
ABSTRACT 

This paper attempts to unify a variety of 
dynamic hashing methods. Spiral storage, linear 
hashing and - to a certain extent, linear hashing 
with partial expansions can be seen as particular 
cases of a more general technique. The approach 
is closest to spiral storage in concept. A new 
instantiation of the general method is offered 
which permits an adjustment to the dynamic growth 
rate during expansion. In addition, “optimai” 
performance results if a sufficiently accurate 
estimate of the file size is possible. 
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Introduct ion 

Since 1979, a number of dynamic hashing 
methods have been discovered. Dynamic hashing 
methods are hash based, direct access storage 
methods which maintain good performance while the 
storage space is kept proportional to storage 
demand. Thus large underestimates of the space 
required do not result in poor performance or the 
need for a complete reorganization. 

We assume a conventional environment where 
records are mapped into physical device buckets. 
Each bucket has space for a number of records. 
The operations of fetch, insert and delete are 
performed on records -- each with a unique 
identifying key. 
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A number of these new methods can be unified 
with one theory. Litwin’s linear hashing c21, 
Larson’s linear hashing with partial expansions 
[ll, and Martin’s spiral storage [31 can all be 
viewed as instantiations of a generai approach. 
This general approach also suggests other useful, 
simple approaches. In particuiar, a new method 
is presented where: 

1. The growth rate can be dynamicaily adjusted 
so as to react to observation of the actual 
growth demand; 

2. Optimal performance will be achieved if the 
file size estimate is accurate. Optimal 
performance is attained when each bucket has 
the same expected number of records. 

The general method is actually on adaptation 
of spiral storage without the exponential spiral. 
Many of the requirements are simiiar. First, a 
hash function which hashes the record key 
into (O... 1) is assumed. A sawtooth function: 

X = fC-hash(keyj1 + hash(key) 

is employed. The parameter C is fixed by the 
file size. C increases as the file size 
increases. The range of X is always one unit 
from c to C+l. During file growth or 
contraction, the variable C is incrementally 
readjusted. Thus the value of X will change 
for oniy a small number of keys if the change 
in C is smali. The sawtooth function may be 
seen graphically in Figure 1. A logical address 
is computed using a growth function: 

logical-address = Igrow( 
In spiral storage, this growth function is an 
exponential bx . **b” is some small constant 
greater than one. The mapping from the X space 
to logical bucket addresses may be seen in figure 
3. 
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The storage space may be dynamicaliy 
read justed so as to keep storage used in 
proportion to storage demand. This iS 
conveniently done by monitoring storage 
utilization or packing factor after update 
operations. It is possible to either reduce or 
expand the storage space. The remainder of this 
paper will only consider storage expansion. When 
it is determined that the storage space should be 
increased, the value of C is readjusted to 
eliminate the first bucket. 

C = grow” (first+l). 
All records in the old first bucket (left) are 
remapped into a new larger space on the right. 
In spiral storage, the inverse of the growth 
function Is logk (address). The reader should 
note that both the left and right boundaries of 
the file move. This is shown in Figure 2. Many 
operating systems wouid have difficulty with a 
file where both boundaries move. Fortunately, a 
simple method Is available to map logical 
addresses to physical addresses where only the 
right physical file boundary moves. In summary, a 
physical bucket address Is determined by the 
sequence : 

key-i) hashtkey) + Xjlogical address+ 
physical address 

Before describing this physical mapping, we 
discuss the general constraints on growth 
functions. 

A growth function must be: 

1. Continuous and 1 to 1. 

2. The first derivative (siope) must exist at 
all but a finite number of points. Such 
points may only occur at a bucket boundary. 

3. The slope, if it exists, must be greater 
at X+1 than at X for all X. 

4. The inverse of the growth function must be 
easily computed. 

The first point simply ensures a unique 
mapping between keys and buckets. The second 
point ensures that there is a computable slope 
for a bucket. The third point is perhaps the 
least obvious. This condition is in place 
because when one remaps a bucket, the remapping 
in the X space is from X to X+1. This 
condition ensures that the mapping is to a new 
larger space. The fourth point is a practical 
matter to guarantee reasonable speed of 
processing. The entire growth function need not 
be known in advance. It may be dynamically 
adjusted for sections above the last allocated 
bucket. 
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PhvsicQ u &QDitlg 

Martin [3] presents a method to map iogicai 
addresses to physicai addresses. The generai 
method employs an extension of his method. The 
general method requires that when a bucket is 
released, that space is immediate11 reused before 
any newly aliocated space is employed. 

