 8 12 10 7 9 11 13 

(b) Placement of conceptual buckets 

Fig.3. Coticeptual to actual bucket 
number transformation 

1) All page numbers 0 to M-l must be 
in use. 

2) When a bucket is stored on a 
page, it must remain on this page 
throughout its entire lifetime. 

These demands can eas* 1 y be met: 
When the file is expanded the first of 
the new bucket.5 is placed on the same 
page as the bucket being removed, while 
the second of the new buckets is placed 
on the first free page (fig. 3b). 

A glance at the coloumns of fig. 3b 
i mmedi ate1 y unvei 1 s a pattern, that is 
exploited in the following algorithm, 
transforming a conceptual bucket number 
n to page number P(n). 

function P(n) 3 (alg. la) 
inteqer n; 
beqin 

if n mod 2 = 0 then P(n) := P(n/2) 
else P(n) := (n-1)/Z; 

end; 

Written without recursion the algorithm 
is: 

function P(n); (Ng. lb) 
inteqer n; 
beqin 

inteqer m; 
m := ni 
while m mod 2 = 0 do m := m/2; 
P(n) := (m-1)/2; - 

end; 
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3. Exponential Distribution Method. 

Fig. 2 also i 11 ustrates the main 
problem of Linear Hashing: Since each 
split function hL (k) distributes the 
records uniformly over its range of 
buckets, then during an expansion of the 
file the still unspl it buckets will 
contain twice as many records as those 
already split. Eeepi ng the load factor 
constant (and preferably high) a chan- 
ging amount of overflow records result 
from the unsplit buckets and give rise 
to changing per-f ormance. 

The f 011 owing is based on two f unda- 
mental ideas. First9 that it might crea- 
te less overflow to have a skew distri- 
bution of records, so that the buckets 
which split late are not so full. Se- 
cond, that it would be nice to choose a 
distribution which let the performance 
remain stab1 e. 

Even though the average performance 
of Linear Hashing is good, in many ap- 
plications the number of records in a 
file stabilizes for shorter or longer 
peri ads, and the point of stabilization 
may be where the performance is the 
worst. 

To remove performance oscillations 
we must construct a hash function, which 
gives the file the same load pattern for 
any number of buckets. The function must 
bias the record distribution so that the 
1 ast bucket in the file contains approx- 
imately ha1 f the records of the first 
bucket. Then the two new buckets result- 
ing from a split will fit nicely into 
the biased load. 

Average load 
load 
1' J n 
f .. tt 

The construction of a hash function 
which creates the same skew distribution 
of records for any number of buckets, is 
not trivial though. If the most straigt- 
forward biasing, a gradual 1 y decreasi ng 
distribution, is used, the performance 
will still oscillate. 

However) the met hod named Spiral 
Storage described in a university report 

by G.N.N.Martin [Mart791 actual 1 y ‘i s 
such a biased linear hashing scheme. And 
furthermore the method turns out to be 
quite simple! 

Since Martin’s report in our opinion 
is difficult to understand, and since 
the method is not explained in terms si- 
mi lar to other literature on hashing, we 
will in the following summarize Martin’s 
results using the terminology introduced 
in section 2. 

The essence of Spiral Storage i s1 
that instead of the uniform distribution 
resulting from the split functions 
2’-(l+d(k)) I a biased distribution is 
obtained using the split functions 

(3) 

i.e. 
( 2L.2”CkB 

( if 2L.2d’k’ LP 
h”(k) = z; (4) 

( 2”+1-2d’k’ otherwise 

where p = M and L = Llog,p_l. 

Average 

4 4 
P 2P 

a) At the start of an expansion. 
A-iera3e 

4 
2P 

b) During an expansion. b) During an expansion. 

Fig.4. Biased Linear Hashing. 
r = h"(k) 

C 

2L 2d(k) if 2L 2d(k) L P 
= 

2 ~+l 2d(k) otherwise 

where p = M and L = 1 logzPJ 

Fig. 5. Spiral Storage. 
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With such a biased load a constant 
1 oad factor of 75% may be kept up with 
hardly any overf 1 ow records, bringing 
search lengths down to practically one. 
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In an earlier report CEje1841 we 
have shown that the average load for a 
given hash value r is: 

f/ln2 . p/r 
SO that for a given M and thus p, the 
aver age 1 odd follows the inverse func- 
tion l/r. This is the case for both 
split functions, thus we have managed to 
get a smooth 1 oad distribution with no 
discontinuity at the intersection of the 
two split functions. 

