
DISTRIBUTED TRANSACTION MANAGEMENT IN JASMIN 

Ming-Yee Lai W. Kevin Wilkinson 

Bell Communications Research, Inc. 

ABSTRACf 

In this paper, we describe the architecture of JASMIN, a 
functionally distributed database machine which uses replicated 
software modules (DM. RM, IS) to achieve high degrees of 
throughput. We discuss some issues in distributing data and 
metadata in JASMIN. We describe our distributed multiversion 
validation technique along with the two phase commit protocol 
which we use to achieve concurrency control and crash recovery 
for data and metadata. The scheme also solves the version 
consistency problem in the multiprocessor environment. 

1. INTRODUaION 

JASMIN is an experimental database machine intended for 
research in large database, high volume applications. It is 
designed as a functionally distributed database machine, in the 
spirit of DBC iBAN781. SABRE [GAR831, and SPIRIT 
[KAM791. A common goal of these projects is to achieve high 
system throughput by decomposing the work of a database 
management system into modules and running those modules on 
separate processors. JASMIN is different in that other work has 
tended to emphasize the decomposition of a database manager, 
resulting in many different modules (each perhaps on its own 
processor). We feel that too fine a decomposition can hurt 
performance by increasing the number of control messages 
required per transaction. We use a simple 3-level decomposition. 
Our plan is to achieve higher degrees of multiprocessing by 
replicating software modules. 

A uniprocessor prototype of JASMIN has been completed. Its 
performance encouraged us to extend our work to a distributed 
environment. In this paper, we describe our solutions to the 
problem of distributed transaction management for data and 
metadata. These problems are interesting due to the novel design 
of the concurrency control mechanism and the need to 
transparently replicate software modules. The next section gives 

Permksion to coov without fee all or Dart of this material is granted 
provided that the co&s are not-made or &stribt&d for direct commercial 
advantage, the VLDB copyright notice and the title of the publication ond its 
date apjtar. and noticr is given that copying is by permission of the Very Large 
Dota Base Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedlngr of the Tenth InternatIonal 
Conference on Very Large Data Bases. 

an overview of the JASMIN architecture. More details and some 
performance results may be found in 1~1~841. Section 3 describes 
how we coordinate access to distributed data and Section 4 
explains our approach to metadata access and update. 

2. JASMIN ARCHITEtXURE 

Two of our design goals for JASMIN are that the design should 
allow incremental growth in processing power, and support 
transparent distribution of data and software. To satisfy our goals, 
we have devised a software architecture with three layers of 
database services. Each successive layer represents a higher level 
of abstraction. The layers are implemented as processing modules 
(servers) that communicate with each other via messages. Because 
intermodule communication is restricted to messages, the module- 
to-processor assignments can be changed with no effect on the 
software. Further, the modules are written in a fashion that allows 
each to coexist with clones of itself. Thus, JASMIN can be 
configured with as many modules and processors as processing 
requirements dictate. 

The layered architecture consists of IS, RM and DM modules, 
each built on the previous layer. The Intelligent Store (IS) 
[ROO821 performs page and physical block management and 
transaction management (concurrency control, and crash 
recovery). The Record Manager (RM) performs record and index 
management, and single relation query processing using the 
facilities of the IS. The Data Manager (DM) builds on the RM 
to provide full relational query processing. The message passing 
mechanism is provided by the JASMIN kernel. 

2.1 The Kernel 

The JASMIN kernel provides a simple, but powerful, set of 
facilities on which to build distributed system software. It offers 
three types of services: tasking, scheduling, and message passing. 
A task is the unit of execution. It has a priority level, a stack and 
a private data segment. A module consists of several tasks, all 
sharing a public data segment. Task scheduling is based on 
priority; a task is not preempted by another task at the same or 
lower priority until it releases the processor to receive a message. 
The kernel does no swapping or paging of memory. All inter-task 
communication is via messages that are sent over communication 
“paths” similar to the links used in Roscoe [SOL791 and DEMOS 
[BAS771. 