Given a logical address y , we must 
determine how that address was instantiated. If 
the address was a newiy allocated bucket, then 
the physicai address is simpiy the logical 
address of the last bucket at the time y was 
instantiated, minus the logical address of the 
first bucket at this time. This is simply the 
count of existent logical buckets. If the 
bucket *y” was instantiated with a recycied 
bucket, one determines the logical address of the 
recycled bucket and recurs. The third 
possibility is that y was one of the original 
allocation, then physical address equals logical 
address. The problem is now reduced to 
determining how the logical address iS 
instantiated. This is almost as simple in the 
general case as with spiral storage. Refer to 
Figure 3. 

After a bucket (other than one of the 
initial allocation) Is instantiated, if it 
receives remapped keys from more than ancestor, 
it must have been instantiated with newiy 
allocated space. If it receives keys from only 
one ancestor, It must have been the first bucket 
needed when the ancestor was deallocated and was 
instantiated from its deallocated ancestor. This 
is true because of the condition that a bucket 
always maps to a larger space and the discipline 
of immediately reusing a deallocated bucket. 

The process of determining the ancestor 
range is as foilows: 

1. 

2. 

3. 

4. 

Determine the X space range which maps to 
the bucket. 

low-x=grow-’ (logical-address) 

high-x=grow’ (logical-address+ 1) 

Since the X space between a bucket and its 
remapped ancestor differs by 1, the X space 
range of the ancestor is 

low-x-l to high-x-l 

The ancestor bucket address range is then 

grow(lowJ-1) to grow(higLx-1). 

If brow (low-x-l 11 and lgrow (high-x-1 )J are 
the same, then the bucket was instantiated 
from the logical bucket at Lgrow(low-x-l)] . 
Otherwise, it was instantiated from newly 
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allocated space. 

The algorithm is: 

function Lhysioal (1ogical):integer; 

begin 
if logical <= initialflax 
then phys,cal := logical 
else 

begin 
low-x := grow-* (logical) 
W&-x := grow* (logical+11 
anclow := grow(low_,x-1) 
anchigh := grow(higU-1) 
if LanclowJ = lanchighj 
Then 

physical := physical(\anclowl) 
else 

physical := logical-I-2clowj 
end 

end physical 

A Linear Hash- Instant- 

Litwin's iinear hashing can be developed 
from the general method by the choice of a growth 
function as shown in Figure 4. This function is 
piecewise linear. "ORIG" is the initial number 
of buckets. Each linear segment covers a unit on 
the X axis. The slope of the first segment 
is ORIG 
is K*ORIG'. 

and the slope of the kth segment 
In the figure ORIG=4. 

Consider the first adjustment. 
Bucket 0 is removed. The records will be 
remapped to logical buckets 4 and 5. In terms of 
physical mapping, since bucket 0 is removed, 
logical bucket 4 is recycled physical bucket 0 
and logical bucket 5 is the newly allocated 
physical bucket 4. 

In effect, the oid physical block 0 is split 
between physical block 0 and physical block 4. 

At the conclusion of what Litwin wouid term 
a "fuli expansion", the physical mappings wili be 
exactiy the same 

as linear hashing. In addition, the section of 
the growth curve used to map active buckets is 

the second line segment. In effect, the choice 
of this piecewise linear growth function gives 
exactly the same performance as linear hashing 
and exactly the same physicai splitting. 

