
HASHING METHODS AND RELATIONAL ALGEBRA OPERATIONS

Kjell Bratbergsengen

Department of Computer Science, Norwegian Institute of Technology
University of Trondheim, N-7034 Trondheim-NTH, Norway

Abstras!i

This paper present algorithms for relational
algebra and set operations based on hashing.
Execution times are computed and performance is
compared to standard methods based on nested loop
and sort-merge. The algorithms are intended for
use on a monoprocessor computer with standard
disks for data base storage. It is indicated
however that hashing methods are well suited to
multi processor or especially multi machine data-
base machines. The relational algebra operatrons
described in this paper are under implementation
In TECHRA (TECHBC), a database system especially
designed to meet the needs of technical appli-
cations, like CAD systems, utility maps, oil
field exploration, etc.

1. INTRODUCTION

The algebra operations we consider in this paper
1s projection, equi-join, division, union, diff-
erence, intersection and aggregate functions.
Selection and inequi-joins are not considered.
The basic problem of all these operations is
finding records with the same "key". In projec-
tion, union and difference duplicates are
searched for and eventually thrown away. In
intersection and join duplicates are kept. And
finally in division and aggregate functions,
records with equal keys are grouped together.

EfficLent execution of relational algebra have

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Bose Endowment. To copy otherwise, or to republish, requires (I fee
and/or special permission from the Endowment.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

stimulated creativaty of many researchers.
Inventive architectures have been proposed ; RAP
(OZKA751, CASSM (SU75, LIPO?R), CAFS (MALL791,
RELACS (OLIV79). SURE (LEIL78). DIRECT IOEWI791,
ASTRA (EIRATBO). LUCAS (KRlJ783).

However, we are in favor of the standing taken by
Dewitt and Boral in BORA83:

“Our assertion is that highly parallel highper-
formance database machines are predicated on the
availability of mass storage technologies that
have not and probably will not emerge as com-
mercially viable products."

Relational database systems should use con-
ventional mass storage technology, and it should
be a more fruitful approach to evaluate methods
and algorithms for relational algebra and set
operations prior to building special purpose
hardware. No hardware can make up for poorly
designed algorithms. Commercially available sys--
terns to day are based on standard disks for
database storage, IDM, INGRES, MIMER. ORACLE, . . .

It is generally accepted that there is three main
algorithms for doing relational algebra
operations: nested loop, sort-merge and hashing.

This paper presents three areas for employment of
hashing methods: multiple key comparison, problem
partitioning and filter techniques. Multiple key
comparison is used in nested loop algorithms for
algebra operations. Sorting puts data into a
higher degree of order than necessary for doing
algebra operations. All algebra and set opera-
tions except select and in-equi joins turns out
to end up in “how to bring together records with
some equal key” as the basic problem. For the
sole purpose of doing relational algebra, there
is no use in having those keys in ascending or
descending order. And still sorting seems to be
the standard method used in for example INGRES
and IDM, see BITT83. Also textbooks state that
* :u r . . ,117 id'. i. '. I, ,: s I: C 0 r n a t u r a 1 3 0 11~ ” and “We
r-u~~cludt: that we cannot now improve on sort.-merge
for calculating the natural join”, HERR84 pages
177 and 181.

Singapore, August, 1984

323

Methods based on hashing have many merits, and
seems to be much underrated. One exception 1s in
a recent article written by Valduricz and
Gardarln. VALOR). However, they are focusing on
multiprocessor database computers, and leaves out
the detailed evaluation of hashing methods in a
monoprocessor system.

The algorithms discussed in this paper are last
resort algorithms, i.e. we are not considering
optlmrzation based on indices or preordered rela-
tions.

In the following we will develope several timing
formulas I and the following notation is used:

A
B

R
nA, 116, nR -
n
lA.lg,lR -
1 .,
VA.VD.VR -
V -

b
.s -

ta
tr
tc
th
tm

te

W

F
d
G

N

Ii

first or only operand
second operand, A is always smaller or
equal to B
resulting table
number of records in table A. B and R
number of records in general.
record length in table A, B and R
record length i general.
data volume in bytes.
operand volume, in general.
block size in bytes.
number of page in workspace.
total transport time for one page
rotational time
time for comparing two records.
time for computing one hash address
time to move one record in working
storage
time for putting one record into
hashed workspace, te=th+tm.
number of split or merge stages.
number of elements in filter.
filter density, no. of l-elements/F
number of records in a table after
filtering.
number of subfiles in sort, partitions
in partitioning methods.
workspace, H=s*b. In addition to work-
space, we always need one buffer of
size b for either input or output.

