
CERTIFICATION BY IMERVALS OF TIMESTAMPS
IN DISTRIBUTED DATABJSR SYSTEMS

Claude Boksenbaum, Michele Cart, Jean Ferrii, Jean-Francois Pons

C.R.I.M. Universite de Montpellier
860, rue de Saint Priest

34100 MONTPELLIER - ?XANCE

Abstract
This paper introduces, as an optimistic

concurrency control, a new certification
method by means of intervals of timestamps,
usable in a distributed database system. The
main advantage of this method is that it
allows a chronological validation order which
differs from the serialization one (thus
avoiding rejections or delays of transactions
which occur in usual certification methods or
in classical locking or timestamping ones).
The use of the dependency graph permits both
classifying this method among existing ones

and proving it.

1. INl'RODUCTION
Nunerous Concurrency Control Methods

(CCMs) for Distributed Data Bases (DDBs) have
been proposed so far [Bernstein 811 using
either Two-Phase Locking (2PL) or Timestamp
Ordering (TO).

The main feature of these CCMs is that
the serializability test is made for each
action (Read or Prewrite) on an object of the
base. For this reason, we call these CCMs
continuous ones as opposed to certification
(also called optimistic) ones, where the

Permission to copy without fee all or part of this material iF granted
provided that the copies are not made or distributed for direct commcrciot
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by pe?mLrsion of the VW Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

serializability test is only made at the end
of the transaction.

Usually, continuous CCMs and
certification ones are described in totally
different ways. Our study offers a unifying
view for this classification.

Certification methods [Kunq 811,
[Haerder 823, [Lausen 821 have been studied
mostly for centralized systems. The few
proposals adapted to distributed systems
[Badal 791, [Schlageter 811, [Bhargava 821 are
not convincing due to lack of formal proofs
for their desired behavior. We answer that
problem by proving a certification method in a
distributed system.

Serialization
relies on the setting
among transactions.
principles are used

control used in CCMs
of a serialization order
In continuous CCMs two
to construct this order.

In 2PL methods [Traiger 821, it is dynamically
constructed and corresponds to the order into
which transactions reach their maximum locking
point. The well known drawback of these
methods is useless waiting sometimes imposed
to transactions and deadlocks which may occur.
Deadlock prevention may be applied
[Rosenkrantz 783 at the cost of increasing the
number of rejections. In basic or
multiversions TO CCMs, the order is "static"
and relies upon the giving of a unique
timestamp to any transaction, thus defining
the serialization order. One study [Bayer 821
refines this technique by introducing the
notion of a "dynamic" timestamp which avoids
useless rejection of a transaction when its
first conflict arises, in a very particular
CCM.

Control by certification allows a
dynamic construction of the serialization

Singapore, August, 1984

311

order ily lelayinq it until v3lid.?tio,:. .It that
TA030!lt) !?zore inf9rxstion on lepcn;lz.n: ies sr.onq
trnnsnztio?s is avai!nl>le than i.n :onti~uous
!EChOLIS. Nevert!lel.ess, pre\~ious Ly jexrihed
net:jods [Kung Sll,[\‘izront 821,CSchlapeter 813
i ~.pos t that this order should be identical to
the chronulo?ical order of validations.

In this study, we propose and prove a
new certification CCll which, by usinq
intervals of tifoestsaps, allows oonstru:tio:l
of the SeriaLization orde’t w:lizh 7.wy differ
Eros the Aronoloqical order of validations.
Xorrover, the atdual construction of the
serialization order makes detectins
non-serializable actions possi.Sle without
waitinq unti 1 the transaction’s validation.
This characteristic connects our nethod to
continuous CCMs and allows their comparison.

Flare precisely, the advantages and
originalities of our method compared to known
CCMa are the followinS:

1) It allows a chronological order of
validations which differs Pron the
serialization order thus Je:reasinq the number
of rejections or raitinSs.

2) It

The multiversions TO CC% [Reed 78)
which also do not impose identitv
between these two orders request a Lot
more inf or’sat ion (versions and
timestamps) about transactions’ history
than our method.
al Lows an “01311 transaction to use, in

sone cases, results of “younqerVV ones.
This property which requires dynamical
construction of the serialization order
without using chronoloqical startinq
time of transactions is also achieved by
2PL CCMs. Intervals of timestamps permit
this property to be obtained in our
method.

3) It allows favoring a particular class of
transactions (reading or writing ones, for
instance).

Such strategies may be implemented by
proper choice of the ftnal thestamp
inside the interval of t tmes tamps
associated to a given transaction.

4) It is fully integrated into a distributed
val Ldation protocol.