Further it can be seen, that the 
load at the start of the file (t---p) is 
f/ln2 and the load at the end of the 
file (r=2p) is i/2 * f/ln2. 

It is interesting to note that (4) 
actually produces a file with the sought 
properties. The load of the 1 ast bucket 
is (a little more than) half the load of 
the first bucket and the relative dis- 
tribution of the records within the file 
does not change. 

If the load at the start of the file 
is set to 1 and the equation then solved 
for f, then the maximum load factor of a 
file which idealy has no overflow at all 
can be found: 

f/ln2 = 1 a:: = > + = ln2 = 0.6931. 

Spiral Storage produces a constant 
amount of overflow, the relative size of 
which is derived in cKje1841. As well, 
the average and maximum relative over - 
flow size5 using Linear Hashing are de- 
rived, using the same assumptions as for 
Spiral Storage. The results are shown in 
table 1. It is seen that Spiral Storage 
not only removes the oscillations in 
overf 1 ow size but also produces less 
overf 1 ow than the aver age for Linear 
Hashing ! 

f S.S. LH av. LH max 
__^^_____------------------ --e--w 

0.5OOC~ 0.0000 0. OOOC~ 0. OOC~O 
0.6931 0. ~lo<t~l 1.6848 4.5408 
0.75(30 0.4367 2.9871 6.7347 
0. 8CKK) 1.4143 4.3741 8.7722 
0.8506 2.8077 5.9421 10.8611 
0. 9000 4.5179 7.6523 12.9687 
0.9500 6.4702 9.4712 15.0727 
1.0000 8.6071 11.3706 17.1573 

Table 1. Relative amount of overf 1 ow 
using Spiral Storage and Linear 
Hash i ng ( aver age and maximum) 
for different load factors (f). 
In pet. 

To conclude this section we mention 
that the hash function for Spiral Sto- 
rage actually may be written as a single 
expression: 

1 
t-lognp-d(k)1 + d(k) 

H(k) = 2 (5) 
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4. Splittino from several buckets. 

F. -A. Larson has shown in CLars803, 
that compared with Linear Hashing, a 
better performance can be achieved using 
a generalized Linear Hashing where an 
expansion is done in a series of partial 
expansions. Using two partial expansions 
(which according to Larson is a good 
compromi se in many cases) the method 
works as. follows: In the first partial 
expansion groups of two buckets are 
split, moving a part (approx. l/3) of 
their records to a new bucket (fig. ba). 

Average 
load 

012 
+ zL 2L+1 2L+2 

P 
a) During the first partial expansion. 

Average 

load 

0 2 
t zL 2 L+l 2L+2 

P 
bl During the second partial expansion. 

Linear Bashing with 2 partial expansions. Fig.6. 

When during this first partial ex- 
pansi on all the original buckets have 
been spl i t , the file has been expanded 
to 1.5 times its original size. There- 
after the second parti al expansion 
starts, now splitting groups of three 
buckets, moving appr ox. l/4 of their 
records to the new bucket (fig. 6b). 
When the second parti al expansion i 9 
ended, the file has doubled, and the 
method starts again with the first par- 
tial expansion. 

Ramamohanarao & Lloyd ICRama823 have 
considered this idea and give another 
met hod where the growth consists of 
single expansions in which always groups 
of s buckets are split (fig. 7a). 

When all buckets are split, a new 
expansion starts, again splitting groups 
of s buckets. Since the file size is not 
always divisible by s, a number of empty 
“round-up buckets” are added to the file 
(fig 7b). 