& aobroximatioa &Q lineac m Uh Rartia& 
-ions 

Larson Cl1 has an important modification to 
linear hashing. The essence of his strategy is 
to map two blocks into three. This will mean 
that after spiitting, one can expect the newiy 
created and newiy split blocks to have two-thirds 
of the former contents instead of half their 
former contents, as is the case in linear 
hashing. Though the bucket mappings are not 
exactly the same, one can achieve the same 
general effect with a different piecewise linear 
growth function. Again refer to figure 4. In 
this case, there is aiso a line segment covering 
each unit of the X axis. The slope of the k-th 
line segment is 1.5'siope of the k-1st line 
segment. The slope of the first iine segment is 
"ORIG". 

Now when logical bucket 0 is freed and 
remapped, the records are mapped to iogical 
bucket 4 and the "bottom half" of logical bucket 
5. When logicai bucket 1 is freed, it remaps to 
the "top half" of logical bucket 5 and bucket 6. 
Logical buckets 4 and 6 will be the recycied 
physical buckets 0 and 1. Logicai buckets 5 and 
7 will be newiy allocated physicai buckets 4 and 
5. Thus a 2:3 expansion is achieved. The 
"partial expansion" completes when ail addressing 
is covered by the second line segment. 

Spiral storas 

Spiral storage is an instance of the generai 
method directly. The growth curve is bX . W,," 
is some small constant greater than one. The 
larger this constant, the more rapidly the space 

Proceedings of the Tenth International 

Conterence on Very Large Data Bases. 
415 

Singapore, August, 1984 



expands. There is a simplification possible in 
the physical mapping routine which shortens the 
code needed. The lower and upper key boundaries 
mapping to a given address ‘la” are in general. 

high-ancestor = grow (grow’ (a+l)-I) 

low-ancestor = grow (grow-’ (al-l) 

but simplify for spirai storage to: 

high-ancestor = (a+l)/b 

low-ancestor = a/b 

A new dvnamic hashing method 

Ali three dynamic hashing methods presented: 
linear hashing, linear hashing with partial 
expansions and spiral storage, offer excellent 
performance. Successfui search probes may be 
done with reasonabie packing densities (say .75) 
and modest biocking of 10:1 in under 1.2 accesses 
on average. Thus, from this point of view, there 
is little to choose between them. Each has its 
own advantages. 

Spiral storage offers constant average 
performance and a choice of growth rate. The 
choice of growth rate must be made at fiie 
initialization time. Often one needs to 
observe how the demand for space is proceeding 
before chasing a growth rate. 

It can be shown that constant expected 
performance is achieved with spiral storage. 
This results from a property of the 
exponentiai which keeps the distribution of 
records across buckets fixed during expansion 
when the packing factor is kept fixed. It is 
an open problem whether other methods can 
maintain constant expected performance during 
file growth. One might investigate methods 
where oniy some of the performance measures 
such as successful search time are kept 
constant. 

Linear hashing and iinear hashing with partiai 
expansions offer optimal performance if the 
initial estimation of storage space is a good 
one. Linear hashing grows at a rate of two 
blocks for each block released while linear 
hashing with partial expansions grows at three 
blocks for each two blocks released. There is 
thus less reorganizational activity with 
linear hashing as compared to linear hashing 
with partial expansions but poorer search 
performance. 

In considering the general method, it is 
possible to remap a bucket into a new larger 
space withaut_ determining the growth factor at 
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file initialization. In other words, the growth 
curve need only be known for those buckets 
currently being mapped. The unused section of 
the growth curve may be modified during growth. 
Information about experienced past growth may be 
used to modify the subsequent expansion rate. 
The proposed new method piecewise linear hashing 
uses this fact. 

Piecewise Linear HashiZlg (PLH) 

Piecewise linear hashing offers a 
dynamicaliy controlled growth rate. It also 
offers optimal performance when the estimate of 
fiie size is close to the actual file size. 
Optimal performance is attained when ali buckets 
have the same expected occupancy. This will be 
true with a linear mapping from X to bucket 
address which maps to only one iine segment in 
figure 4. 

