
UNIBASE - An Integrated Access to Databases.

Z.Brzezifiski J .Getta J . Rybnik W . Stepniew ski
Institute for Scientific, Technical and Economic Information.
ul. Zurawia 3/S, - Warsaw, POLAND.

This Research is Supported by the Polish Computer Society
00-901 Warsaw, Poland, under Contract No. PTI-21/83/PIMB/W.

Abstract .
The concept of the integrated database sys-
tem based on database logic is presented.
The idea of an integrated database system
may be used to deal with several database
structures: hierarchical, network, relational,
etc , applying one common data model. In the
presented approach the relational model is
established as a common view of different da-
tabases. The following parts of an integrated
database system are described:

(2)

a generalized schema of an integrated
database schema and
a formula language used for the defini-
tion of query, assertion, constraint,
and transformation rules.

1. Introduction.
New applications of computer technology

will be made possible by introducing the idea
of an integrated database /Dal/, /Ull/ . By an
integrated database we mean a data storing
system residing on identical hardware under
an identical Data Base Management System
/software/ or in a different manner: a single
schema /i.e., database description/ descri-.
bing the entire database relative to which all
accesses to the database are expressed.Such
accesses are processed against a single
/logical/ copy of the database.

Pevmkdon to copy w&hour fee oil or port of thts moter&l ts granted
provided that the coplee ore not mode or dlstrtbuted for direct commerchl
odvontoge, the VLDB copyr&ht notice ond the title of the pubticodon end its
dote uppeor, ond not&e b given thot copybag ia by permitston of the Very Large
Doto Bose Endowment. To copy otherwise, or to republish. requires o fee
end/or specie1 pwmkdon from the Endowment.

Procwdlngs ot tha Tenth Intwnatlonal

Conference on Vwy Large Data Samoa.

Unfortunately, in the real world many da-
tabases are not integrated. Often, data rela-
vant to an enterprise is implemented by many
independent databases, each with its own
schema and own DBMS . In such cases, the
database in addition to being nonitegrated is
also distributed and heterogeneous. One of
the basic reasons for such a situation is the
application of various different data models.

The data model and the associated with
it data sublanguage is the basic means by
which data independence is achieved: the data
model is the user’s view of what is in the
database, and the data sublanguage is the
user’s language for transferring data between
the data model and his workspace.’ There are
currently three favored approaches to data-
base design /Ull/: the relational approach
/Cal/ , the hierarchical approach /Dal/, and
the network approach /Cdl/.

One of the principal problems in using dis-
tributed databases is the problem of integra-
ted retrieval.Tn such databases, each indepen-
dent database has its own schema expressed
by its own data model, and it can be acces-
sed only by its own retrieval language. Since
in general different databases have different
schemas and different retrieval languages, ma-
ny difficulaties arise-in formulating and im-
plementing retrieval requests /called queries/
that require data from more than one data-
base. These difficulaties include: resolving in-
compatibilities between the databases such as:
differences of data types and conflicting sche-
ma names ; resolving inconsistencies between
copies of the same information stored in dif-
ferent databases; and transforming a query
expressed in the user’s language into a set
of queries expressed in the many different
languages supported by the different sites.
Implementing such a query usually consumes
months of programming time, making it a very

Singapore, August, lQQ4

388

expensive activity. Sometimes, the necessary
effort is so great that implementing such a
query is not feasible at all. This problem can
be solved by constructing a software system
binding several databases based on different
data models. Its main goal is to present an
illusion of an integrated database to users
without requiring that the database be physi-
cally integrated Such a software system accom-
plishes this by allowing users to view the da-
tabases through a single common schema and by
allowing them to access the data using a high
level data manipulatin language. Queries posed
in this language are entirel~r8~e%%dsystem as
if the databases were homogeneous and inte-
grated. An additional advantage of such an ap-
proach is the availability of application pro-
grams used in existing integrated databases.

