
ROBUSTNESS TO CRASH IN A DISTRIBUTED DATABASE:
A NON SHARE-mY-%UzTI-PROCESSOR APPROACH --

Andrea Borr
Tandem Computers Incorporated

19333 Vallco Parkway
Cupertino, California 95014

ABSTRACT

Since attention first turned to the
problem of database recovery following
system crash, computer architectures have
undergone considerable evolution. One
direction such evolution has taken is
toward fault-tolerant, highly available,
distributed database systems. One such
architecture is characterized by a single
system composed of multiple independent
processors, each with its own memory.
This paper examines the inadequacy of
both the traditional definition of system
crash and the conventional approaches to
crash recovery for this architecture. It
describes an approach to recovery from
failures which takes advantage of the
multiple independent processor memories
and avoids ‘system restart in many cases.

INTRODUCTION

With the emergence of on-line update in
transaction processing applications, log-
based database recovery techniques have
evolved to provide robustness to crash or
system failure. Log-based crash recovery
techniques have received considerable
attention in the literature [4,5,8,9,101.

The strategies adopted by the proponents
of these techniques fall into two basic
categories. Both postulate the existence
of two types of memory [41:

1. main memory, which is volatile, hence
does not survive system failure;

ii. secondary storage, which is stable or
non-volatile, hence usually survives
system failure.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

445

In the first strategy, a transaction
writes an intentions list rather than
updating database pagan real-time.
The application of a transaction’s
intended updates to the actual database
pages is deferred until transaction
commit. at which time the transaction’s
intentions list is written to a secondary
storage log, following which the updates
are applied to the actual database pages.
If a failure occurs during the
application of the intentions list, the
recovery procedure consists of restarting
the application of the intentions list
from the beginning. This technique has
been described by Lampson and Sturgis in
181.

In the second strategy, a transaction
effects its database updates in
real-time, but a so-called write-ahead
log protocol governs the migration of the
updated database pages from a memory
buffer pool to secondary storage.
According to this protocol, described by
Gray in [41, no updated data page is
permitted to be written to secondary
storage before the log records describing
the updates to that page have been
written to the secondary storage log. At
commit time, transaction recoverability
is achieved by forcing to stable storage
all log records related to the committing
transact ion.

Using either of the above strategies,
database recovery following a crash is
characterized by having recourse to the
log stored on secondary storage in order
to ensure that committed transactions are
applied and uncommitted transactions are
removed from the database. A difference
between the two strategies lies in the
type.of log information required for
crash recovery. In the case of deferred
update, only redo information need be

In the case of real-time update
iyTEe%ite-ahead log both undo and redo
information must be iogged [6l.

Singapore, August, 1984

A RE-EXAMINATION OF THE TERM “CRASH” -- - --

Central to,the strategies used in the
conventionbl approaches to crash recovery
is the definition of a crash or system
failure as the loss of the contents of
mainmory [91. The inadequacy of this
definition of system failure becomes
evident when applied to a non shared-
memory multi-processor architecture. The
concept of “main memory” as a unique and
shared resource constituting a single
point of failure is inappropriate for
multi-computer systems. In a system
architecture in which multiple
independent processors, each with its own
memory, are connected to form a single
system or node via interprocessor buses
or local area network, the use of tne
term “crashn to denote an all-or-nothing
state of the system loses its validity.
The term becomes even less meaningful
when applied to a long-haul network
consisting of multiple shared-memory
nodes, or even of multiple multi-computer
nodes. Such configurations raise the
possibility of partial crashes caused by
individual processor failures within a
node or caused by node failures within a
network. A fault-tolerant system design
may allow certain failures within a node
to be handled without requiring system
restart. If a partial failure does not
require system restart, neither should it
require full database restart. However,
the problem of the total failure or crash
of a multi-computer node still remains
and must be handled.

A corollary to the generalization of the
concept of crash is the generalization of
the concept of crash recovery. If, as in
the above definition, secondary storage
is viewed as the only storage which
survives failures, then crash recovery
must be based on a secondary storage log
and system restart is required. If, on
the other hand, a processor failure does
not imply the failure of other
processors, then recovery techniques not
requiring system restart or recourse to
secondary- storage are possible. If a
,port-i3i of the “log” were copied from the
memory of one processor to that of
another during normal processing, and one
of these processors survived the failure
of the other, then recovery from the
partial system failure could be effected
using the “log” information from the
memory of a surviving processor while
system operation continued “on-line”.

