
ABSTRACT

This paper attempts to unify a variety of
dynamic hashing methods. Spiral storage, linear
hashing and - to a certain extent, linear hashing
with partial expansions can be seen as particular
cases of a more general technique. The approach
is closest to spiral storage in concept. A new
instantiation of the general method is offered
which permits an adjustment to the dynamic growth
rate during expansion. In addition, “optimai”
performance results if a sufficiently accurate
estimate of the file size is possible.

UNIFIED DYNAMIC HASHING

James K. Mullin

The University of Western Ontario

Introduct ion

Since 1979, a number of dynamic hashing
methods have been discovered. Dynamic hashing
methods are hash based, direct access storage
methods which maintain good performance while the
storage space is kept proportional to storage
demand. Thus large underestimates of the space
required do not result in poor performance or the
need for a complete reorganization.

We assume a conventional environment where
records are mapped into physical device buckets.
Each bucket has space for a number of records.
The operations of fetch, insert and delete are
performed on records -- each with a unique
identifying key.

Permirsion to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

A number of these new methods can be unified
with one theory. Litwin’s linear hashing c21,
Larson’s linear hashing with partial expansions
[ll, and Martin’s spiral storage [31 can all be
viewed as instantiations of a generai approach.
This general approach also suggests other useful,
simple approaches. In particuiar, a new method
is presented where:

1. The growth rate can be dynamicaily adjusted
so as to react to observation of the actual
growth demand;

2. Optimal performance will be achieved if the
file size estimate is accurate. Optimal
performance is attained when each bucket has
the same expected number of records.

The general method is actually on adaptation
of spiral storage without the exponential spiral.
Many of the requirements are simiiar. First, a
hash function which hashes the record key
into (O... 1) is assumed. A sawtooth function:

X = fC-hash(keyj1 + hash(key)

is employed. The parameter C is fixed by the
file size. C increases as the file size
increases. The range of X is always one unit
from c to C+l. During file growth or
contraction, the variable C is incrementally
readjusted. Thus the value of X will change
for oniy a small number of keys if the change
in C is smali. The sawtooth function may be
seen graphically in Figure 1. A logical address
is computed using a growth function:

logical-address = Igrow(
In spiral storage, this growth function is an
exponential bx . **b” is some small constant
greater than one. The mapping from the X space
to logical bucket addresses may be seen in figure
3.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1984

413

The storage space may be dynamicaliy
read justed so as to keep storage used in
proportion to storage demand. This iS
conveniently done by monitoring storage
utilization or packing factor after update
operations. It is possible to either reduce or
expand the storage space. The remainder of this
paper will only consider storage expansion. When
it is determined that the storage space should be
increased, the value of C is readjusted to
eliminate the first bucket.

C = grow” (first+l).
All records in the old first bucket (left) are
remapped into a new larger space on the right.
In spiral storage, the inverse of the growth
function Is logk (address). The reader should
note that both the left and right boundaries of
the file move. This is shown in Figure 2. Many
operating systems wouid have difficulty with a
file where both boundaries move. Fortunately, a
simple method Is available to map logical
addresses to physical addresses where only the
right physical file boundary moves. In summary, a
physical bucket address Is determined by the
sequence :

key-i) hashtkey) + Xjlogical address+
physical address

Before describing this physical mapping, we
discuss the general constraints on growth
functions.

A growth function must be:

1. Continuous and 1 to 1.

2. The first derivative (siope) must exist at
all but a finite number of points. Such
points may only occur at a bucket boundary.

3. The slope, if it exists, must be greater
at X+1 than at X for all X.

4. The inverse of the growth function must be
easily computed.

The first point simply ensures a unique
mapping between keys and buckets. The second
point ensures that there is a computable slope
for a bucket. The third point is perhaps the
least obvious. This condition is in place
because when one remaps a bucket, the remapping
in the X space is from X to X+1. This
condition ensures that the mapping is to a new
larger space. The fourth point is a practical
matter to guarantee reasonable speed of
processing. The entire growth function need not
be known in advance. It may be dynamically
adjusted for sections above the last allocated
bucket.

Procaedlnga of the Tenth International
Conference on Very Large Deta Baaes.

