CERTIFICATION BY INTERVALS OF TIMESTAMPS
IN DISTRIBUTED DATABASE SYSTEMS

Claude Boksenbaum, Mich&le Cart, Jean Ferrié, Jean-Frangois Pons

C.R.I.M, Université de Montpellier
860, rue de Saint Priest
34100 MONTPELLIER - FRANCE

Abstract
This paper introduces, as an optimistic
concurrency control, a new certification

mathod by means of intervals of timestamps,
a distributed database system. The
this method 1is that it
a chronological validation order which
(thus

rejections or delays of transactions

usable in
main advantage of
allows

differs

avoiding
which
in classical
The

classifying

from the serialization one
occur in usual certification methods or
locking or timestamping ones).
of the dependency graph permits both
this method
and proving it.

use
among existing ones

1. INTRODUCTION

Numerous Concurrency Control Methods
for Distributed Data Bases (DDBs) have

[Bernstein 81] wusing

(2PL) or Timestamp

(CceMs)
been proposed so
either Two-Phase
Ordering (TO).

The main feature of these CCMs is that
the serializability test |{is
action (Read or Prewrite) on an object of the
this call these CCMs
continuvous ones as opposed to certification
called optimistic) the

far
Locking

made for each

base. For reason, we

(also ones, where

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed Jfor direct cammercl.al
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International
Conterence on Very Large Data Bases.

n

serializability test is oniy made at the end
of the transaction.

continuous CCMs and
described in totally

study offers a unifying

Usually,

certification ones are

different ways. Our
view for this classification.
Certification methods
[Haerder 82], [Lausen 82] have
for centralized systems. The
proposals adapted to distributed systems
[Badal 79], [Schlageter 811, [Bhargava 82] are
not

[Kung 81],
been studied

mostly few

convincing due to lack of formal proofs

for their desired behavior. We answer that

problem by proving a certification method in a
distributed system.

Serialization control used in CCMs
relies on the setting of a serialization order
among transactions. In continuous CCMs two

principles are wused to construct this order.
In 2PL methods [Traiger 82], it is dynamically
constructed and corresponds to the order into
which transactions reach their maximum locking
point. The well known drawback of these
methods 1is
to transactions and deadlocks which may occur.
Deadlock

[Rosenkrantz 78] at the cost of increasing the

useless waiting sometimes imposed

prevention may be applied

number of rejections. In basic or
multiversions TO CCMs, the order is ''static"
and relies wupon the giving of a unique

timestamp to
the
refines

any transaction, thus defining
serialization order. One study [Bayer 82]
this technique by the

notion of a "dynamic' timestamp which avoids

introducing

ugeless rejection of a transaction when its
first conflict arises, in a very particular
CCM.

certification allows a

the

Control by

dynamic construction of serialization

Singapore, August, 1984

ordar by delayiag it until validation. At that
noneat, mora inforration on dependzncizs arvony
transactions s available than in continuous
methods. Neverthecless, previously described
methods [Kung 81],(Vieront 82),(Schlageter 81]
itposec that this order should He identical to
the chronulogical order of validations.

In tiis

certification

study, we propouse and prove a
new cCM using

intervals of timestamps, allows coastruction

which, by

of the serialization order waizh may differ
chironological ordar of validations.
the the
serialization detecting
actions possible without
waiting transaction's validation,
This our method to

continuous CCMs and allows thzir comparison.

from the

Moreover, gradual construction of

ordar makeas
non-serializadle
until the

characteristic connects

More precisely, the advantages and
originalities of our method compared to known

CCMs are the following:

1) It aliows a chronological order of
validations which differs the
serialization order thus Jecreasing the number
of rejections or waitings.

from

The multiversions TO CCMs [Reed 78]
which also do not {mpose identity
hetween these two orders request a lot
more inforrnation (versions and
timestamps) about transactions' history
than our method.

2) It allows an "old4" transaction to use, in

some cases, results of "younger' ones,
This property which requires dynamical
construction of the serialization order
without using chronological starting
time of transactions is also achieved by
2PL CCMs. Intervals of timestamps permit

this property to be obtained in our
method.
3) It allows favoring a particular class of
transactions (reading or wricting ones, for
instance).
Such strategies may be implamented by
proper choice of the final timestamp
inside the interval of timestamps

agsociated to a given transaction.
4) It is fully integrated into a distributed
validation protocol.

Proceedings of the Tenth international
Conterence on Very Large Data Bases.

