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ABSTRACT 

This paper describes how nested queries in the SQL language are 
processed by R*, an experimental adaptation to the distributed 
environment of the well-known centralized relational DBMS, System 
R. Nested queries are queries in which a predicate references the 
result of another query block (SELECT...FROM...WHERE...), 
called a subquery block (subQB). SubQBs may themselves contain 
one or more subQBs. Depending upon whether a subQB references 
values in other query blocks, it is processed differently, as either 
an Evaluate-at-Open or Evaluate-at-Application subQB type. Three 
tasks comprise execution of each query block: initiation, evaluation, 
and application. When the query’s tables are distributed among 
multiple sites, optimization of nested queries requires determining 
for each subQB: the site to perform each task, the protocols control- 
ling interactions between those tasks, and the costs of each option, 
so that a minimal-cost plan can be chosen. R* optimizes each query 
block independently, “bottom up”, using only the cost, cardinal&y, 
and result site of the subQB in the optimization of its containing 
query block. 

1. INTRODUCTION 

One of the principal advantages of relational query languages is that 
they are “closed” in themathematical sense, i.e. that the result of 
a query against one or more relations (tables) is itself a relation and 
referenceable in another query. Some relational query languages, 
such as SQL [SQL] permit this nesting of one query within another 
as a single, unified query. This nesting of queries permits the specifi- 
cation of very complex queries in a structured way that aids under- 
standing by the user and optimixation of the nested queries as a 
unified whole. For example, the following query retrieves the names 
of all employees assigned to the (presumably unique) shipping de- 
partment located in Denver: 
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SELECT E.NAME QB 1 
FROM EMPLOYEES E 
WHERE E.OEPT = (A) 

(SELECT O.OEPT# QB 2 
FROM DEPARTMENTS 0 
WHERE O.LOCATION = 'DENVER' 

AND D.NAME = 'SHIPPING' 1; l 

Each SELECT...FROM... WHERE... sequence is called a query bluck 
(hereafter abbreviated QB). Query blocks are numbered in the order 
in which they are specified, and are referred to by number throughout 
this paper. The QB within the parentheses in (A) above (QB 2) 
returns a single DEPT# of DEPARTMENTS that has LOCATION 
= ‘DENVER’ and NAME = ‘SHIPPING’, and this (single) value 
is then substituted as though it were a literal for the right-hand side 
of the E.DEPT predicate that will be used to test each instance of 
the EMPLOYEES table. While this same query may be expressed 
without nested queries as: 

SELECT E.NAME QB 1 
FROM EMPLOYEES E, DEPARTMENTS D (B) 
WHERE E.DEPT = D.DEPT# 

AND D.LOCATION = 'DENVER' 
AND D.NAME = 'SHIPPING'; 

not all nested.queries may be so transformed without changing the 
semantics that are implicit in the nested query structure, and it may 
not be optimal to do so. (e.g., evaluate-at-open QBs need be evaluat- 
ed less often, as discussed in Section “2.2. Types of Nested Queries“ 
below). In addition, the nested form is often easier for the user to 
formulate and to understand. FinalIy. we wished to maintain compati- 
bility in R* with as much of System R’s SQL as possible. It was 
for these reasons that we implemented nested queries in R*. 

There has been very little discussion of nested queries in the literature 
on query optimization, and virtually no discussion on nested query 
optimization for distributed databases (e.g., [EPST 781, [YAO 791, 
[EPST 801, [NGUY SO], [BERN 811, [CHU 82],~@AMB 821, [KERS 
821, [APER 831, [U-IAN 831, [YU 831, etc.). Selinger [SELI 791 
discusses the internal processing of nested queries in the (centralized) 
DBMS System R, particularly the order of execution of QBs within 
a nested query, and how values are passed between QBs. Only Rim 
[KIM 821 addresses the optimization of nested queries. His goal 
is to transform nested queries into a single QB involving joins, as 
was done in Examples (A) and (B) above, in order to utilize existing 
join optimization techniques for a single-site database. However, he 

1 Table qualifiers are. added to column names in the examples for clarity only: they 
are required io SQL only to resolve ambiguity. Similarly, indentation of QBs is 
not required but done here only for readability. 
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does not consider the consequences of these transformations when 
tables that are involved in the query are stored in different databases. 

This paper discumes the optimtxation of d&f&& nested queries 
in the distributed database management system R*, a prototype 
distributed DBMS that is being developed and implemented at JBIvf 
San Jose Research Laboratory [HAAS 82, WJLL 82, LOHM 841. 
The terminology, types, and execution tasks of nested queries are 
introduced in Section 2. In Section 3, the problems of optimixmg 
nested queries against a distributed database are contrasted with 
those of centralized databases. Se&on 4 provides a detailed deacrip- 
tion of how sites are selected for the three major tasks in nested 
query processing. The lower-level protocols between pmcemes per- 
forming these tasks, and the cost estimates of each, are presented 
in Section 5. Section 6 suggests some further refinements to mmimixe 
the traffic between sites, for certain types of distributed nested 
queries. Section 7 discusses some difficulties encountered while 
implementin nested queries in R*. Section 8 concludes with a 
summary of the current status of, and future plans for, the R* 
optimizer. 

To avoid lengthy reviews, we assume that the reader is familiar with 
the relational database model, the relational query language SQL 
[SQL], and System R [ASTR 76, BLAS 81, CHAM 81b]. As in 
System R, query compilation -ofwhichoptimixationisapart- 
is essential to efficient R+ execution of SQL queries that are embed- 
ded iu an application program [CHAM 81a]. The R* optimizer has 
been adapted from the System R opthnixu [SBLJ 791 to permit tables 
referenced in a single query to reside at distinct sites. And as in 
System R, for each QB in the query, the optimixer enumerates all 
“reasonable” combinations of &emative access paths to an individu- 
al table (e.g., via an index scan or relation scan) and join methods 
(i.e., nested-loop and merge join), incrementally adding tables and 
permuting the order in which tables are joined white avoiding joins 
that require a Cartesian product. Intermediate alternatives that 
produce identical rest& (i.e., the same set of tuples at the same 
siteinthesameorder)ancom~,andonly~onewithminimal 
coat is retained ILOHM 84). In R*, costs have been extended to 
include a linear combination of the number of inter-site messages 
and the length of inter-site messages, as well as the System R cost 
components of CPU (number of instrWWns executed) and I/O 
(pagcsacxased)[DANI82,ulHM 841. Includingslteprotwiq 
costs as well as inter-site communfcation costs has been justifii 
bad upon an analysis of the relative costs of actual communications, 
disk, and CPU resources consumed for typical queries [SEW 801, 
and distinguishes R* optimixation from most other distributed data- 
base optimizers [LOHM 841. 