Prottedhaa ol the Tenth Intomatbnal
coni- on very LarQs Drtr bsto.

Our study is orqanized as f0llOWS.

In section 2, we present the notion of
cunfli:ts and the notion of -dependency graph
which is the basis of formal proof of our
xethol . Tnis s,rsph xaintains two types of
deprndenc ics: effective ones and potential

Oi’LeS. It allows classifying vsrims CCMs as
continuous or optimistic (eit.her “backward” or
“forward”) accordin to tneir serialization
criterion and shedd inq sose Light on their
limitations.

In section 3, the principle and proof of
an original certifkation CCM using intervals
of timestamps are described.

Section 4 specifies the implementation

in a distributed environment and details the
certifkation protocol used, which Is also
applicable to other optimistic CCMs.

2. CONFLICTS AND DEPENDENCY GRAPH
Conflicts and dtpendencbs

The life of a transaction is divided
into several sequential steps:
(1) a step when reads (R) and prtwritts (P) of
objects occur in the transaction’s worltspace,
(2) a certifhation step present only in

optimistic CCMS, checkinq whether al\
operations of a transaction are serializable,
(3) possibly a validation step, only present
when the transaction is serializable, whose
effect is to turn on definitively, in ah
atomic maniler , the prewritings of a
transaction.

Two transactions conflict if one tries
to prewrite Cresp. read] an object already
read or prewritten [resp. prewrittenl by the
other. Depending on the nature and
chronological order of the operations, PP, RP
and PR conflicts are distinquished.

A conflict between Tl and T2 induces a
constraint on the serialization order of Tl
and T2 which can be traxslated into a
dependency taking one of the following two
forms :

a) an effective dependency (Tl-T2)
which means that Tl precedes T2 in the
serialization order;
b) a potential dependency (Tl-o-T21
which means that the order is not yet
determined but will be determined at
last when one of the transactions
validates.

SIngeporn, August, lQQ4

378

Taslc 1 summarizes all possibilities for

settinq of a ‘depenjency - assumin? that the

operation 0E Tl precedes c.hronologicallv that

of ‘12 - accordinn, to the nature of conflict

and whether Tl is validated (tilea noted ‘il*)
or not (then called a Living trnnsaction).

Nature of the depcndcncr when the conflict type of the
conflict “CCUCJ depend1

fl La vslldsted

?l T2
It

v

P
x

11 T2
P

v

P
x

Tl t2
P

v

I
x

t1*-TZ

l lthet T1*-t2

or t2-?l* and

TZ’s vtltln8 LBnored:
Thornam’ Rule

d-f2

trhle 1.

Tl-rT2

Tl---T2

The dependency graph

The execution of a set of transactions

r,ay be represented by a dependency graph G

whose node s are transactions and e.lges are

dependencies induced by their conflicts. G
:h.Jnqes when a conflict arises or when a
transaction LS rejected or validated. In

particular, validation of a transaction T

transforms its potential dependencies T---T’
”

into effective ones either of the form T-T’
;k

or of the form ‘IL’I when Thomas’ rule

[Thomas 791 has been chosen to be applied

which means ignoring the writes of ‘I’.

It has been proved [Papadimitriou 791

that a circuit of effective dependencies in G

prevents all transactions involved in that.

circilit to be serialized (i.e. to be

equivalent to a serial execution of the same

transactions) .

Let us note that, as long as a

transaction is not validated, the effective

and potenrial dependencies it has generated

translate actions whose effects have not yet

been registered into the base. Conversely,

since a validation is irreversible, it is

necessary that all validated transactions be

serializable, i.e. that no circuit exists

among them. In order to obtain serialization

of transactions, a solution is to reject a

living transaction as soon as the setting of

one of its dependencies Leads to a circuit in

G.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

In order to show limitations of the

various known CCMs, it is useful to

distinguish the following subgraphs:

- G*, the validated graph, restricted to

all validated transactions with their

dependencies;

- G*T, the selfish graph of ‘I,

restricted to all validated transactions

and to the living transaction T with

their dependent ies ;

- G+, the living graph, restricted to

all living, transactions with their

dependencies.

A total order among transactions which

is compatible with the partiel order defined
;k

by G is called a serialization order.
Al 1. CCYS aUDlY a seri;il ization

criterion to keep G* circuitless. In fact,

depen3inr: on T,EthO:lS used, one or nore

precelin? subgraphs are privileqe,l. However,

no method imolexents any graph to determine

the serialization order. InJeeJ. in R

disLributhd environment exact view of the

graph would 5e difficult to o:)tein on each

site. Moreover it would not be cor.patiSle with

a satisfying level of parallslism. OnLy one

optimistic CCM 1 y i.nq on a centrslize.1

management oE G i.1 a Local broadcast network

has been proposed so frlr [I>ewitt 801.