2. ALCORITHHS USED ON NESTEO LOOP

The basic algorithm for doing relational algebra
operations is based on nested loop. Nest.ed loop
is efficient when at least one of the operands
are small, i.e. not many times larger then the
working space. Thruout the pap.er we will mostly
use join to demonstrate and compare the different
methods.

The basic algorithm for nested loop join is:

- Read A or as much as possible of A into
workspace. Attributes not part of join key or
result records are not stored in workspace.
To reduce search time in workspace, records
are organized into short lists. Which list
number is given by a hash formula on the

Proceedlngr ot the Tenth Intomatlonai

Ccnforenco on Voty Large Data Baaee.
324

join key.

- For each record in B check if it has the same
joinkey as any record stored in workspace.
If match; concatenate A and D-records and add
result to result relation.

- Repeat this process for all parts of A.

The execution time for nested loop join is:

Tnlj = vA/b*ta+nA*te l (A into hash lists)
VA/M*(VB/brtatnB*(th*tc))* (Test D on hash lis t)
RV/b*ta + nR*tm (Write result records)

Tnlj =
(VA+VR)*ta/b+VA/M*(VB*ta/brnBr(th+tc))+nR*tm

As it can be seen from this formula, execution
time is depending on available workspace M=s*b.
and page size. Note that one simplification has
been done; paw transport time is constant,
although it increases with page size. The fixed
portion of page transfer time is considered domi-
nating. However, the formula clearly tells us:
the larger b the better. Double buffering should
also be considered.

An important quality of the nested loop algorithm
1s 1ts ability to exploit unequal operand
volumes. This makes it better then sorting
methods in many practical situations.

3. SORTINC METHODS

Sorting is a safe method. but never the best,
except when tables are ordered in advance or when
the result have to be sorted on operation key.

The cost of doing sort-merge join is: initial
sort and multiway merge of both operands, and
finally merging the two operands. The sort pro-
cess itself can be optimized (see for instance
KNUT73 or DRAT73). The following calculations are
based on internal sort i.e. quicksort or similar
methods for the initial sort phase and fixed s-
way merge for the merge phase. Internal sort
gives gives initial subfiles of length II
(available workspace) rather than an average of
2ftl when the reservoir sorting method is

employed. However, using the reservoir method on
variable length records involves dynamic memory
allocation, and the possible gain from longer
subfiles is likely to disappear in memory
management processing.

Tsort = 2*ta*Vlb + (tc*logp~H/1)*tm)*n +
w * (2*V/b + n*(tm + tc*log2s)

W is the average number of merge stages, and w
is found from the number of initial subfiles, N
and the number of available input buffers, s.
N = trunc((V-1)/M) -* 1

If N is 1 we have one subfile and the merge phase

Singapore, Augurt, 1984

is skipped. If we do merge at all, then all
data must be read at least once. When N is larger
then s, a balanced tree merge pattern gives:

w-q - trunc((s**q-NIlis-11)/N.

4 = trunc(loga(N-111 - 1

To summarize:

(1)

if N=l w=O.O
if 1 < N <- s : w=l .o
if N>s w=w(s,N), see (1)

Tsmj=
TsortA+Tsort6*ta*(VA*VB+V6*VR~/bt(nA+n6)*tc+nR*t.m

The size of R depends on the selectivity factor.

The problems with sort-merge join is:

1. Initial sort takes one extra pass of all
data, and it is CPU-demanding.

2. Sorting never takes advantage of different
operand sizes.

4. HASHING USED TO PROBLEbl PARTITIONINC

Nested loop is the best algorithm when at least
one operand is contained in working space. Our
strategy now is to partition the larger task into
smaller subtasks where the nested loop algorithm
can be employed. This is a classic application of
the divide and conquer principle, see for
instance BENT60.

The problem remaining is problem partitioning.
Again hashing comes to help. Two potentially
equal joinkey values certainly must give the same
hash value. Fig. 1 gives an example of the join
operation. The problem is divided into 3 sub-
tasks. using joinkey mod 3 as the hashing
algorithm.

The partitioning process requires at least one

input buffer and s output buffers where s is the
number of partitions. It should be noted that

double input buffering probably will pay off. The
output buffers should also be kept large because
i: i; important to keep the number of accesses
down. Without double buffering, and with a fixed
page size b, the partitioning cost will be:

Tp = 2*ta*V/b t n*(th+tm)

The number of partitions is now limited to s. the
number of output buffers.

In general, the number of partitions is:
N = truncIlVA-1)/M) + 1, and there is a trade
off between block size, split factor and the

number of split stages. The problem is analog to
finding the optimum merge pattern in sort merge.