378

Our study is organized as follows.
In section 2, we present the notion of
and the notion of dependency graph

formal proof of our

conflicts
basis of
raintains

the
Tnis

which 1is
Tethol.

dependencics:
ones. It allows
continuous or optimistic (either "backward" or

yraph two types of

effective ones and potential

classifying various CCMs as

tneir serialization
light on their

"forward") accordinz to

criterion and shedding sorne
limitations.

In section 3, the principle and proof of
an original certification CCM using intervals
of timestamps are described.

Section 4 specifies the implementation
in a distributed environment and details the
certification protocol used, which 1is also

applicable to other optimistic CCMs.

2. CONFLICIS AND DEPENDENCY GRAPH
Conflicts and dependencies

The life of a transaction is dividad
into several sequential steps:
(1) a step when reads (R) and prewrites (P) of
objects occur in the transaction's workspace,
(2) a certification step present only in
optimistic CCMs, checking whather all
operations of a transaction are serializable,
(3) possibly a validation step, only present

when the transaction 1is serializable, whose
effect is to turn on definitively, in an
atomic manner, the prewritings of a
transaction,

Two transactions conflfct if one tries

to prewrite (resp. read] an object already

read or prewritten [resp. prewritten] by the
other. Depending on the nature and
chronological order of the operations, PP, RP

and PR conflicts are distinguished.

A conflict between Tl and T2 induces a
serialization order of Tl
traanslated into a

the following two

constraint on the
and T2 which
dependency taking one of

can be

forms:

a) an effective dependency (Tl—eT2)
which means that Tl precedes T2 in the
serialization order;

b) a potential dependency (Tl~-~T2)
which means that the order is not yet
determined but will be
last when the
validates,

determined at

one of transactions

Singapore, August, 1984

Table 1 sunmarizes all pussibilities for
setting of a dependency - assuming that the
operation
of T2 - according to the nature of conflict
and whether Tl is validated (then noted Tl*)

of Tl precedes chronologically that

or not (then called a living transaction).

Type aof the Nature of the dependency when the conflict
conflict occurs depending whether:
11 ts validated Tl {s living
T1 T2 «
R P 1] v T2 1] T2
1 12 etther T1Z—et2
11 -=T2

4 P or 12——»‘!1* and
T2's weiting lgnored:

Thomds' Rule

either Tl=—T2 snd
delayed reading

T2~—+T1 end
{mmediate reading

*
T et T2 or

Tahle 1.

The dependency graph
The
Tay be

exacution of a set of transactions

represented by a dependency graph G

whose nodes are transactions and edges are

dependencies induced by their conflicts. G

when a arises or when a
validated. 1In

transaction T

changes conflict

transaction is rejected or
particular, validation of a

transforms 1its potential dependencies I—--T'
into effective ones either of the form Te—T!
or of the
[Thomas 79}

which means ignoring the writes of T'.

e
form TiwpT when Thomas' rule

has been chosen to be applied

It has been proved [Papadimitriou 79)
that a circuit of effective dependencies in G
prevents all transactions involved in that
circuit to be serialized (i.e. to be

equivalent to a serial execution of the same

transactions).

Let us note that, as long as a

transaction 1is not wvalidated, the effective

and potential dependencies it has generated

actions whose effects have not yet
the

irreversgible,

translate

been registered into base. Conversely,

validation is it is
that
serializable,
them.

of transactions, a

since a
all validated transactions be
that no
In order to obtain serialization

necessary

i.e. circuit exists
among
solution 1is to reject a

living transaction as soon as the setting of

one of its dependencies leads to a circuit in

G.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

379

- ONeESs

In order to show limitations of the
CCMs, it is

distinguish the following subgraphs:

various known useful to
- G*, the validated graph, restricted to
all with their
dependencies;

-G T the selfish
restricted to all validated transactions
the
their dependencies;
- G+, the
all living

dependencies.,

validated transactions

graph of T,

and to living transaction T with
living graph, restricted to

transactions with their

A total
is compatihle with the partiel order defined

order among transactions which

*
by G is called a serialization order.
All CCMs
criterion to keep G

apply a serialization
e

circuitless. In fact,

depending on methods wused, one or mnore

preceding subgraphs are privileged. However,

no method implements
the

distributed

any graph to determine

serialization order. Inileed in a

environment exact view of the

difficult

Moreover it would not be

graph would bhe to ontain on each

site. corpatible with
level of parallelism. Only one
cCM

of G in a local broadcast network

a satisfying

optimistic lying on a centralize:d
management

has been proposed so far [Dewitt 80].