Continuous control and the dependency graph
Continuous CCMs are characterized by the

fact that no zhecliing upon dependencies is

necessary at validation time. That is why t.hey

check when readino, or prewritinq, the

dependencies’set-up in order to insure that
?:

GT
is circuitless for all living transactions

T and stays that way, whatever transaction is

validating . They do so by forcing poteatla!

4ependencies to be convert.erl into efEective

ones in case of a PP conflict. In such a case

validation will not change any dependency.

This advantage is paid by more rejections or

waits for transactions.

In 2PL methods [Rosenkrantz 751,

[Eswaran 763, CTraiger 821 t.he chronological

order of operations induces dependency when a

conflict occurs: if the operation of T1
precedes chronologically that of T2, the

dependency ‘II-T2 is set. If ‘I1 is already

validated the dependency corresponds to

taole 1 (when Thomas’ rule is never applied).

Singapore, August, 1984

319

In case of conflict between 1 iving

transactions, T2 is then blocked (sometimes
uselessly) until ‘I1 is*validated in order to
force the dependency ‘1-T 2: parallelism is

thus decreased. In these methods the

serialization order corresponds to the

chronoloqi:aL validations’ order. The

possibility of a deadlock, characterized by a
circuit in G+, is another drawback of these
methods.

In TO CCMs [Bernstein 811 the order of
the timestamps associated to transactions at
their birth defines an “a priori”
serialization order . If. when a conflict
occurs. the effective denendency it generates
does not correspond to the timestampsorder.
the transaction which triggers the conflict is
rejected. In case of a PP conflict between
1 iving transactions, the dependency chosen is
that OC the timestamps’ order, imposinq
val idat ions to follow this order (the
serialization one). This is done by making a
transaction wait if it wants to validate
earlier than other ones which precede it in
the serialization order. The TO CC& insure
that G is always circuitLess. A variant
method, the multiversions TO [Reed 781 allows
accepting reads and under certain conditions
prewrites (and thus validation) even when
their chronological order does not respect the
order of timeatamps at the high. price of
muLtiple timestamped versions of the aaae
object. The major drawback of TO CCMs is
settinq ‘la priori” dependencies before a
conflict occurs thus inducing useless
rejections. Moreover, the more the timestamps’
order is far from the real chronoloqical order
of the transactions’ birth, the more
rejections are generated. This can be avoided

by resynchronizinq timestamps’ generators
[Lamport 781 by inter-site messages. At last,
transactions may suffer from starvation if
repeated rejections occur. An improvement of
TO CCMs consists in waiting for the
transaction’s first conflict before giving it
a times tamp compat&ble with the induced
dependency [Bayer 821. This postpones the
previous drawback to the second conflict when
the timestamp is defined: this may induce a
dependency between this transaction and those
which are not and will never be in conflict
with it.

Control by certification and deptndtnc~ graph
Many strategies are possible depending

whether certification Of a transaction T is

considered in G*, G or G+ . Nevertheless in all
known CCMs except ours, the serialization

order corresponds to chronological order of

validations.
In a certification strategy with G*,

concurrency control uses the validated

transactions’ history. A transaction T is

certified successfully if G*T is circuitless.

For that reason, such a method is called

“backward control”. The method described in

[Kung 811, suggested for a centralized system
but which may be applied as well in DDBs,
illustrates this type of control. During the
certification of T, the conflicts it has had
with all validated transactions Ti are checked

*
to be of the form Ti- T. Since PP conflfcts
follow validations’ order .(i .e. serialization
order) they are ignored as well as conflicts

* RP of the type Ti- T. In case of a PR conflict
between Ti (which prewrites) and T (which
reads) dependency’s direction changes
depending whether the read of T precedes
chr;nop&ogically (T-%T *) or follows
(T ,-T) i the validatiok of Ti. Since the
method does not distinguish between the
relative order of reads and validations, it
fo:b;i. T%Ti* and thus it also forbids
T-T t which might be valid. The
serializatio; criterion of T is:
Owriteset(Ti) n Oreadset(T) = 0, for all Ti*,
where Oreadset(T) and Owriteset(T) are the
sets of objects respectively read and
prewritten by T.

Another proposal [Lausen 821 aims at

f°Fddfnq
only dependencies of the type

T-T. , by timestamping the reads relatively
to the’validatione.