It is obvi ous r that both methods 
give better search performance than 
Linear Hashing since less overflow oc- 
curs. In Linear Hashing the still un- 
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Average 
load 

Average 
load 

0 + ++ 

P "round-up buckets" 

Fig.7. Ramamohanarao and Llbyd's Linear Hashing (s=3) 
at two consecutive expansions. 

split buckets contain twice as many 
records as the split buckets. With 2 
parti al expansi on5 the ratio is 3: 2 
during the first partial expansion and 
4: 3 during the second. With Kamamohana- 
rao % Lloyd’s method the ratio is always 
(5+1) :5. 

It is more surprising, that when the 
number of partial expansi on5 (respec- 
tively the value of s) is reasonable, 
also insertions are faster than with 
Linear Hashing, despite the fact that a 
split is more expensive! The reason i 5, 
that the increased cost of splitting is 
more than outweighed by the decrease in 
overflow chain lengths. 

But still the per-f ormance osci 11 a- 
tes, and in both cases the hash function 
is more complicated than with Linear 
Hashing. 

It can be expected that splitting 
from sever al buckets in Spiral Storage 
(in the following called General i ned 
Spiral Storage) also wi 11 show an impro- 
ved performance for both search and 
insertion times. Furthermore it does not 
show any of the inconveniences of the 
general i zed Linear Hashing schemes 
above. 

Generalized Spiral Storage resembles 
the method of Ramamohanarao & Lloyd (but 
is actual 1 y even more general ) . The 
performance is the same for any number 
of buckets, the hash function is no more 
complicated than that of simple Spiral 
Storage and it does not need any “round- 
up buckets”. 

The idea of the generalized Spiral 
Storage is very straightforward: Each 
expansion is performed by i 1 adding a 
number of buckets, say t,* to the high 
end of the file and 2) removing some 
number, say s, from the low end of the 
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file, distributing the records of the 5 
removed buckets on the the t new buc- 
kets! WE! say, that 5 buckets split into 
t, or equivalently that 1 bucket splits 
into t/s. When t=2 and s=l this is the 
simple Spiral Storage. 

Let g = t/s. In the general case the 
“file level” is defined a5 L = LlW,PJ. 
Note, that now L is not the number of 
doubl ings of the file. (Actually, in- 
creasing L by one is equivalent to an 
ex pansi on of the file by a factor gr 
which general 1 y is not an integral num- 
ber of buckets!) 

If, again, d(k) is a function dis- 
tributing al 1 records uniformly on the 
interval CO, 1 I: 9 then 

( gL-gdqk’ 
( if gL-gd<k> 2 p 

h’.‘(k) = *: (6) 
( Q L-c%. 9 d ‘k, otherwise 

where p = M/ (g-1) and L = Llog,p-A, 

is the hash function for general ized 
Spiral Storage. 

a) During an expansion. 

L d(k) L d(k) 

r=h"(k) = 
58 q if q 9 tp - 

q L+l qdtk) otherwise 

t L+2 
qP q 

where p=!! 
q-1 

and L=[loq$] 

Fig.8. Generalized Spiral Storage with q=$. 

The average load for a given hash value 
r is (fKje1841): 

f (g-l)/ln(g) - p/r 
which means that we get a smooth load 
distribution in the general case too. 

The load at the start and at the end 
of the file is f (g-1) /In(g) and 
l/g - f (g-1) /In (g) respectively. This 
means that when e.g. g = 3/2 the load of 
the last bucket of the file is (a little 
more than) two thirds the load of the 
first bucket. 

What we have achived is a more even 
record distribution over the file, redu- 
cing the number of overflow records; the 
price is a greater number of accesses to 
perform a split. 
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Average 

Fig.9. The average load of a genera- 
lized Spiral Storage file, 
for a selection of (s,t)-pairs. 

The cases where t = s+l are equiva- 
lent to those of Hamamohanarao t Lloyd: 
Each split produces one extra bucket. In 
other cases more than one bucket results 
from each split (thus provoking a split 
more seldom) but are in all other re- 
spects no more complicated. E.g. the 
case (s,t) = (3,5) produces two extra 
buckets by splitting three (which may be 
thought of as splitting 1 bucket into 
5/3 bucket three times) and actually in 
all respects it acts as a compromise 
bet ween (1,2) and (2,3) (two times 1 
into 3/2). 

