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Abstras!i 

This paper present algorithms for relational 
algebra and set operations based on hashing. 
Execution times are computed and performance is 
compared to standard methods based on nested loop 
and sort-merge. The algorithms are intended for 
use on a monoprocessor computer with standard 
disks for data base storage. It is indicated 
however that hashing methods are well suited to 
multi processor or especially multi machine data- 
base machines. The relational algebra operatrons 
described in this paper are under implementation 
In TECHRA (TECHBC), a database system especially 
designed to meet the needs of technical appli- 
cations, like CAD systems, utility maps, oil 
field exploration, etc. 

1. INTRODUCTION 

The algebra operations we consider in this paper 
1s projection, equi-join, division, union, diff- 
erence, intersection and aggregate functions. 
Selection and inequi-joins are not considered. 
The basic problem of all these operations is 
finding records with the same "key". In projec- 
tion, union and difference duplicates are 
searched for and eventually thrown away. In 
intersection and join duplicates are kept. And 
finally in division and aggregate functions, 
records with equal keys are grouped together. 

EfficLent execution of relational algebra have 
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stimulated creativaty of many researchers. 
Inventive architectures have been proposed ; RAP 
(OZKA751, CASSM (SU75, LIPO?R), CAFS (MALL791, 
RELACS (OLIV79). SURE (LEIL78). DIRECT IOEWI791, 
ASTRA (EIRATBO). LUCAS (KRlJ783). 

However, we are in favor of the standing taken by 
Dewitt and Boral in BORA83: 

“Our assertion is that highly parallel highper- 
formance database machines are predicated on the 
availability of mass storage technologies that 
have not and probably will not emerge as com- 
mercially viable products." 

Relational database systems should use con- 
ventional mass storage technology, and it should 
be a more fruitful approach to evaluate methods 
and algorithms for relational algebra and set 
operations prior to building special purpose 
hardware. No hardware can make up for poorly 
designed algorithms. Commercially available sys-- 
terns to day are based on standard disks for 
database storage, IDM, INGRES, MIMER. ORACLE, . . . 

It is generally accepted that there is three main 
algorithms for doing relational algebra 
operations: nested loop, sort-merge and hashing. 

This paper presents three areas for employment of 
hashing methods: multiple key comparison, problem 
partitioning and filter techniques. Multiple key 
comparison is used in nested loop algorithms for 
algebra operations. Sorting puts data into a 
higher degree of order than necessary for doing 
algebra operations. All algebra and set opera- 
tions except select and in-equi joins turns out 
to end up in “how to bring together records with 
some equal key” as the basic problem. For the 
sole purpose of doing relational algebra, there 
is no use in having those keys in ascending or 
descending order. And still sorting seems to be 
the standard method used in for example INGRES 
and IDM, see BITT83. Also textbooks state that 
* :u r . . ,117 id'. i. '. I, ,: s I: C 0 r n a t u r a 1 3 0 11~ ” and “We 
r-u~~cludt: that we cannot now improve on sort.-merge 
for calculating the natural join”, HERR84 pages 
177 and 181. 
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Methods based on hashing have many merits, and 
seems to be much underrated. One exception 1s in 
a recent article written by Valduricz and 
Gardarln. VALOR). However, they are focusing on 
multiprocessor database computers, and leaves out 
the detailed evaluation of hashing methods in a 
monoprocessor system. 

The algorithms discussed in this paper are last 
resort algorithms, i.e. we are not considering 
optlmrzation based on indices or preordered rela- 
tions. 