Tandem Computers has implemented a multi-
processor architecture using the above
concepts. The next section presents a
brief description of Tandem’s system

Proceedings of tha Tenth International

Conferenoe on Very Large Data Baaar. .

architecture in order to motivate a more
general approach to identifying and
recovering from both partial and total
system failures. Subsequent sections
define robustness to single and multiple
processor failures in a Tandem system. A
discussion of Tandem’s implementation of
fault tolerance and the evolution of its
design follows.

ARCHITECTURAL OVERVIEW _-.--- -- ----

The hardware architecture of a
Tandem [TM1 system is described in [7].
Illustrated in Figure 1, it is based on
multiple independent processors which are
interconnected by dual high-speed buses
to form a single :ystem (node). The
goals of the architecture are fault-
tolerance, high availability, and
modularity. Hardware redundancy is
provided such that the failure of a
single module does not disable any other
module or disable any inter-module
communication. Normally, all components
are active in processing the workload.
However, when a component fails, the
remaining system components automatically
take over the workload of the failed
component. Each of the (up to 16)
processors in a system has its own power
supply, memory, and I/O channel. Memo r y
has battery backup power capable of
saving system state for several hours in
the event of power failure. Each I/O
controller is connected to the I/O

DYNASUS

@#AIN CWCESSON

i- PROCESS&i MODULES 1

FIGURE I

TANDEM HARDWARE ARCHITECTURE

Singapore, Auguat, 1984

channels of two processors, and each I/O
device, such as a disc drive, may be
connected to two controllers. A given
disc volume is directly accessible from
two processors. Disc volume
availability, despite media failures, is
provided by optional duplication, or
mirroring of drives.

System resources are managed by a
message-based operating system, described
in [21. The Message System, a component
of the operating system, provides
communication between processes executing
in the same or different processors,

making the distribution of hardware
components transparent to processes.
Through its Message and File Systems, the
operating system makes the multi-computer
structure appear as a unified
multiprocessor to higher levels of
software.

Built on this architecture is a
distributed data management and
transaction management system called
ENCOMPASS [TM]. Described in [II,
ENCOMPASS allows data to be distributed
across multiple processors and discs
within a single node, or even within
multiple nodes of a Tandem long-haul
network. It supports the transaction _-~- _-
concept 161 in this distributed
environment. The transaction concept is
implemented by means of a log and real-
time (as opposed to deferred) update.
Transactions can span multiple discs
(connected to multiple processors) within
the same node or on multiple nodes of a
Tandem long-haul network.

Updates to a file may or may not be
protected by transaction auditing,
depending on the value of the file
attribute audited. (Henceforth, the
terms “log/logging” and “audit
trail/auditing” will be used
interchangeably).

ENCOMPASS supports three kinds of
structured file organizations:

(1) key-sequenced:
(2) relative-record:
(3) entry-sequenced.

A key-sequenced file is organized as a B-
tree on the primary key field. All three
file organizations can have alternate
keys. Alternate keys are implemented as
separate key-sequenced files which
“point” to primary file records via a
field which contains the value of the
primary key. Alternate key files and the
primary files which they index can reside
on separate disc volumes. Partitioning
files -- by primary key value range --

across multiple disc volumes (possibly on
multiple nodes) is also supported.