Continuous control and the dependency graph
Continuous CCMs are characterized by the

fact that no checking wupon dependencies is
necessary at validation time, That is why they
check when reading or prewriting, the
dependencies'set-up in order to insure that

G"T is circuitless for all living transactions

T and stays that way, whatever transaction is

validating . They do so by forcing potential

dependencies to be converted into effective

in case of a PP conflizt. In such a case

validation will not <change any dependency.

This advantage 1is paid by more rejections or
waits for transactions.
In 2PL methods {Rosenkrantz 78],

[Eswaran 761, {Traiger 82] the chronological

order of operations induces dependency when a
conflict occurs: if the operation of Tl
precedes chronologically that of 12‘ the

dependency TI—~>T2 is
validated the
table 1 (when Thomas' rule is never applied).

set, If Il is already

dependency corresponds to

Singapore, August, 1984

conflict
then blocked (sometimes
is validated in order to
b parallelism is
methods the
corresponds to the
chronological The
possibility of a deadlock, characterized by a
circuit in G+, is another drawback of these

In case of between living
transactions, T2 is
uselessly) until T,
the dependency TI—-—TZ:

these

force
thus
serialization

decreased. In
order

validations' order.

methods.

In TO CCMs [Bernstein 81) the order of
the timestamps associated to transactions at
their birth defines an "a priori"

serialization order . If, when a conflict

occurs, the effective dependency it generates
does not correspond to the timestamps order,
the transaction which triggers the conflict is
rejected, In case of a PP conflict between
living transactions, the dependency chosen is
that of the timestamps' order, imposing
validations to follow this (the
serialization one). This is done by making a
transaction wait 1if it to validate
than other ones which precede it in
serialization order. The TO CCMs insure
G 1is always circuitless. A variant

the multiversions TO [Reed 78] allows
accepting reads and under certain conditions
prewrites (and thus validation) even when

their chronological order does not respect the

order

wants
earlier
the

that
method,

order of timestamps at the high . price of
multiple timestamped versions of the same
object. The major drawback of TO CCMs is
setting '"a priori" dependencies before a
conflict occurs thus inducing useless

rejections, Moreover, the more the timestamps'
order is far from the real chronological order
of the birth, the more
rejections are generated., This can be avoided
by resynchronizing

transactions'
timestamps' generators
{Lamport 78] by inter-site messages. At last,
transactions may suffer from
repeated rejections occur. An improvement of
TO CCMs consists in waiting for the
transaction's first conflict before giving it

compatible with the induced
[Bayer 82]. This the
previous drawback to the second conflict when
the timestamp is defined: this may induce a
dependency between this transaction and those
which are not and will never be in conflict
with it.

starvation if

a timestamp

dependency postpones

Proceedings of the Tenth international
Conference on Very Large Data Bases.

380

Control by certification and dependency graph

Many strategies are possible depending
whether certification of a transaction T is
congidered in G*, G or G'. Nevertheless in all
known CCMs except ours, the
order chronological order of

serfalization
corresponds to

validations. x
In a certification strategy with G,

concurrency control uses the validated
transactions' history. A transaction T {is
certified successfully if G T is circuitless.

such a method is called
control"”., The method described in
suggested for a centralized system
but which may be applied as well in DDBs,
illustrates this type of control. During the
certification of T, the conflicts it has had
with all validated tr:nsactions Ti are checked
to be of the form T{—->T. Since PP conflicts
follow validations' order (i.e. serialization
order) they are ignored as well as conflicts
of the type Ti—>T. In case of a PR conflict
between '1‘1 (which prewrites) and T (which
dependency's direction
the

For that
"backward
[Kung 81],

reason,

reads) changes

depending whether read of T precedes

chronologically (T-EELTi*) or follows
(1, ~S%1T) the validation of T,. Since the
method does not distinguish between the
relative order *of reads and validations, it
fo;bégs T et T and thus it also forbids
TL——>T which might be valid. The

serialization criterion of T is:
* *
Owriteset(T,) N Oreadset(T) = 0, for all T,

where Oreadset(T) and Owriteset(T) are the
sets of objects respectively read and
prewritten by T.

Another proposal [Lausen 82)] aims at
forbidding only dependencies of the type
TJELTi*, by timestamping the reads relatively

to the validations.

A certification strategy with G allows

more freedom because not only validated
transactions are considered but also living
ones under the angle of their future
validations, In order to do so, all circuits
in G which contain T are looked for when T
certifies. If no circuit is found, T may be
certified, otherwise the circuits must be

eliminated by either:

Singapore, August, 1984

i) rejecting T;

ii) rejecting another living transaction
in each of the circuits for instance in
order to minimize future rejections;

iii) ~-in the special case when each
circuit contains a potential dependency
T---T' which has been translated into
T=—>T! ~ making T wait wuntil the

certification of T' which will invert
the dependencies, or certifying T using
Thomas' rule for T' (giving T'—-T).

method this type of

So far no illustrates

strategy.