In the following we will develope several timing 
formulas I and the following notation is used: 

A 
B 

R 
nA, 116, nR - 
n 
lA.lg,lR - 
1 ., 
VA.VD.VR - 
V - 

b 
.s - 

ta 
tr 
tc 
th 
tm 

te 

W 

F 
d 
G 

N 

Ii 

first or only operand 
second operand, A is always smaller or 
equal to B 
resulting table 
number of records in table A. B and R 
number of records in general. 
record length in table A, B and R 
record length i general. 
data volume in bytes. 
operand volume, in general. 
block size in bytes. 
number of page in workspace. 
total transport time for one page 
rotational time 
time for comparing two records. 
time for computing one hash address 
time to move one record in working 
storage 
time for putting one record into 
hashed workspace, te=th+tm. 
number of split or merge stages. 
number of elements in filter. 
filter density, no. of l-elements/F 
number of records in a table after 
filtering. 
number of subfiles in sort, partitions 
in partitioning methods. 
workspace, H=s*b. In addition to work- 
space, we always need one buffer of 
size b for either input or output. 

2. ALCORITHHS USED ON NESTEO LOOP 

The basic algorithm for doing relational algebra 
operations is based on nested loop. Nest.ed loop 
is efficient when at least one of the operands 
are small, i.e. not many times larger then the 
working space. Thruout the pap.er we will mostly 
use join to demonstrate and compare the different 
methods. 

The basic algorithm for nested loop join is: 

- Read A or as much as possible of A into 
workspace. Attributes not part of join key or 
result records are not stored in workspace. 
To reduce search time in workspace, records 
are organized into short lists. Which list 
number is given by a hash formula on the 
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join key. 

- For each record in B check if it has the same 
joinkey as any record stored in workspace. 
If match; concatenate A and D-records and add 
result to result relation. 

- Repeat this process for all parts of A. 

The execution time for nested loop join is: 

Tnlj = vA/b*ta+nA*te l (A into hash lists ) 
VA/M*(VB/brtatnB*(th*tc))* (Test D on hash lis t) 
RV/b*ta + nR*tm (Write result records) 

Tnlj = 
(VA+VR)*ta/b+VA/M*(VB*ta/brnBr(th+tc))+nR*tm 

As it can be seen from this formula, execution 
time is depending on available workspace M=s*b. 
and page size. Note that one simplification has 
been done; paw transport time is constant, 
although it increases with page size. The fixed 
portion of page transfer time is considered domi- 
nating. However, the formula clearly tells us: 
the larger b the better. Double buffering should 
also be considered. 

An important quality of the nested loop algorithm 
1s 1ts ability to exploit unequal operand 
volumes. This makes it better then sorting 
methods in many practical situations. 

3. SORTINC METHODS 

Sorting is a safe method. but never the best, 
except when tables are ordered in advance or when 
the result have to be sorted on operation key. 

The cost of doing sort-merge join is: initial 
sort and multiway merge of both operands, and 
finally merging the two operands. The sort pro- 
cess itself can be optimized (see for instance 
KNUT73 or DRAT73). The following calculations are 
based on internal sort i.e. quicksort or similar 
methods for the initial sort phase and fixed s- 
way merge for the merge phase. Internal sort 
gives gives initial subfiles of length II 
(available workspace) rather than an average of 
2ftl when the reservoir sorting method is 

employed. However, using the reservoir method on 
variable length records involves dynamic memory 
allocation, and the possible gain from longer 
subfiles is likely to disappear in memory 
management processing. 

Tsort = 2*ta*Vlb + (tc*logp~H/1)*tm)*n + 
w * (2*V/b + n*(tm + tc*log2s) 

W is the average number of merge stages, and w 
is found from the number of initial subfiles, N 
and the number of available input buffers, s. 
N = trunc((V-1)/M) -* 1 

If N is 1 we have one subfile and the merge phase 

Singapore, Augurt, 1984 



is skipped. If we do merge at all, then all 
data must be read at least once. When N is larger 
then s, a balanced tree merge pattern gives: 

w-q - trunc((s**q-NIlis-11)/N. 

4 = trunc(loga(N-111 - 1 

To summarize: 

(1) 

if N=l w=O.O 
if 1 < N <- s : w=l .o 
if N>s w=w(s,N), see (1) 

Tsmj= 
TsortA+Tsort6*ta*(VA*VB+V6*VR~/bt(nA+n6)*tc+nR*t.m 

The size of R depends on the selectivity factor. 