One of the basic implementation
components of ENCOMPASS is a process
which acts as a server for files on a
particular disc volume. This process,
designated the Discprocess, is an example
of an I/O process-pair 137. An I/O
process-pair is a mechanism which
provides fault-tolerant system-wide
access to I/O devices. It consists of
two cooperating processes which run in
the two processors physically connected
to a particular I/O device. One of these
processes, designated the primary 7-- process, controls the I/O device,
handling all requests to perform I/O on
the device. The other process,
designated the backup process, functions -- .___
as a stand-by, ready to take over control
of the device in case of failure of the
primary path to the device. The
processor in which the primary I/O
process resides is an integral
constituent of the primary path to the
device. Should the primary’s processor
crash, the backup process must have
information sufficient to take over
control of the device. This critical
information is sent from the primary
process to the backup process during the
course of normal processing in the form
of so-called checkpoint messages. The
process-pair which controls a disc volume
is called the Discprocess-pair, or simply
Discprocess. Its primary and backup
members run in the “primary” and “backup”
processors for the disc volume,
respectively. The Discprocess has an
active rather than a passive backup
process. The term active backup p-recess __- -7- refers to the fact that the information
which it receives via checkpoint messages
drives its execution control flow. This
is in contrast to a possible alternative
design in which the backup process
passively receives copies of recently-
dirtied portions of the primary process’
memory. The active backup concept is
central to the design of single fault
tolerance, as described below.

From the point of view of a given
Discprocess, a “file” is a single
partition of an ENCOMPASS “file” (if,
indeed, the latter is partitioned).
Partitions of key-sequenced primary data
files and of alternate key files look
alike to the Discprocess: each is
structured as a single B-tree. The
higher-level concept of a “file” with
partitions and/or alternate keys is
implemented by the File System. The File
System is a set of, user-callable
procedures which execute in the

Proceedings of the Tenth lnternatlonal

Conference on Very Large Data Bases.
441

Singapore, August, 1984

environment of the user process. These
procedures (e.g. OPEN, READ, KEYPOSITION,
LOCKREC, WRITE, etc.) accomplish an
operation by sending one or more request
messages to the appropriate
Discprocess(In a requester-server
mode 1, the invoker of the File System is
the requester and the Discprocesses are
servers.

The primary interface to the Discprocess
is record-oriented, although a block-
oriented interface is also provided.
Most update requests result in the
updating of a single record within a
single block of a given file. In the
case of key-sequenced files, however, the
possibility that a single request message
from the File System could cause a B-tree
split or collapse means that the request
may be executed as a series of micro

steps. update Since ~inco~leteicro
update step series leaves a file
structurally inconsistent, robustness to
crash requires a method of assuring its
atomicity. This atomicity is provided
for both audited and non-audited files,
but the means differ, as explained later.

1

\
FIGURE 2

DISC
CONTROLLER

MIRROR

DISC
CONTROLLER 5

FS is the File System running in the user process environment.
DP and DP’ are the primary and backup Discprocesses for a
mirrored disc volume. DP performs I/Cl s to move pages to and
from its memory buffer pool, BP. Reads go to the closest
disc; writes go to both discs. DP’ maintains the backup buffer
pool, BP’,based on checkpoint messages received from DP.

Procwdlngs of tha Tenth InternatIonal
Conferoncr on Vwy Large Data Saws.

448

FAILURE MODES -- -

The system architecture described
supports fault tolerance for a variety of
failure modes other than processor crash.
Fault tolerance extends from failures of
single hardware components (discs, I/O
channels, I/O controllers) to failures of
system or application software
(programmatic processor halt, user
process error, transaction abort). The
current discussion, however, will be
limited to failures which result in the
loss to a single multi-processor node of
one or more of its constituent
processors. “Loss” in this context means
the invalidation of everything stored in
the failed processor’s memory. This
could actually be caused by the failure
of any hardware or sqftware component
associated with that processor.

The failure model supported can be
characterized as fail fast. --- Consistency
checks are an integral part of the system
hardware and software. If such a check
fails, the bad component is halted. This
approach makes failures “clean” and makes
it unlikely that a failed component will
contaminate other components [3,61.

DEFINITION OF
ROBUSTNESS s SINGLE PROmSSOR FAILURE

The failure of a single processor in the
ar=cribed environment results in the
takeover of its functions by the
remaining processors. In particular, the
failure of a primary Discprocess’
processor results in the takeover of its
function by the backup Discprocess’
processor. If the failed processor
contained other primary Discprocesses
with different backup processors, then
the failed processor may have its work
taken over by several other processors.

The Discprocess is designed to provide
robustness to single processor failure.
This robustness is implemented by means
of checkpoint messages sent from the
primary process to the backup process
during normal processing and a takeover
algorithm described later.