A certification strategy with G allows
more f rtedom because not only validated
transactions are considered but also living
ones under the angle of their future
validations. In order to do so, all circuits
in G which contain T are looked for when T
certifies. If no circuit is found, T may be
certified, otherwise the circuits must be
eliminated by either:

ProcowlIng, ol tM tenth Intematlonal

Confofenca on Vey Large Data Sour.

Slngapon, August, 1994

380

i) rejecting T;
ii) rejecting another living transaction
in each of the circuits for instance in
order to minimize future rejections;
iii) -in the special case when each
circuit contains a potential dependency
T --ST which has been translated into
T-T' - making 'I wait until the
certification of T' which will invert
the dependencies, or certifying T+using
Thomas' rule for T' (giving T'-'I).

So far no method illustrates this type of
strategy.

In a certificatLon strategy with G+,
control does not use the history of validated
transactions but considers only living
transactions. It is therefore called a
"forward control" [Haerder 821. If, during the
certification of T there are Ti-T
dependencies (corresponding to RP conflicts)
either all transactions which induce such
dependencies are rejected or II is made to wait
until T i is validated or T is rejected. Here
the serialization criterion is:
Owriteset(T) n Oreadset(Ti) = 0 , for all Ti.

The method described in [Schlageter 811
achieves this type of forward control in order
to favor transactions which read, by delaying
the validations of writing transactions which
conflict with them. The transactions which
read and write are serialized using a backward
control.

Generally no previousiy described CCM by
certification allows T-T i dependencies: the
major drawback is that it induces either waits

(by delaying validations) or rejections (if
validations must be immediate). At last,
attention must be drawn to the fact that all
CCMs by certification must process

transactions' certifications in the same order
on all sites in a distributed system. Indeed
all sites must make the same decision based on
the same sets of living transactions (i.e. G+)
or validated ones (i.e. G*).

3. CERTIFICATION BY INTERVALS OF TIMESTAMPS
Rinciple of the method

The certification method we present uses

a backward control: the serializat?n
criterion for T must avoid any circuit in G T.

Proceedings of the Tenth lntematlonal

Conference on Very Large Data Bases.
381

A summary of the dependencies in the preceding
subgraphs is obtained by:

- timestamps expressing dependencies in G*,
- intervals of timestamps sunmarizing
dependencies in G*T,

- sets of objects translating dependencies
in G+.

The use of each mechanism is precised by the
following.
Timestamps: to each validated transaction Ti*
iS associated a timestamp ti given at
certification time such that:

Property Pl. The order induced by timestamps
values is compatible with the partial order of
G*.

Intervals of timestamps : to each living
transaction 'I and for each object x that it
has used (read or prewritten) is associated an
interval of timestamps I(T,x)(l). The bounds
of this interval express the strongest
constraints between T and validated
transactions which have accessed to x and must
respectively precede or follow T.

More precisely, if we denote LI(T,x) and
UI(T,x) respectively the lower bound and the
upper bound of I(T,x), the following must
hold:

Property P2. For each living transaction T and
for each object x it has used, I(T,x) is
compatible with the timestamps of all
validated transactions which have also used x.
This means that:
VT living transaction, Vx object used by T,
VT * i validated transaction having used x,

either TiLT and then ti < LI(T,x)
*

or T-T i and then UI(T,x) < ti

Notice that intervals of timestamps
allow keeping track of T--LTi* dependencies.
Thus it will be possible for a transaction T
which precedes some validated ones in the
serialization order to be certified and
validated after them.

Grouping all constraints upon T can be
obtained by:
I(T)=x$lXI(T,x> X being the set of objects
used by T.

(1) In practice, only one 1ntervnl pet site

S, I(T,S), may be used-

Singapore, August, 1994

Proposition 1. .%ny ltvin
I

transaction T which

introduces a circuit in O ? verifies I(?)=B.

Proof: consider 3 transaction T which
*

intrs?ucas ’ su:n a circuit in G ?. In t.hls
clrcuft, let us call :

*
- ‘If the transactian which follows f, x

one ob.ie.2 t bv which the dependency

:37.e5) an3

.‘I*
P

the transa:tion whi:h precedes I,

Y one object iY which the dependency

cot.es (we ray have f=p).

lhis circuit induces the followins relations:

T

Frot Pl, we have:

From P2, we have:
an.i

Since I(3)=x? XI(?,x) we have:

Vx t X LI(?,x) s LIfTI and UI(?,x) >,UI(?)