The problems with sort-merge join is: 

1. Initial sort takes one extra pass of all 
data, and it is CPU-demanding. 

2. Sorting never takes advantage of different 
operand sizes. 

4. HASHING USED TO PROBLEbl PARTITIONINC 

Nested loop is the best algorithm when at least 
one operand is contained in working space. Our 
strategy now is to partition the larger task into 
smaller subtasks where the nested loop algorithm 
can be employed. This is a classic application of 
the divide and conquer principle, see for 
instance BENT60. 

The problem remaining is problem partitioning. 
Again hashing comes to help. Two potentially 
equal joinkey values certainly must give the same 
hash value. Fig. 1 gives an example of the join 
operation. The problem is divided into 3 sub- 
tasks. using joinkey mod 3 as the hashing 
algorithm. 

The partitioning process requires at least one 

input buffer and s output buffers where s is the 
number of partitions. It should be noted that 

double input buffering probably will pay off. The 
output buffers should also be kept large because 
i: i; important to keep the number of accesses 
down. Without double buffering, and with a fixed 
page size b, the partitioning cost will be: 

Tp = 2*ta*V/b t n*(th+tm) 

The number of partitions is now limited to s. the 
number of output buffers. 

In general, the number of partitions is: 
N = truncIlVA-1)/M) + 1, and there is a trade 
off between block size, split factor and the 

number of split stages. The problem is analog to 
finding the optimum merge pattern in sort merge. 

: 
: 4 : 
: 6 : 
: 1 : 
: 9: 
: 19 : 
: 14 : 
: 17 : 
: 11 : 
: 16 : 

: 
: 6: 
: 10 : 
: 15 : 
: 1 : 
: 13 : 
: 16 : 
: 16 : 
: 17 : 

:9::15: :l::T: : 17 : : 11 : 

: 16 : : 16 : : 19 : : 13 : :ll: : : 

: : : : : 16 : : : : : 
; \. ; ; \;i ; ; \] ; 

LEOA : : 
: 6 : : 17 : 
: 16 : : 

: : : 

Fig. 1: Table partitioning using hashing on join- 
keys. Subtable is found from the hashing 
formula : subtable :r joinkey mod 3. 

Comparing sorting and partitioning, without 
further analysis we can conclude: 
1) Partitioning does not require initial sort 

and thus saves one pass of the data and 
CPU time, and 

7) Computing a hash value should be quicker than 
selecting the smallest key among s keys as is 
required during an s-way merge. 

For all two-operand relational set- and algebra 
operations ( except difference) the number of 
partitions is always given by the smallest 
operand, This helps a lot when operand sizes 
differ. Sorting is not able to exploit this, the 
number of subfiles after initial sort is 
trunc((V-l)/HI+l) and they have to be merged 
separatly for both operands. 

Finding an optimum split pattern 

Assumptions: Input and output buffers have the 
same size. There is no double buffering or 110 
overlapping. The optimum split pattern is a 
balanced tree of some kind. Block transport time 
is constant; i.e. not depending on block size. 
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(partitions). fig. 2 shows two possible patterns: 

Y Y 

Alternative 1 Alternative 2 

Fig. 2: Alternative split patterns. Assuming the 
same amount of workspace available In both alter- 
natives, the block size in alternative 1 is less 
than in alternative. 2. 

AS for merging the average heigth of a balanced 
tree is wts,Nl. see formula (1). 

As for sorting there is some integer logic 
involved. If the number of partitions; N is one 
or less. partitioning does not make sense, hence 
w=O. If partitioning takes place at all, we have 
to scan all records at least once. 

If N <= 1 : w=O 
if 1 < N <- s : w:l 
if N>s : w=wls,N). see formula (1) 

The sheer transportation in partitioning takes: 

Tt = Z*w*ta*V/b 

Given a certain workspace H, we can vary the 
number of output buffers s, to find a value on s 
which minimizes Tt. A large s will reduce w, but 
at the same time the number of blocks will 
increase, and the increased number of page 
transfers will cost time. We can illustrate these 
effects by computing the transportation times for 
the files shown in fig. 2. 