The following elements constitute
robustness to single processor failure:

(11 “Sessions” between the Discprocess
and requesters calling the File
System survive the failure of the
Discprocess’ primary processor.
Thus, any file open before takeover
still appears open after the
takeover.

Singapore, August, 1984

When updates are not protected by
transaction auditing (i.e. updates
to non-audited files), a mechanism
of tagging messages between the
File System and the Discprocess
with sequence numbers can
optionally be used to guarantee
that a request message is never
lost during the takeover and that a
non-idempotent operation is never
duplicated [3l.

When updates are protected by
transaction auditing (i.e. updates
to audited files), the file open
session survives the takeover, but
updates executed under that open by
a given transaction survive the
takeover if and only if that
transaction committed before the
takeover.

The tolerance of sessions to single
processor failure obviates the need
to perform system restart in the
event of such a failure. For non-
audited files, the takeover is
transparent to the caller of the
File System. For audited files,
the takeover is not transparent to
the caller of the transaction
management system (since
transactions may be aborted), but
higher-level software makes the
abort and restart of such a
transaction transparent to the end-
user 111.

(2) The structural integrity of both
audited and non-audited files on
the volume is guaranteed. Thus, if
the primary’s processor fails in
the middle of performing a series
of micro update steps to a file,
takeover processing restores the
file’s structure to a consistent
state by backing out the steps
performed before the failure.

(3) The transactional consistency of
the database as a whole is
guaranteed. Thus, if a transaction
which was uncommitted at the time
of takeover had updated audited
files on the failed primary
Discprocess’ volume, takeover
processing aborts the transaction
and backs out its changes
everywhere (on other volumes on
this or other nodes). It should be
noted that transaction backout does
not include undoing a completed B-
-e index operation. In this
sense, transaction backout is
logical rather than physical.

DEFINITION OF
ROBUSTNESS TO DISCPROCESS-PAIR CRASH ~- --

A Discprocess-pair crash is defined as
the simultaneous failure of both its
primary and backup processors. The crash
of a Discprocess-pair and the failure of
its primary and backup processors are
viewed as equivalent because the
Discprocess is an integral part of the
operating system, and as such becomes
operational whenever the the processor is
restarted. Conversely, whenever a
Discprocess primary or backup process
detects an internal consistency check
failure, it halts its processor in
accordance with the fail fast principle.
While such a measure might be deemed
Draconian in a conventional architecture,
this aspect of the design is predicated
on the principle that system availability
is not compromised by the loss of a
single processor. The underlying
assumption is that processors fail
independently, and that the primary and
backup Discprocesses have independent
failure modes. Of course this
assumption would be invalidated by the
presence of a “hard” (i.e. non timing-
dependent) algorithmic bug present in
code which would inevitably be executed
by either member of the process-pair.
The elimination of such bugs has not
proven to be an impractical goal,
however. This might not be so were the
primary and backup processors running in
lock-step, or were the backup process
passively receiving copies of recently-
dirtied portions of the primary process’
memory.

When a Discprocess-pair crashes, the
situation is similar to the state
described earlier as the crash of a
shared-memory system. Information stored
in memory (in this case the memories of
both primary and backup processors) is
lost. Any method of recovery must resort
to secondary storage. Furthermore, since
“sessions” between the crashed
Discprocess-pair and requesters calling
the File System have been broken, there
is the operational requirement of
“restart”. The analogy between the
elements of robustness to single
processor failure and robustness to
Discprocess-pair crash is as follows:

(1) “Sessions” between the Discprocess
and requesters calling the File
System do not survive the
Discprocess-pair crash.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

Singapore, August, 1994

449

(2)

(3)

The structural integrity of both
audited and non-audited files on
the volume is guaranteed. Thus, if
the Discprocess-pair crashes in the
middle of performing a series of
micro update steps to a file, crash
recovery restores the file’s
structure to a consistent state.