PhvsicQ u &QDitlg

Martin [3] presents a method to map iogicai
addresses to physicai addresses. The generai
method employs an extension of his method. The
general method requires that when a bucket is
released, that space is immediate11 reused before
any newly aliocated space is employed.

Given a logical address y , we must
determine how that address was instantiated. If
the address was a newiy allocated bucket, then
the physicai address is simpiy the logical
address of the last bucket at the time y was
instantiated, minus the logical address of the
first bucket at this time. This is simply the
count of existent logical buckets. If the
bucket *y” was instantiated with a recycied
bucket, one determines the logical address of the
recycled bucket and recurs. The third
possibility is that y was one of the original
allocation, then physical address equals logical
address. The problem is now reduced to
determining how the logical address iS
instantiated. This is almost as simple in the
general case as with spiral storage. Refer to
Figure 3.

After a bucket (other than one of the
initial allocation) Is instantiated, if it
receives remapped keys from more than ancestor,
it must have been instantiated with newiy
allocated space. If it receives keys from only
one ancestor, It must have been the first bucket
needed when the ancestor was deallocated and was
instantiated from its deallocated ancestor. This
is true because of the condition that a bucket
always maps to a larger space and the discipline
of immediately reusing a deallocated bucket.

The process of determining the ancestor
range is as foilows:

1.

2.

3.

4.

Determine the X space range which maps to
the bucket.

low-x=grow-’ (logical-address)

high-x=grow’ (logical-address+ 1)

Since the X space between a bucket and its
remapped ancestor differs by 1, the X space
range of the ancestor is

low-x-l to high-x-l

The ancestor bucket address range is then

grow(lowJ-1) to grow(higLx-1).

If brow (low-x-l 11 and lgrow (high-x-1)J are
the same, then the bucket was instantiated
from the logical bucket at Lgrow(low-x-l)] .
Otherwise, it was instantiated from newly

Singapore, August, 1984

474

allocated space.

The algorithm is:

function Lhysioal (1ogical):integer;

begin
if logical <= initialflax
then phys,cal := logical
else

begin
low-x := grow-* (logical)
W&-x := grow* (logical+11
anclow := grow(low_,x-1)
anchigh := grow(higU-1)
if LanclowJ = lanchighj
Then

physical := physical(\anclowl)
else

physical := logical-I-2clowj
end

end physical

A Linear Hash- Instant-

Litwin's iinear hashing can be developed
from the general method by the choice of a growth
function as shown in Figure 4. This function is
piecewise linear. "ORIG" is the initial number
of buckets. Each linear segment covers a unit on
the X axis. The slope of the first segment
is ORIG
is K*ORIG'.

and the slope of the kth segment
In the figure ORIG=4.

Consider the first adjustment.
Bucket 0 is removed. The records will be
remapped to logical buckets 4 and 5. In terms of
physical mapping, since bucket 0 is removed,
logical bucket 4 is recycled physical bucket 0
and logical bucket 5 is the newly allocated
physical bucket 4.

In effect, the oid physical block 0 is split
between physical block 0 and physical block 4.

At the conclusion of what Litwin wouid term
a "fuli expansion", the physical mappings wili be
exactiy the same

as linear hashing. In addition, the section of
the growth curve used to map active buckets is

the second line segment. In effect, the choice
of this piecewise linear growth function gives
exactly the same performance as linear hashing
and exactly the same physicai splitting.

& aobroximatioa &Q lineac m Uh Rartia&
-ions

Larson Cl1 has an important modification to
linear hashing. The essence of his strategy is
to map two blocks into three. This will mean
that after spiitting, one can expect the newiy
created and newiy split blocks to have two-thirds
of the former contents instead of half their
former contents, as is the case in linear
hashing. Though the bucket mappings are not
exactly the same, one can achieve the same
general effect with a different piecewise linear
growth function. Again refer to figure 4. In
this case, there is aiso a line segment covering
each unit of the X axis. The slope of the k-th
line segment is 1.5'siope of the k-1st line
segment. The slope of the first iine segment is
"ORIG".