Alternative 1 Alternative 2 

Block size 
w(s,Nl 
Total time 

M/5 
1017 

100/7*ta*V/H 

HI3 
1317 

70/7*ta*V/I4 

The larger page size of alternative 2 is best 
although only 3/7 of the total data volume is 
scanned twice in alternative 1, and 617 of the 
total volume is scanned twice in alternative 2. 

In general we can find the best s by derivation 
of Tt with respect to s. Substituting for b:M/s 
and w=log s IV/H) we get Tt as a function of s. 
We use an approximation for w to make Tt a 
continous function. 

Tt = (2 * ta * V * In (V/M) I H) * (s/in(s)) 

s/ln(sI has its minimum value for s=e=2.71. s 
must be an integer, and the best value of s is 3. 
Under the current assumptions the available work- 
space should always be used as 3 buffers. 
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Increasing M reduces Tt by reducing the number of 
partitions, but if II is made larger than 3 tracks 
the block transportation time ta is no longer 
constant, but will probably jump to ta’ = ta*tr. 
tr is rotation time. Taking CPU-tJme into account 
also tends to increase the optimum number of 
buffers because CPU-time depends on w, and w 
decreases with larger s. 

Taking all ‘expenses” into account the time to 
partition a file takes: 

Tp = w * (Z*ta*V/b .+ n*(th+tm)) 

The time to do a join or in fact any two-operand 
operation is: 

Tphj E w * Z*ta*(VA+VB)/b + (split A and 61 
w * (nA+nB)*(th+tm) ’ ( - - - 1 

(VA+VB)*ta/b+nA*te+nB*tc l (Nested loop I 
VR*ta/b+nR*tm (Write result I 

The size of R depends on selectivity and record 
length of R-records. 

Time for projection is: 

Tphp = 
w * (Z*ta*VA/b l nA*(th+tml I+ (Split A 1 
ta*VA/b + te*nA + (Nested loop I 
ta*VR/b + tm*nR (Write result) 

Aggregate functions 

Aggregate functions based on grouping easily lend 
themselves to partitioning methods. The table is 
partitioned based on the grouping attribute(s). 
Then each subtable is handled separatly. A hash- 
list on the grouping attribute is established, 
and the actual aggregate function is performed at 

the same time. The only special problem with 
aggregate functions is that it is hard to eSti- 
mate the required workspace necessary to hold the 
resulting subtable. The maximum size is one 

record in every group. which in most cases gives 
far to many groups. 

Optimization of disk usage 

Sorting requires a certain sequence in reading 
pages from files. It is possible to prefetch 

pages, this requires more buffers. Hashing gives 
more freedom, pages within one bucket (subfile) 
can be read in any sequence. The prefetch 

mechanism can be simpler or at least give the 
same efficiency with fewer buffers. 

Problems with variable bucket size 

All our calculations so far have not taken into 
account the problem with variable bucket size. We 
have an overflow problem simil.ar to the overflow 
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problem in hashed file allocation. The bucket 
size is norm‘ally very large, several hundred 
records, and using fill factors 0.7 to 0.9 the 
overflow percentage will be low. The following 
table gives the percentage of buckets having more 
records than bucket size. These values are 
obtained by simulation. 

bucket fill factor 

sze 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 l.lQ 
40 0 2 5 11 22 33 44 57 70 
80 0 0 1 5 14 20 46 64 77 

160 0 0 1 4 10 24 46 71 85 
320 0 0 1 4 7 20 40 73 07 

There is another alternative, however: We may 
operate with larger bucket sizes than s*b, the 
workspace. On the positive side we can save data 
transportation during partition, on the negative 
side we will have to scan the second operand 
several times during the nested loop phase. The 
cost of this approach can be analyzed: Let x be 
the bucket size in number of work space areas. 
The time to perform a join counting only tran- 
sportation time is: 