Examples used to illustrate this paper are drawn from the folIowing 
simplifii database of three tables: 

EHPLOYEES( EHP#,NAHE,SAL,MGR,DEPT,HIREDATE,J08# ) 
DEPARTMENTS( DEPT#,LOCATIDN,NAHE,MANAGER ) 
JOBS1 JDB#,TITLE 1 

Bach employee has a (unique) identifying employee number. a name, 
salary, the employee number of his manager, the (unique) identifying 
number of his department, his date of hire, and the (unique) munber 
of his job. Bach department has a (unique) muuber, location, name, 
and the employee number of its manager. Bach job classification 
has a (unique) number and name associatul wltb it. 

Pmcoodlnga of ttm Tontb tntemattonal 
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2. NESTED QUERIES 

2.1. Nomenclature 

The fundamental syntactic shuctum 0ftheSQLquerylanguageis 
the query block (hereafter abbreviated as QB): 

SELECT select-list 
FROM frm-list 

<WHERE predicate, 

The SBLECT-list is a list of expressions fnvolvlng colmnns of tables 
that are contained in the PROM-list, and the optional predicate 
contains one or more simple Boolean predicates. A us&d pm&ate 
is a simple predicate which takes any one of the fo8owing three 
forms: 

col-expr DP query-block 
EXISTS query-block 
NOT EXISTS query-block 

where “co1-expr” is an expmsslon involving xero or more a&unns, 
and OP may be a scalar comparison operator (=, -=, <, cr. >, 
>=), a set membership operator (IN, NOT IN), or a set comparison 
operator (OP ALL or OP ANY, where OP is a scalar comparison 
operator).’ Scafar comparison operators requfre that the query-block 
evaluates to a single value, whereas set operators allow the query- 
block to return one or more values [SQL]. A query containing one 
ormorenestedprcdicattsisrefemdtoasaneded~,andthe 
QBinthepredicateiscaUeda~hbck(~B)orn&aiquwy 
hbckofthecontainingorparen@Bwhosepredicatefotmedthe 
nesting.2 

A subQB may itseff have nested predicates, so that QBs may he 
nested to a (theoretica8y) arbitrary level. Also, a QB may have 
several subQBs, but only one parentQB. Hence the 
parentQB/subQB relationship forms a tree, the root of which is the 
fii QB. The fii QB and all of its descendant subQBs win be 
referred to coUectively as one query. 

2.2. Types of Nested Queries 

IfasubaBcontainsa~e~~initspndicatetoacohunnfrom 
some table in the PROM-list of one of its ancestor QBs, then it is 
saidtobe- tothatanceatmbythatcolumn. ThesubQB 
must be re-evaluated for each candidate value of the correlated 
UWnllintheamxstor QB. A subQB that is corr&M& 
parentQB is referred to as an ev&a+ata 
btxause the subQB must be newly evaluated for each application 
of the predicate in the parentQB that contains that subQB. Re- 
evaluation is necemary because the correlation changes the results 
of the subQB. This re-evaluation must be done before the correlated 
subQB’s parentQB predicate can be tested for acceptance or rejection 
of the candidate tuple [SW 791. For example, cons&r the follow- 
ing query to retrieve all employees who work in Denver and are 
managers of their department: 
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SELECT E.NAME QB 1 
FROM EMPLOYEES E 
WHERE E.DEPT IN 

(SELECT D,DEPT# QB 2 ('I 
FROM DEPARTMENTS D 
WHERE D.LOCATION = 'DENVER' 
AND D.MANAGER = E.EMP# 1; 

For each candidate row of the EMPLOYEES table, the EMP# value 
is used for evaluating QB 2. The result is a set of DEPARTMENTS 
that is then used to test the “E.DEPT IN” predicate. 

If, on the other hand, a subQB and all of its descendant QBs are 
not correlated to any tables in the FROM-list of its parentQB, then 
it is called an evahute-at-OPEN (EAO) subQB, because absence 
of references to values from its parentQB’s tables permit it to be 
evaluated at the time of OPEN (when it begins processing) of its 
parentQB or one of its ancestor QBs. For example, suppose the 
correlating predicate (DMANAGER = E.EMP#) in query (C) 
above were removed: 

SELECT E.NAME QB 1 
FROM EMPLOYEES E 
WHERE E.DEPT IN (D) 

(SELECT D.DEPT# QB 2 
FROM DEPARTMENTS 0 
WHERE D.LOCATION = 'DENVER'); 

QB 2 (on DEPARTMENTS) can be evaluated once upon OPEN 
of QB 1 (on EMPLOYEES), and the resulting set of department 
numbers (DEPT#) can be stored temporarily for use in evaluating 
the nested predicate of QB 1 for each EMPLOYEE. 

If a QB, J. is correlated to an ancestor QB other than its hnmedlate 
parentQB, i.e. is separated from the QB to which it is correlated 
by one or more intermediate QBs, then QB J may be evaluated- 
at-OPEN of the “highest” (in terms of ancestry) of the intermediate 
QBs. For example: 

SELECT E.NAME QB 1 
FROM EMPLOYEES E 
WHERE E.SAL > 

(SELECT AVG(F.SAL) QB 2 
FROM EMPLOYEES F (E) 
WHERE F.DEPT IN 

';;b:CT D.DEPT# QB 3 
DEPARTMENTS D 

WHERE D.LDCATION = 'DENVER' 
AND D.MANAGER = E.EMP# 1 1; 

Here evaluation of the last QB (QB 3) requires a specific value for 
E.EMP# (from the EMPLOYEES table of QB 1). Since QB 3 
contains no references to any tables in QB 2, it is evaluated once 
for each new QB 1 candidate tuple from EMPLOYEES, but not 
for every QB 2 candidate tuple from EMPLOYEES. So QB 3 is 
correlated to QB 1 by column E.EMP#, but is an EAO QB because 
it is evaluated at OPEN time of processing QB 2. 

A QB, J, acquires the correlations of all of its subQBs, even if they 
are evaluated at QB J’s OPEN, because those correlations change 
the value of some of QB J’s predicates (those containing the correlat- 
ed subQBs). If any of QB J’s subQBs are correlated to QB J’s 
parentQB, then QB J must be EAA. For example, in query (E) 
above, QB 2 is correlated to QB 1 because its child (QB 3). which 
is EAO of QB 2, must be re-evaluated for each new value of E.EMP#, 
and that may alter the right-hand-side of the “F.DEPT IN...” predi- 
cate. Hence QB 2 must be EAA. If we were to remove the correlating 
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predicate, “DMANAGER P E.EMP#“, in QB 3, then both QB 2 
and QB 3 would be EAO. 

For more examples and a detailed discussion of how subQBs are 
processed in a centralized database, see [SELI 791. 

2.3. Tasks in SubQB Execution 

Processing any subQB requires three successive tasks: 

1. lnltiatlon: detects that a predicate is eligible to be evaluated; 
provides from ancestor QBs any values for correlated columns 
that are needed for that evaluation; and, for EAO QBs only, 
causes a temporary relation to be created on disk in which to 
store the set of results returned by the evaluation step. 