We finally have:

LI(?),,LI(?,v), t >,tf>UI(?,x) z$JI(?)

thus : LI(?) >UI& @?)=Q , *

Sets of objects: to each livinq transaction T

are associated the set of objects it has read
(Oreadset) and the set of objects it has

prewritten (Oucitcsct). As a result, between

two living transactions T and ‘I’:

a) effective dependency T-” iS

equivalent to:

Oreadset(T) n Owritesetf?‘) # 0

b) potentiel dependency T---T’ is

equivalent to:

Owritesetf?) n OwrLteset(?‘l + 6

The principle of the method is to keep

properties Pl and P2 true through all actions

read, prewrite and certify:

- when ? reads or prtwrltes x, the

interval I(T,x) must be updated according to

property P2;
- when T asks for its certification,

I(T) must be computed according to its

definition. Then if I(?) # 0, T is certified,

otherwise T is rejected.

Moreover when ? is certified, G* is modified

Pmcoodlngs ol the Tenth Intmatlonsl
coniofancs on vary Lugs bsts Bsss8.

Proof: I(T) denotes the strongest constraints

between ? and the validated transactions. More

precisely:

VTk*
*

such that T--c-Tk
0

UI(T) < tk and

VT *

?l!us

such that ? f--I

4
0 LI(T) > t

any tCI() (i.e. LI(?)s tillI(

will be compatible with the dependencies in

Gay- cl

In 4, we sha 11 show that the choice of

t=LI(T) (or UI(T)) has a definite effect on

the future of some 1 ivinq transactions.

When the timestamp t for transaction T

is chosen, adjustment of all intervals I(T’ ,x)

of the living transactions ‘I’ will be done

accordinq to the type of conflicts between T

and ‘I’ on x. Let us recall that these

dependencies are recorded by means of sets of

objects. The adjustment will take the forms:

:inJ therefore so are G* ?, for all other living

transact.ions T’ . The modifications are ma-ie

hy:

. cnoosinq a tinestamp for ? which keeps

on property Pl.
. adjusting the interval I(?’ ,x) of all

transactions ‘I’ which have been in
conflict with I, on any object x used by

‘I.

The following proposition shows how a

timestamp may be associated to a transaction:

Proposition 2. If a transaction ‘I, with

I(T) # 0, asks for certification any t CI(T)

will verify property Pl.

if T’+? then t is the right truncation

point for I(T’,x),

if T-T’ then t is the left truncation

point for I(T’,x),

if T ---T’ two translations are possible:

either T-T’ with appropriate

adjustment of I(T’ ,x)

or T’-T with appropriate

adjustment OP I(?‘,x) and iqnorinq

the writinq of ‘I’ at validation

time (Thomas’ rule).

Slngrpore, August, 1964

382

In order to make the method useful in

practice, it is necessary to “forget”

validated transactions. This is done, as in TO

methods, by timestamping objects: to each

object are associated the highest timestamps

(noted respectively R(x) and W(x)) of the

validated transactions which have read or
prewritten x. With these timestamps, the
actions read and prewrite may use proposition

3 to keep on property P2.

Proposition 3. When a transaction T reads

[resp . prewritesl an object x, fixing
LI(T,x) >W(x) [resp. > max(R(x),W(x)>l will

respect the dzpendencies with the validated

transactions T
i under the form TiLT.

Proof: when a transaction T reads x, it

conflicts
*

with all validated transactions T
having prewritten x. (Tk*aT)

k

Since for all Tk , tk<W(x) and since we

set W(x)<LI(T,x) we have tk<UI(T,x).

Similarly when a transaction T prewrites

XI it conflicts with all validated
*

transactions T
* RP

having read or prewritten x

(T,-T or jT,*PqT).
J

Since for’all T.*,

and since we set max i

tj<max (W(x), R(x))

W(x), R(x)) <LI(T,x) we

also have tj < LI(T,x). 0

Thus during a read or prewrite operation

on an object x by a transaction T, only

Tk*-T dependencies between T and validated

transactions Tk* in conflict with T are set up
(Thomas I rule will never be applied in such

cases>.

4. IKPLWENTATION IN A DISTRIBDTED SYSTEM
Data structures local to each site

I(T) which retains the strongest

constraints between T and validated

transactions might be computed upon any

partition of the set of objects, since the

intersection of these intervals would give the

9 ame result as the intersection of I(T,x) on

all objects x accessed by T. Partition by site

seems particularly attractive in a distributed

system.

For each living transaction T which has

accessed to the set Xi of objects on the site

S i, this site manages the interval I(T,Si):

Proceedings of the Tenth lntematlonal
Conkonce on Very Large Data Bases.