The kernel includes no database-specific features and even device 
drivers are not included. Thus, the kernel is a sparse environment 
with little of the overhead found in general purpose operating 

Singapore, August, 1984 

466 



systems [ST0811. It gives the database system implementor 
complete control over how memory is scheduled, swapped, and 
paged. 

2.5 Configumtiosz 

2.2 Intelligent Store 

The Intelligent Store (IS) is a sophisticated page manager that 
maps pages into secondary storage. The IS underlies the 
JASMIN database management facilities, providing data 
consistency, concurrency control, and crash recovery. The IS is 
transaction oriented. It permits multiple transactions to access and 
update pages stored on one or more disk subsystems. Page 
requests are based on (logical) page identifiers. The IS translates 
between logical page id’s and physical block addresses. Thus, an 
IS user cannot know the physical location of a page. This provides 
a degree of physical database independence. The IS also 
implements rollback and recovery from system crashes. A detailed 
discussion of the IS appears in 1~00821. 

A JASMIN configuration consists of a database spread across one 
or more Intelligent Stores (Figure 1). Any number of RM’s 
retrieve and update records in the Is’s, each RM having equal 
access to every IS. Similarly, multiple DM’s use those RM’s in 
implementing relational operations on the database. However, a 
given DM may access multiple sets of RM’s, providing access to 
different databases. Thus, an IS manages a set of pages, an RM 
manages a set of record types (a database) and a DM manages 
sets of databases. 

DM DM 

One of the more novel features of the Intelligent Store is its 
optimistic concurrency control method. The IS uses a versioning 
scheme to guarantee each transaction a consistent view of the 
database as of the transaction’s start time (as if the entire 
database were copied). Note that the IS is really a page manager; 
it knows nothing about databases (relational or otherwise). Thus, 
the IS may be used for implementing network or other data 
models as well as providing a base for other services, such as a 
secure file manager. 

2.3 Record Manager Figure 1 

The Record Manager (RMJ [~1~821 provides access to data 
stored in the form of records. It maps RM-style records into IS 
pages. Variable size records with missing and repeated fields are 
supported. The RM supports multiple record types, each of which 
must have an associated primary index. Record types may have 
any number of secondary indexes. Retrieval requests are 
associative: they specify only the record type and a search 
expression that selects the desired records. The physical aspects of 
storing and retrieving index and data pages are handled by the IS. 
The RM accommodates multiple concurrent users (transactions), 
both updates and retrievals, and relies on the concurrency control 
provided by the IS. The RM operations are limited to those that 
can be computed in one pass over one record type, thus including 
select and project, but excluding sort and join. 

3. DISTRIBUTING THE INTELLIGENT STORE 

There are two dimensions to distributing a system: distributed data 
and distributed processing. In JASMIN, distributed data implies 
the use of multiple Intelligent Stores, each managing a partition of 
the database. Distributed processing implies running multiple IS, 
RM and DM modules on separate processors. In this section, we 
describe the problems of coordinating multiple Intelligent Stores. 
To motivate the problems, we first describe the IS in a centralized 
environment. 

3.1 Centmlized IS 

Since the RM user interface is associative, details of database and 
record structure are hidden from the user. This is important 
because it provides a degree of logical data independence. As with 
the IS, the RM is not tied to any data model and it may be used 
as a base for other non-relational database managers. It may also 
be used for applications which do not require the full generality of 
a relational data manager and can live with access to only one 
record-type per request. 

The Intelligent Store employs the optimistic approach to 
concurrency control. In this method, a transaction has three 
phases of execution: read, validate, commit. During the read 
phase, a transaction reads objects (i.e. pages) from the public 
database. An object is written by creating a new version of the 
object, leaving the public database unchanged (until commit). 
When finished reading and writing, a transaction enters the 
validation phase. This phase ensures that the transaction, if 
allowed to commit, will produce a valid serialization order. During 
the commit phase, the transaction’s updates are applied to the 
public database. 