In a certification strategy with G+,

control does not use the history of validated
transactions but considers only living
transactions. It is therefore called a

"forward control' (Haerder 82]. If, during the

certification of T there are Tf-a—T
dependencies (corresponding to RP conflicts)
either all transactions which 1induce such

dependencies are rejected or T is made to wait

until Ti

the serialization criterion is:

Owriteset(T) N Oreadset(Ti) =@, for all T,.
The method described in [Schlageter 81]

achieves this type of forward control in order

is validated or T is rejected. Here

to favor transactions which read, by delaying
the validations of writing transactions which
conflict with them. The
read and write are gserialized using a hackward

transactions which

control.

Generally no previously described CCM by
certification allows 'I'—»'I‘i dependencies: the
major drawback is that it induces either waits
or rejections (if

last,

(by delaying validations)

validations must be immediate). At

attention must be drawn to the fact that all

CCMs by certification must process
transactions' certifications in the same order
on all sites in a distributed system, Indeed

all sites must make the same decision based on
the same sets of living transactions (i.e. G+)
or validated ones (i.e. G).

3. CERTIFICATION BY INTERVALS OF TIMESTAMPS
Principle of the method

The certification method we present uses
the
criterion for T must avoid any circuit in G

a backward control: serialization
%*

T

Proceedings of the Tenth International
Conference on Very Large Data Bases.

381

A summary of the dependencies in the preceding
subgraphs is obtained by:
- timestamps expressing dependencies in G*,
- intervals of timestamps summarizing
dependencies in G*T’
- gsets of objects translating dependencies
in G*.
The wuse

following.

of each mechanism is precised by the

*
Timestamps: to each validated transaction Ti

is associated a timestamp t given at

i
certification time such that:

Property Pl, The
v:lues is compatible with the partial order of
G .

order induced by timestamps

Intervals of timestamps: to each living
and for each object x that it
has used (read or prewritten) is associated an
timestamps I(T,x) . The bounds
the

and

trangsaction T

interval of
of this
constraints

interval express strongest
validated

transactions which have accessed to x and must

between T

respectively precede or follow T.
More precisely, if we denote LI(T,x) and

UI(T,x) respectively the lower bound and the
upper bound of I(T,x), the following must
hold:

Property P2. For each living transaction T and
for object x it used, I(T,x) is
with the all
validated transactions which have also used x.
This means that:

each has

compatible timestamps of

VT iiving transaction, Vx object used by T,
VTi validated ;ransaction having used x,
either T,—T and then t < LI(T,x)

i *
or T—T, and then UI(T,x) <t

i

that 1intervals of
*

allow keeping track of T—----Ti dependencies.

Thus

which precedes

Notice timestamps
it will be possible for a transaction T
validated ones in the
order to be certified
validated after them.
all

some
serialization and
Grouping congtraints upon T can be
obtained by:

I(T)=XE\XI(T,X) X being the set of objects
used by T.

P
(1) In practice, only one interval per site

s, I(1,8), may be used.
Singapore, August, 1984

Propositfon 1. Any living transaction T which

introduces a circuit in G T verifies I(T)=@.

T which
%
ciecuit in G T In this

Proof : consider a transaction

introluces such a
circuit, IeL us call:
. T the transaction which follows T, x

£
the

one {

object by which dependency
cores, and

. T * the transaction which precedes T,
which tne dependency

y one object bhy

cores (we may have f=p).

1his circuit induces the following relations:

T
f///’ f\\\\ *
TP <'—'/'/L—- If
Frow Pl, we have: ’l'ft-v'b’l' * LSty
Frow P2, we have: ‘I—;‘»Tf* UI(‘I.x)<'t‘.f
and IP—>I tp< LI(T,y)

Since I(T)-xr1 I(T,x) we have:

Vx eX LI(T,x) £ LI(T) and UI(T,x) SUI(T)
We finally have:

LD 2LUT,y) >t 2t >UI(T,x) 2UH(T)
thus: L1(1)>UI(¥) OI('I) 0.5

Sets of objects: to each living transaction T
are associated the set of objects it has read
(Oreadset) and the set of objects 1t has
prewritten (Owriteset). As a result, between
two living transactions T and T':

a) effective dependency TaetT* is
equivalent to:

Oreadset(T) N Owriteset(T') % @
b) potentiel dependency TewaT' is
equivalent to:

Owriteset(T) M Owriteset(T') ¢+ O

The principle of the method is to keep
properties Pl and P2 true through all actions
read, prewrite and certify:

- when T reads or prewrites x, the
{nterval I(T,x) must be updated according to
property P2;

- when T asks for 1its certification,
I(T) must be computed according to its
definition. Then if I(T) # @, T is certified,

otherwise T is rejected.
Moreover when T is certified, G

Proceedings of the Tenth International
Conterence on Very Large Bata Bases.

is modified

382

for all other living
modifications .are made

and therefore so are G*T'
transactions T'. The
ny:
. chousing a timestamo for T which keeps
on property Pl.
. adjusting the interval I(T',x) of all
transactions T' which have
conflict with T, on any object x used by

T.

been in

The shows how a

timestamp may be associated to a transaction:

following proposition

Proposition 2. If a transaction T, with
I(T) 4 O, for certification any t € I(T)
will verify property Pl.

asks

Proof: I(T) denotes the strongest constraints
between T and the validated transactions. More
precisely:

* *
VI, such that T—»T,(

X [>UI(’I)<!:, and
K

Vri* such that T 2T [>LI(T)>t
Thus any tCI(’}) (i.e. LI(T)< t<UI(T))

will be compatible with the dependenﬁtes in
G ' 0

In 4, we shall show that the choice of
tsLI(T) (or UI(T)) has a definite effect on

the future of some living transactions.
When the timestamp t for transaction T
is chosen, adjustment of all intervals I(T', x)

of the living transactions T' will be done
according to the type of conflicts between T
and T' on x. Let wus recall that these

dependencies are recorded by means of sets of

objects. The adjustment will take the forms:

{f T'"—-T then t is the right truncation
point for I(T',x),
{f TepT' then t is the left truncation
point for I(T',x),
if T~-=-T' two translations are possible:

either T—»T' with appropriate
adjustment of I(T',6x)
or T'ome-T with appropriate

adjustment of I(T',x) and ignoring
the writing of T' at validation
time (Thomas' rule).

Singapore, August, 1984

to make the method useful in
practice, it is

In order
necessary to "forget"
validated transactions. This is done, as in TO
methods, by objects: to
object associated the highest timestamps
(noted respectively R(x) and W(x)) of the
validated transactions which have read or
prewritten x. With these the
read and prewrite may use proposition

3 to keep on property P2,

timestamping each

are

timestamps,
actions

Proposition 3. When a transaction T reads

[resp. prewrites] an object x, fixing
LI(T,x) >W(x) [resp. > max(R(x),W(x))] will
respect the dependencies with the validated

%
under the form T ~»T.

transactions T
% {

Proof: when a transaction T
with all validated transactions T
having prewritten x. (Tk PR —_—T)

Since for all T, , tksw(x) and since we

set W(x)<LI(T,x) we have t, <UI(T,x).

reads x, it
conflicts

k
Similarly when a transaction T prewrites
X, it conilicts with all validated
transactions T having read or prewritten x

* o ox
(r.2 R0 1 o 1% Bh1).

j *

Since for all T, , t <max (W(x), R(x))
and since we set max zW(x), R(x)) <LI(T,x) we
also have tj <LI(T,x).0

Thus during a read or prewrite operation
on an object x by a

. transaction T, only
T — T dependencies between T and validated

k

transactions Tk in conflict with T are set up
(Thomas' rule will never be applied in such
cases).

4, IMPLEMENTATION IN A DISTRIBUTED SYSTEM
Data structures local to each site

I(T) which retains the strongest
constraints between T and validated
transactions might be computed upon any

partition of the
intersection of these intervals would give the

set of objects, since the
result as the intersection of I(T,x) on
all objects x accessed by T. Partition by site
seems particularly attractive in a distributed

same

system,
For each living transaction T which has
accessed

to the set Xi of objects on the site
S;» this site manages the interval I(T,Si):
Proceedings of the Tenth International
Conference on Very Large Data Bases.

383

T,s)= f\ I(T x) .