I(T,Si)=x$‘x I(T,x) .
i

I(T,Si) is created when T makes its

first access to an object on site Si, and will

be locally updated by site Si either during

further reads and prewrites of the transaction

T on objects located on Si or independently of

T during adjustment following certification of

a transaction T’ having been in conflict with

T on some objects of site Si.

All effective dependencies due to

conflicts between T and validated transactions

on all sites are expressed by:

sit2 I(T,Sj)=siten xTx I(T,x)= I(T) .
J iI j

In order to make the ad j us tment

mentionned hereabove, each site S. also

manages the sets Oreadsct(T, S, f and

Ouriteset(T,Si) which are respectively the set

of objects read by T on Si and the set of

objects prewritten by T on Si . Each site Si

also maintains the set Tlivingset(Si) of all

living transactions known by it.

Access to the objects
In order to detect as soon as possible

that an operation requested by a transaction

is not serializable - and so have a kind of

continuous control - to each transaction T is

associated its current interval It(T). At the

beginning of T, It(T) is initialized as co,&

(the whole set of allowed timestamps). It(T)

is transmitted during each read or prewrite

made by T to the various sites accessed by T.

These sites modify the interval according to

dependency induced by the operation and send

it back to the transaction T. Thus each site

gets a more precise view on the dependencies

involving T which have been set on other

sites.
Notice that now I(T,Si) not only carries

information about the dependencies set on site

si
but also has some knowledge of the

preceding constraints put on It(T). The final

intersection of all I(T,Si) will still give

the same I(T) since although some contraints

will be counted many times, the intersection

will not be affected.

The advantage of using I,(T) which can

be considered as an approximation of I(T), is

that it conveys more information on the

constraints put on T, and therefore may signal

rapidly that a transaction T must be rejected
Singapore, August, 1984

383

when Ic(‘I) = 8. Taking this shortcut into
account, the semantics of operations
tead(x,T,Ic(T)) and ptewrite(x,T,Ic(T)) which
preserves proposition 3 are given below. Each
algorithm is executed on the site Si of the
object x. For these algorithms it is assumed
that the intervals contain only integers.
rr*d(x.T. tp

.(lf TCtllvlnqsct(S)
than I tT,:.k (T)AI(T.S)
alme T~l”inqs:t(S~):. TI:“lnq.at(S,)“~T}:

t (0:-t (T)ftCE(x)+l.+aC:
th.s ,:St CT):
Tread&X hrcrdrct(x)U (?I ;
O+c.dr+t~T.S,~:-Orc.drct~T.Si~U~x~:

H:=(vAl(x).t.I ml:

.xmdu.~~e(Fl:S, .StT))

);

than I (T):=! (T)nI(T.S,)

l lme Tilvln&(S,):- Tllv!nSrst(SI)U(T\:

t 0):-t (f)nlL(r)+l.*alnCt(x)+L.+aC:
1Cr.S I::1 (TIiRit~(COpV(X.T));

,wr,t:xa~(:):tln,tL,ct(x)U{T~:

Owrlttrrt(T.S~):.Owrltcrct~T.S,~U(x}:

M:.(T.tc(Tl):
send~om~ge(n.S,.S(t)))

1:

Local adjustment of the intervala
In order to fulfil property P2,

certification of a transaction T implies
adjustment of intervals of living transactions
T’ in conflict with T, on all sites Si where T
is known as having accessed to some objects.
In order to speed up the search for all

transactions T’ in conflict with T, each site
associates to each object x, the sets

Treadset and Twrtteset(x) of living
transactions which have respectively read or
prewritten x.

The semantics of the procedure
adjust(T,tT) which preserves property P2
through the certification of T with timestamp
tT, is described below. It must be executed on
all sites Si accessed by T.

We have included in this procedure , by
means of the procedure swap , the
validation phase of T which corresponds to the
copy of the new values of objects ptewritten
by T into the part of base managed by Si.

On each site the adjustment of intervals
following the certification of T must not
intetf ete with processing of reads or
ptewrites issued by other transactions T* :

Proceedings of the Tenth Intwnational

Conftronce on Very Large Data Beme.
384

Pot that reason, the procedure adjust must be
considered, on each site, as a ctitlcal
section which must be executed in mutual
exclusion with read and prewrite operations .
peocadur~ l djust(T,tT)

-(foe xCOrexdrat(T,SL) &

(for T’CTwrLtexat(x) do

I(T’,SI):-I(T’,SL)nCtT+l,+“[;
L(x):-mxx(L(x),t 1.