Now when logical bucket 0 is freed and
remapped, the records are mapped to iogical
bucket 4 and the "bottom half" of logical bucket
5. When logicai bucket 1 is freed, it remaps to
the "top half" of logical bucket 5 and bucket 6.
Logical buckets 4 and 6 will be the recycied
physical buckets 0 and 1. Logicai buckets 5 and
7 will be newiy allocated physicai buckets 4 and
5. Thus a 2:3 expansion is achieved. The
"partial expansion" completes when ail addressing
is covered by the second line segment.

Spiral storas

Spiral storage is an instance of the generai
method directly. The growth curve is bX . W,,"
is some small constant greater than one. The
larger this constant, the more rapidly the space

Proceedings of the Tenth International

Conterence on Very Large Data Bases.
415

Singapore, August, 1984

expands. There is a simplification possible in
the physical mapping routine which shortens the
code needed. The lower and upper key boundaries
mapping to a given address ‘la” are in general.

high-ancestor = grow (grow’ (a+l)-I)

low-ancestor = grow (grow-’ (al-l)

but simplify for spirai storage to:

high-ancestor = (a+l)/b

low-ancestor = a/b

A new dvnamic hashing method

Ali three dynamic hashing methods presented:
linear hashing, linear hashing with partial
expansions and spiral storage, offer excellent
performance. Successfui search probes may be
done with reasonabie packing densities (say .75)
and modest biocking of 10:1 in under 1.2 accesses
on average. Thus, from this point of view, there
is little to choose between them. Each has its
own advantages.

Spiral storage offers constant average
performance and a choice of growth rate. The
choice of growth rate must be made at fiie
initialization time. Often one needs to
observe how the demand for space is proceeding
before chasing a growth rate.

It can be shown that constant expected
performance is achieved with spiral storage.
This results from a property of the
exponentiai which keeps the distribution of
records across buckets fixed during expansion
when the packing factor is kept fixed. It is
an open problem whether other methods can
maintain constant expected performance during
file growth. One might investigate methods
where oniy some of the performance measures
such as successful search time are kept
constant.

Linear hashing and iinear hashing with partiai
expansions offer optimal performance if the
initial estimation of storage space is a good
one. Linear hashing grows at a rate of two
blocks for each block released while linear
hashing with partial expansions grows at three
blocks for each two blocks released. There is
thus less reorganizational activity with
linear hashing as compared to linear hashing
with partial expansions but poorer search
performance.

In considering the general method, it is
possible to remap a bucket into a new larger
space withaut_ determining the growth factor at

Proceedings of the Tenth International
Conference on Very Large Data Bases.

file initialization. In other words, the growth
curve need only be known for those buckets
currently being mapped. The unused section of
the growth curve may be modified during growth.
Information about experienced past growth may be
used to modify the subsequent expansion rate.
The proposed new method piecewise linear hashing
uses this fact.

Piecewise Linear HashiZlg (PLH)

Piecewise linear hashing offers a
dynamicaliy controlled growth rate. It also
offers optimal performance when the estimate of
fiie size is close to the actual file size.
Optimal performance is attained when ali buckets
have the same expected occupancy. This will be
true with a linear mapping from X to bucket
address which maps to only one iine segment in
figure 4.

PLH starts out initially with a linear
mapping in exactly the same manner as iinear
hashing. The init ial siope of the line is
“ORIG” . At the point when the first bucket is to
be remapped, a choice of expansion rate must be
made. This choice determines the slope of the
next segment in the X space. A choice of siope
must be be made before remapping the first bucket
mapped to a line segment. A tabie would be kept
recording the initiai allocation and the slopes
chosen. This information is sufficient to
reconstruct the growth curve and its inverse.
Such a tabie wouid typicaily be quite smail. In
the case of linear hashing, the size of the tabie
is the number of expansions plus one.

Implementatiog

A simpie way to impiement PLH is to maintain
a table containing information describing the
piecewise i inear growth curve. Figure 5 shows a
curve and its corresponding table. Note that the
siope does not need to be monotonically
increasing as it is not in the figure. The only
important considerations are :

The slope always increases between X and X+1
fey ail X, so that bucket.s are remapped to a
larger space during fiie growth.

The curve be defined at every point which wiil
be required for mapping.

Rather than have a user specify a curve, it
would be preferable to request a growth rate over
a range. One could then guarantee increasing
slope between X and X+1. The growth function
and its inverse are simpiy done by tabie lookup
and interpolation.