T(T,Si) is created when T makes its
first access to an object on site Si’ and will
be locally wupdated by site Si either during
further reads and prewrites of the transaction
T on objects located on Si or independently of
T during adjustment following certification of
a transaction T' having been in conflict with
T on some objects of site S

All effective due to
conflicts between T and validated transactions

dependencies

on all sites are expressed by:
uT,8i)=_, N N 1(T,x)= I(T) .

sitej t:ej xer
In order to make the adjustment
mentionned hereabove, each site Si also
manages the sets Oreadset(T,Si) and

Ouriteset(T,Si) which are respectively the set
of objects read by T on Si and the set of
prewritten by T on Si . Each site Si
the set Tlivingset(si) of all
living transactions known by it.

objects
also maintains

Access to the objects
In order to detect as soon as possible
that an

is not

operation requested by a transaction
serializable - and so have a kind of
control - to each transaction T is
its current interval Ic(T)' At the
of T, Ic(T) is initfalized as [o,a -
Ic(T)
each read or prewrite

continuous

associated
beginning

(the whole
is transmitted during
by T to the various sites accessed by T.
These modify the interval according to
dependency induced by the operation and send
it back to the transaction T. Thus each site

set of allowed timestamps).
made

sites

a more precise view on the dependencies
set on other

gets
involving T which have been
sites.

Notice that now I(T,Si) not only carries
information about the dependencies set on site
Si but knowledge of the
preceding constraints put on I (T). The final
intersection of all I(T,Si) will still give
the same I(T) since although some contraints
will be counted many times, the intersection
will not be affected.

The of using IC(T) which can
be considered as an approximation of I(T),
that it conveys information on the
constraints put on T, and therefore may signal

that a transaction T must be rejected
Singapore, August, 1984

also has some

advantage

more

rapidly

when IC(T) = @, Taking this shortcut into
account, the semantics of operations
read(x,T,Ic(T)) and prevrlte(x,T,Ic(T)) which

preserves proposition 3 are given below., Each
algorithm {s executed on the site S1 of the
object x. For these algorithms it is assumed

that the {ntervals contain only integers.
rud(x“r.lc(‘r))
«(1f TETlvingset(S,)
then IC(I):-I (1HHNr1(1.s,)
elee Tlivingset(s)= Tlivingset(s DU{T}:
IC(T):-IC(T)ﬂ[E(x)+l,+a[;
I(T.S‘):-I (T)s
Treadset(x):=Treadset(x)U {T* i
Oreadset(T.8,):=Oreadset (1.5,)U{x}:
H:-(vnl(x).‘f.lc(‘n):
send-message(M. 8. (1))
);

prewrite(x.T.1 (1))
=(1f TCTlivingset(S)
then IC(T):-I (TIN1(r.s,)
slse Tiivingset(S):= Tl(vlng-et(s[)LJ{T}:
1 (1):-tc(r)n[s(xm.m[n[t.(xm.m[:
1(1.8,):=1 (T):write(copy(x.T));
Tvrlteue(x):-‘lwrlteut(x)U{T':
O\u-lteut(‘r.st):-Outltuet('l‘.S‘)U‘x}:
M:=(T.1 (T)):
und-lnu;e(H.s‘ R.1692)
):
Local adjustment of the intervals
In order to fulfil property P2,
certification of a transaction T implies
adjustment of intervals of living transactions
T' in conflict with T, on all sites Si where T
as having accessed to some objects.
speed up the search for all

is known
In order to

transactions T' in conflict with T, each site
associates to each object x, the sets
Treadset(x) and Twriteset(x) of 1living
transactions which have respectively read or
prewritten x.

The semantics of the procedure
adjust(T,tT) which preserves property P2

through the certification of T with timestamp
tT, is described below, It must be executed on
all sites S1 accessed by T,

We have included in this procedure , by
means of the procedure swap the
validation phase of T which corresponds to the
copy of the new values of objects prewritten
by T ianto the part of base managed by Si.

On each site the adjustment of intervals
following the certification of T must not
interfere with processing of reads or
prewrites 4{ssued by other transactions T' :

Proceedings of the Tenth International
Conference on Very Large Data Bases.

384

that reason, the procedure adjust must be
considered, on site, as a critical
section which must be executed in mutual
exclusion with read and prewrite operations .
procedurs .ldju.t(‘l'.t.r)
=(for xGIOreud-et(T,sl) do
(for T'€ Twriteset(x) do
1(1'.31):-1(1",st)ﬁ[cr+1,¢a[;
L(x):-mx(l.(x),t.r);
Treadset(x) :=Treadset(x)-{T});
for xCOwrlteutg‘I‘,sl) do
(for T'€ Treadset(x) do
ur,s):e1(1,5,)N00,¢
for T'€C Twriteset(x) do
I(T',si):-I(T',si)ﬂ[tTdﬁm(;
E(x):-tT;
Twriteset(x) :=Twriteset(x)-|{T};
svap(x,copy(x,T)));
d.htq(I(T,S‘).Oundut(‘l',s),Owrltcut(‘!‘.si));
‘l‘uvlngut(sl):-‘l‘ltvln;ut(sl)-'T}
IH
Remark. This critical section may be shortened
by decomposing the procedure in many critical
sections in order to exclude selectively the
processing of reads and of prewrites depending

on the part of the adjustment which is made.

for
each

T-1];

The protocol of distributed certification

The certification of a transaction T is
triggered at the end of its read/prewrite
phase by the broadcasting of the message

certify(T,Ic(T)) to all sites managing objects
used by T. The processing of this message on
each site starts the certification protocol.
Let us notice that it is necessary to insure
that all sites process the
certifications same order in case of
conflicting

concerned
in the
gsimultaneous ends of several
transactions.