Tr~.dr~t(x):-TreTd:~t(x)-(To;
for x ~OurtteratjT,Si) do

(for T’E:Traadxet(x) do
I(T’,S,):-I(T’,S~)nCO,t,-11;

for T’CIwritasat(x) do
I(T’,SI):-I(T’,SL)nCt,+l,+O[;

E(x):-t *

Twr‘te.:;(x):-r*rlte..t(x)-ITl;
m+x.copy(x,T)));

1;

Tlivi~m~t(Si):-Tltv~nSaat(SL)-~T~

wtk. This critical section may be shortened
by decomposing the procedure in many critical
secttons in order to exclude selectively the
processing of read, and of pttwtites depending
on the part of the adjustment which is made.

The protocol of disttlbutad cettificatlon
The certificatioh of a transaction T is

triggered at the end of its readlprewrite
phase by the broadcasting of the message
cettify(T,Ic(T)) to all sites managing objects
used by T. The processing of this message on
each site starts the certification protocol.
Let us notice that it is necessary to insure
that all concerned sites process the
certifications in the same order in case of
simultaneous ends of several conflicting
transactions.

When commmication between sites uses an
unique broadcasting medium (Ethernet for

instance) reception order of messages is the
same on all sites. In this case, it is
sufficient that certification messages are
processed in the order of their reception to
fulfil the previous condition. On the other
hand, when the sites are linked togtthtr by a
general network, the global ordtrtng of

certification messages must be done using a
special mtchanism like synchronization by
times tamps [Lamport 781 or by circulating
token CLeLann 781 not described here.

In the proposed protocol, no site plays
a privileged role. On each site Si concerned
by the certification of T, protocol consists
in 3 phases:

Singapore, August, 1884

- a proposal phase when Si broadcasts
its I(T,Si) to all other sites and waits
for their proposals.
- a choice
I(T)= 3 I(T,Sj)

phase when Si computes
which will thus be the

same on all sites, and then applies the
serialization criterion (cf.
proposition 1): if I(T)=0 then T is
rejected, otherwise a timestamp value t T
is chosen in I(T) to be associated to T
(cf. proposition 2). The protocol must
ensure that all the sites will choose
the same value tT. Choice of tT=UI(T)
fulfils this condition ,for instance.
Other choices will be discussed later.
- an adjustment phase for the intervals
of other living transactions T' which
includes also the validation of 'I.

V
1 I all propolals

propo~a(I(t.s,)1
cattlfT(T.fc(T))

Between the instants (1) and (4) the
site Si may process read and prewrite messages
issued by other transactions but no other
certification message. An optimization would
allow the simultaneous processing of
transactions'certifications which did not
conflict between them on a given site.

The processing of the message
certify(T,Ic(T)) received by site Si is
described below. Each site Si is assuned to
know all the other ones involved in
certification of T. the critical section is
bracketed with I<' and I>'.

ccrttfl (T,I~(T))
=(I(f.S1):=IC(T)nI(TISI):
bro~dcaat-ee~o~se(pro~ae(T.I(T.S‘))):
wait for the proposaln from S1,S2,...,Sn;

:
(when all propoailr have been rccatved }

if I(T)!@
I(T):=nI(T.SJ);

then reject(T)
alma (choooa(tT) ;

<&JWt(T, tT)>) I j

This protocol may be improved by not
letting wait a site which has detected that
I(T,Si)=Q , i.e. T must be rejected. Later on,
all other sites will take the same decision in

Proceedings of the Tenth International
Conference on Very Large Data Bases.

their choice phase.

Choice of the certification timestamp
During the certification of T, each site

S
i must apply an identical strategy for

choosing tT in I(T) , for instance tT=LI(T).
This choice may have identifiable effects on
other living transactions T' in conflict with
T. If we note T'B those which have only read
objects and 'I' p those which have prewritten,
the value tT will truncate the intervals of

T'P on the 1eFt and those of TtR on the right.
Choosing tT=LI(T) leaves both the

greatest interval for each TIP and the
smallest for each T'B. This tends to decrease
risk of rejection for transactions TIP and
simultaneously increase that for T'B. Choosing
tT=UI(T) would have the reverse effect.

Such a definite effect can be considered
as a forward control. With more information
about living transactions, other choices could
be devised for minimizing the nurr,ber of
rejection3 for instance.

Starvation
The method may be adapted to avoid

starvation. A transaction which wants to avoid
starvation must broadcast to all sites a
prioritary-certify message at start time. On
each site, processing of this message will
start a protection phase ending with the
certification of 'I. During this protection
phase all certifications -prioritary or not -
will be delayed; the reads and prewrites will
be done as usual.

In other words, the method forces all
other transactions to be certified after the
complete execution of T. Therefore only
dependencies of type k T+ T will be set
during T's life, since dependencies of type
T-Tk* are only possible if Tk is certified
after the beginning of T, which has been
avoided during the protection phase.
Consequently no circuit will occur in G* T and
T will be certified sucessfully.