2. The Model of Integration.
There are many approaches to the design

of a system integrating the three most popular
data models. Two of them are the most popu-
lar: the functional /Bal/, /Bul/, Shl/, and the
logical /Jai/ approach. In deciding which ap-
proach to choose, we took into account the
following design objectives:

(1) What kind of data model will be used
on the integration level?

(2) What kind of a language will be used
on that level?

(3) Does the system have to be specialized
or general purpose?

(4) 1 s it to be only an interface or a sys-
tem with functional extendability of inte-
grated databases?

(5) How can we use the existing integrated
database software?

(6) H ow to warrant flexibility of the sys-
tem; we must be able to add additional
attributes to the system as new rese-
arch efferts come in?

(7) I-I ow to enable the transfer of the sys-
tem between various hardware installa-
tion?

Having in mind the above consideration the re-
lational data model was chosen for the design
of the integration level of the database. The
integration level is an additional level above
the levels supporting the currently three fa-
voured database models /i.e. , relational, hie-
rarchical, and network/. In this way all of
the advantages of the relational model /sim-
plicity , universality , a good mathematical for-
malism, data independency, ease of operation
on data items, data integrity, well defined

Proceedings of the Tenth International
Conference on Very Large Data Bases.

389

functional dependencies, and the concept of
schema normalization/ are kept without rende-
ring the existing software invalid in the inte-
grated database. Also all of the features of
the relational model and the features of inte-
grated databases are combined. An architec-
ture of the designed system is depicted in fi-
gure 1.

The integrated database schema consists of
three parts: User’s Schema, Global Schema,
and Transformation Rules .

The User’s Schema implements the reala-
tional view of the database and allows the user
to be independent of the complicated notions
of both the Global Schema and Transformation
Rules. It contains a Common Schema which can
be accessed by all users and Private Schemas,
accessed only by their owners /users who cr+
ated them/. Therefore, the Global Schema con-
sists of a number of Local Schemas and an
Auxiliary Database Schema /relational/ .Local
Schemas and the Auxiliary Database Schema
are defined in special formalism based on the
concept of unnormalized /ONF/ relational sche
mas /Ull/.

The Transformation Rules express how the
basic elements of the User’s Schema /i.e.,
relational schema/ can be obtained from the
Global Schema.

It is assumed that each of the accessed
DBMSs can be based on one of the three main
data models /i.e., network, hierarchical, and
relational/ and consist of a Local Host Sche-
ma and a Local Host DBMS. Every Local Ho-
st Schema must be mapped into one Local
Schema. However, the transformation rules
may join notions from many local schemas.
Therefore, it is possible to create user’s
views that are based on many different data-
bases.

The user’s language is based on relatio-
nal calculus /Pil/. Due to the use of the re-
lational data model any other language associ-
ated with that model can be utilized /e .g . ,
SQL /AsI/, DEDUCE 2 /Cal/, QUEL /Stl/,
QBE / Zll/ , or Relational Algebra /Co2//.

3. Design of the UNlBASE Architecture.
The proposed design of the system’s archi-

tecture is called UNIBASE.

3.1: Basic Assumptions.
The applied relational data model of the

UNIBASE system was extended with respect to
the traditional Codd’s model /Cal/ by the ad-
ditional of derived Domains and Relations. We

Singapore, August, 1994

call a Domain /Relation/ a derived Domain
/Relation/ iP it can be derived - using Defy-
nitions - from Domains/ Relations/ existing in
the database schema. Furtheremore, Consist-
ency Constraints were added to the data mo-
del. They can be used for database logical
integrity control. These additional features
are embedded in the system’s language.,

Moreover, it. is different in kind to the
ather integrated database systems for to the
UNBASE system an Auxiliary Database was
inserted. The Auxiliary Database is based
on the relational data model, too. This da-
tabase is designed for storing primary r&s-
tions containing data from the integrated da-
tabases. Such relations can appear in two
forms:

(1) as effective relations - the relations
are physically stored in the database,
or

(2) as virtual relations - the rule; for
the creation of the relations are spe-
ciffied.