2. Evahutiow uses the values provided by initiation to evaluate the 
subQB, and returns the results to the application step. Note that 
this may involve processing one or more subQB sequences. 

3. Applkation (Parent): uses the results to apply the predicate to 
candidate tuples in the parentQB. 

For EAO subQBs, initiation and evaluation are performed once (at 
OPEN of the QB at whose OPEN it can be evaluated, i.e., the 
parentQB or an ancestor QB), and application is repeated once per 
candidate tuple of the parentQB by simply reading the results from 
the temporary relation. For EAA QBs, initiation and application are 
always performed within the parentQB, and all three steps are 
repeated for each candidate tuple of the parentQB. 

3. OPTIMIZATION OF NESTED QUERY 
BLOCKS 

3.1. Dependencies Between Query Blocks 

When all tables ln the query are at a single site, optimization of a 
nested query is fairly simple, because optimization of a subQB does 
not depend upon that of its parentQB, and optimization of the 
parentQB depends upon that of its subQBs in a very lhnited way. 
Three attributes of a subQB might affect the cost of evaluating its 
parentQB: the subQB’s estimated cost, its estimated cardinal@, and 
the order of its result. The first. the subQB’s cost. affects the 
parentQB’s cost because the cost of a subQB’s evaluation contributes 
to the cost of evaluating the parentQB. The second attribute, the 
subQB’s cardinality, affects the parentQB’s cost because each subQB 
predicate restricts which tuples satisfy the parentQB, so the estimated 
cardinality of the subQB is used to estimate the selectivity of the 
predicate containing that subQB. Thirdly, the order of a subQB is 
important because, if the cohmm on the left-hand-side of the nested 
predicate is in a particular order, and the subQB is EAA, we could 
save re-evaluating the subQB each time the same column value 
occurred. However, System R (and the distributed database manage- 
ment system, R*) ignores the limited possible savings of enforcing 
such an order&$, so that the parentQB can be optimized once an 
estimate has been made for the cost and for the number of values 
returned by each of its subQBs. Thus, QBs in a query may be 
optimized independently, starting with the most nested QB and 

4 See Section “6.1. Exploit Pare.ntQB’s order” for more discussion of this d&on. 
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working “bottom up” through the family tree of QBs, with each 
subQB passing to its parentQB an estimate of its cost and the number 
of values that it returns. 

For a nested query in a divtribufed database, the major difficuty 
posed in optimizing it is that we can no longer optimixe its QBs 
independently in a simple bottom-up fashion, passing up only each 
subQB’s cost and cardinal@. This is because the choice of sites at 
which the QB result is materialixed introduces another dependency 
between QBs, in a&non to the ones relevant in a centrahxed data- 
base. Specifically, the site to which a subQB delivers its result -- 
its delivery she - must necessarily be the site to which the predicate 
containing the subQB ls applied -- itx appIkatbn dte. Since the 
predicate involves tables belonging to the parentQB, selection of the 
application site must be decided during optimization of the parenrQb, 
and thus is not yet known when the subQE is being optimized. Ideally 
we would optimixe QB 1 to deliver its result to the site to which 
the query was submitted (the master site), and its optimization would 
dictate the site at which each of its subQBs would be applied, and 
so on. However, this “top-down” pmcessing conflicts with the 
“bottom-up” dependence of QB optimixation upon the cardinality 
and cost estimates of its subQBs, aa described in the previous 
wwwh. 

R+ resolves this “top down” versus “bottom up” dependency conflict 
by postponing selection of the delivery site of a subQB until its 
parentQB has been optimlxed. The optimixer essentially keeps its 
delivery site options open as it optimizes each QB, permitting it once 
again to optimixe QBs bottom up. The result of optig each QB, 
S, is a number of candidate plans, each the best plan to deliver S’s 
result to its “natural” result sites, plus a “to-bedetermhted-later” 
site (these are defined below). Then, during optimization of s’s 
parentQB, P, each candidate plan for P determines an application 
site to which S’s result should be delivered and uses the best plan 
for S to deliver its result to that application site. We say that the 
parentQB maelves the postponed decision on the delivery site of its 
subQB, once it chooses an application site in this way. The process 
of generating all possible site options, and selecting the best one for 
each QB, will be discus& in more detail in Section “4. Site Selections 
for Nested QBs”. 

3.2. Master vs. Apprentice Planning 

When a query references objects such as tables or views at multiple 
sites, compilation (and optimization) involves multiple sites. In R+, 
the site to which the query is submitted and any site having a table 
or view involved in a query must participate in the planning process 
for that query as the master or an apprentice. 

The site to which the query was or@inally presented, the master site, 
is responsible for developing a global plan containing all in&r-sift? 
decisions, including the site at which all operations (especiahy, joins) 
are to be performed, the method of join, the order in which the 
tables/composites are joined, and the required order of the result 
[DANI 82, LOHM 841. For nested queties, the master site also 
decides the site at which subQBs are to be applied (which dictates 
the site to which its results should be delivered) and initiated, as 
will be described in detail in Section “4. Site Selections for Nested 
QBs” below. 

All other sites participating in the compilation of a query compile 
it as an appren& she. Compilation by each apprentice site is 
iuitiated by receiving from the master site a copy of the global plan 
and the original query, which it re-parses Each apprentice must (1) 
fiid the portions of the global plan that are relevant to it, and (2) 
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develop a local plan for itself within the constmlnts imposed upon 
it by the global plan. It does this by traversing the global plan and 
re-creating its own version of the global plan, using the global plan 
for direction on hater-site matters and for making some shortcuts 
[DANI 82, LOHM 841. For example, the apprentice uses the global 
plan to decide at which sites to apply subQBs, and thus the site at 
which each subQB is to deliver its result. So, unlike the master 
planner, the apprentice can choose the optimal plan for a QB to 
result at the dictated site only, and need not “keep its options open”. 
This significantly streamlines apprentice planning. 

An apprentice site is granted latitude in planning decisions affecting 
only its tables (e.g., alternative access paths, jom methods, and 
permutations of ifs tables to join). The only decision involving nested 
queries over which the apprentice retains j&dlction is de&ding the 
order in which to apply multiple subQBs that the master dictates 
should be applied at that site, subject to the mquimment that all 
correlated columns have values when their predicates are applied. 
Therefore, because the interesthrg de&ions for QBs is at which site 
they are applied and initiated, we will be concerned only with master 
planning for the remainder of this paper. 