2.4 Data Manager 

The Data Manager (DMJ provides a relational view of data, 
mapping relations into RM records. It offers a .QUEL [ST0761 
interface and read/write protection of data down to fields within 
records. The DM uses the RM to process one or more single 
relation queries. Query processing is accomplished in a pipeline. 
One or more streams of RM output are sorted, joined, aggregated, 
and projected by a network of tasks set up to handle the specific 
query. Use of the pipeline eliminates the need to create temporary 
relations during query processing. We believe the pipeline 
orientation will accommodate special purpose processors for 
selected operations. Like the RM, the DM is supported by the 
concurrency control and recovery mechanisms provided by the IS. 

The IS concurrency control method differs from [KUNIll and 
[SCHSlI in that the Intelligent Store uses a versioning scheme to 
guarantee that transaction sees a consistent view of the database 
as of that transaction’s start time. Thus, each transaction sees the 
output of all transactions that committed before it started but sees 
no output from transactions which committed after it began. 
When a transaction, T, starts, it is assigned a read timestamp, 
rts(T). Any read request by T returns the version of the object 
that existed in the database at time rts(T). Note that read-only 
transactions always see consistent data and, thus, always commit 
without violating database consistency. 

When a transaction enters its validation phase, it is assigned a 
write timestamp, wts(TJ. The validation procedure checks that 

Proceedings of the Tenth International 

Conference on Very Large Data Bases. 
467 

Singapore, August, 1984 



the part of the database seen by the transaction has not changed 
during the lifetime of the transaction. Specifically, let RS denote 
the readset of T and WS the writeset, and let Ti denote any 
transaction that committed between rts(T) and wts(TI. Validation 
computes the set: 

(U WSi) tl (RS U WS) 

where U denotes set union and fl denotes set intersection. If this 
set is empty, then T is committed. Otherwise T is aborted. 

During the commit phase, the new versions of objects written by T 
are made the public versions. Note that an object may have more 
than one version (the old versions are needed to give other 
transactions a consistent view of the database). Eventually, old 
versions are destroyed (“retired”) when they are no longer needed. 

In this scheme, update transactions serialize in order of their write 
timestamps. Read-only transactions serialize in order of their 
read timestamps. Also, the validate and commit phases constitute 
a critical section on the set of objects that are being updated. 

Crash recovery uses a shadowing approach, that is different from 
the scheme in ILOR771. In response to a write request, a shadow 
page is created. There is no in-place updating. The commit 
procedure is done in two phases. First, the page map blocks for the 
shadow pages are written to intention lists in stable storage. Then, 
the page map blocks are swapped using a careful replacement 
algorithm and the old version is kept for read requests to older 
versions. Each phase is executed atomically. This approach never 
needs to undo a commit, but may need to redo a commit (after a 
crash). This shadowing scheme has been described in W0821 
and iAGR831. 

3.2 Coordinating Muitipk Intelligent Stores 

The read phase in the distributed case is similar to the centralized 
case, except the timestamp chosen by the IS that initiates the 
transaction must be a global timestamp. The creation of unique 
global timestamps is based on the algorithm in ILAM78I. If the 
transaction visits another IS (becomes global), the new IS must 
use the read timestamp chosen by the initiating IS. If the new IS 
cannot provide a consistent view of the database as of that read 
timestamp, the transaction must abort. 

When the transaction enters the validation phase, we use the two- 
phase commit protocol to coordinate multiple 1%. Any IS 
participating in the transaction may act as coordinator. First, the 
coordinator chooses a global time-stamp for the validation phase. 
Then, the coordinator sends a message to each participating IS to 
start its validation phase. Each IS validates the transaction 
independently and sends a vote back to the coordinator. The 
coordinator then initiates the commit phase by sending a commit 
or abort message to the other I.%. Note that the use of globally 
unique timestamps ensures that transactions will validate in the 
same order at every IS. 