It should be noted that the access time of an
effective relation is much shorter than of a
virtual relation.

The Global Schema is nested between the
User’s level and the integrated databases
level. It contains a number of local sche-
mas which describe the integrated databases.
Each of the local schemas has its own unique
identifier. Apart from the global schema a set
of the Transformation Rules exist. The Tran-
sformation Rules describe the translation pro-
cess from the Global Schema notions to the
User’s Schema notions /relational view/,
They allows the users to create relations fr-
om more than one of the integrated databases.
The Global Schema was inserted for its map-
ping role from the main database models into
one common data model /i.e. , network, hie-
rarchical or relational/ .This level and its
language is based on the DBL model /Jal/.

The Auxiliary Database can be viewed by
the users as one of the integrated databases.
In such a case the Auxiliary Database /rela-
tional/ Schema should apper in the Global
Schema as one of the local schemas. This
means, that the user’s relations:*. can be in-
terchanged among them through the integra-
tion of the Auxiliary Database.

Users can submit retrieval queries to the
integrated databases. Each of the question
is translated to the language of the integra-
ted databases using DBL. The result of any.
query is a relation which is inserted into

the Auxiliary Database in one of the above
forms /i.e., effective or virtual/. Giving a
status “to store” to the relation the user ena-
bles the insertion of it into the Auxiliary Da-
tabase. If the relation’s status is different
then relation will be deleted in the latter part
of the session.

In the UNIBASE system the integrated da-
tabases cannot be changed /updated/.’ Users
can modify only effective relations contained
in the Auxiliary Database, the virtual relatio-
ns cannot be changed. It should be noted that
update of the Auxiliary Database has no impa-
ct in the integrated databases contents.

3.2. The User’s Language.
The User’s Language can be used to pose

questions to the integrated database through
the UNIBASE system, to define derived doma-
ins and relations, and to formulate the consi-
stency constraints. Furtheremore, in the ex-
tended user’s language the DBA defines trans-
formation rules. The proposed language is a
modified version of a formula language defined
for deductive management system /Gel/. It be-
longs to the relation-domain calculus languages
and is based on the formalism of first-order
predicate logic. The user% language resemb-
les slightly the DEDUCE 2 /Cal/ language.
However, its syntax makes it similar to natu-
ral languages . It contains the following impr-
ovement s with respect to the DEDUCE 2 lan-
guage: distributed relation names, calculus on
domain and relation names, and join d relations
names /phrases WHO, WHICH/.The language
was also extended by the introduction of: nu-
merical quantifiers, j oin of binary relations,
transitive closure of binary relations, and ele
ments from second-order predicate logic which
are needed to define the transformation rules.
The above-mentioned extensions of the user’s
language allow for a much greater expressive-
ness of the user’s commands.

4. The Integrated Database Schema.
The Integrated Database Schema consists of

the, following parts:
w u ser ‘s Schema:

- a specification of primary domain
names,

- a specification of primary relatio-
ns,

- a specification of names of derived
domains,

- a specification of derived relations,
- definitions, and
- consistency constraints.

Sly, ha-, 1@84

390

(2) Global Schema:
- a set of definitions of local sche-

mas.
(3) T ransformation Rules:

- a set of formulas expressing how
the user’s schema can be obtained
from the global schema.

In each of the user’s schemas we can select
elements belonging to the Common User’s
Schema and the Private User’s Schema.

The User’s Common Schema is shared by
all of the users and cannot be changed by
them. It is built and maintained by the DB A.

The Private User’s Schema cannot be sh-
ared by users and it contains domain and re-
lation definitions inserted and accessed by a
single user.

Below, all parts of the integrated data-
base schema are discused.