When communication between sites uses an

unique broadcasting medium (Ethernet for
instance) reception order of messages is the
same on all sites. In this case, 1t is

sufficient that certification messages are
processed in the order of their reception to

fulfil the previous condition. On the other
hand, when the sites are linked together by a
general network, the global ordering of

certification messages must be done using a
special mechanism like synchronization by
timestamps {Lamport 78] or by circulating
token [LeLann 78] not described here.

In the proposed protocol, no site plays
a privileged role. On each site Sl concerned
by the certification of T, protocol consists

in 3 phases:
Singapore, August, 1984

- a proposal phase when Si broadcasts
its I(T,Si) to all other sites and waits
for their proposals.
- a cholce phase when Si computes
(T)= N 1(T,s,) which will thus be the
on all sgites, and then applies the
criterion (cf.
I(I)=@ then T is
rejected, otherwise a timestamp value tT
is chosen in I(T) to be associated to T
(cf. proposition 2).
ensure that all
the same value
fulfils this
Other choices will be discussed later,

same
serialization
proposition 1): if

The protocol must

the sites will choose
tre Choice of tT=UI(T)
condition ,for instance.
- an adjustment phase for the intervals
of other transactions T' which
includes also the validation of T.

living

proposal cholce of the adjustment of
phase timestamp intervales and
l l validation
1 2 3 4 / 3

time
ﬁeeceptlon of -
all proposals
’ropo--(I(T.s'))
clrtlfy(T.Ic(T))

Flgure. The different local steps of the certification.

the (1) and (4) the
may process read and prewrite messages
other

Between instants

site Si

issued by transactions but no other

certification An optimization would
the

transactions'certifications

message.

allow simultaneous processing of
which did
conflict between them on a given site.
The processing of the message
certify(T,Ic(T)) site S, is

i
described below. site S1 is assumed to
all the

certification of T. the critical section is

bracketed with '{' and '>'.
certify (T.IC(T))
-(I(T.Sl):-IC(T)(\I(T.St):
bro-dcalt-ne-l.ge(propo.e(T~I(T.Sl))):

wait for the proposals from 51.82....,5
.

not

received by
Each
other involved 1in

know ones

at

’
{uhen all praposdls have been recetved}
I(T):=NI(T,8);

if 1(1)10 .

then reject(T)
else (choosa(t,);
(adjuet(T,t00);

This protocol may be improved by not
letting wait a site which has detected that
I(T,Si)=0 , t.e. T must be rejected. Later on,
all other sites will take the same decision in

Proceedings of the Tenth International
Conference on Very Large Data Bases.

385

their choice phase.

Choice of the certification timestamp

During the certification of T, each site
Si must apply an identical strategy for
in I(T) , for instance tT=LI(T).
choice may have identifiable effects on

choosing tT
This

other
T. If we note T'R those which have only read
and T'P those which have prewritten,
will truncate the intervals of
on the right.
both the
each T'P and the
smallest for each T'R. This tends to decrease
risk of

living transactions T' in conflict with

objects
the
T'P on the left and those of T'R
tT=LI(T)
for

value tT
Choosing leaves
greatest interval

rejection for transactions T'P and
simultaneously increase that for T'

tT=UI(T) would have the reverse effect.

R* Choosing

Such a definite effect can be considered

as a forward control. With more information
about living transactions, other choices could
the number of

be devised for minimizing

rejections for instance.

Starvation
The
starvation.

method may be adapted to avoid
A transaction which wants to avoid
broadcast to all
at start time. On
this message will

ending with the

starvation must sites a
prioritary-certify message
each

site, processing of

start a protection phase
of T.

all certifications -prioritary or not -

certification During this protection
phase
will be delayed; the reads and prewrites will

be done as usual.

In other words, the method forces all
other transactions to be certified after the
complete execution of T. Therefore only
dependencies of type Tk:-—b-T will be set

during T's Llife,
are only possible if Tk is certified

of T,
the
Consequently no circuit will occur in G T and
T will be certified sucessfully,

since dependencies of type
T-—b—Tk
which has been

after the beginning

avoided during protection ghase.