:
: 4 :
: 6 :
: 1 :
: 9:
: 19 :
: 14 :
: 17 :
: 11 :
: 16 :

:
: 6:
: 10 :
: 15 :
: 1 :
: 13 :
: 16 :
: 16 :
: 17 :

:9::15: :l::T: : 17 : : 11 :

: 16 : : 16 : : 19 : : 13 : :ll: : :

: : : : : 16 : : : : :
; \. ; ; \;i ; ; \] ;

LEOA : :
: 6 : : 17 :
: 16 : :

: : :

Fig. 1: Table partitioning using hashing on join-
keys. Subtable is found from the hashing
formula : subtable :r joinkey mod 3.

Comparing sorting and partitioning, without
further analysis we can conclude:
1) Partitioning does not require initial sort

and thus saves one pass of the data and
CPU time, and

7) Computing a hash value should be quicker than
selecting the smallest key among s keys as is
required during an s-way merge.

For all two-operand relational set- and algebra
operations (except difference) the number of
partitions is always given by the smallest
operand, This helps a lot when operand sizes
differ. Sorting is not able to exploit this, the
number of subfiles after initial sort is
trunc((V-l)/HI+l) and they have to be merged
separatly for both operands.

Finding an optimum split pattern

Assumptions: Input and output buffers have the
same size. There is no double buffering or 110
overlapping. The optimum split pattern is a
balanced tree of some kind. Block transport time
is constant; i.e. not depending on block size.

Proceedings ol the Tenth International
Conference on Very Large Data Bases.

325

If the file has to go into 7 subf iles

Singapore, August, 1984

(partitions). fig. 2 shows two possible patterns:

Y Y

Alternative 1 Alternative 2

Fig. 2: Alternative split patterns. Assuming the
same amount of workspace available In both alter-
natives, the block size in alternative 1 is less
than in alternative. 2.

AS for merging the average heigth of a balanced
tree is wts,Nl. see formula (1).

As for sorting there is some integer logic
involved. If the number of partitions; N is one
or less. partitioning does not make sense, hence
w=O. If partitioning takes place at all, we have
to scan all records at least once.

If N <= 1 : w=O
if 1 < N <- s : w:l
if N>s : w=wls,N). see formula (1)

The sheer transportation in partitioning takes:

Tt = Z*w*ta*V/b

Given a certain workspace H, we can vary the
number of output buffers s, to find a value on s
which minimizes Tt. A large s will reduce w, but
at the same time the number of blocks will
increase, and the increased number of page
transfers will cost time. We can illustrate these
effects by computing the transportation times for
the files shown in fig. 2.

Alternative 1 Alternative 2

Block size
w(s,Nl
Total time

M/5
1017

100/7*ta*V/H

HI3
1317

70/7*ta*V/I4

The larger page size of alternative 2 is best
although only 3/7 of the total data volume is
scanned twice in alternative 1, and 617 of the
total volume is scanned twice in alternative 2.

In general we can find the best s by derivation
of Tt with respect to s. Substituting for b:M/s
and w=log s IV/H) we get Tt as a function of s.
We use an approximation for w to make Tt a
continous function.

Tt = (2 * ta * V * In (V/M) I H) * (s/in(s))

s/ln(sI has its minimum value for s=e=2.71. s
must be an integer, and the best value of s is 3.
Under the current assumptions the available work-
space should always be used as 3 buffers.

Procredlngs of the Tenth International
Conterence on Very Large Dots 0ases.

326

Increasing M reduces Tt by reducing the number of
partitions, but if II is made larger than 3 tracks
the block transportation time ta is no longer
constant, but will probably jump to ta’ = ta*tr.
tr is rotation time. Taking CPU-tJme into account
also tends to increase the optimum number of
buffers because CPU-time depends on w, and w
decreases with larger s.

Taking all ‘expenses” into account the time to
partition a file takes:

Tp = w * (Z*ta*V/b .+ n*(th+tm))

The time to do a join or in fact any two-operand
operation is:

Tphj E w * Z*ta*(VA+VB)/b + (split A and 61
w * (nA+nB)*(th+tm) ’ (- - - 1

(VA+VB)*ta/b+nA*te+nB*tc l (Nested loop I
VR*ta/b+nR*tm (Write result I

The size of R depends on selectivity and record
length of R-records.