4.1. The Specification of Names of Primary
Domains.

The specifications of primary domain na-
mes contains domain names following the
key-word PROMARY DOMAINS.

It was assumed that the following domain
names are predefined in the UNIBASE system:
INTEGER, REAL, STRING, and DATE.

4.2. The Specification of Primary Relations.
In this part of the User’s Schema prima-

ry relations are defined. Each of the defined
relations is specified as a string of domain
names and distributed relation name elements.
Relations can be defined if and only if their
argument domains are defined.

4.3. The Specification of Derived Domains.
In this part the names of the derived do-

mains are defined. Their specification is ana-
logous to the definition of primary domains.
Rules by which derived domains are derived
from primary domains must be added to the
User ‘s Schema Definitions Area.

4.4. The Specification of Derived Relations.
The definition of derived relations is simi-

lar to the primary relations definition. All of
its components must be defined earlier. As in
the case of the derived domains here to the
rules for deriving the derived relations from
primary relations must be added to the User’s
Schema Definitions area.

4.5. Definitions.
Definitions /deriving rules/ have to be de-

fined for all derived domains and relations.
Each definition expressed in the user’s lan-
guage has its own unique name. All deriving
rules are placed in the User’s Schema Defi-
nitions area.

4.6.Consistency Constraints.
‘The Consistency Constraints area of the

User’s Schema consists of rules which have
to be satisfied by the database contents. The-
se rules ensure full logical security of the
database during update and domain or relation
derivation.’ Furtheremore, they make it poss-
ible to optimize the retrieval process by eli-
minating some parts of questions, Similar to
Definitions each consistency contraints rule
has its own unique name. All of the rules are
defined in the user’s language and placed in
the User’s Schema Constraints area.

The next two parts of the Integrated Data-
base Schema /i.e., Global Schema and Trans-
formation rules/ describe the logical model of
the integrated database and transformation ru-
les which describe how to “build” relations
from data elements placed in the integrated
databases.

4.7 .’ The Database Global Schema.’
The formalism used for Global Schema De-

finitions is based on the extended concept of
ONF relational schemas /Ull/ ,/Jai/. The ex-
tensions consist of:

(1) The possibility of defining the same
schema in many different manners and

(2) An integrated database identifier,
which must be contained by each schema
to associate every local schema with an
appropriate local host schema.

All names used in the Global Schema Defini-
tions must be unique.’

4.8.’ The Transformation Rules,
The Transformation Rules area contains

rules for transforming data items contained in
the integrated databases.’ These rules are spe-
cified in the extended user’s language.
Every rule has its own unique name.

4.9.’ Schema Examples.
l.Let H be the hierarchical database schema
defined as follows:

H = CC~URSE[TITLE,C~URSE*,DESCRIPT;
PREREQ,OFFERING],

PREREQ[COURSE+,TTTLE],
OFFERINGCDATE ,LOCATION , FORMAT,
TEACHER, STUDENT],

Singapore, August, 1994 Procredlngr of the Tenth Intr!natlonal
Conference on Very Large Data Bases.

391

TEACHERLNAME,EMP#) ,
STUDENTlNAME,EMP#i GRADE]]:

The database schema H contains information
about offered courses, teachers, students,
dates, etc. We assume that our database is
to contain the following information items:

(1) Who is the teacher of each student?
(2) What is the number associated with

each per son?
(3) Where and when are the courses of-

fered?
(4) What lacturesare offered at different

locations?
(5) Which are the prerequisite courses for

a given course?
The Integrated Database Schema correspon-
ding to these assumptions is as follows:

SCHEMA
PRIMARY DOMAtNS EMP+NAME,

GRADE, DATE, LOCATION, FORMAT,
TITLE,COURSE ,DESCRIPT

PRIMARY RELATIONS NAME IS-NAME-
OF-TEACHER EMP#,
NAME IS-NAME-OF EMP#
RANKED GRANDE,
TITLE IS-TITLE-OF-COURSE-
-NO COURSE,
EMP#IS-TEACHER-OF EMP#
AT-LOCATION LOCATION
FROM DATE WTH FORMAT,
COURSE#TlTLED TITLE
DE SCRIBED-BY DESCRIPT
IS-OFFERED-AT LOCATION
FROM DATE,
COURSE# TITLED TITLE IS-
-NEEDED-TO-PASS-THE-
COURSE COURSE#

DERIVED DOMAINS MATHEMATIC S,
PHY StC S ,EU ROPE

DERIVED RELATIONS EMW STUDIES-
-AT LOCATION,
EMl$%3-STUDENT-OF EMP#

DEFINITIONS MATH: x:MATHEMATlCSI
I x: TITLE AND X: ‘algebra’
0.R ‘topolagy ‘OR ‘geonwtry ’ ;

PHY S: x: PHY SIC%x: TITLE AND
x: (‘mechanics ‘OR
‘relativity theory ’
OR ‘electricity ‘) ;
EUROPE: x: EUROPE-x: LOCATION
AND x: (‘madrit ’ OR ‘1ondon’OR
‘paris ‘) ;
STUDY: x STUDIES-AT y-EXIST
z:EMP ,d:DATE,
f: FORMAT , 1: LOC ATlON

Procaadlnga ol thD Twlth IntomanoMl

CWWWlC@OllVO~LUfpDSMBSW.

(= IS--TEACHER-OF x
AT-LOCATION 1 FROM d WlTHf)
TEACHES: x IS-STUDENT-OF
y- EXtST &DATE,
1: LOCATION, f: FORMAT
(y IS-TEACHER-OF x
AT-LOCATION 1
FROM d WITH f >;

CONSTRAINTS ANTISYMMETRY:
FOR ALL x,y (x IS-STUDENT-
-OF y tMPLY y NOT IS-
-STUDENT-OF x) ;
NONREFLEXIVITY: FOR ALLx:
EMP#(, NOT IS-STUDENT-OF,;

GLOBAL SCHEMA
COURSE[COURSE#, TITLE,

GRADE] H
TRANSFORMATIONS

Tl : x IS-NAME-OF-
-TEACHER y - TEACHER[x,y] ;
T2 : x IS-NAME-OF

STUDENT [x,y, zf*
RANKED

;3: x IS-TITLE-OF-C&JRSE-
-NO y - PREREQ [x,yJ;
T4: x IS-TEACHER-OF y AT-
LOCATION 1 FROM d WITH f..
= EXIST t: TEACHER,,: STU-
DENT, g:GRADE,ns:NAME, nt:
NAME (OFFERING [d,i,f,t,S]

tbbd AND sb,y,g));
T5: x TITLED y DESCRtBED-
-BY z IS-OFFERED-AT 1 FROM
d - EXIST off: OFFERING,
p: PREREQ (EXIST f,t,s
(off[d,l,f,t,sJ AND COURSE
c&Y&P,offJ));
T6: x TtTLED t IS-NEEDED-
-TO-PASS-THE-COURSE y -
-EXIST preq: PREREQ, ofi
OFFERtNG, tit,d (preq[t,x]
AND COURSE[y, tit, d, preq, offs);

2.Presented below is an integrated database
schema corresponding to a simple network
database - N. The network schema is defined
in the Global Schema part of the tntegrated
Database Schema.

SCHEMA.
PRIMARY DOMAINS CHtEF# , EMP#
PRIMARY RELATIONS CHEF IS-

Slnfppom, August, la84

392

The sign
ments of

-MANAGER-OF EMP#
CONSTRAINTS ASYM: FOR ALL
x,y (x IS-MANAGER-OF y
IMPLY y NOT IS-MANAGER-OF x)
GLOBAL SCHEMA MANAGER k#:,
E#] N, MANAGER &MANAGER1 N
TRANSFORMATIONS
MNGL: x IS-MANAGER-OF y

MANAGER [x y]
kNG2: x IS-MANAiER-OF
EXIST c: C#, v:. IS-MANicER-
-0F. (MANAGER[x,v] AND
vLYJ); 11 11 . determines the position of argu-
the relation.