Again, we can find the maximum load 
factor of a file which ideally has no 
overflow by equalling the load at the 
start of the file (shown above) with 1 
and solving for f: 

f = ln(g)/(g-1). 

s,t f m-I 
----__------- 

1 ,2 0.6931 
-?= .A, J 0.7662 
2,3 0. 8109 
597 0.8412 
394 0.8630 
4’ 
5:: 

0.8926 
0.9116 

Table 2. Maximum load factor for genera- 
lized Spiral Storage without 
overf 1 ow for a selection of 
5, t-pairs. 

As with simple SpiPal Storage the 
relative amount of overf 1 ow is deri ven 
in CKje1841: 
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f 

I 

1 ,2 3. 5 2.3 5,7 3,4 4,s 596 
---- -----------------------s---------- 
0. 70 0.01 
0. 75 0. 44 
0. 80 1.41 0.18 
0 . 85 2.81 1.02 0.27 0.02 
0.90 4.52 2.40 1.29 0.66 0.30 0.02 
0.95 6.47 4.22 2.93 2.11 1.55 0.85 0.46 
1 .oo 8.61 6.36 5.06 4.20 3.59 2.79 2.28 

Table 3. Relative amount of overf I ow 
using general i red Spiral Stora- 
ge for a selection of s,t-pairs 
and different load factors (f). 
In pet. 

The only problem left in making the 
general i zed Spiral Storage work is a 
generalization of algorithm I, transfor- 
mi ng the conceptual bucket numbers to 
(physical) page numbers. The algorithm 

works exactly as alg.1 and is given here 
without further comments. 

The algorithm transforms the concep- 
tual bucket number n to page number F(n) 
in the case where s buckets are split 
into t: 

function F(n); (Alg. 2a) 
inteqer n; 
beqi n 

&f- n mod t < s 
then F(n) := 

F(Ln/t_]-s + n mod t) 
else F(n) := 

Ln/tJ- (t-s) + (n-s) mod t; 
edi 

Written without recursion the algorithm 
is: 

function F(n); (Alg. 2b) 
inteqer n; 
beqin 

inteqer m; 
m := n; 
while m mod t <: s do - 

P(ny 
:= Lm/tJ-s + m mod t; 
:= Lm/tJ. (t-s) + (m-s) mod t; 

end; 

It may be noticed that in the cases 
where t = s+l alg.2 reduces to: 

function F(n) ; (Alg. 3) 
inteqer n; 
beain 

u n mod t # s 
then F(n) := F(Ln/tJ-s + n mod t) 
else F(n) := (n-s) /t; 

end; 

Finally we mention that the hash 
function for generalized Spiral Storage 
may also be written as a single expres- 
sion: 
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1 
rloQ,p-d O:)l+d (k) 

H+‘(k) = g 1 (7) 

where p = M/(g-1). 

5. Overflow handlinq. 

The easiest way to treat the over- 
flow problem is of course simply to 
avoid any overflow at. all. Recause of 
the biased distribution of records in 
the file, we must expect an overflowing 
bucket to be located at the beginning of 
the file, and we may simply split buc- 
kets up to and including the one that 
overflows. This scheme, however, has two 
major disadvantages which both stem from 
the fact that a rather long sequence of 
splits can result from a single inser- 
tion: 

- The load factor of the file may 
drop heavi 1 y. 

- Very 1 ong insertion times may 
occur now and then. 

For this reason 7 and in order to 
increase the 1 oad factor beyond the 
values 1 i sted in table 2, a new scheme 
for handling overflow records is descri- 
bed in the fallowing. 

The main purpose of the method is to 
incorporate the overflow in the main 
file, thus reducing the data area to one 
single file growing 1 inearly in size 
with the number of stored records. 

As mentioned in the introduction two 
Linear Hashing schemes with overflow in 
the main file have been described by 
Mul 1 i n CMu11811 and Larson CLarsB23. 
Both methods chain the overflow records 
to the primar’y bucket. The difference 
between the two is, that while tlullin 
uses the empty’ space in other buckets 
for the averf low, Larson sets every k’th 
bucket aside entirely for overflow. 