3.2.1 Nonatomic Validate-Commit In the centralized IS, the 
validate and commit phases were one critical section; i.e. if the 
transaction was successfully validated, the updates were 
immediately made public. However, the use of two-phase commit 
means that validate-commit cannot be atomic. This has two major 
consequences. First, the consistency model changes. Formerly, a 
transaction saw the output of any transaction which committed 
before it started. Now, in the distributed case, a transaction sees 
the output of any transaction that validated before it started. The 
second consequence is that an IS does not know the outcome of a 
transaction at validation (it must wait until the commit phase). 
This makes it difficult to implement the consistency model, since 
validating a transaction does not make it safe to release its updates 
(the transaction may yet abort). These “pending” transactions 

ProceedInga of the Tenth Intematlonal 
Conferenca on Very Large Data Saws. 

(those between validation and commit) must be accomodated in 
both the read phase and the validation phase. 

The effect of pending transactions in the validation phase is that 
the validation test must change slightly. The test, 

(RS U WS) n (U WSi) - 0 

must include the writesets of pending transactions as well as 
committed transactions. This may generate unnecessary aborts 
(e.g. if a transaction conflicts with a pending transaction that later 
aborts). But the alternative is waiting for the outcome of the 
pending transaction to be determined. This introduces deadlock. 

In the read phase, we could have the situation where a transaction 
needs to read the output of a pending transaction (i.e. its read 
timestamp is greater than the write timestamp of the pending 
transaction). There are several ways to do resolve this. [ROO801 
suggests locking the write set of pending transactions. Conflicting 
reads would be deferred until the pending transaction finished. 
Another possibility is to reset the read timestamp of the reading 
transaction to precede the write timestamp of the pending 
transaction. In this case, the reader gets the old version of the 
updated object. Of course, this only works for read-only 
transactions. 

Our plan is to release the output of the pending transaction to the 
reader. This scheme is also proposed in ISCH811. If the pending 
transaction subsequently aborts, the reader must also abort 
(possibly propogating more aborts). This solution has the 
advantage of not blocking a transaction during its read phase. 
However, it may block transactions at commit (as they wait for 
pending transactions to be resolved). In particular, read-only 
transactions may be blocked. Under the optimistic assumption, 
conflicts are rare and most (pending) transactions succeed. So, we 
expect this to be a safe solution. 

3.2.2 Out-of-order. Requests One problem with basing the 
consistency model on transaction timestamps is that start and 
commit requests may arrive out of. timestamp’ order. There are 
two situations where this can occur. An IS might receive a 
transaction start request with a read timestamp earlier than an 
already committed transaction. This is easy to fix; aborting a start 
request is cheap. The other situation involves a read request. 
Suppose transaction T2 with start timestamp n reads object x. 
Later, transaction Tl updates object x and commits with write 
timestamp n-l. Since T2 has a later timestamp it should see Tl’s 
version of x. But since T2 has already read the old version, we are 
out of luck. (~00801 gives a solution for this which involves 
putting constraints on the commit time of Tl. 

3.2.3 Version Retiring A final issue is version retiring. In a 
centralized system, it is a simple matter to determine that a 
version is no longer needed. One only needs to keep track of the 
oldest active transaction. When that transaction finishes, the prior 
versions of pages it updated may be retired, since there is no older 
transaction that would want to read those versions. So. the 
problem in the distributed case translates into the problem of 
determining the oldest active transaction among all sites. This can 
probably be done most easily by piggybacking the time of the 
oldest active transaction onto the clock synchronization messages 
which must be periodically passed among sites. 

In summary, there are several approaches to distributed optimistic 
concurrency control (ISCH811, ICER821). We do not have space 
to compare these schemes. However, our approach is different in 
that it integrates a versioning mechanism with the concurrency 
control mechanism to provide transactions a consistent view of the 
database. The issues of managing replicate data is discussed in 

Singapore, August, 1964 



IWIL841. 

4. METAD.4TA ACCESS AND UPDATE 

Metadata refers to the information managed by each module to 
describe the user data under its control. There are three levels of 
metadata in JASMIN, the IS, RM and DM metadata. The IS 
metadata contains only local information about the contents of the 
disks under its control. Since the RM provides access to a single 
database, its metadata contains descriptors for each record type in 
the database. The RM also maintains distribution information for 
records that are dispersed across multiple IS’s, The DM provides 
access to multiple databases. In addition to the information 
required by the RM, the DM also maintains database descriptors. 
Due to space limitations, we only describe the mechanisms used to 
access and update RM metadata. The technique for DM 
metadata is similar. 