5. Access to Integrated Databases.

5.1. Query Processing Subsystem.
A database language permits users to pose

queries to the UNIBASE system. The main
command in database language is find, which
expresses the natural guery - “find all ele-
ments satisfing a formula”,

A submitted query is processed in the
following way. At first, the syntactic analy-
sis of the formula is performed. The validi-
ty and type (primary or derived) of every do-
main and relation name occuring in the formu-
la are established, During the phase of the
syntactic analysis the formula is converted to
the binary tree form. Then, all domains and
relations of the derived type are substituted
by the adequate formulas from the Definitions
part of the Integrated Database Schema. The
trace of the performed substitutions is sto-
red on the stack and may be utilized in the
process of answering the query of the type
WHY. Next, the query formula may be chec-
ked the logical integrity constraints. Some-
times , the answer to the query may be found
without the retrieval in the database, but on-
ly by applying the consistency constraints
which are valid in this database. Tn order to
perform this phase, the formula is converted
to the clause form and the well known metho-
ds adapted from automated theorem proving a-
rea (resolution principle) are used /Ca2/.
Since this phase is rather time-consuming,
its execution is optional. Then, using the ta-
ble of domains and relations names appearing
in the formula, the adequate transformation
rules from Transformation area are selected.
Ftom each transformation rule one job is
created. Such jobs are then submitted to the
respective integrated databases, where they

Proceedings of the Tenth International
Conference on Very Large Data Bases.

393

are executed. Every job contains the retrie-
val program generated on the ground of the
transformation rule and global schema. This
program is written in Pascal-like language the
Generalized Data Manipulation Language, The
basic constructions of this language will be
described in the next section. It is assumed
that every Database Management System con-
tains the interpreter of the Generalized Data
Manipulation Language. The results from all
jobs are sent to the host installation where
they are compressed /repeated tuples are re-
moved/ and merged into required relations.
These relations are then stored in the Auxili-
ary Database ofa particular installation and are
used for retrieval. They are automatically re-
moved at the end of the user session. However,
the user can change status of the created reli.
ations and keep them in the Auxiliary Databa-
se for any period of time. The process of the
user’s query processing is schematically pre-
sented in figure 2.

5.2. The Generalized Data Manipulation
Language.

The Generalized Data Manipulation Langu-
age is intended to be used in the environme-
nt of relational, network and hierarchical data-
bases. It is assumed that the language opera-
tes on the tabular /unnormalized relation/
f-mm of data. The language possesses stan-
dard Pascal-like control structures such as
while . . do . . , if . . then . . else, case . .
do, etc. Moreover, there exist a number of
standard functions and procedures intended to
operate on unnormalized relations. It is assu-
med that these functions are supplied by the
Administrator of the Integrated Database. It
enables physical access to database files so
it must be separately created for every inte-
grated database. The set of basic data access
functions is presented below:

(1) fu nction SYSTEM-TABLE- enables acc-
ess to system dire.ctory which contains
addresses of all tables stored in the
database,

(2) function SELECT-SUB-TABLE (TUPLE,
TABLE)extracts the table which is
contained in a given tuple,

(3) function END-OF-TABLE (TABLE) -
boolean function which tests if the
end of the table is encountered,

(4) function GET-NEXT-TUPLE (TABLE) -
enables access to the next tuple in the
table,

(5) procedure SEND(TUPLE, DESTINATICN)
Singapore, August, 1994

- procedure realizes transmission of
a tuple to given integrated database in-
stallation.

Moreover, it is assumed that operator ” * ”
may be used to concatenate two tables.