The transactional consistency of
the database as a whole is
guaranteed. Thus, if a transaction
which was uncommitted at the time
of the Discprocess-pair crash had
updated audited files on the
crashed Discprocess-pair’s volume,
crash recovery backs out that
transaction’s changes everywhere
(on other volumes on this or other
nodes). Conversely, if a
transaction which was committed at
the time of the Discprocess-pair
crash had updated audited files on
the crashed Discprocess-pair’s
volume, but those updates were
still in memory buffers (rather
than reflected in the corresponding
database pages on secondary
storage) at the time of the crash,
crash recovery retrieves those
updates (from the log) and applies
them to the database pages on
secondary storage. As in the
single processor failure case,
transaction backout does not undo
completed B-tree index operations.

EVOLUTION OF THE DISCPROCESS DESIGN --

The above description reflects a re-
architecture of the Discprocess. The
goals of the new design were to provide
quick recovery from Discprocess-pair
crash and less costly tolerance of
single-processor failure. The old
Discprocess provided robustness to single
processor failure as described above.
However the old implementation of single
processor failure tolerance made a
tradeoff in favor of fast takeover
recovery from single processor failure at
the expense of long recovery in the event
of Discprocess-pair crash. The only
method of recovery from Discprocess-pair
crash was the time-consuming technique of
re-loading previously-archived copies of
audited database files and “rolling
forward” these files to a state of
transactional consistency by the
application of after-images from the
audit trail. The duration of volume
unavailability implied by this procedure
was justified by the assumption that
double processor failure is rare. In
actual fact however, double failures are
more common than would be predicted by

Proceedings ot the Tenth International
Conlerenoe on Very Large Data Bases.

consideration of hardware mean-time-
between-failures. Most processor
failures are in fact caused by software
bugs or operational errors.
Two characteristics of the original
design dictated the “roll forward”
approach to crash recovery and tolerated
single processor failure at the expense
of extra disc I/O’s and extra checkpoint
messages during normal processing. These
were as follows:

1.

ii.

the decision to synchronously Write
through to disc all updated database
pages rather than buffering them in
memory:
the technique of incremental
.~~c::~n~i:~~~~Se~4,eau:~~~
normal processing), which provided
the backup process with the
information needed in the event of
the primary processor’s failure to
carry forward any interrupted series
of micro update steps and to continue
forward processing on transactions
active on the disc volume.

The “write-through cache” was originally
conceived as a means of simplifying the
implemention of single processor failure
tolerance. However it made the write-
ahead log protocol [41 infeasible because
unacceptable performance would result if
every database update resulted in two
writes: first, the before-image log
necessary for undo in case of failure;
second, the modified database page. The
absence of write-ahead log made the fast
crash recovery technique of in-place
rollback of crashed transactions
impossible. Writing-through every
database update also had negative
implications for throughput and response
time. Rather than allowing the “piggy-
backing” of several in-memory
modifications on the same I/O, it meant
that each time a page was “dirtied” in
memory, it would be written out
synchronously (while the application
process waited).

Incremental checkpointing is necessary if
the backup process is to be prepared --
in the event of the primary processor’s
failure at any instant -- to carr
forward an interrupted series o +icro
update steps or an interrupted
transaction. In the re-architected
Discprocess, the approach to takeover is
to provide the backup process with enough
information to enable it to back out
rather than to carry forward- -
interrupted series of micro update steps,

Slngrpore, August, 1984

450

and to abort rather than to continue
processing forward any transaction active
on the disc volume. With this approach,
deferred checkpointing is possible.
According to this technique, the
information which would have been sent as
synchronous incremental checkpoint
messages in the old architecture is
instead buffered on the primary process’
side and sent as a batch at such times as
transaction commit. This technique
reduces considerably the cost of single
processor failure tolerance in terms of
number of messages. In particular, it
saves sending checkpoint messages which
inform the backup process of memory-only
changes in the primary’s processor which
will not reach secondary storage and
which will be backed out anyway in case
of takeover. An example of such a change
is a buffer dirtied in memory by a
transaction which has not yet committed
and for which the audit has not yet been
f arced . The backup process need have no
knowledge of such a change since the
transaction which caused it will be
aborted and backed out (globally) in case
the primary Discprocess’ processor fails.