5. CONCLUSION

By classifying various CCMs according to
the dependencies they take
account, we able to make their
limitations clear. Such an approach shows that
continuum of methods between

type of into

have been

there exists a

continuous control and control by

Singapore, August, 1984

certification.

In our method, use of {intervals of
tlmes:amps allows us to summarize dependencies
in G Ty without washing out those of type
T-——Ji . It becomes then possible to accept a
chronological order of certifications
different from the serialization order, which
avoids arbitrary rejections.

Since the

intervals of timestamps are

broken into locally managed intervals on each
site, without needing any synchronization
messages before the certification step, our
method {s particularly well suited to a

distributed environment.

REFERENCES

(Badal 79] Badal D.2.
Correctness of concurrency control and
implications {n distributed databases.
Proc. COMPSAC 79, Chicago, 1979.

[Bayer 82] Bayer R., Elhardt K., Heigert
J., Reiser A,
Dynamic timestamp allocation for

transactions in database systems.

Proc. of the 2nd International Symposium
on Distributed Data Bases, Berlin,
sept.1982.

{Bernstein 81) Bernstein Ph., Goodman N.

Concurrency control in distributed
database systems,
Computing Surveys, vol. 13, n 2, june

1981,

(Bhargava 82] Bhargava B.

Resiliency features of the optimistic

concurrency control approach for
distributed database systems,
Proc. - an Symposium on Reliability in
Distributed Sof tware and DBS.
Pittsburgh, july 1982,

[Cornafion 81] Cornafion, nom collectif
Systémes informatiques répartis:

concepts et techniques.
Ed. Dunod, 1981.

Praceedings of the Tenth international
Conterence on Very Large Data Bases.

386

(Dewitt 80] Dewitt D.J., Wilkinson W.K,

Database concurrency control in local
broadcast networks,
Computer Sciences TR 396, Univ, of

Wisconsin, Madison, august 1980.

{Eswaran 76] Eswaran K.P,, Gray J.N., Lorie
R.A., Traiger I.L.
The notions of consistency and predicate
locks in a database system.
Com. ACM 19,11, nov. 1976, pp 624-633.

(Haerder 82] Haerder T.
Observations on optimistic concurrency
control schemas.
RR 3645, 1IBM Research Laboratory, San
Jose, oct. 1982,

{Kung 81] Kung H.T., Robinson J.T.
On optimistic methods for concurrency
control.

ACM Transactions on Database Systems,
vol 6, n 2, june 1981, pp 213-226.

{(Lamport 78] Lamport L.
Time, clocks and the ordering of events
in a distributed system,
Com. ACM, vol 21, 7, fuly 1978.

{Lausen 82] Lausen G.
Concurrency control in database systems:
a step towards the integration of
optimistic methods and locking.
Proc. ACM Conf., Dallas, Oct. 1982.

(Le Lann 78] Le Lann G.
Algorithms for distributed data sharing
systems which use tickets.
Proc, of the 3"'d workshop on Distributed
Data Management and Computer Network,
Berkeley, aug. 1978.

{(Papadimitriou 79] Papadimitriou C.H.
Serializability of concurrent updates.
J. ACM 26,4, oct. 1979, pp 631-653.

(Reed 78] Reed D.P.
Naming and
decentralized computer system.

Ph.D dissertation, Dept. of Electrical
Engineering, MIT Cambridge, Mass, sept.
1978,

synchronization in a

Singapore, August, 1984

[Rosenkrantz 78] Rosenkrantz D.J., Stearns
R.E., Lewis P.M.
Syster level concurrency control for
distributed database system,
ACM Transactions on Database Systems,
vol 3, 2, june 1978, pp 178-198.

{Schlageter 81] Schlageter G.
Optimistic methods for concurrency
control in distributed database systems.
Proc. 7th Conf. on Very Large Databases,
Cannes, sept. 81

[Thomas 79] Thomas R.H.
A solution to the concurrency control
problem for multiple copy databases.
Proc. 1978 COMPCON Conf. (IEEE)
New-York.

[Traiger 82] Traiger I., Gray J., Galtieri,
Lindsay B.
Transactions and congistency in
distributed database systems.
ACM Transactions on Database Systems,
vol. 7, n 3, sept, 82.

{Viemont 82] Viemont Y., Gardarin G.
A distributed concurrency control
algorithm based on transaction commit
ordering.
Proc. FICS - 12, Los Angeles, 1982.

Proceedings of the Tenth International
Conterence on Very Large Data Bases.

387

Singapore, August, 1984