Example 5.2.1.
Let us assume the following transformation

rule:
x SUPPLIES y TO z = EXIST p: PARTS,

prj: PROJECTS,
mt MANAGER

(SUPPLIER[X,~J AND
PLY, prj AND

I p+,ml > ;
The Generalized Data Manipulation Language
pr?ogram corresponding to the above rule is
presented below:

PROGRAM SUPPLIES-TO;
VAR T,SUPPLIER,PARTS,PROJECTS:

TABLE; NAME, PART# , PROJECT* :
ATTRIBUTE; SUPPLIER-TUPLE,
PARTS-TUPLE,

PROJECTS-TUPLE : TUPLE;
BEGIN

T : = SYSTEM-TABLE;
SUPPLIER : - SELECT-SUB-TABLE (T,

‘SUPPLIER ‘);
WHILE NOT END-OF-TABLE (SUPPLIER)
DO
B EGIN

SUPPLIER-TUPLE := GET-NEXT-
TUPLE (
SUPPLIER) ;

NAME := SELECT-SUB-TABLE(
SUPPLIER,
SUPPLIER-TUPLE) ;

PARTS :- SELECT-SUB-TABLE(
SUPPLIER-

-TUPLE, ‘PARTSA
WHILE NOT END-OF-TABLE(PARTS)
Do
BEGIN

PARTS-TUPLE := GET-NEXT-TU
PLE (PART S> ;

PART :- SELECT-SUB-TABLE(
PARTS-TUPLE,PART#] ;

PROJECTS :- SELECT-SUB-
-TABLE(PARTS-
-TUPLE
‘PROJECTS ‘) ;

WHILE NOT END-OF-TABLE(
PROJECTS) DO
BEGIN

PROJECTS-TUPLE :- GET-NEXT-
TUPLE. PROJECTS) ;

394

PROJECT :- SELECT-SUB-
TABLE (
PROJECTS-TUPLE,

‘PROJECT+ ‘);
RESULT-TUPLE := NAME *PART 4

*PROJECT ;
~END(RESULT-TuPLE,DESTINA-
TION)

END
END

END
END.

SUMMARY.
This paper establishes the fundamental

ideas and properties of the UNIBASE system.
Details of the systems architecture to be im-
plemented in the initial breadboard vision are
also described. Although J additional research
is required to fill in the details of optimiza-
tion and incompatible data handling. The pre-
sented architecture already contains several
innovative ideas in integrating distributed he-
terogeneous databases. These include:

(1) The idea of using database logic to
describe the logical database schema
of integrated databases and

(2) The idea of using transformation rules
to describe a way to “build” relations
from data elements placed in the inte-
grated databases.

As the next move we will intend to investiga-
te the methods of updating the integrated data-
bases and the Auxiliary Database without vio-
lation of the integrity constraints of each of
the databases considered.

The main future goal of the design is to
implement the UNIBASE system on distributed
hardware - a microprocessors net. An attempt
will be made to describe this idea and our im-
plementation experience with the UNlBASE sys-
tem in the next paper. Moreover, the UNIBASE
as a Distributed Data Base Management System
in local computer networksand its application
areas will be presented elsewhere.

ACKNOWLEDGEMENTS.
The author wish to thank K . Turek who

helped so much in the development of this pa-
per. Sincere thanks are also given to
A.Gustowski, J.Lizo~%, D.Pawlak, S.RomaxIski,
and H;Rybifiski for their comments and sug-
gestions.

REFERENCES.
/AsI/ Astrah an M.M. Chamberlin D.D.

slngrpon, Auguml, 1984

Implementation of a Structured English
Query Language.
CACM Vo1.18, No.10, 1975.

/As21 Astrahan M.M., et al.,
System R: A Relational DBM System.
IEEE Computer Vol. 13, No.5, 1979.

/Ball Backus J.,
Can Programming be Liberated from the
von Neumann Style ? A Functional Style
and its Algebra of Programs.
CACM Vol. 21, No.8, 1978.