Time for projection is:

Tphp =
w * (Z*ta*VA/b l nA*(th+tml I+ (Split A 1
ta*VA/b + te*nA + (Nested loop I
ta*VR/b + tm*nR (Write result)

Aggregate functions

Aggregate functions based on grouping easily lend
themselves to partitioning methods. The table is
partitioned based on the grouping attribute(s).
Then each subtable is handled separatly. A hash-
list on the grouping attribute is established,
and the actual aggregate function is performed at

the same time. The only special problem with
aggregate functions is that it is hard to eSti-
mate the required workspace necessary to hold the
resulting subtable. The maximum size is one

record in every group. which in most cases gives
far to many groups.

Optimization of disk usage

Sorting requires a certain sequence in reading
pages from files. It is possible to prefetch

pages, this requires more buffers. Hashing gives
more freedom, pages within one bucket (subfile)
can be read in any sequence. The prefetch

mechanism can be simpler or at least give the
same efficiency with fewer buffers.

Problems with variable bucket size

All our calculations so far have not taken into
account the problem with variable bucket size. We
have an overflow problem simil.ar to the overflow

Singapore, Augurt, 1984

problem in hashed file allocation. The bucket
size is norm‘ally very large, several hundred
records, and using fill factors 0.7 to 0.9 the
overflow percentage will be low. The following
table gives the percentage of buckets having more
records than bucket size. These values are
obtained by simulation.

bucket fill factor

sze 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 l.lQ
40 0 2 5 11 22 33 44 57 70
80 0 0 1 5 14 20 46 64 77

160 0 0 1 4 10 24 46 71 85
320 0 0 1 4 7 20 40 73 07

There is another alternative, however: We may
operate with larger bucket sizes than s*b, the
workspace. On the positive side we can save data
transportation during partition, on the negative
side we will have to scan the second operand
several times during the nested loop phase. The
cost of this approach can be analyzed: Let x be
the bucket size in number of work space areas.
The time to perform a join counting only tran-
sportation time is:

TX = (2*wx*(VA*VB1 + VA + x*V8 l VRI * ta/b

Nx = VA/(x*s*b) and wx = logs(NxJ

We would like to find a value of x which mini-
mizes lx. Derivation of TX on x and equating this
to 0 gives:

2 * (VA+VB) = x * VE * In(s)

or x = 2 * (VA l VB) I L VB * In(s))

When VA equal VB and s is small we have:

s:2:3:4:6:6:10;
x:6:3:3:2:2:2:

For larger s and VEl larger than VA. x comes

closer to 1 and even lower. However, 1 is the

lowest valid value on x.

S. APPLICATION OF HASH FILTERS

Application of hash filters is described in
BABE79 and VALDBC among other places. Hash

filters are used to eliminate non-candidate

records from the rest of the process. Reducing

data volume as early as possible in heavy opera-
tions might influence the total processing time

considerably.

The filter itself is stored as bit Vector. Let F

be the number of elements in the filter. n is the
number of keys in the table for which the filter
is built. When the keys are randomly distributed
an average of G = F * (l-exp(-n/F) bits are set
in the filter. Bit h is set in the filter if
h=hash(operationkey).

Proceedings of the Tenth International

Conference on Very Large Data Bases.
327

We will discuss the use of hash filters in two-
operand operations, and we will use join as an
example. The filter is set up based on the
operand having the least number of distinct keys.
In practice this can not be known in advance, and
the table with the least number of tuples is
taken. Then the B-operand is read thru this fil-
ter, and B is reduced to B’. The volume of B’ is:

VB' = VE * (l-exp(-nA/Fl

If A is passed more times, a similar filter is
made based on B and this is used when reading A.
Then VA' = VA * (l-exp(nB/F). This process might
be repeated several times, and when a new and
independant hash formula is used for every pass,
the data volume is reduced correspondingly.. The
figure 3 shows this for splitting. We assume
there is a fixed amount of storage avaiable for
the filter. Wring splitting the tables are
reduced by a factor of s for every pass, hence
the filter density d=n/F decreases, and d is a
function of s and the pass number p,
d(s,p) = n/(s**(p-l)*F).

operand A operand B

read A make filter FAl

write A = A(l,s)

\

read B

use filter FAl

make filter FABl write B'=B(l,s)

read A = All,s)

use FABl / make filter FA2

write A'= A(2,s)

\

read B'=B(l,s)

use filter FA2

make filter FAB2 write B"=8(2.s)

read A'=A(2,s)

use FA82 / make filter FA3 *

write A"=A(3,s) *

* *

* *

Fig. 3: Application of filters in a two operand
relational operation.