5. CONCLUSION
By classifying various CCMs according to

the type of dependencies they take into'
account, we have been able to make their
limitations clear. Such an approach shows that
there exists a continum of methods between
continuous control and control by

Singeporn, August, 1984

certification.
In our method, use of intervals of

timestamps allows us to surmatize dependencies
in C*
T-T;

out
rt

without washing those of type

. It becomes then possible to accept a
chronological order of certifications
different from the serialization order, which
avoids arbitrary rejections.

Since the intervals of timestamps are
broken into locally managed intervals on each
site, without needing any synchronization
messages before the certification step, our
method is particularly well suited to a
distributed environment.

[Badal 791 Badal D.2.
Correctneso of concurrency control and
implications in distributed databases.
Proc. COMPSAC 79, Chicago, 1979.

[Bayer 821 Bayer R., Elhardt K., Heigert
J .., Reiser A.
Dynamic timestamp allocation for
transactions izddatabase systems.
Proc. of the 2 International Symposiwn
on Distributed Data Bases, Berlin,
sept.1982.

[Bernstein 813 Bernstein Ph., Goodman N.
Concurrency control in distributed
database systems.
Computing Surveys, vol. 13, n 2, june
1981.

[Bhargava 821 Bhargava B.
Resiliency features of the optimistic
concurrency control approach for
distributed database systems.
Proc . 2nd Symposiun on Reliability in
Distributed Software and DBS .
Pittsburgh, july 1982.

[Cornafion 811 Cornafion, nom collectif
Systkmes informatiques ripartis :
concepts et techniques.
Ed. Dunod, 1981.

[. Dewitt 801 Dewitt D.J., WiLkinson W .K.
Database concurrency control in local
broadcast networks.
Computer Sciences TR 396, Univ. of
Wisconsin, Madison, august 1980.

[Eswaran 761 Eswaran K.P., Gray J.N., Lorie
R.A., Traiqer I.L.
The notions of consistency and predicate
locks in a database system.
km. ACM 19,11, nov. 1976, pp 624-633.

[Haerder 821 Haerder T.
Observations on optimistic concurrency
control schemas.
RR 3645, IBM Research Laboratory, San
Jose, act. 1982.

[Kung 811 Kung H.T., Robinson J.T.
On optimistic methods for concurrency
control.
ACM Transactions on Database Systems,
vol 6, n 2, june 1981, pp 213-226.

[Lamport 781 Lamport L.
Time, clocks and the ordering of events
in a distributed system.
Com. ACM, vol 21, 7, juLy 1978.

Ctausen 821 Lausen G.
Concurrency control in database sys terns :
a step towards the integration of
optimistic methods and locking.
Proc. ACM Conf., Dallas, Oct. 1982.

Ci,e Lann 781 Le Lann C.
Algorithms for distributed data sharing
systems which use tickets.
Proc. of the 3rd workshop on Distributed
Data Management and Computer Network,
Berkeley, aug. 1978.

[Papadimitriou 791 Papadimitriou C.H.
Serializability OP concurrent updates.
J. ACM 26,4, act. 1979, pp 631-653.

[Reed 781 Reed D.P.
Naming and synchronization in a
decentralized computer system.
Ph.D dissertation, Dept. of Electrical
Engineering, MIT Cambridge, blase, Sept.
1978.

386

[Rosenkrantz 781 Rosenkrantz D.J., Stearns
R.E., Lewis P.M.
System level concurrency control for
distributed database system.
ACM Transactions on Database Systems,
vol 3, 2, june 1978, pp 178-198.

[Schlageter 811 Schlageter G.
Optimistic methods for concurrency
control in distributed database systems.
Proc. 7 th Conf. on Very Large Databases,
Cannes, Sept. 81

[Thomas 791 Thomas R.H.
A solution to the concurrency control
problem for multiple copy databases.
Proc. 1978 COMPCON Conf . (IEEE)
New-York.

[Traiger 821 Traiger I., Gray J., Galtieri,
Lindsay B.
Transactions and consistency in
distributed database systems.
ACM Transactions on Database Systems,
vol. 7, n 3, Sept. 82.

[Viemont 821 Viemont Y., Gardarin G.
A distributed concurrency control
algorithm based on transaction commit
ordering.
Proc. FTCS - 12, Los Angeles, 1982.

Proceedlng8 of the Tenth Intematlonal
Confwenca on Vary Large Data Bases.

Blngapore, August, 1994

387