/Bll/ Blasgen M.W., et.al.,
System R: An Architectural Overview.
IBM Systems Journal Vol. 20, No.1,
1981.

/Bul/ Buneman P., Frankel R. E. ,
FQL - A Functional Query Logic.
Proc, ACM SIGMOD Conf. ,Boston
Mass. 1979.

/Cal/ Chang C.L.,
DEDUCE 2: Further Investigations of
Deduction in Relational Data Bases.
Logic and Data Bases ed. H.Gallaire,
J.Minker, 1978.

/Ca2/ Chang C.L.,
On Evaluation of Queries Containing
Derived Relations in a Relational Data
Base.
Advances in Data Bases Theory ed.
H . Gallaire , J , Minker , J . Nicolas ,
Plenum Press 1981.

/Cdl/ CODASYL Systems Committe,
Introduction to Feature Analysis of
Generalized Data Base Management
Systems.
CACM Vol. 14, No.5, 1971.

/Chl/ Chamberlin D.D., et al.,
SEQUEL 2: A Unified Approach to
Data Definition, Manipulation an
Control.IBM Journal of Res. and Dev.
vo1.20, No.6,1976.

/Ch2/ Chamberlin D.D., Gilbert A.M.,
Yost R.A.,
A History of System R and SQL/DATA
System.
Proc.Very Large Data Bases, Cannes
1981.

/Cal/ Codd E.F.,
A Relational Model of Data for Large
Shared Data Banks.
CACM Vol. 13, No.16,1970.

/Co2/ Codd E.F.,
Relational Completness of Data Base
Sublanguage.
Data Base Systems ed. R.Rustin,
1971.

/da1/ Date C.J.,
An Introduction to Database Systems.
Addison-Wesley 1975.,

/Gel/ Getta J., Rybiliski H.,
Deductively Augmented Database Mana-
gement System.
Information Systems /to appear/.

/Ja1/ Jacobs B .E.,
On Database Logic.
Journal of the ACM Vo1.29, No 2,1982.

/Ma11 Maier D.,
Theory of Relational Databases.
Addison-Wesley 1983.

/Mul/ MULTIBASE - A Research Program in
Heterogeneous Distributed DBMS
Technology.
Technical Report of the Defense Ad-
vanced Research Project Agency of the
Department of Defense and the Naval
Electronic System Command No.
NOOO39-80-C-0402.

/Pil/ Pirottle A.,
High Level Data Base Query Language.’
Logic and Data Bases ed. H.Gallaire,
J.Minker, 1978:

/Shl/ Shipman D.W.,
The Functional Data Model and the Data
Language DAPLEX.
ACM Trans. on Database System Vol.6,
No.1, 1981.

/Stl/ Stonebraker M., Wong E., Kreps P.,
The Design and Implementation of
TNGRES.
ACM Trans.’ on Database System Vol.3,
No.1, 1978.

/Ull/ Ullman J:D.,
Principles of Database Systems.
Computer Science Press 1970.

/ Zll/ Zloof M.M,
Query By Example: A Data Base Langu-
age.
IBM Systems Journal Vol.16, No.4,
1977.

Proceedings of the Tenth Intematlonal
Conference on Very Large Date Sasee.

395

Singapore, August, 1994

INTEGkATED
DATABASE

Global schema :

AND LOCAL ANDLOCAL AND LOCAL
HOST DBMS

RELATIONAL CALCULUS QUERY /WITH PRIMARY I------7 AND DERIVED DOMAINS AND RELATIONS/
Substitution of all elements of
the derived type by their definitions.

1 OPTIMIZED RELATI:
Selection of the

TUPLES TUPLES(
I I

Retrival

Compression aid merge of the results. 1

I

RESULT RELATION1

/Fig. 2/
Procadlngr ot the tmth Intomatlond singrpon, Augllrt, 1984
comfonoo on wry Larga mtm Bmam.

3%