PLH starts out initially with a linear 
mapping in exactly the same manner as iinear 
hashing. The init ial siope of the line is 
“ORIG” . At the point when the first bucket is to 
be remapped, a choice of expansion rate must be 
made. This choice determines the slope of the 
next segment in the X space. A choice of siope 
must be be made before remapping the first bucket 
mapped to a line segment. A tabie would be kept 
recording the initiai allocation and the slopes 
chosen. This information is sufficient to 
reconstruct the growth curve and its inverse. 
Such a tabie wouid typicaily be quite smail. In 
the case of linear hashing, the size of the tabie 
is the number of expansions plus one. 

Implementatiog 

A simpie way to impiement PLH is to maintain 
a table containing information describing the 
piecewise i inear growth curve. Figure 5 shows a 
curve and its corresponding table. Note that the 
siope does not need to be monotonically 
increasing as it is not in the figure. The only 
important considerations are : 

The slope always increases between X and X+1 
fey ail X, so that bucket.s are remapped to a 
larger space during fiie growth. 

The curve be defined at every point which wiil 
be required for mapping. 

Rather than have a user specify a curve, it 
would be preferable to request a growth rate over 
a range. One could then guarantee increasing 
slope between X and X+1. The growth function 
and its inverse are simpiy done by tabie lookup 
and interpolation. 
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A major advantage of this method over 
competing dynamic hashing methods is the 
possibiiity to ad just the rate of storage 
expansion dynamicaily. Determining the best 
expansion rate is not a Simpie task. There is a 
conf 1 ict between retrieval efficiency and the 
reorganization overhead incurred during 
insert ion. Optimum retrievai performance is 
obtained when all buckets have the same expected 
occupancy. Bucket occupancy is inversely 
proportionai to the slope of the growth curve at 
the bucket. Thus all buckets must be mapped from 
the same straight line segment on the growth 
curve. Unfortunately, expansion is only possibie 
when a bucket maps to a larger space. Thus the 
slope of the new segment of the growth curve must 
be higher than slope of the original segment for 
space growth. A smali expansion factor (smail 
difference in SiOpeS) will keep ali bucket 
occupancies ciose together and result in good 
retrievai performance. 

Opposed to this is the reorganization 
overhead. Space expands at the ratio of the 
slopes between the new section of the growth 
curve at a bucket and the old section, To expand 
space rapidly one wants a high ratio between the 
two SiOpes. Otherwise there wiil be bucket 
reorganization overhead for only a small increase 
in space. 

The ideai situation is to use a high 
expansion ratio when a large number of new 
records are being added where the process ends 
with most of the buckets mapped from the same 
straight line segment of the growth curve. A 
complete analysis of how to choose the expansion 
rate must consider retrievai frequency, update 
frequency , space cost ( and the order of 
occurrence of retrieval and update operations. 
Information on the time order and volume of 
future operations must either be known or 
predicted weli. 

This sect ion sketches a mathematical 
anaiysis of the general method. Numericai 
results are not presented as they vary with the 
growth cuwe selected. Interested readers are 
referred to Martin [31 or Muilin 141 for an 
analysis of spiral storage or Litwin [23 for 
linear hashing. Given that ali of the dynamic 
hashing methods offer good search performance, 
growth curves which approximate one of the 
previous methods will also offer good search 
performance. The main difference in performance 
wiii lie in control over the reorganizational 
effort connected with bucket remapping. If one 
calculates a growth factor as the ratio of new 
file space to oid file space when a bucket is 
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remapped as r , then each time the file space 
increases by r-l , each bucket must be read and 
re-written to rr1 new buckets. Note that the 
physical address mapping ensures that one of 
these new buckets is, in fact, the bucket read. 

The remaining analysis investigates the 
relationship between packing factor and expected 
probes to access a record. A general method wili 
be derived to determine the expected number of 
accesses for a successful search and for a failed 
search. This is done given a packing factor, 
growth function and number of buckets in the 
file. The general method will be illustrated 
using PLH. The simplest conflict handling method 
is assumed: link chaining from the prime bucket. 
The overflow chains are assumed unblocked. In 
searching the prime bucket and each overflow 
record, one access is counted. Many other 
conflict handling strategies are possible. See, 
for example, Mullin 151. 