4. SITE SELECTIONS FOR NESTED QBS 

This section deserlbos the master’s procedure for determirdng at 
which site(s) to perform the three tasks - initiation, evaluation, and 
application - involved in executing each subQB in a querystatement, 
in order to minimize the total cost of executing the entire query 
statement. In a distributed query, each of these three tasks may be 
executed at different sites, depending upon where the tables refer- 
enced in that query are stored, and where the master’s optimizer 
chooses to join tables, apply predicates, etc. (see [DANI 821). Each 
task may be executed by one or more processes, as followa: 

1. Inltialieo usually requires only a single process, which we will 
call the IuMator. In cases where the initiator’s slte is different 
from the applier’s site (m below), initiation also requires 
some work to be done at the applier’s site. The initiator spawns 
an agent process, called INI?, to perform this work (see Section 
“5. Evaluation Protocols and Costa” for more detailed protocols 
between sites). 

2. Evahmtiam may require any number of processes. However, all 
of these processes are subordinate to a single, fii process that 
OPENS processing of the QB and that receives the fll results 
of the QB, i.e., the readt &e of that QB. This “chief process 
of the QB” is the only process with which the initiator and 
applier process interact, and will be referred to as the emluater 
process. 

3. Applkatlon never requires more than one process, called the 
rpplier. 

We now discuss in more detail how the procedure chooses the sites 
for the evaluator, applier, and initiator processes, in that order. 

4.1. Evaluator’s Site Selection 

The evaluator’s (delivery) site is chosen from the “natural” result 
sites of that QB, plus a “to-be-determined-later” site, as described 
below. 
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4.1.1. Result Sites 

TO join two tables at different sites, R* generates candidate plans 
to perform the join at three different sites [DANI 82, LOHM 841: 

(Jl) the inner table's site, 
(52) the outer table's site, and 
(53) an unknown site (or, more accurately, 

a "to-be-determined-later" site, 
designated here as II??". 

TO illustrate, consider the following distributed version of the query 
of example (B): 

SELECT E.NAME 
FROM EMPLOYEES@SF E, DEPARTMENTS@NY D 
WHERE E.DEPT = D.DEPT# (F) 

AND D.LOCATION = ‘DENVER’ 
AND D.NAME = ‘SHIPPING’; 

where table EMPLOYBES@SF is stored at site SF and table 
DEPARTMENTSaNY is stored at site NY.5 When 
DEPARTMENTSGNY is the outer table and EMPLQYBBS@SF 
is the inner table of the join in a candidate plan, then the three 
different site options for performing this join would be: 

(Jl) Ship DEPARTMENTS@NY to SF 
and join at SF (result site = SF). 

(52) Ship EMPLOYEESpSF to NY 
and join at NY (result site = NY). 

(53) Ship EMPLOYEES@SF and DEPARTMENTSQNY to 
some other site, ??, and join them there. 

If this query originated in SF, option (Jl) is likely to be optimal, 
whereas option (52) would be favored by a query originating in NY. 
The third option is generated in case the query originated at some 
third site, say LA, or in case the result of the join is to be joined 
later with a thud table at another site, perhaps KC. At the time 
EMPLOYEES@SF and DEPARTMENTS@NY are joined, howev- 
er, the possible third sites are not yet known. So the third join site 
is left “to be determined later”. 

By generating all combinations of inner and outer tables, R* will 
generate a distinct optimal plan for a QB to result at each site having 
one or more tables in the FROM-list of that QB, or in the FROM-lists 
of its descendant QBs, plus site ??. We call sites other than ?? the 
natural result sites for a QB. 

4.1.2. Resolving the Evaluation Site of a QB 

Once the delivery site X of a subQB is chosen by the parentQB 
(as described earlier), we say that its evaluation site is resolved (to 
be X). From the set of all plans for the subQB, each of which result 
at one of the subQB’s result sites as described above, R* picks the 
cheapest of the following three candidates for the best plan to deliver 
the subQB’s result to X: 

(Pl) 

(P2) 

(P3) 

The best plan to result at site X. 
(This option is viable only if site 
X is a natural result site of the subQI3.j 
The best plan that results at ??, 
where ?? is replaced by X. 
The best overall plan for the subQB, 
independent of result site, shipped 
from its natural result site, Y, 
to the dictated delivery site, X. 
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As discussed above, the delivery site for QB 1 is the site at which 
the query was presented (the master site), and the delivery site for 
any other QB is the application site chosen by its parentQB. We 
next discuss how this choice is made. 

4.2. Application Site Selection 

As each table in the parentQB is retrieved and joined to the outer 
table (or composite of outer tables), columns are added to the 
parentQB composite tuple that may be needed to apply the subQB’s 
predicate. A predicate therefore becomes eligible for application only 
when the last table containing columns referenced by the predicate 
is joined to the composite as the inner table. So, for a given choice 
of a (possibly composite) outer table and an inner table, one or more 
subQB predicates may become eligible. The problem is at which 
site(s) should they be applied? Deciding this determines (resolves) 
the desired delivery site for that subQB. 

4.2.1. Application Site Options 

A subQB may ultimately be applied, i.e., used to evaluate the predi- 
cate of which it is a part, at sites other than its natural result sites. 
The application site is decided by the subQB’s parentQB, which has 
to consider the interactions between sites at which its tables are 
located and possibly the natural result sites of its other subQBs. In 
this section, we discuss which sites are reasonable sites for the 
parentQB to consider applying nested predicates. 

Consider the following variation of example query (F) having a 
subQB (QB 2), in which the two tables of QB 1 and the one table 
of QB 2 are each at different sites: 

SELECT E.NAME QB 1 
FROM EMPLOYEESgSF E, DEPARTMENTSgNY u 
WHERE E.DEPT = D.DEPT# 

AND D.LOCATION = ‘DENVER’ 
AND D.NAME = ‘SHIPPING’ 
AND E.JOB# = (G) 

(;&CT J . JOB# QB 2 
JOBS@LA 

WHERE J.TITLE = ‘CLERK’); 

This query requests the names of all employees that are clerks and 
work in the shipping department in Denver. Note that the predicate 
containing QB 2 becomes eligible with the addition of table 
EMPLOYEES@SF, because its column E.JOB# is referenced in that 
predicate. 

For any given set of tables already joined as composite C and any 
given table T in the parentQB, J, the procedure considers three 
(possibly redundant) classes of application sites for a subQB K whose 
predicate becomes eligible for application only when table T is joined 
to the set: 

(Al) 
(A21 

(A3) 

Site of table T 
Site of any partial or final computation for QB J (e.g., 
a join between outer composite C and inner table T, or 
delivery of QB J’s final result, or application of another 
subQB to QB J). 
SubQB K’s possible result sites (natural + ??) 