Singapore, August, 1994

416

A major advantage of this method over
competing dynamic hashing methods is the
possibiiity to ad just the rate of storage
expansion dynamicaily. Determining the best
expansion rate is not a Simpie task. There is a
conf 1 ict between retrieval efficiency and the
reorganization overhead incurred during
insert ion. Optimum retrievai performance is
obtained when all buckets have the same expected
occupancy. Bucket occupancy is inversely
proportionai to the slope of the growth curve at
the bucket. Thus all buckets must be mapped from
the same straight line segment on the growth
curve. Unfortunately, expansion is only possibie
when a bucket maps to a larger space. Thus the
slope of the new segment of the growth curve must
be higher than slope of the original segment for
space growth. A smali expansion factor (smail
difference in SiOpeS) will keep ali bucket
occupancies ciose together and result in good
retrievai performance.

Opposed to this is the reorganization
overhead. Space expands at the ratio of the
slopes between the new section of the growth
curve at a bucket and the old section, To expand
space rapidly one wants a high ratio between the
two SiOpes. Otherwise there wiil be bucket
reorganization overhead for only a small increase
in space.

The ideai situation is to use a high
expansion ratio when a large number of new
records are being added where the process ends
with most of the buckets mapped from the same
straight line segment of the growth curve. A
complete analysis of how to choose the expansion
rate must consider retrievai frequency, update
frequency , space cost (and the order of
occurrence of retrieval and update operations.
Information on the time order and volume of
future operations must either be known or
predicted weli.

This sect ion sketches a mathematical
anaiysis of the general method. Numericai
results are not presented as they vary with the
growth cuwe selected. Interested readers are
referred to Martin [31 or Muilin 141 for an
analysis of spiral storage or Litwin [23 for
linear hashing. Given that ali of the dynamic
hashing methods offer good search performance,
growth curves which approximate one of the
previous methods will also offer good search
performance. The main difference in performance
wiii lie in control over the reorganizational
effort connected with bucket remapping. If one
calculates a growth factor as the ratio of new
file space to oid file space when a bucket is

Proceedings ot the Tenth International
Conterence on Very Large Data Bases.

remapped as r , then each time the file space
increases by r-l , each bucket must be read and
re-written to rr1 new buckets. Note that the
physical address mapping ensures that one of
these new buckets is, in fact, the bucket read.

The remaining analysis investigates the
relationship between packing factor and expected
probes to access a record. A general method wili
be derived to determine the expected number of
accesses for a successful search and for a failed
search. This is done given a packing factor,
growth function and number of buckets in the
file. The general method will be illustrated
using PLH. The simplest conflict handling method
is assumed: link chaining from the prime bucket.
The overflow chains are assumed unblocked. In
searching the prime bucket and each overflow
record, one access is counted. Many other
conflict handling strategies are possible. See,
for example, Mullin 151.

The performance anaiysis is in three parts.
1. Given the expectations of records in the
buckets, determine the probability
distribution of length of overflow chains
across the space.
2. Given the overflow chain iength
distribution, calculate the expected number
of accesses for a SucceSSfui search and a
failed search. These are the performance
criteria sought.
3. Since packing factor is commonly used as
a measure of space utilization, rather than
bucket expectations, calculate the bucket
expectations used in step 1 from the packing
factor.

The records arrive randomly and
independently. Thus within any bucket the
conditional probability of actualiy
finding K records in the bucket when the
expectation is E is given by Poisson’s iaw:

P[Nr=K/El = EN&’ /K!
K=O... records

space
conta

The expectation E varies across the data
“s”. The probability of a bucket

ining K records across the data space is:

P[Nr=K’l =

“sb” is the beginning of the space
and”se”is the end of the space.

To actually perform the above integration,
we need a relationship between storage address s
and the expectation E. The expectation IS
inversely proportionai to the slope of the growth

Singapore, August, 1994

477

function S=grOW(X) evaluated at the particular
storage address s. This is because the
expectation in a bucket is directly proportionai
to the fraction of the key range mapping to the
bucket. The precise reiationship depends on the
growth function.