Larson cone 1 udes his article by 
advi si ng , that overflow records be clus- 
tered in one or a few overflow buckets. 
This is the second purpose of the pre- 
sent method. To ach i ve this goal the 
method uses !, like Mullin, the empty 
space in other buckets for overflow, but 
instead of chaining single over f 1 ow 
records, it chains overf 1 ow buckets, 
i.e. the empty space in a bucket is used 
entirely for over f 1 ow from one other 
bucket. 

The success of this idea is due to 
the b i ased record distribution. The 
overflow is gathered at the “low” end of 
the file, while the empty space is 
gathered at the “high” end. 

The method works as follows: 
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(a) allocating the first overflow bucket 

(b) allocating the second overflowbbucket, 
transferring the records from the previous 

kc) allocating the second overflow bucket, 
chaining to the previous 

Fig. 10. Chaining overflow buckets 
in Cascade Hashing. 

When insertion of a record is at- 
tempted (fig. l&a) into a full primary 
bucket (A) r the hAhest numbered bucket 
sat+ th an uncluttered overflow space (E) 
15 allocated, the record is inserted 
herein, and this new overflow bucket i 5 
chained to the primary bucket. hdditio- 
nal records with primary bucket A are 
inserted into the overflow bucket B a5 
long as space is available. 

When there is no more room in R, a 
new overflow bucket (C) is selected the 
same way: The highest numbered bucket 
with an uncluttered overflow space. 

Since C usual 1 y is higher numbered 
t.han k (the file has presumably been 
spl it a number af times because of the 
insertions) Y then it may be expected 
that the overflow space in C is larger 
than that in B, and then usual 1 y u 
overflow records of A can be stored in 
C, thus keeping the length of A’s over- 
flaw chain to 1. Therefore, if possible, 
the overflow records in E are transfer- 
red to C and the chain is relinked (fig. 
1Ob) I we say that the overflow records 
cascade from H to c. Further overf 1 ow 
records are inserted using the same 
mechanism. 

If C cannot contain aa overf 1 ow 
records, then only the new record is 
inserted in C, and C is chained to B 
(fig. 1Oc). 

Singapore, August, 1994 



The purpose is to keep the overflow 
chains short. As the main operation on a 
hash file is searching, it is profitable 
to reorganize the overflow chains dLrring 
insertion and deletion in order to re- 
duce search time - as long as the reor- 
ganizations do not seriously affect the 
insertion- and deletion-times. 

There are two other important ways 
to keep the chains short. First, during 
insertion, no record shall be an over- 
flow record unless its primary bucket is 
full of its own records. If the primary 
bucket is fLll1 P but contai ns overf 1 ow 
records from another bucket, the “stran- 
gers” are pushed out and inserted else- 
were. 

Second r all buckets in a chain, 
except for the last, mLLst be full. When 
a record i s de1 eted !, some other record 
from the end of the chain is brought 
back to fill out the hole. 

Algorithms for insertion, deletion, 
splitting and grouping are included as 
appendi e CI. 

We still need to verif yr that this 
method works for al 1 cases. In CEje1841 
we show, that the relative number of 
overflowing buckets, assuming a perfect 
distribution, is 

f/in(g)-l/(g-11. 
This is illustrated in table 4. The 
table shows, that there will be at least 
one free but ket for each overflowing 
bucket I and Llsual ly many more. 

f 1 ,2 3,s 2,s 597 374 475 
___________-------_---------------- 

0.70 1 . O 
0.75 8.2 
0.80 15.4 6.6 
0. 85 22.6 16.4 9.6 2.6 
0. 90 29.8 26.2 22.0 17.5 12.8 3.3 
0.95 37.1 36.0 34.3 32.3 30.2 25.7 
1 . 00 44.3 45.8 46.6 47.2 47.6 48.1 

Table 4. Rel at i ve number of overf 1 owing 
buckets for a’ selection of 
(s,t)-pairs and different 1 oad 
factors (f). In pet. 