5 The site name embedded in the table name does not change, even if the table 
is moved to another site. The torrent store site of each table and its name agree 
here on&for exposimy musow See [LINJI 811 for a complete description of R* 
table-naming conventions. 
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with the following qualifications: 

l Option (Al) is viable only if the nested predicate containing 
subQB K references only columns of table T (or none at all) and 
columns of tables in QBs that are ancestors of QB J. Table T 
could be any table (inner or outer) in a join. For example, the 
predicate containing QB 2 in example query (G) references only 
EMPLOYEES@SF, so option (AI) is viable when 
EMPLOYEES@SF is table T. 

l Options (A2) and (A3) apply the predicate to the result of joining 
T to C (if C is not empty) before any final computations for 
ordering or grouping QB J’s result. 

l Option (A3). when applied to a plan for QB J with result site 
??, will cause the ?? to be replaced by subQB K’s result site (which 
might also be ??). 

. Redundant application site options are not re-evaluated. For 
example, if the join site is the inner site (i.e., for option (Jl)) and 
if the predicate references only the inner table, then options (Al) 
and (A2) are equivalent: only one of the two options need be 
evaluated. Similarly, subQB result sites that have already been 
covered by options (Al) or (A2) are redundant. 

For our example query (G) above, when (again) table 
DEPARTMENTSQNY is the outer table and EMPLOYEES@SF 
is the inner table and our table T of interest, options (Jl) through 
(J3) have the following sub-options for applying the predicate that 
contains QB 2: 

(Jl) Join site = SF (i.e., ship DEPARTMENTSQNY to SF) 

(Al) Apply subQB predicate to EMPLOYEES@SF be- 
fore join 

(A2) Apply subQB predicate at SF (same as (Al)) 
(A3) Apply subQB predicate at subQB’s result sites = 

(Rl) 

(R2) 

LA (i.e., ship composite after join to LA, 
then apply) 
?? (i.e., ship composite after join to ??, then 
apply) 

(J2) Join site = NY (i.e., ship EMPLOYEES@SF to NY to join) 

(Al) 

(A2) 
(A31 

Apply subQB predicate to EMPLOYEES@SF be- 
fore shipping it to NY for join 
Apply subQB predicate at join site = NY 
Apply subQB predicate at subQB’s result sites = 
(Rl) LA (i.e., ship composite after join to LA, 

then apply) 
(R2) ?? (i.e., ship composite after join to ??, then 

apply) 

(53) Join site = ?? (ship both DEPARTMENTS@NY and 
EMPLOYEES@SF to ??) 

(Al) 

642) 

(A3) 

Apply subQB predicate to EMPLOYEES@SF be- 
fore shipping it to ?? to join 
Apply subQB predicate at join site P ?? (i.e., do 
every- thing at site ??) 
Apply subQB predicate at subQB’s result sites = 
(RI) LA (fii in ?? to be LA, i.e., do everything 

at LA) 
(R2) ?? (redundant of option (J3)-(A2) above) 

Option (Jl)-(A2) is equivalent to (Jl)-(Al) in this example because 
the predicate containing QB 2 references only the inner table 
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(EMPLOYEES@SF), and we always apply predicates as soon as 
they become eligible (i.e., there is nothing to gain by waiting to apply 
the predicate to the composite after the join). Note also that option 
(J3)-(A3)-(Rl) could be derived by setting ?? = LA in option 
(J3)-(A2). 

The above options and suboptions are exhaustive and may all be 
reasonable possibilities, depending upon the sizes of the tables and 
the ratio of in&a-site costs (CPU and I/O) tl) communications costs. 

For this example, the natural result sites for each QB are as follows: 

QS 2: LA 
QB 1: NY, SF, LA 

Note that optimization of QB 1 is likely to choose a delivery site 
for QB 2 that is not one of its natural result sites, in which case 
the 71 plan for QB 2 will be used. 

4.2.2. Applying !3ubQB Predicates Simultaneously 

Two subQBs that have the same parentQB and that reference one 
or more columns of the same table(s) in the ancestor QBs become 
eligible to be applied simultaneously. In such cases, order of applica- 
tion of these subQBs is unimportant, unless one subQB is sufficiently 
more restrictive than the other and we choose an option that ships 
the composite to both of the subQBs’ (different) result sites. In 
that case, the more restrictive predicate is applied fit to reduce 
the volume of data shipped between the two subQB result sites. 

4.3. Initiation Site Selection 

For EAA subQBs, selection of the applier’s site necessarily selects 
the initiator’s site, since by definition they must be the same. Thus, 
selection of the applier’s site chooses a single plan for that subQB. 

For EAO subQBs, however, the initiator and the applier may have 
different sites and even different QBs. The site at which an EAO 
subQB K is initiated is the delivery site of the QB at whose OPEN 
QB K is initiated. So, for any given plan for the initiating QB, its 
delivery site dictates the initiator’s site for each EAO subQB. thus 
choosing a single, optimal plan for it. 

4.4. Summary of Global Optimization 

An overview of the algorithm for global optimixation of distributed 
nested queries is given in Figure 1. The portions newly introduced 
for nested queries are shown in bold italics. 

5. EVALUATION PROTOCOLS AND COSTS 

The protocols between sites and the cost for evaluating a QB depends 
upon: (a) whether an individual subQB is EAA or EAO, and (b) 
in the latter case, whether the initiator’s site and the applier’s site 
are chosen to be the same. A discussion of the protocols between 
sites and the evaluation costs for each of the three possible cases 
follows. 
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Figure 1: Algorithm for Optimizhg Nested Queries h R* 

FOR EACH query block, H (bottom up): 

Generate tree of possible subsets of tables of H 
FOR EACH subset of tables: 

Generate tree of possible plans 
FOR EACH possible plan: 

FOR wt of ALL subQBs of H oligiblo simultanwusly: 

Oewrato trw of subQB application sites 
FOR EACH sot of wbQB appiiwtion sitar: 

FOR EACH subQB J in tha wt: 

FOR EACH subQ6 K of QB J 
IF subQB K is Evaluated-U-OPEN of QB J 
THEN 

Rewive initiation sita of subQB K 
Add cost of initiating wd avaluating subQB K to wst of QB J 

Find best pirn for subQB J to bo dollverod to dictated appliwtion 
site for subQB J (ia.. rewlve application site for subQB J) 

Rword bwt plw in plw for QB H 
Add costs of applying subQB J to costs of QB H 
IF subQB J is Evaluate-at-Application 
THEN add costs of initiating and avaluating subQB J to costs 

of QB H 
Find plan for QB H with a matching site & result order 
IF new plan cheaper 
THEN retain new plan 

Add sorts for GROUP BY, ORDER BY, etc., if needed 
Pick bwt plan resulting at swh result site of QB H (natural and 771. 

FOR TOP query block (QB 1): 

FOR EACH result sita of QB 7 (i.e.. for each plan for QB 7): 

FOR EACH subQB L in plan: 
IF subQB L is Evaluated-at-OPEN of QB 7 
THEN 

Resolve initiation site of subQB L to be master’s site 
Add wst of initiating 8nd evaluating subQB L to wst of QB 7 

Find bwt plan for delivery to master-s site (rawlve result site of QB 7) 
Distribute master plan to apprentices 
Generate access structures to perform plan (see [ LOHM 841). 