In order to explain the takeover
algorithm used by the new Discprocess to
recover from single processor failure, it
is useful to draw an analogy between the
use of log records by conventional crash
recovery algorithms (41 and the use of
checkpoint records during takeover
processing. Checkpointing for the new
Discprocess is analagous to logging to
the backup process. Audit and checkpoint
records have a common format; for this
reason, they are known as
audit/checkpoint records. A typical
audit/checkpoint record contains
identification of the file, page number
within file, record number within page,
and the before and after content of the
changed record. A version number of the
change is stored in both the page header
and the audit/checkpoint record to
provide idempotence during recovery.
Just as conventional log-based crash
recovery algorithms use the redo
information in the log to bring the
database pages up to date with the
information which had been logged by the
time the system crashed, so the takeover
algorithm uses the redo information from
checkpoint records received to bring the
backup process’ memory buffer pool up to
date with the information which.had been
checkpointed by the time the Primary s
processor failed. Similarly, Just as
conventional crash recovery proceeds to
use logged undo information to back out
incomplete requests and uncommitted
transactions, SO the takeover algorithm

proceedings of the Tenth International

Conference on Very Large Data Bases.
45

uses checkpointed undo information to
back out any incomplete series of micro
update steps.

At this point, the takeover algorithm
terminates and the former backup process
begins operation as a primary process by
accepting new request messages.
Uncommitted transactions have not yet
been recovered, however. Any partial
micro update step series belonging to an
uncommitted transaction has been backed
out, and the transaction is prevented
from continuing forward processing: but
at the completion of takeover such a
transaction’s updates have not yet been
backed out. Locks needed for backout are
still held, however. Such a transaction
will eventually be backed out by means of
logically compensating Discprocess
request messages sent by the Backout
Process, a system process which extracts
the information needed for such requests
from the log. The logically compensating
operations requested by the Backout
Process are made idempotent by tolerating
a “record not found” condition when
deleting a record (compensating for an
insert) or a “duplicate key” condition
when inserting a record (compensating for
a delete). Compensating update
operations are automatically idempotent.

CRASH RECOVERY
FOR THE RE-ARCHITECTED DISCPROCESS ---

The new Discprocess uses separate
mechanisms to provide robustness to
Discprocess-pair crash for non-audited
and audited files. As previously stated,
robustness to crash for non-audited files
implies the restoration of structural
integrity, For audited files, on the
other hand, it implies not only the
restoration of structural integrity to
individual audited files, but in addition
the guarantee of transactional
consistency for the database as a whole.

In the case of non-audited files, updates
are not protected by transaction
auditing. However, loss of structural
integrity due to a micro update step
series interrupted by Discprocess-pair
crash is prevented by use of the
so-called Undo Area on the disc volume. --
This is a small pre-allocated area on the
volume which is re-useable for every
request. Before beginning a series of
micro update steps on a non-audited file
(e.g. B-tree block split), a highly-
compacted encoding of the intended steps
is written to the Undo Area using one

Singapore, August, 1984

il

I/O. Then if the Discprocess-pair
crashes before the operation completes,
this undo information is used to back out
the incomplete operation when the
volume’s processors are restarted.

The algorithm used to recover audited
files from Discprocess-pair crash is
summarized below. It is analagous to
typical database crash recovery
algorithms used for conventional
architectures [4l.

Following Discprocess-pair crash, the
user first restarts the volume’s primary
and backup processors. He then initiates
the Crash Recovery Process. Crash
Recovery obtains a list of those audited
files on the crashed volume which were
open for write access at crash time.
These are the files which are recovered
from the log. Log processing during
crash recovery consists of a forward and
a backward pass.

The forward pass begins at the redo start
ooint. This is a location in theoa
prior to which all logged updates (&do
images) are guaranteed to be reflected in
the database. Existence of such a point
within a short distance of the end of the
log is guaranteed by the periodic
execution by each volume’s Discprocess of
control poiits. At each controi point,
currently dirty buffers are flagged.
During any spare time between control
points, flagged buffers are written out.
At the occurrence of the next control
point, any flagged buffers not yet
written are forced out and newly-dirtied
buffers are flagged. (Other systems term
this mechanism a “checkpoint”; see [5]).
The locations in the log of the latest
two control point records are remembered
at a known place on the disc volume.