Of course, it may still happen, that 
the actual records are not distributed 
uniformly with d(k), so there is a risk 
that no free over f 1 ow bucket can be 
found when needed. This problem can be 
solved by allowing the overflow chains 
to coalesce, i.e. that overf 1 ow chains 
from several pr i mary buckets use the 
same overf 1 ow bucket CVi ttf32,Enut731. 
BLlt this is probably not worth the 
troLLb1 ei a much easier solution is- to 
perform one or more splits. Event.ual 1 y 
some free space wi 11 r-esul t. 
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This solution may c aLLse the load 
factor to drop below the wanted level, 
but that ought not to occur. CIctual ly, 
if it does, it is merely a warning that 
either the load factor is set too high 
or the used distribution function d(k) 
is not uniform enough! (The extra split- 
ting can be seen as “graceful degrada- 
tion”. ) 

CI typical situation is shown in fig. 
11. 

Average 

Fig. 11. A typical situation with f = 0,8 and g = 2. 

We conclude this section with a few 
more results. In CKje1843 we derive the 
number of the last bucket in the file 
(n lr..t) when a bucket niull first over- 
flows. Choosing nl,,* as overflow bucket 
for bull, we then derive the highest 
load factor f,,, at which this overf 1 ow 
bucket can ho1 d the overflow of n+ulr 
throughout the ent.ire lifetime of neUrl. 
These load factors are tabellized in the 
first coloum of table 5. Thus with a 
load factor up to f any bucket only 
needs one overf 1 ow bucket r and this 
overflow bucket never needs to be moved! 

In practice the records do not 
distribute ideally, and thus some buc- 
kets need more overflow space. Rut there 
is still room in the file for cascadi nq 
the overflow records forward to another 
bucket. 

For this reason the number of re- 
cords stored in second (or higher1 over- 
flow bucket may be assumed to be negli- 
gible, and thus, by cal cul at i ng the 
expected amount of overflow records and 
the expected number of overflowing buc- 
kets, we may state an expected length of 
successful 1 and unsuccessful 1 search. 
This is also done in table 5 - we will 
let the figures speak for themselves. 

At present, work is in progress 
si mu1 ati ng the met hod with stochastic 
input. 
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57 t 
---- 

152 
335 
2 , 'T. 
537 
354 
495 
596 

f mrrc 

0. 8568 3. 0 
0.8993 2. 4 
Cl.9224 3 - L.V 
0. 9369 1.7 
0. 9469 1.4 
0.9597 1.1 
0 * 9675 1 . 0 

0 ss ORJ 
-we--_-_ ------- 

1.030 37 & d-3. 

1.024 26. 0 

1 . (:Qc! 27.5 
1 . 0 1 7 28.5 
1.014 29.2 
1 . 0 1 1 30.1 
1 . 0 10 30. 7 

u5 

1.236 
1.260 
1 375 .* 
1.285 
1 .292 
1.301 
1.307 

Table 5. Maximum load factor for Cascade 
Hashing with one fixed overflow-bucket 

per primary bucket for a rjelection of 
5, t-pairs. 
At these maximum load factors the table 
further shows: 
0 : Relative amount of overflow (in pet) 
5s: Expected search 1 ength successful 1 

search. 
a,: Relative number of overflowing 

buckets (in pet.) 
u5: Expected search length unsuccessful 1 

search. 

6. Conclusion 

In this paper a new linear hashing 
scheme, cdl led Cascade Hashing, has been 
described. It is based on two fundamen- 
tal ideas: 

1) That a b i ased distribution of 
records is used - like in Spiral 
Storage, and 

2) That the overflow records from a 
bucket are clustered and stored 
in the main file. 

Calculations seem to indicate that 
the per-f ormance with respect to success- 
full search r unsuccessful 1 search r in- 
sertion and deletion is super i or to 
other known dynamic hashing schemes. 
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Aopendi x A 

Below we give algorithms for inser- 
tion, deletion, splitting and grouping. 
In order to make the algorithms simple, 
we have assumed that a sufficiently 
large number of buckets can be in core 
si mu1 taneousl yr and in a number of situ- 
ati on5 more sophi st i cated sol ut i ons to 
the treatment of special cases have been 
left out, al though they could have saved 
accesses. 

Some details in the implementation 
wi 11 be discussed briefly at the end of 
the appendix. 