The metadata for each RM is stored as a separate record type in a 
single IS. We could distribute the metadata across multiple IS’s, 
but the volume of data is so small as to not merit distribution. 
Also, distributed metadata would require meta-metadata to 
describe the distribution criteria so we are back to the original 
problem. Because the metadata must be accessed by every 
transaction, it is reasonable to cache a database’s metadata in 
every RM serving that database. We assume the amount of 
metadata is small enough to be wholly kept in a main memory 
cache in the RM. We also assume that metadata changes are 
infrequent (or else there is little benefit in caching it). 

Recall that our concurrency control model provides each 
transaction with a snapshot of the database as of the transaction 
start time. This also applies to metadata. We assume that each 
transaction gets its own (consistent) version of the metadata at 
start time by copying the RM’s cache. However, this scheme 
requires that the RM metadata cache always be up-to-date. Since 
there are multiple RM’s, each with their own cache, we have a 
cache update problem. 

There are really two problems for an RM cache: detecting that the 
cache is out of date and detecting conflicts between simultaneous 
updates of the metadata. The source of these problems is that 
transactions get their metadata from the RM cache rather than by 
reading it from the IS. This circumvents the concurrency control 
mechanism provided by the IS. The IS is unaware that the 
metadata has been read so it cannot detect read-write conflicts. 

4.1 Cache Version Numbers 

Our solution is to use cache version numbers (CVNs). A CVN is 
an integer (part of the database metadata) which is incremented 
whenever the metadata changes. Each RM has a copy of the 
CVN as does the IS containing the metadata. When a transaction 
starts at an RM, the RM compares its CVN with the IS CVN. If 
the RM CVN is less than the IS CVN, the RM cache is out of 
date and must be refreshed by re-reading metadata from the IS. 
This detects the outdated cache and provides a new transaction 
with the latest version of the database metadata. 

To solve the concurrent update problem, at validation time the 
RM compares its CVN with the IS CVN. If they are the same, 
then the metadata has not changed during the lifetime of the 
transaction so it may commit (assuming no other conflicts). If the 
RM CVN and IS CVN differ, another transaction has updated the 
metadata, so the transaction must be aborted. When a transaction 
wants to update the metadata, it first makes changes to its local 
copy of the metadata. It must also issue page writes to the IS to 
update the disk version of the metadata (this includes a new 
version of the page containing the CVN). At validation time, 
(assuming validation succeeds), the RM running the transaction 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

instructs the IS to increment its CVN, copies the transaction 
metadata cache to to its own RM cache and increments its own 
CVN. If two transactions concurrently udpate the metadata, they 
must both update the disk page containing the CVN. The IS will 
detect this write-write conflict and one of the transactions will 
abort. 

4.2 Read-Only Cache Protocol 

Use of the CVN introduces a performance problem. Whenever 
the metadata is updated (causing the IS CVN to change), all 
active transactions are aborted. A malicious (or ignorant) user 
could cripple JASMIN by repeatedly forcing cache updates, 
reducing throughput to zero. The problem may be avoided by 
using the following optimization. In most cases, transactions that 
only read metadata need not be aborted when another transaction 
concurrently updates metadata. Below, we give conditions on 
when this is true and an informal argument for its correctness. A 
more formal proof requires a formalization of the notions of 
metadata and database consistency. 

Recall how the IS detects conflicts. Assume transaction Tl 
updates metadata and commits during the lifetime of T2. Then 
Tl and T2 conflict iff: 

(RS2 U WS2) n (WSl) Z 0 

Since the readset of a transaction is composed of metadata and 
user data, we may rewrite the conflict definition: 

or 
(MRS2 U URS2 U WS2) n (WSl) f 0 

(MRS2 n WSI) u (URS2 n WSl) u (WS2 n WSI) # 0 

where MRS is the metadata readset and URS is the non-metadata 
readset. By reading metadata objects from the RM cache instead 
of the IS, we prevent the IS from detecting metadata read-write 
conflicts (since it never sees the metadata read). In effect, we 
eliminate the first term in the conflict definition above. The 
interesting question is: when may we safely ignore this type of 
read-write conflict without violating database consistency? 