Singapore, August, 1984

After w passes:

El(w,sl = B * (l-exp(-nA/F)I
* (I-expl-nA/(s*F)))
* Il-expl-nA/(s**Z*F))l *

. . . . * It-exp(-nA/(s**(w-l)*Fl

w- 1
Blw,sl = B * Tl - exp(-nA/(F*s**k))

k=O

Similarly:

A(w.s) = A * Il-expl-nB/F))
* (l-expl-nB/(s*F)))
* (l-exp(-nB/(s**Z*FIl) *

. . . . * (I-exp(-nB/(s**(w-Z)*F)))

w-2
A(w,s) = A* rl - exp(-nB/lF*s**k))

k=O

Both functions are extremely rapidly decreasing
with increasing w and s. The total transportation
volume for some values of d and w is tabulated
below.

filter density d
W 0.2 0.3 0.5 0.5 0.6 0.1 0.8 0.9 1.0

_I_______---------------------------------------
1 3.2 3.3 3.3 3.4 3.5 3.5 3.6 3.6 3.6
2 1.4 b.6 4.6 5.0 5.2 5.2 5.6 5.8 5.9
3 6.3 4.7 5.0 5.3 5.6 5.9 6.2 6.4 6.1
b 5.0 5.3 5.6 5.9 6.2 6.5 6.9
5 5.9 6.2 6.6 6.9

____-__------_------_I__________________--------

Table 1: Number of table reads or writes using
hash filters in two operand operations. w is
number of stages, both files have the same size.
Each stage requires 4.0 reads or writes without
filters.

In this calculation we have not counted for the
records actually going into the resulting table.
How many records would remain is depending on
join selectivity. However, not many stray records
will be found in the tables after two or three
passes thru the filter.

Optimum filtor efficiency.

Given a certain filter space F and a number of
keys n. there is a choice of how to use the
filter space. Should it be used as one filter
with density d = nlF, or should it be partitioned
into s filters each of density d = s*nlF. The
filtering effect of s different filters of
density d(s) is

g(s) = (I-exp(-s*n/FII l * s

This function is tabulated below.

Pm ot the Tenth Intematlond
contarence on very Large Date B8e.e.

Total filtering effect, 1 to 6 filters
n/F 1 2 3 5 5 6 7 8
________________-_______________^_______-----
0.1 .lO .03 .02 x.01 .Ol .Ol .Ol .I31
0.2 .lB .ll *.09 .09 .lO .12 .14 .16
0.3 .26 *.20 .21 -24 .26 .3c .60 -57
0.4 .33 t.30 .34 .41 .40 .57 .64 .72
0.5 *.39 .40 .bl .56 .65 .14 .81 .86
0.6 *.25 .b9 .50 .68 .77 .85 .90 .94
0.7 *.50 .5t -66 .78 .66 .91 .95 .97
0.8 *.55 .64 .75 .65 .91 .95 .97 .99
0.9 **59 .?O .Bl .90 .95 .97 .99 .99
1.0 *.63 .75 .66 .93 .91 .99 .99 1.00
____________________-------------------------

Table 2: Total filtering effect as a function of
total filter density n/F, and number of filters.
The optimum number of serial filters is starred.
For lower densities many serial filters gives the
best effect.

For den$ities d-O.5 or higher, one filter with
minimum density is best. For low densities
several serial filters is best. The best
combinations are starred in table 2.

Hash filters and projection

Hash filters are not easily adapted to pro jec-
tion. Normally rather few records will be
removed, and the effect then is small.

Hash filters and sorting

When sorting is used in two-operand algebra
operations filters are readily used. Best effect
is attained when both filters are established
during initial sort phase. Then the B operand is
reduced before it enters the initial sort phase.
At best the A operand can be reduced after the
first merge stage. Further reduction as in
partitioning is not feasible.

6eneral usage of filters

Filters should be established as early as
possible, and could be used to reduce operands at
a very *early stage in the process. This is a
general technique, and is not discussed further
in this paper.

6. COMPARISON OF IIETHODS

6eneral assumptions

Reading and writing to disk takes the same time,
there is no cache memory for the disk. There is
no overlapping of IO and processing, although
this should be sought in real implementations. We
have much higher estimates on CPU consumption
than for instance used in DEWIB3. All our esti-
mates are based on a monoprocessor computer with

Singapore, August, 1984

328

a capacity similar to VAX750.

To test whether two keys are equal takes comput
ing of a hashvalue and performing the actual
comparison. The establishing of hashlists
involves moving records from input buffer to the
hashlist. Records are of variable length which
complicates the initial sort phase in the sort
merge process. Attributes are not of fixed length
only, comparing two records also involves some
record format evaluation.

Values used in the following computations:

ta = 17.0 ms block transportation time,
includes positioning.

te = 0.5 ms establish record in hashlist
th = 0.25 ms test if record is in hashlist
tc = 0.25 ms compare two records in work.

space.
tm = 0.1 ms move one record
1 = 100 B number of bytes per record.