TX = (2*wx*(VA*VB1 + VA + x*V8 l VRI * ta/b 

Nx = VA/(x*s*b) and wx = logs(NxJ 

We would like to find a value of x which mini- 
mizes lx. Derivation of TX on x and equating this 
to 0 gives: 

2 * (VA+VB) = x * VE * In(s) 

or x = 2 * ( VA l VB ) I L VB * In(s)) 

When VA equal VB and s is small we have: 

s:2:3:4:6:6:10; 
x:6:3:3:2:2:2: 

For larger s and VEl larger than VA. x comes 

closer to 1 and even lower. However, 1 is the 

lowest valid value on x. 

S. APPLICATION OF HASH FILTERS 

Application of hash filters is described in 
BABE79 and VALDBC among other places. Hash 

filters are used to eliminate non-candidate 

records from the rest of the process. Reducing 

data volume as early as possible in heavy opera- 
tions might influence the total processing time 

considerably. 

The filter itself is stored as bit Vector. Let F 

be the number of elements in the filter. n is the 
number of keys in the table for which the filter 
is built. When the keys are randomly distributed 
an average of G = F * (l-exp(-n/F) bits are set 
in the filter. Bit h is set in the filter if 
h=hash(operationkey). 
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We will discuss the use of hash filters in two- 
operand operations, and we will use join as an 
example. The filter is set up based on the 
operand having the least number of distinct keys. 
In practice this can not be known in advance, and 
the table with the least number of tuples is 
taken. Then the B-operand is read thru this fil- 
ter, and B is reduced to B’. The volume of B’ is: 

VB' = VE * (l-exp(-nA/Fl 

If A is passed more times, a similar filter is 
made based on B and this is used when reading A. 
Then VA' = VA * (l-exp(nB/F). This process might 
be repeated several times, and when a new and 
independant hash formula is used for every pass, 
the data volume is reduced correspondingly.. The 
figure 3 shows this for splitting. We assume 
there is a fixed amount of storage avaiable for 
the filter. Wring splitting the tables are 
reduced by a factor of s for every pass, hence 
the filter density d=n/F decreases, and d is a 
function of s and the pass number p, 
d(s,p) = n/(s**(p-l)*F). 

operand A operand B 

read A make filter FAl 

write A = A(l,s) 

\ 

read B 

use filter FAl 

make filter FABl write B'=B(l,s) 

read A = All,s) 

use FABl / make filter FA2 

write A'= A(2,s) 

\ 

read B'=B(l,s) 

use filter FA2 

make filter FAB2 write B"=8(2.s) 

read A'=A(2,s) 

use FA82 / make filter FA3 * 

write A"=A(3,s) * 

* * 

* * 

Fig. 3: Application of filters in a two operand 
relational operation. 
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After w passes: 

El(w,sl = B * (l-exp(-nA/F)I 
* (I-expl-nA/(s*F))) 
* Il-expl-nA/(s**Z*F))l * 

. . . . * It-exp(-nA/(s**(w-l)*Fl 

w- 1 
Blw,sl = B * Tl - exp(-nA/(F*s**k)) 

k=O 

Similarly: 

A(w.s) = A * Il-expl-nB/F)) 
* (l-expl-nB/(s*F))) 
* (l-exp(-nB/(s**Z*FIl) * 

. . . . * (I-exp(-nB/(s**(w-Z)*F))) 

w-2 
A(w,s) = A* rl - exp(-nB/lF*s**k)) 

k=O 

Both functions are extremely rapidly decreasing 
with increasing w and s. The total transportation 
volume for some values of d and w is tabulated 
below. 

filter density d 
W 0.2 0.3 0.5 0.5 0.6 0.1 0.8 0.9 1.0 

_I_______--------------------------------------- 
1 3.2 3.3 3.3 3.4 3.5 3.5 3.6 3.6 3.6 
2 1.4 b.6 4.6 5.0 5.2 5.2 5.6 5.8 5.9 
3 6.3 4.7 5.0 5.3 5.6 5.9 6.2 6.4 6.1 
b 5.0 5.3 5.6 5.9 6.2 6.5 6.9 
5 5.9 6.2 6.6 6.9 

____-__------_------_I__________________-------- 

Table 1: Number of table reads or writes using 
hash filters in two operand operations. w is 
number of stages, both files have the same size. 
Each stage requires 4.0 reads or writes without 
filters. 