In the example above, the serialization order for the transactions is 
Tl, T2 (since transactions serialize in validation order). Consider 
the metadata read-write conflict (MRSZ n WSl) in detail. 
Although the transactions conflicted when run concurrently, we 
would like to know if the conflict “really mattered”, i.e. if we ran 
the transactions serially, would the output of T2 change? If not, 
then the conflict may be safely ignored. When run serially, the Tl 
metadata update could affect the output of T2 in three ways: 

(1) The update has no effect on T2 (e.g. adding a new field to a 
record descriptor). 

(2) The update affects the output of T2 directly. In this case, T2 
used metadata to compute an output value (e.g. 
counting the number of record types). 

(3) The metadata update indirectly affects the output of T2 (e.g. 
a record type is deleted). 

The first case does not violate database consistency since T2 is 
unaffected by Tl. It may safely be ignored. However, in the 
second and third cases the output of T2 may change. To preserve 
database consistency the conflict must be detected. 

The second case may be detected by the following simple rule: the 
metadata cache may only be read for query compilation. If a user 
explicitly requests to read metadata (as part of transaction 
execution), the metadata must be read from the disk (not from the 
RM cache). In this way, the IS concurrency control mechanism 
gets involved and will detect metadata read/write conflicts. 

Singapore, August, 1994 



The source of the problem in thr third case is that a side-effect of 
updating the metadata has caused a conflict that could affect other 
transactions (e.g. deleting a record type causes all the record 
instances to be deleted). However, we claim that such conflicts 
will always be detected by their side-effects, i.e. as read-write or 
write-write conflicts involving user data. The reason is that there 
are implied consistency constraints between the metadata and 
other parts of the database. When the metadata is updated, those 
parts of the database must also be affected (e.g. if Tl deletes a 
record type, it also deletes all record instances). Any transaction 
that would be indirectly affected by the updated metadata will 
access that part of the affected database. This allows the IS to 
detect a conflict on user data. 

Thus. metadata read-write conflicts may bc safely ignored so long 
as the metadata cache is not used to provide data values during 
query execution. This result applies to any concurrency control 
scheme where transactions serialize in their validation order. To 
take advantage of this, we modify our CVN protocol slightly. 
Instead of aborting all active transactions when the metadata 
changes, we need only abort transactions that concurrently update 
the metadata. 

5. SUMMARY AND FUTURE WORK 

In this paper, we described the architecture of JASMIN, a 
functionally distributed database machine which uses replicated 
software modules (DM, RM, IS) to achieve high degrees of 
throughput. We then discussed some issues in distributing data 
and metadata in JASMIN. We adopted the distributed 
multiversion validation technique along with the two phase commit 
protocol to achieve concurrency control and crash recovery for 
data and metadata. The scheme also solves the version consistency 
problem in the multiprocessor environment. 

An important goal for JASMIN is that it be useful as a testbed 
for ongoing research in database machines and database 
management in general. Our future work with JASMIN will 
include: 

l Construction of a file system on the IS and its integration with 
the DM. This will permit additional data types such as text, 
graphics, and voice in the database. 

l Study the reliability of JASMIN configurations and design of 
enhanced reliability features. 

l Study the advantages and disadvantages of optimistic 
concurrency control for centralized and distributed databases, 
and comparison of its performance relative to locking. 

l Study the performance of various configurations of DM. RM. 
and IS modules. 

6. ACKNOWLEDGMENTS 

We would like to thank Rakesh Agrawal, Dan Fishman, John 
Linderman, and Bill Roome for their insightful suggestions and 
comments on this paper. The JASMIN project is a continuation 
of earlier work (through the uniprocessor prototype) done at Bell 
Laboratories. Quite a number of people have made significant 
contributions to this project. These include, in addition to the 
authors, Micah Beck, Bill Burnette, Rudd Canaday, Dan Fishman, 
Susan Fontaine, Mary Hesselgrave. Phil Karn, Hikyu Lee, John 
Linderman, U. V. Premkumar, Bill Roome, Edith Schonberg, and 

Chung Wang. 