5.1. Evaluate-at-Application SubQB 

This is the simplest case, because initiation and application always 
take place at the same point in the parentQB, and therefore at the 
same site, with only evaluation of the subQB intervening (refer to 
Figure 2 and Figure 3). So both the initiator and applier processes 

site R Slte B 

“EvMuATE a8 Ic’. 
- CWTslstlmMlur 

+ 
INITIATOR EVALUATOR 

I 
I 

QB K Result I 

t APPLIER 
I I 
I I 

Fiie 2: Evaluate-at-Application (EM) subQB. 
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Figure 3: Procedure for Evaluate-at-Application (EM) subQB. 

FOR EACH tuple of QB K’s parentQB, QB J: 

(1) Initiation: Initiator initiates Evaluator of QB K at Site B: 

(1.1) Initiator detects eligibility of QB K’s predicate 
(1.2) Initiator sends values of correlated variables 

to Evaluator 

(2) Evaluation: Evaluator evaluates QB K and 
returns results to Initiator at Site A. 
who passes them to Applier. 

(3) Application: Applier applies results immediately 
in predicate in QB J that contains QB K 

Note: Site A and Site B may be the same. 
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belong to the parentQB, QB J. For each candidate tuple in the 
parentQB J, site A sends to the evaluator at site B the values of 
all correlated columns for that tuple, and prepares to receive back 
the result. The evaluator receives the correlation values, evaluates 
the subQB K, and returns a single-valued result to site A. EAA 
QBs that might return multiple values (those QBs having a set 
membership or set comparison OP in the predicate containing that 
QB) can be transformed during optimization into an equivalent QB 
that returns only a single value -- EXISTS or NOT EXISTS (see 
Section 6.5 below). The initiator receives the result and passes it 
to the applier, which applies the results in the predicate and either 
accepts or rejects the candidate tuple. 

The estimated cardinality and cost of evaluating QB K and delivering 
it to the applier at site A for each tuple of the parentQB (J) is 
obtained by dictating that QB K deliver its result to site A. This 
resolves the evaluator’s site for QB K, yielding an optimal plan for 
QB K. Its cost, multiplied by the estimated cardinality of QB J, gives 
the total cost to apply this subQB in QB J. This total cost is ad&d 
into the cost associated with all candidate plans for QB J that dictate 
delivering QB K to site A. 

5.2. Evaluate-at-Open SubQB, Applier’s Site = 
Initiator’s Site 

EAO subQBs are initiated once, evaluated once at that time, and 
then sometime later applied repeatedly, once for each candidate tuple 
to which the predicate applies (refer to Figure 4 and Figure 5). In 
fact, as we saw in example query (E) above, initiation and application 
may (but need not) take place in different QBs. So the initiator 
process and applier process may belong to different QBs. For this 
case, however, we assume that the initiator and applier are at the 
same site (site A), even if they belong to different QBs. Recall that 
the initiator’s site is defined to be the delivery site of the QB at 
whose OPEN the subQB is initiated. 

At OPEN of the initiating query block, QB I, the initiator starts 
evaluation of QB K at site B by the evaluator, and receives back 
the results, which the initiator stores in a temporary relation at site 
A. Later, when the predicate containing QB K is encountered and 
needs to be applied, the applier process retrieves the results from 
the temporary relation to use in applying the predicate, once for each 
candidate tuple. 

“OulwlE 90 K”. 
- cowmlauon~hla 

. b 
INITIATOR EVALUATOR 

RESULTS LIST 

I APPLIER 

Figure 4: Evaluate-at-OPEN (EAO) subQB, 
Initiator’s site 5: Applier’s site. 
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The cost of evaluating QB K and of shipping correlation values from 
A to B and subQB K’s results from B to A is incurred only once: 
a significant savings. However, there are additional costs at site A 
for storing the result in the temporary relation and for reading from 
that relation each time. And because a temporary relation is not 
indexable in R*, retrieval from it cannot be in order or subsetted 
by a predicate without scanning the relation until the desired value 
is found. For purposes of optimization, the applier (QB J) is assessed 
only the cost of reading one half of the temporary table (on the 
average) N times, where N is the cardinality of QB J. The cost 
of initiating and evaluating QB K, and writing its results in the 
temporary relation at site A, is assessed to the initiator (QB I), not 
the applier. The reason that this cost assessment is different from 
that for EAA subQBs will become apparent when we contrast this 
case with case 3 below. 

5.3. Evaluate-at-Open SubQB, Applier’s Site # 
Initiator’s Site 

It may happen that the initiator’s site of an EAO query is not the 
same as the applier’s site, in which case two sites are involved in 
initiation, as shown in Figure 6. Here site C is responsible for 
initiating the evaluation of QB K. but will not receive the results. 
So steps (1.2) and (1.3) of case 2 must be augmented into steps 
(1.2) through (1.4), as shown in Figure 7. The initiator INIT spawns 
an agent process at site A, called INIT’ in Figure 6 and Figure 7, 
which performs the usual functions of the initiator described in the 
second case. In addition, INI?J must “close the loop” of communica- 
tions that INIT started, by acknowledging the successful completion 
of evaluation (step (2.4)) to INIT at Site C. 

Figure 5: Procehre for Evaluate-at-OPEN (EAO) subQB, 
Initiator’s site = Applier’s site. 

(1) Initiation: Initiator initiates Evaluator at Site 6: 

(1.1) initiator’s OPEN triggers initiation of QB K processing 
(1.2) Initiator creates a temporary relation to accept 

result(s) of QB K 
(1.3) Initiator sends values of correlated variables, if any, 

to Evaluator at Site B 

(2) Evaluation: Evaluator at Site B evaluates QB K: 

(2.1) Evaluaioi evaluates QB K 
(2.2) Evaluator returns result(s) to Initiator 
(2.3) Initiator stores result(s) in temporary relation created 

in Step (1.2). enabling Application at a later time 

(3) Application: FOR EACH tuple in QB K’s parentQB, QB J, 
the predicate containing QB K is applied: 

(3.1) Applier detects eligibility of QB K’s predicate 
(3.2) Applier reads QB K result(s) from temporary relation 
(3.3) Applier applies predicate to its candidate tuple 

Note: 

l Site A and Site B may be the same. 
l Initiator must be the first computation within its QB 
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As in case 2, the costs of initiation and evaluation are assessed to 
the initiating QB, but in this case there are additional communications 
costs for procedure steps (1.2) and (2.4). 

Fiie 7: Procedure for Evaluate-at-OPEN (EAO) subQB, 
Initiator’s site # Applier’s site. 