Space for filters iS not counted with the work

space. The size of the result table depends of
selectivity and comes in addition to all times
shown in the following comparisons.

The different methods are named:
NL - nested loop join
SM - sort merge join
PH - partition hash join
PHF - partition hash with filter join.

Two important cases are analyzed: 1) Both

operands have the same size (even operands). and

2) Operand B has a volume 9 times larger than A
(uneven operands).

Nested loop versus sort-merge

Figures 4 and 5 show join execution times as a

function of operand volume for all methods dis-

cussed in this paper. As seen in fig.4 the nested

loop algorithm is better than any method for

small volumes. Another important effect is clear-
1Y demonstrated: When one operand becomes much

larger than the other; nested loop takes advant-

age of this, but it is a disadvantage for sort-
merge.

Nested loop is hopelessly inadequatd for large
operand volumes. The nested loop method is much

depending on available workspace. This can be

seen in fig. 10. Computations indicate that

nested loop is better than sort merge when

operand volume is less than 4 to 12 times the

workspace. This is for equally sized operands.
Generally it seems that nested loop is better

than sort merge when the smallest operand is less
than 3 to 8 times the workspace.

As seen especially in fig. 10 sort-merge is not

clever to take advantage of larger workspace.

This was indeed unexpected, but the computation

time increases with more buffer space, SO much

Proceedings of the Tenth International

Conference on Very Large Data Bases.
329

that there is almost no gain after a certain

size. If we use a faster processor the operation
becomes IO-bound and the picture will change.

Fig. 4 Operation times as a function of total
operand volume. Buffer size is 4K and the number
of buffers is 16, giving a total workspace of 64
KB. Even operands.

f
Time in seconds

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 MB

Fig. 5 Operation times as a function of total

operand volume. Buffer size is CK and the number

of buffers is 16, giving a total workspace of 64
KB. Uneven operands, VB=S*VA.

Sort merge versus partitioning

Partitioning always performs better than sort-
merge. The difference seems to grow with larger
workspace, and to shrink with larger operand

volumes. This becomes more clear when we look

Singapore, August, 1994

separately on [O-time and CPU-time. For even
sized operands Tsmj is proportional to V(3+2*w)

where V=VA*VB. and lphj is proportional to
v(l*i!*w). The quotient q:Tsmj/Tphj is
(3*2*w)/(1+2*w). w can take values 0, 1 and is
continous above 1.0. A brief tabulation of the
quotient yivor:

kL0:1:2:3:4:5:G;
q: 3 : 1.66: 1.40: 1.29: 1.22: 1.16: 1.16:

w have the same value for both operands and also
in both methods.

L

1 c
0.1 0.4 1.6 6.4 25.6 MB

Fig. 6 Partition/sort-merge quotient as a func-
tion of workspace and operand volume. Workspace
in no. of buffers. varying from 2 to 512. Page
size is CKB. Even operands, total. operand size is
6.4 HB.

8 Tph/- 7 \

2

t

-
\---

l\
01 OA 1.6 6.4 25.6 MB

fig. 7 Partition/sort-merge quotient as a func-
tion of workspace and operand volume. Workspace
in no. of 4KB buffers. varying from 2 to 512.
Uneven operands, total operand volume is 6.4 MB.

CPU- time spent on each record grows with w for
both methods. For sorting it also grows with
O(log St41 in initial sorting and with
during

O(log2 s)
merge. When each comparison takes about

250 microseconds this can add considerably to the
processing time. Variable processsing time in a

Pro~eedlngr of the Tenth Intematlonal
Conference on Very Large Data Bases.

1HB buffer and 4KB pages amounts to about 5ms per
record. Using a large workspace does not add to
processing cost for partitioning. On the other

side, sorting can even take longer time when more
workspace is used. This is seen in fig.10.

Effect of unequal size of operrnds

Both nested loop and partitioning takes advantage
of uneven operands. This is demonstrated in figs.
6 and 9. However, nested loop is much more
sensitive to available workspace and uneven

operand volumes than partitioning. These effects

must be considered in the selection of method for
a given task. When even '2 1 2. e J 0uerJnds are

joi rlrd ; nested loop is always chosen when VA iS
less then 3*H i.e. V<6*H. When operands differ
the crossover point moves. For the case shown in

fig. 9, nested loop is the preferred method when
VA is less than 2*H, i.e. V<20*W as VA=V/lO.

Fig. 8 Improvement factor, operation time for
even operands over operation time for uneven
operands. When operands are uneven V8=9*VA.