When recovering a given crashed disc
volume, Crash Recovery finds that
volume’s redo start point by obtaining
the pointer to its next-to-last control
point. When recovering a set of crashed
volumes, Crash Recovery starts its
forward pass of the log at the earliest
redo start point for any of the crashed
volumes. Crash Recovery then sends to
the Discprocess of a crashed volume all
redo log records it finds from that
volume’s redo start point through the end
of the log.

After the redo phase, the backward pass
begins. Reading the log backwards from
the end, Crash Recovery sends to the
appropriate Discprocess those undo log
records which represent incomplete micro

Proceedings of ths Tenth Intematlonal

update step series. When all of the
changes represented by these log records
have been physically undone, all audited
files open on the crashed volume(s) will
have been restored to a state of
structural integrity. During the same
backward pass, Crash Recovery sends to
the appropriate Discprocess those undo
log records which represent logical
operations on data blocks (e.g. record
insert, modify, or delete) which were
executed by transactions which were
uncommitted at crash time. When all of
the changes represented by these log
records have been logically backed out
(i.e. using compensating operations at
Discprocess request level), global
transactional integrity will have been
achieved.

CONCLUSIONS

The concepts of “crash” and “crash
recovery” have been seen to require
generalization in order to find
applicability to a non shared-memory
multi-processor architecture, in which
some processors may survive the crash of
other processors in the system. The
architecture of the Tandem computer
system was described as a case in point.
A technique of logging to another
processor’s memory was described which
tolerates single-processor failure and
obviates the need to perform system
restart. An analogy was drawn between
the technique used in a Tandem system to
recover from a single-processor failure
and conventional crash recovery
techniques which rely on a secondary-
storage-resident log.

ACKNOWLEGEMENTS

Many of the ideas incorporated into the
new Discprocess design were originated by
Franc0 Putzolu.

Thanks are due to Jim Gray, Chris Duke,
and John Nauman for editorial suggestions
whose implementation improved the
presentation of this material.

[TM] Tandem and ENCOMPASS are trademarks
of Tandem Computers Incorporated.

Singapore, August, 1984

Contsrence on Very Large Data Bases. 452

1.

2.

3.

4.

5.

6.

7.

8.

9.

REFERENCES

Borr, A. J., "Transaction Monitoring
in ENCOMPASS: Reliable Distributed
Transaction Processing", Seventh
International Conference on Very
Large Data Bases, September 1981.

Bartlett, J. F., "A 'Nonstop'
Operating System", Eleventh Hawaii
International Conference on System
Sciences, 1978.

Bartlett, J. F., "A Nonstop Kernel",
Proceedings of Eighth Symposium on
Operating System Principles, ACM,
1981,

Gray, J. N., "Notes on Data Base
Operating Systems", IBM Research
Report: RJ 2188, February 1978.

Gray, J. N. et al., "The Recovery
Manager of a Data Management
System”, IBM Research Report RJ
2623, August 1979.

Gray, J. N., "The Transaction
Concept: Virtues and Limitations",
Seventh International Conference on
Very Large Data Bases, September
1981.

Katzman, J. A., "A Fault-Tolerant
Computing System", Eleventh Hawaii
International Conference on System
Sciences, 1978.

Lampson, B. and Sturqis, H. E.,
"Crash Recovery in a Distributed
Data Storage System", Xerox Pal0
Alto Research Center, 1976.
Also appears as:
Ch. 11, "Springer-Verlag Lecture
Notes in Computer Science:
Distributed Systems - Architecture
and Implementation", Vol. 105, B.
W. Lampson, Ed.,1981.

Menasce, D. A. and Landes, 0. E'., "On
the Design of a Reliable Storage
Component for Distributed Database
Management Systems", Sixth
International Conference on Very
Large Data Bases", October 1980.

10. Verhofstad, J. S. M., "Recovery
Techniques for Data Base Systems", Permission to copy without fee all or part of this material is granted

Computer Surveys, vol. lo, NO. 2, provided that the copies are not made or distributed for direct commercial

June 1978 advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permicsion of the Very Large
Data Bose Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International

Conference on Very Large Data Bases.
453

Singapore, August, 1994