(1) Initiation: Initiator at Site C (INIT) initiates QB K at Site B: 

(1 .I) INIT’s OPEN triggers initiation of QB K 
(1.2) INIT sends values of correlated variables, if any, 

to an agent process, INIT’, that it spawns at Site A 
(1.3) INIT’ creates temporary relation 

to accept result(s) of QB K 
(1.4) INIT’ forwards values of correlated variables, 

if any, to Evaluator at Site B 

(2) Evaluation: Evaluator at Site B evaluates QB K: 

(2.1) Evaluator evaluates QB K 
(2.2) Evaluator returns result(s) to INIT’ at Site A 
(2.3) INIT’ stores result(s) in temporary relation 

that was created in Step (1.3) 
(2.4) INIT’ acknowledges proper completion to INIT 

at Site C, enabling Application at a later time 

(3) Application: FOR EACH tuple in QB J, 
predicate containing QB K is applied: 

(3.1) Applier detects eligibility of QB K’s predicate 
(3.2) Applier reads QB K result(s) from temporary relation 
(3.3) Applier applies predicate to its candidate tuple 

Note: 

. Only Steps (1.2),(1.4), and (2.4) are different from case of 
Figure 4. 

l Site A and Site B may be the same. 
. When Site C = Site B, see previous case. 
. Initiator must be the first computation within its QB 
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LIST 1 

PB K Resulta 

Figure 6: Evaluate-at-OPEN (EAO) subQB, Initiator’s site # Applier’s site. 

One difficulty with EAO QBs is that the optimizer does not know 
whether case 2 or case 3 will happen until a delivery site is known 
for QB I, the initiating QB. Hence the plan for an EAO QB cannot 
be finalized until that QB’s initiating QB -- not applying QB -- is 
optimized. Internally, the optimizer keeps different plans for both 
cases 2 and 3, with costs for each, so that when it optimizes QB 
I it can try both alternatives and choose the one having minimal 
cost. 

6. STREAMLINING EAA SUBQUERY BLOCKS 

When the initiator and evaluator for an EAA subQB are at different 
sites, a great deal of inefficient communication traffic is generated: 
one exchange of correlation values and subQB results per parentQB 
tuple (see Figure 2). This section presents several possible ways 
to reduce this traffic, using the following distributed query that 
contains an EAA subQB: 

SELECT E.NAME QB 1 
FROM EMPLOYEESQSF E 
WHERE E.DEPT = (HI 

(SELECT D.DEPT# QB 2 
FROM DEPARTMENTSeNY D 
WHERE D.LOCATION = 'DENVER' 

AND D.NAME = 'SHIPPING' 
AND D.MANAGER = E.EMP# ); 

6.1. Exploit ParentQB’s Order 

As suggested in Section “3.1. Dependencies Between Query Blocks”, 
when the values for both the column in the nested predicate (E.DEPT 
in example (H)) and the correlation values of QB 1 (E.EMP#) are 
repeated in the next tuple, the evaluation of QB 2 will have the same 
result. Therefore, redundant evaluations as well as the communica- 
tions to and from the initiator could be saved if the parentQB were 
ordered on those columns, so that duplicate values of those columns 
could be detected and redundant evaluation avoided. While R* in 
fact does exploit duplicate correlation values when it detects them, 
it does not plan it that way. The optimizer could trade off the 
estimated savings of enforcing a particular order for the parentQB 
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against the higher costs of either sorting the composite or using an 
index scan (if one existed on the predicate and correlation columns) 
to achieve that order. The problem is that, given the statistics 
currently maintained for each table, it is very difficult to estimate 
reliably the number of tuples having duplicate values of just the 
predicate and correlation columns, and thus the potential savings. 
For this reason, the R* optimizer does not consider this option. 

6.2. Transform Correlated QBs to Join 

Kim has noted that EAA subQBs may be transformed to joins under 
certain circumstances [KIM 821. For example, query (H) can be 
transformed to a single QB: 

SELECT E.NAME 
FROM EMPLOYEES@SF E, OEPARTMENTSBNY 
WHERE E.OEPT = O.DEPT# (Hl) 

AND D.LOCATION = 'DENVER' 
AND D.NAME = 'SHIPPING' 
AND D.MANAGER = E.EMP#; 

The benefit of such a transformation is that the optimizer is given 
more leeway in deciding how the query is to be processed. By placing 
the DEPARTMENTSaNY table in a subQB in query (H), the user 
effectively undermines the optimizer’s function by dictating to the 
optimizer that a nested loop join with EMPLOYEES@SF as the 
outer table wig be done. As transformed in (Hl), existing mecha- 
nisms within the optimizer could evaluate alternative join methods 
(possibly exploiting orderings of both tables to do a merge scan join), 
storing the inner table at the join site to save re-shipping it, and 
using either EMPLOYEES@SF or DEPARTMENTSQNY as the 
outer table. 

The difficulty is that (Hl) is semantically not equivalent to (H) when 
the values of the SELECT-column of the subQB (D.DEPT) are not 
unique. As stated in Section “2.1. Nomenclature”, the “=” operator 
in a nested predicate implies that a unique value is expected from 
the evaluation of the subQB, but there is no such implication in a 
join predicate. Furthermore, not all EAA subQBs may be so trans- 
formed. For example, in example (C) QB 2 cannot be transformed 
to a join with its parentQB because its nested predicate contains 
a set operator (...E.DEPT IN...) that is not expressible as a join with 
equivalent semantics when the subQB returns duplicate values match- 
ing E.DEPT: the nested query form would result in only one qualify- 
ing tuple, but the join form would result in one tuple per matching 
value found. 

6.3. Move Correlations into Nesting Predicate 

Tbis transformation converts EAA subQBs to EAO subQBs by 
moving all correlation predicates into the nesting predicate, which 
now must permit more than one column to be specified. Query (H) 
thus becomes: 

SELECT E.NAME QB 1 
FROM EMPLOYEES@SF E 
WHERE (E.DEPT, E.EMP#) = (H2) 

(SELECT D.DEPT#, O.MANAGER QB 2 
FROM DEPARTMENTSQNY D 
WHERE D.LOCATION = 'DENVER' 

AND D.NAME = 'SHIPPING'); 

Since QB 2 is now EAO, it need be evaluated only once, instead 
of once per tuple of EMPLOYEES@SF. On the other hand, the 
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subQB’s result in (HZ) could be much bigger without the correlation 
predicate. So we might end up shipping more data from NY to SF 
with the transformation, but we save the multiple evaluations of the 
subQB and the communications overhead of a conversation between 
SF and NY for each new value of EMPLOYEES@SF. And as with 
the previous transformation, not all EAA subQBs can be trans- 
formed: for example, we cannot move the correlation predicate in 
query (C) because its scalar operator does not match the set operator 
of the nesting predicate. For this reason, and because allowing 
multiple columns in the nested predicate required significant changes 
to the semantics of SQL and the implementation of subQBs in R+, 
this transformation was also shelved. 