The performance anaiysis is in three parts. 
1. Given the expectations of records in the 
buckets, determine the probability 
distribution of length of overflow chains 
across the space. 
2. Given the overflow chain iength 
distribution, calculate the expected number 
of accesses for a SucceSSfui search and a 
failed search. These are the performance 
criteria sought. 
3. Since packing factor is commonly used as 
a measure of space utilization, rather than 
bucket expectations, calculate the bucket 
expectations used in step 1 from the packing 
factor. 

The records arrive randomly and 
independently. Thus within any bucket the 
conditional probability of actualiy 
finding K records in the bucket when the 
expectation is E is given by Poisson’s iaw: 

P[Nr=K/El = EN&’ /K! 
K=O... records 

space 
conta 

The expectation E varies across the data 
“s”. The probability of a bucket 

ining K records across the data space is: 

P[Nr=K’l = 

“sb” is the beginning of the space 
and”se”is the end of the space. 

To actually perform the above integration, 
we need a relationship between storage address s 
and the expectation E. The expectation IS 
inversely proportionai to the slope of the growth 
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function S=grOW(X) evaluated at the particular 
storage address s. This is because the 
expectation in a bucket is directly proportionai 
to the fraction of the key range mapping to the 
bucket. The precise reiationship depends on the 
growth function. 

Given these probabilities of bucket 
contents, one can solve for the probabilities of 
overflow chains of various sizes: 

P[overflow=K] = P[Nr=K+bc] ; K>O 

where bc is the prime bucket capacity. Since 
the probability of various sizes of overfiow sums 
to 1, one can compute g) 

P[overfiow=O] = 1 - 
I 

P[overflow=K] 

k-1 

The summation may be stopped at some reasonable 
point . Given the various probabliities of 
overfiow, one can solve for expected accesses. 
The expected number of accesses for a failed 
search (one where the key is not in the file) is 
given by: 

r” 

s 

se 
pf = E ds / [(se-sb+l)*bc]. 

sb 

The solution of this equation for E at a 
bucket varies with the growth function. For PLH 
or linear hashing where the growth function is 
composed of line segments, and these slopes are 
constants, the solution is very simple. The 
expectation in a bucket is inversely proportional 
to the slope of the line segment at a bucket. 
Choose El to be the expectation of the ieftmost 
bucket being considered. 

NREC = 
8 

El ds +...+ El SK ds. 

Sk is the ratio of slope in the leftmost 
bucket to the bucket considered. There is a 
separate integration across each line segment. 
The expectation within a line segment is El S. 
Thus 

NREC = El (sl-sb) + S,El (s2-sl) + . . . 
SREl (se-Sk) 

faiied-search = 1 + 
1 

K * P[overflow=K] and the E’s may be computed from the packing 
factor. 

u-1 

The expected number of accesses for a successful 
search is given by: Conclusions 

successful-search = P[overfiow=O] + 

P[overflow=l] (bc/(bc+l) + 2/(bc+l) + 

P[overflowFK] (bc+2+3+...K+l)/(bc+K) 

We now have a means of computing expected 
performance in terms of bucket expectations. 
However, practitioners usuaily think in terms of 
packing factor over the whole area rather than 
individual bucket expectation. Given a packing 
factor, one wishes to compute expectations. 

Packing factor pf is defined as: 

pf = NREC / (bchnumber-of-buckets) 

A unified approach to a variety of dynamic 
hashing methods has been presented in terms of 
general growth fun& ions. Spirai storage and 
varieties of linear hashing are instantiations of 
the generai approach. A variety of growth 
functions are exhibited. PLH offers the abiiity 
to dynamically control the growth rate and 
provides a growth function with a trivially 
computed inverse. The main advantage of a 
dynamically controiled growth rate lies in the 
cant roi over the tradeoff between search 
performance and bucket remapping work. .A choice 
may be made after file growth has been observed. 
High growth rates iead to less remapping overhead 
but poorer search performance. Using reasonabiy 
smail line segments one can approximate any 
growth curve desired. Many other growth 
functions are possible. 

where NREC is the total number of records and bc 
the capacity of the prime bucket. 

NREC = 
s 

se 
E ds. 

sb 

The number of buckets is: se-sb+ 1. 

Thus 
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FIGURE 4 
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