The algorithms presupposes the exis- 
tence of the parameters s, t and pa as 
these are used earlier in this paper, 
i.e. the file contains the (g-1)p buc- 
kets with numbers Pr..rQP-1 (where 
g-t/s) ) and a split is performed by 
removing s buckets and adding t buckets. 

The algorithms refer to a number of 
“bucket types”: 

. b cl c2 c3 c4 d cl e2 

q records u,Ch the same hashed key value 

8, the record/bucket currently treated 

q records with another hashed key value 

El l mpty rp.cs 

Fiq 12. Bucket types. 

Algorithm I (Insertion of record u 
11 [Split] If the maximum load factor is 

exceeded r then perform a split. 
12 [Search7 Search for key k. If the key 

is found insertion terminates unsuc- 
cessfully. (The search ends with the 
last bucket in the overflow chain for 
k - maybe the primary bucket - as 
current. ) Let B (- current bucket. (B 
can be of any type but cl and ~2.) 
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13 CEUcket type a or d, insert1 If E is 
of type a or d (there is room for k 
in the primary bucket) then insert I:: 
in E and terminate. 

14 [Bucket type el or e21 If B is of 
type el or e2 (the primary bucket is 
full, but contains over f 1 ow from 
another bucket) then 

14.1 [Select an over-f 1 ow record1 Se- 
lect one of the ’ f orei gn’ over- 
flow records in E, say k’ ) and 
remove it (temporarily!) 

14.2 [Insert3 Insert k in B. 
14.3 CReorg. and find end of chain for 

1::’ ] 
14.3.1 If B is of type el and I:’ was 

the only overf 1 ow record in 
B, then let B cc- the previous 
bucket in the chain for k’ . 

14.X.2 If b is of type eZ then 
14.X.2. 1 If k’ was the only over- 

flow record in E then 
link H out of the chain 
f or k ’ . 

14.3.2.2 Fol low the chain for k’ 
to the end and let B <- 
the last bucket in the 
chain. 

14.4 [Swit.ch to insertion of k’l Let k 

15 

I6 

17 
I8 

19 

C’- k’. (B is , now known to be of 
type b, c3 or ~4.1 

[Bucket type c3, insert 3 If H is of 
type c3 (B has room for k) then in- 
sert k and terminate. 
CSel ect new overf 1 ow but ket 1 (I3 is 
now of type b or ~4.) Select a new 
overflow bucket H’. If none is found 
then perform a split, write a warning 
to the maintenance staff and return 
to 12. 
[Insert] Insert k in E’. 
CReorg. chain1 If R is an overflow 
bucket and EC’ can contain all over- 
flow records in EI, then move the 
overf l.ow records from B to R’ and let 
R <- the predecessor to H in the 
chain. Repeat 18 as long as possible. 
CLinkI Link H’ to H. 

Alqorithm D (Deletion of record k) 
Dl [Search] Search for key k. If the key 

i Cj not found deletion terminates 
w-bsuccessf ull y. (the search ends with 
the bucket containing k as current.) 
Let B .:Z- current bucket. 

D2 [Delete] Delete k from B. 
D3 [Simple deletion1 If B is of type a, 

b, C3, c4, d or el (no chains need 
reorganization after the deletion of 
k) then go to D7. (In case c3, c4, d 
and el an action similar to 18 may be 
performed. ) 
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D4 [Find end of chain3 (EI is now of type 
cl, c2 or eZ. The overflow chain 
needs reorganization.) Follow the 
chain emanating from B t0 the end; 
let E" <:- the last bucket in the 
chain. 

D5 [Select A record7 Select an overflow 
recnrd in b’ 5 say It’. Remove I::’ from 
R’. If I,:” was the only overflow re- 
cord in R” then link 8" out of the 
chain. 

D6 CRestore k’1 Insert k’ in B. (The 
‘hole’ after k is filled.) 

D7 CGroup7 If the 1 oad factor now is 
be1 ow minimum, 
ing. 

then perform a group- 

Alqorithm S (SolittinQ 
Sl CScan buckets to be split1 Let E be 

bucket number p Y p+i, . ..I p-5-1 
repeated1 y. For each bucket do 

S1.l CReadl Read B. (It can be of any 
primary bucket type, i.e. all but 
cZ7 c.3 and ~4.) 