6.4. Ship Subset of ParentQB to SubQB 

Inspired by semijoins, this strategy still ships a subset of an entire 
table only once, but is the opposite of the previous transformation 
in that the parentQB -- not the subQB -- is the table to be shipped. 
For example, in query (H) we would ship EMPLOYEES@SF, 
projected on columns DEPT and EMP# (and restricted if there were 
other predicates on EMPLOYEES@SF), once to NY. At NY, each 
tuple in the subset would be re-read, used to evaluate the subQB, 
and either accepted or rejected by applying the nested predicate 
there. while this again reduces the number of conversations between 
SF and NY, it does not reduce the number of times the subQB is 
evaluated and has the added cost of storing and m-reading the subset 
of the parentQB if it does not fit in a buffer. 

Note that the last two transformations would effectively be cousid- 
ered as alternative join options (shipping the inner table to the site 
of the outer, or vice versa) if Kim‘s transformation to a join predicate 
were done. 

6.5. Return Only Single SubQB Result 

The R* optimizer transforms the internal (parse-tree) representation 
of an EAA SubQB that may return a set of values into that of an 
equivalent subQB that returns exactly one value: FOUND or NOT 
FOUND. For example, when the nested predicate operator of 
example query (H) contains a set operator (IN) instead of a scalar 
operator (=): 

it is modified to appear as: 

SELECT E.NAME WJ 1 
FROM EMPLOYEES@SF E 
WHERE E.DEPT IN (I) 

(SELECT D.DEPT# QB 2 
FROM DEPARTMENTS@NY D 
WHERE D.LOCATION = 'DENVER' 

AND D.NAME = 'SHIPPING' 
AND D.MANAGER = E.EMP# 1; 

SELECT E.NAME 
FROM EMPLOYEES@9 E 
WHERE E.DEPT IS NOT NULL 

AND EXISTS 
(SELECT <any columns> 
FROM DEPARTMENTSQNY D 
WHERE D.LOCATION = 'DENVE 

AND D.NAME = 'SHIPPING' 
AND D.MANAGER = E.EMP# 
AND E.DEPT = D.DEPT# 

QB 1 

(11) 

QB 2 

:R' 

1; 

Because. QB 2 reiums only a single value rather than a potentially 

Singapore, August, 1984 

412 



long set of values, communications volume may be substantially 
reduced. Evaluation of QB 2 may be cut short as soon as it finds 
a qualifying tuple in (11). whereas in the original query the subQB 
had no hint from its nesting predicate that it need not scan all of 
DEPARTMENTSaNY to ensure that the subQB had a unique 
value. Finally, this transformation saved us having to implement 
new mechanisms for looping through multiple values of the right- 
hand-side of a predicate, looking for a match, for this type of 
predicate only. 

7. IMPLEMENTATION CONSIDERATIONS 

The extensions to R* to properly plan and execute nested queries 
required adding code to the optimizer: (1) to retain optimal plans 
for each natural result site of each QB plus the “unknown” site, 
rather than just the best overall plan for the QB; (2) to generate 
the application site alternatives ; (3) to evaluate the three possible 
cases for subQB execution; and (4) to determine for each apprentice 
those portions of the global plan pertaining to it. In addition, the 
run-time routines to execute .the directives of the chosen plan had 
to be coded. 

The additional bookkeeping required to keep track of optimal plans 
for each natural result site of each QB significantly increased the 
storage required and the code complexity. Because option (A3) adds 
a subQB’s natural result sites to those of its parentQB (as described 
in Section “4.2.1. Application Site Options” above), the number of 
alternative application sites are compounded as the optimizer works 
its way up to the top QB. So the number of candidate plans may 
grow exponentially with the number of tables, if each table is at 
a different site ati all tables are joined via a nested predicate. This 
problem was graphically illustrated by the simple example in Section 
“4.2.1. Application Site Options” (query (G)), which generated 10 
different plans for joining two tables and applying one subQB, for 
a single join order, join method, and access method for each table. 
When the R* optimizer considers all feasible combinations of merge 
scan joins, alternative inner table transfer strategies (store the inner 
table at the join site versus re-fetch as needed), and EMPLOYEES 
as the outer table of the join (see [DAM 821 and [LOHM 84]), 
the costs of 48 different plans are evaluated. This is three times the 
number when no subquery is to be applied, and ten times the number 
of plans considered when all tables are at the same site. When the 
partial plans for single tables are included, the distributed query of 
example (G) considers 64 partial or complete plans. Each plan is 
composed of a “miniplan” for each table, inter-site transfer, or 
subQB application in the plan. 

The plan storage problem has been somewhat ameliorated by re- 
structuring the optimizer to store a plan only if it improves upon 
an existing plan to produce the same result (same tuples) in the same 
order at the same site, or if it provides a new result, order, or result 
site. Previously, all plans were allocated space that was not reclaimed 
even when the plan was later found to be dominated by another 
plan. Although evaluating all of the alternative plans sounds costly, 
in practice it is not noticeable to an interactive user, and for each 
alternative that is considered, one can construct cases in which it 
significantly out-performs all other alternatives. In addition, practical 
limits on the number of tables, and the inability of users to formulate 
queries that are nested sufficiently deep, should prevent the space 
and time demands from becoming too severe. 
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8. CONCLUSIONS 

We have presented in this paper the problems associated with opti- 
mixing nested queries in a distributed relational database manage- 
ment system, and the approach used by R* to solve these problems. 
In particular, R* postpones determining the result site of a subQB 
until it optimizes its parentQB (applying QB), or, in the case of 
evaluate-at-open subQBs, its initiating QB. We have itemized the 
cases possible for both evaluate-at-application and evaluate-at-open 
types of QBs, and discussed algorithms for processing each case. 
In addition, we have presented the breakdown of work among sites 
cooperating in a distributed nested query, and how agreement upon 
plans for executing the query is coordinated by a master site while 
allowing the other (apprentice) sites a degree of site autonomy in 
matters pertaining to their own tables. 

Nested queries for distributed databases have been implemented in 
R*, and have been tested for correct execution of complex queries 
involving up to five nested query blocks. To do this, we developed 
a test program that automatically varies the location of tables using 
SYNONYMS and tests the results of the queries against a table of 
expected results. 

In the near future we intend to evaluate and validate the performance 
of the R* extensions to the System R optimizer, much as was done 
for System R by [ASTR 801, and in more detail than was done for 
Distributed INGRES [STON 821. We also hope to improve the cost 
formulas to better conform to reality, and to isolate and improve 
situations for which bad plans are chosen or performance is anoma- 
lous. Sensitivity analyses will aid us in deciding where to concentrate 
improved detail in our modeling, and where the model can be 
simplified. Perhaps some heuristics or “rules of thumb” can be 
gleaned from this empirical analysis, which should help us to prune 
our enumeration tree of alternative plans further, without risking the 
omission of a truly optimal plan. 
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