Effect of hrsh filters

The effect of hash filters is an improvement from
0 to about 4, best effect for few buffers in
workspace. The effect is not much affected by
differences in operand sizes, the good character-
istics of partitioning is retained. For really
large volumes the filtering effect is reduced
because of high filter density. Instead of using
all workspace for page buffers, it should be
considered to use more space to reduce filter
density. It should be noted that the filtering
effect is reduced if selectivity is high, i.e. a
large proportion of records will be included in
the result table.

Effect of rvrilrble worksprce

Workspace is perhaps the most valuable resource.
The nested loop algorithm has a processing time
lnvcrsely proportional to available workspace.

Slngapom, August, 1984

330

256

1

Operand volume MB

12.6 Partition hash

region / /
6A.

0.1
a

1
32

, Buffer yolume M
128 512

Fig. 9 Choice of method as a function of

available workspace and total operand volume and

relative operand size.

When one operand get room i workspace, nested
loop is 3 times better than both sort-merge and
partitioning. Partitioning will always benefit
from more workspace. As mentioned already, sort-
merge might perform slower with large workspace.
Thus is actally the case in fig. 10. A workspace
of 32 buffers gives a minimum processing time.
When hash filters are used, more than minimum
workspace is virtually vasted.

ld

,
lo‘

10:

10

1

Time in seconds

\

1 e
2 22 23 24 25 26 27 2a 2g s

a 32 128 512 2048 KB

Fig. 10 Processing time as a function of
available workspace. Pages are C KB, operands are
even. Solid lines for a total operand volume of
6.1 ME, dashed lines for 0.8 MB.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Effect of increased page size

Figs. 11 and 12 give examples of the effect of

increased page size. In fig. 11 the total work

space is kept constant at 128 Kg. and the page

size is decreased from 64 KB to 0.25 KB. Large
pages should be used. However, remember that page
transfer time is constant in these computations.
This is almost true for pages less or equal to
one track. When page size is larger than one

f Time in seconds

103..

I

2 22 23 24 25 26 2’ 28 2g
w
s

64 32 16 8 4 2 1 0.5 0.25 KB

Fig. 11 Effect of increasing pagesize while total
workspace is kept constant. Workspace is 128 KB.
Total operand volume is 6.4 MB. Even operands.

103
.t Time in seconds

256 64 16 4 1 KB

Fig. 12 Effect of increasing pagesize while total
workspace is kept constant. Workspace is 512 KB.
Total operand volume is 6.4 MB. Even operands.

Singapore, August, 1984

331

track page transfrr time should be multiplieu
with number of tracks necessary to store a va9e b
Partitioning has a well defined optimum number of

pages, namely 8 pages each 16 KB. This is also a
practical page size. Small pages should be

avoided.

In fig. 12 workspace is 512KB. Still partitioning
have 6 as the optimum number of pages. It should
be noted that nested loop is better then sort-
merge with this workspace.

7. CONCLUSION

For small volumes nested loop methods are
preferable. Partitioning based on hashing is
always superior to sorting. Partitioning methods
are easily extended onto multicell or parallel
systems. Partitioning takes advantage of
different operand sizes. Hashing leaves more
opportunities for disk transfer optimizations
than sorting, because blocks of a subfile might
be read or written in arbitrary order. Filters
are readily combined with partitioning.
Partitioning takes full advantage of large
workspace without degrading performance due to
internal processing as in sort-merge methods. It
is the opininon of the author that hashing and
partitioning are grossly underrated compared to
sort-merge methods. The methods does not require
special purpose hardware, the only exception
might be for extremely parallel and high
performance systems, for instance 5th generation
systems.

REFERENCES

EiABB79 E. Babb “Implementing a Relationai Data
Base by Means of Specialized Hardware' ACM
TOOS vol 5, no 1 March 1979.

BENTBO J.L. Bentley ‘Multidimensional Oivide-and-
Conquer” Communication of the ACM, Vol. 23,
No. 5. April 1980.

BITT83 0. Bitton, 0.). Dewitt, C. Turbyf ill
‘Benchmarking Oatabase Systems. A systematic
Approach. Proceedings 9-th Conference on
VLDB, Florence Oct. 1983.

BITTB3B 0. Bitton, H. Boral 0.3. Dewitt and W.K.
Wilkinson ‘Parallel Algorithms for the
Execution of Relational Database Operations’
ACM Transactions on Oatabase Systems, Vol.
8, No. 3 Sept. 1983.

BITTB3C 0. Bitton and 0.3. OeWit t ‘Duplicate
Record Elimination in Large Data Files” ACM
Transactions on Database Systems, Vol. 8.
No. 2 June 1983.