S1.2 [Read own overf low3 If R is of 
type cl then all overflow buckets 
in its chain are read, the over- 
flow records are removed (but 
saved for later ! 1 and the buckets 
rewritten with the overflow space 
marked as empty. 

S1.3 CReorg. 'foreign' overflow chain1 
If H is of type d, el or eZ (this 
situation should be extremely 
rare) the H is linked out of the 
chain and the 'foreign" overf I ow 
records put aside for a while. 

S2 CIncrementl Let p i:- p+s. 
S3 CRehashl Rehash all records, i ncl u- 

ding own overflow records from S1.2 
but excluding 'foreign? overf 1 ow 
records from Sl.3, (The records hash 
to the new buckets gp-t,..,gp-1.) If 
some of the new buckets should 
overflow (this should be a rare situ- 
ation) then the overflow is put aside 
for a while. 

. 

S4 [Rewrite] Rewrite the new buckets. 
S5 [Insert overf low7 Clse algorithm I to 

insert overf 1 ow records put aside in 
sj, 3 or ST - *A .-I if any. 

Alqorithm G (Grouoina) 
Gi [Scan bucket-5 to be grouped1 Let E be 

bucket number gp-t,..,gp-l repea- 
tedly. For each bucket do 

Gl.1 [Read1 Read bucket 8. (It can be 
of any type but c2, c3 and ~4.) 

Gl .2 CKead own overf low1 If R is of 
type cl then al 1 overflow buckets 
in the chain are read, the over- 
flow records are removed (but 
saved for later!) and the buckets 
rewritten with the overflow space 
marked as empty. (This situation 
should be rare.) 
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61.3 [Move 'foreign' overflow1 If B is 
of type d9 ei or e2 then 

61.3. 1 If B is of type e2 then 1 ink 
I3 out of the chain, follow 
the chain to the end and let 
R” ‘;- lacjt bucket in the 
chain. IfE is of type d or 
el then let H’ C- the prede- 
cessor to H in the chain. 

Gl .3.2 Select a new overflow bucket 
B If none is 
ri;reate the 

found then 
initial 5i tua- 

tion, write a warning to the 
maintenance staff and termi- 
nate. 

61.3.3 Insert as many of the over- 
flow records from EC in H, as 
possible, link M, to B’ and 
let 8’ <I:- R,. Repeat 61.X.3 
61.3.3 until all overflow re- 
cords in B are restored. 

G2 [Decrement3 Let. p q’-- p-s, 
G3 CRehashl Rehash all records. inclu- 

ding own overflow records from 61.2. 
(The records hash to the new buckets 
p...Pp+s-l.) 

G4 CRewrite For each of the new buc- 
kets, let it be H’, do 

64.1 [Rewrite primary bucket 1 Rewrite 
E' rn 

G4.2 [Rewrite overflow1 Store overflow 
records from H” using the same 
procedure as 61.3.2-61.3.3. 

Implementation details 
The overf 1 ow chain can be either a 

singly or a doubly linked list. Either 
structure has both advantages and dis- 
advantages. The doubly 1 i nk:ed I. i st needs 
more accesses to update pointers whi 1 e 
the singly linked list needs more acces- 
485 to find the predecessor in the 1 ist 
(but it is easily done, simply by hash- 
ing the key af any record and reading 
through the chain from the primary 
but i:et ) . 

The algorithms use simple Ejoluti on5 
to the reorganisation of overflow 
chains. Since all buckets in a chain 
usual 1 y must be read anyway r a more 
refined s;olcction may always minimize the 
number of used overflow buckets! 

In order to select a new overflow 
bucket, al 1 buckets with an empty over- 
flow space can be 1 inked together. This 
means fast selection but also accesse5 
in other places to maintain the chain. 
If the buckets are not linked together 
the se1 ection may be speeded up by main- 
taining a pointer to the highest bucket 
number known t0 possjibly have a free 
overflow space. 

Slngapore, August, 1994 

492 