7. REFERENCES 

[AGR83] Agrawal, R., and Dewitt, D. J. “Integrated 
Concurrency Control and Recovery,” Computer Sciences 

Procoedlngs of ths tenth International 

Conference on Very Large Data Baeee. 
470 

Technical Report #497, University of Wisconsin, Madison, 
Wisconsin, 1983. 

[BAN781 Banerjee, J., Baum, R. I., and Hsiao. D. K. “Concepts 
and Capabilities of a Database Computer,” ACM TODS 3, 4 
(Dec. 19781, 347-384. 

iBAS771 Baskett, F., Howard, J. H., and Montague, J. T. “Task 
Communication in DEMOS,” Proceedings of the 6th ACM 
Symposium on Operating Systems Principles, November 
1977, 23-31. 

ICER821 Ceri, S., and Owicki. S. “On the Use of Optimistic 
Methods for Concurrency Control,” Proc. 6th Berkeley 
Workshop on Distributed Data Management and Computer 
Networks, Feb. 1982. 

IFISMI Fishman, D. F., Lai, M. Y., and Wilkinson, W. K. “An 
Overview of the JASMIN Database Machine,” SIG,UOD 84, 
June, 1984 

IGAR83I Gardarin, G., Bernadat, P, Temmerman, N., Valduriez, 
P., and Viemont, Y. “Design of a Multiprocessor Relational 
Database System.” INRIA Technical Report, TR 224, July, 
1983. 

IKAM79I Kamibayashi, N.. Kato, H., Kiyoki, Y., Ozawa, H.. 
Seo, K., and Aiso, H. “SPIRIT: A New Relational Database 
Computer Employing Functional-Distributed Multi- 
Microprocessor Configuration,” International Conference on 
Distributed Computing Systems, June, 1979. 

[KUNIl] Kung, H. T.; and Robinson, J. T. “On Optimistic 
Methods for Concurrency Control,” ACM TODS 6. 2 (June 
19811, 213-226. 

[LAM781 Lamport, L. “Time, Clocks and Ordering of Events in a 
Distributed System,” Comm. of ACM. July 1978. 558-565. 

[~1~821 Linderman, J. P. “Issues in the Design of a Distributed 
Record Management System,” Bell System Technical 
Journal 61. 9 (Nov. 1982), Part 2. 2555-2566. 

(LOR77] Lorie, R. L. “Physical Integrity in a Large Segmented 
Database,” ACM Transactions on Database Systems, 
March, 1977, 91-104. 

[ROOSO] Roome, W. D. Unpublished work, Bell Laboratories, 
Murray Hill, NJ, June, 1980. 

I~00821 Roome, W. D. “A Content-Addressable Intelligent 
Store,” Bell System Technical Journal 61, 9 (NOV. 1982). 
Part 2, 2567-2596. 

ISCH81 I Schlageter, G. “Optimistic Methods for Concurrency 
Control in Distributed Database Systems,” Proc. VLDB, 
1981. 

[SOL791 Solomon, M. H., and Finkel, R. A. “The Roscoe 
Distributed Operating System,” Proceedings of the 7th 
Symposium on Operating Systems Principles. December 
1979. 108-l 14. 

1~~0761 Stonebraker, M., Wang, E., Kreps, P., and Held, G. 
“The Design and Implementation of INGRES,” ACM TODS 
I, 3 (Sept. 1976). 189-222. 

[ST081 I Stonebraker. M. “Operating System Support for 
Database Management,” CACM 24. 7 (July 1981). 412-418. 

[WIL84] Wilkinson W. K. and Lai, M. Y. “Managing Replicate 
Data in JASMIN,” Submitted to 4th Symp. on Reliability in 
Distributed Software and Database Systems, 1984. 

SIngave, August, lee4 