BLAS77 M.W. Blasgen and K.P. Eswaran ‘Storage and
Access in RElational Databases’ IBM Systems
Journal Vol. 16, No. 4, 1977.

Proceedings of the Tenth International

Conference onVery Large Data Beeee.

BORAB3 ft. Boral and D.J. beWitt “Database Mach-
ines: An Idea Whose Time iS Past? A Critique
of the Future of Database Machines" Oatabase
Machines, Springer-Verlag 1963, ed. H.-O,
Leilich and H. Missikoff. Proceedings Inter-
national Workshop, Munich, Sept. 1983.

BRAT73 K. Bratbergsengen :“Sortering av store
datamengder”, Institutt for databehandling,
1973. (In Norwegian)

BRAT80 K. Bratbergsengen :'A Neighbor Connected
Processor Network for Performing Relational
Algebra Operations’. 5th Workshop on Com-

puter Architecture for Non Numeric PrO-
cessing. Monterey CA. March 1980

BRAT61 K. Bratbergsengen: “Design of a VLSI-chip
for Moving Data in a Hypercube Network”,
Technical Notes, Dept. of Computer Science,
Norwegian institute of Technology, 1961.

BRAT83 K. Bratbergsengen:" The Hypercube as a

Line Switching Network”, Technical Notes,

Dept. of Computer Science, Norwegian Insti-
tute of Technology, 1981.

DEW179 0.1. Dewitt 'DIRECT - A Multiprocessor
Organization for Supporting Relational Oata-
base Management Systems" IEEE Transactions
on Computers, vol C-28, no 6 , June 1979.

DEW179 0.1. Dewitt 'DIRECT - A Multiprocessor
Organization for Supporting Relational Oata-.
base Management Systems" IEEE Transaction of
Computers, June 1979.

DEW181 0.3. Dewitt and P. Hawthorn 'A Performance
Evaluation of Oatabase Machine Architec-
tures’ Proceedings 7-th VLOB Conference
Cannes September 1981.

DEW182 D.J. Dewitt and 0. Friedland ‘Exploiting
Parallelism for the Performance Enhancement
of Non-numeric Applications” National Com-

puter Conference 1982.

EPSTBO R. Epstein and P. Hawthorn ‘Design Oeci-
sions for the Intelligent Database Machine"
National Computer Conference 1960.

KNUT73 D.E. Knuth:“The Art of Computer Program.-
ming * Vol 3, Sort lng and Searching,
Addison-Wesley 1973.

KRlJ283 I. Kruzela "An Associative Array Processor
Supporting a Relational Algebra" Doctoral
Thesis, Department of Computer Engineering.
University of Lund, Sweden, April 1983.

LANG76 G.G. Langdon "A Note on Associative
Proc:essors for Oata Management” ACM Tran-
sactions on Database Systems vo1.3, No.2

June 1978.

Singapore, August, 1984

332

LEIL78 H.O. L.eilich, 6. Stiege, and H.C. Zeidler
"A Search Processor for Data Base Management
Systems", Proc. 4th Conference on Very Large
Databases, 1978.

LIP078 G.J. Lipuvski and S.Y.V. Su "Architectural
Features of CASSM: A Context Addressed Seg-
ment Sequential Memory" Proc. 5th Annual
Symposium on Computer Architecture, Palo
Alto 1978.

MALL79 V.A.J. Maller "The Content Addressable
File Store - CAFS" ICL Technical Journal
Vol. 1 No. 3, November 1979.

MERR84 T.H. Merrett "Relational Information
Systems" Reston Publishing Co. 1984.

DZKA75 E.A Ozkarahan, S.A. Schuster and K.C.

Smith "RAP - An Associative Processor for
Data Ease Management" NCC 1975.

OLIV79 E.J. Oliver "RELACS An Associative Com-
puter Architecture to Support a Relational

Data Model" Ph. D. Dissertation, Syracuse
University, 1979.

su75 S.Y.V. Su and 6.3. Lipovski "CASSM - A Cel-
lular System for Very Large Databases" Proc.
International Conference on Very Large Data-
bases, Sept. 1975.

VALD84 P. Valduriez and G. Gardarin "Join and
Semi-Join Algorithms for a Multiprocessor

Database Machine" Report no 5, Institut de
programmation, Universite P. et M. Curie,

France, Jan 1983 and ACM Transactions on
Database Systems Vo1.9, No. 1, March 1984.

TECH84 "TECHRA Database Management System" Appli-
cation Programmer's Manual, Kongsberg V{pen-
fabrikk, Norway, February 1984.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1994

333