Given these probabilities of bucket
contents, one can solve for the probabilities of
overflow chains of various sizes:

P[overflow=K] = P[Nr=K+bc] ; K>O

where bc is the prime bucket capacity. Since
the probability of various sizes of overfiow sums
to 1, one can compute g)

P[overfiow=O] = 1 -
I

P[overflow=K]

k-1

The summation may be stopped at some reasonable
point . Given the various probabliities of
overfiow, one can solve for expected accesses.
The expected number of accesses for a failed
search (one where the key is not in the file) is
given by:

r”

s

se
pf = E ds / [(se-sb+l)*bc].

sb

The solution of this equation for E at a
bucket varies with the growth function. For PLH
or linear hashing where the growth function is
composed of line segments, and these slopes are
constants, the solution is very simple. The
expectation in a bucket is inversely proportional
to the slope of the line segment at a bucket.
Choose El to be the expectation of the ieftmost
bucket being considered.

NREC =
8

El ds +...+ El SK ds.

Sk is the ratio of slope in the leftmost
bucket to the bucket considered. There is a
separate integration across each line segment.
The expectation within a line segment is El S.
Thus

NREC = El (sl-sb) + S,El (s2-sl) + . . .
SREl (se-Sk)

faiied-search = 1 +
1

K * P[overflow=K] and the E’s may be computed from the packing
factor.

u-1

The expected number of accesses for a successful
search is given by: Conclusions

successful-search = P[overfiow=O] +

P[overflow=l] (bc/(bc+l) + 2/(bc+l) +

P[overflowFK] (bc+2+3+...K+l)/(bc+K)

We now have a means of computing expected
performance in terms of bucket expectations.
However, practitioners usuaily think in terms of
packing factor over the whole area rather than
individual bucket expectation. Given a packing
factor, one wishes to compute expectations.

Packing factor pf is defined as:

pf = NREC / (bchnumber-of-buckets)

A unified approach to a variety of dynamic
hashing methods has been presented in terms of
general growth fun& ions. Spirai storage and
varieties of linear hashing are instantiations of
the generai approach. A variety of growth
functions are exhibited. PLH offers the abiiity
to dynamically control the growth rate and
provides a growth function with a trivially
computed inverse. The main advantage of a
dynamically controiled growth rate lies in the
cant roi over the tradeoff between search
performance and bucket remapping work. .A choice
may be made after file growth has been observed.
High growth rates iead to less remapping overhead
but poorer search performance. Using reasonabiy
smail line segments one can approximate any
growth curve desired. Many other growth
functions are possible.

where NREC is the total number of records and bc
the capacity of the prime bucket.

NREC =
s

se
E ds.

sb

The number of buckets is: se-sb+ 1.

Thus

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1994

478

REFERENCES
Figure 3

1.

2.

3.

4.

5.

Larson, P. Linear Hashing with Part Sal

Expansions. Proc. 6th Intern. Conf. on
Very Large Databases, Montreal, 1980,
224-232.

Litwin, w. Linear Hashing: A new tooi for
file and table addressing. Proc. 6th.
Intern. Conf. on Very Large Databases,
Montreal, 1980, 212-223.

Martin, D.N. Spiral Storage: Incrementaily
Augmentabie Hash Addressed Storage. U. of
Warwick. Technical Report 27, Coventry, UK,
March 1979.

Mullin, J.K. Spiral Storage: Efficient
Constant Performance Extensibie Hashing.
Submitted Computer Journal.

Mullin, J.K. Tightly Controlled Linear
Hashing Without Separate Overflow Storage,
BIT 21 (1981), 390-400.

Figure 1

Hash to X Happing Using the Sawtooth Function

- with c : 0.25
---- with c = 0.50

0.001
0 .I .2 .3 .‘I .5 .6 .7 .8 .9 1

hash(key)

File Growth with a Growth Function

NotIce that records move to a larger space.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Physical Address Mapping

Determining Ancestor Buckets

St *rage
Addre: s

I

Ancestors

------a--- --_--_-

key range
block 6

XM

Singapore, August, 1994

479

FIGURE 4

The growth function for : linear hashing

partial expansions -----m-m

21

20

19

18

17

16

15

bucket 14

address 13

12

11

10

9

8

7

6

5

ORIC: u

3

2

bucket

address

Slngapom August, 1964