In this calculation we have not counted for the 
records actually going into the resulting table. 
How many records would remain is depending on 
join selectivity. However, not many stray records 
will be found in the tables after two or three 
passes thru the filter. 

Optimum filtor efficiency. 

Given a certain filter space F and a number of 
keys n. there is a choice of how to use the 
filter space. Should it be used as one filter 
with density d = nlF, or should it be partitioned 
into s filters each of density d = s*nlF. The 
filtering effect of s different filters of 
density d(s) is 

g(s) = (I-exp(-s*n/FII l * s 

This function is tabulated below. 

Pm ot the Tenth Intematlond 
contarence on very Large Date B8e.e. 

Total filtering effect, 1 to 6 filters 
n/F 1 2 3 5 5 6 7 8 
________________-_______________^_______----- 
0.1 .lO .03 .02 x.01 .Ol .Ol .Ol .I31 
0.2 .lB .ll *.09 .09 .lO .12 .14 .16 
0.3 .26 *.20 .21 -24 .26 .3c .60 -57 
0.4 .33 t.30 .34 .41 .40 .57 .64 .72 
0.5 *.39 .40 .bl .56 .65 .14 .81 .86 
0.6 *.25 .b9 .50 .68 .77 .85 .90 .94 
0.7 *.50 .5t -66 .78 .66 .91 .95 .97 
0.8 *.55 .64 .75 .65 .91 .95 .97 .99 
0.9 **59 .?O .Bl .90 .95 .97 .99 .99 
1.0 *.63 .75 .66 .93 .91 .99 .99 1.00 
____________________------------------------- 

Table 2: Total filtering effect as a function of 
total filter density n/F, and number of filters. 
The optimum number of serial filters is starred. 
For lower densities many serial filters gives the 
best effect. 

For den$ities d-O.5 or higher, one filter with 
minimum density is best. For low densities 
several serial filters is best. The best 
combinations are starred in table 2. 

Hash filters and projection 

Hash filters are not easily adapted to pro jec- 
tion. Normally rather few records will be 
removed, and the effect then is small. 

Hash filters and sorting 

When sorting is used in two-operand algebra 
operations filters are readily used. Best effect 
is attained when both filters are established 
during initial sort phase. Then the B operand is 
reduced before it enters the initial sort phase. 
At best the A operand can be reduced after the 
first merge stage. Further reduction as in 
partitioning is not feasible. 

6eneral usage of filters 

Filters should be established as early as 
possible, and could be used to reduce operands at 
a very *early stage in the process. This is a 
general technique, and is not discussed further 
in this paper. 

6. COMPARISON OF IIETHODS 

6eneral assumptions 

Reading and writing to disk takes the same time, 
there is no cache memory for the disk. There is 
no overlapping of IO and processing, although 
this should be sought in real implementations. We 
have much higher estimates on CPU consumption 
than for instance used in DEWIB3. All our esti- 
mates are based on a monoprocessor computer with 
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a capacity similar to VAX750. 

To test whether two keys are equal takes comput 
ing of a hashvalue and performing the actual 
comparison. The establishing of hashlists 
involves moving records from input buffer to the 
hashlist. Records are of variable length which 
complicates the initial sort phase in the sort 
merge process. Attributes are not of fixed length 
only, comparing two records also involves some 
record format evaluation. 

Values used in the following computations: 

ta = 17.0 ms block transportation time, 
includes positioning. 

te = 0.5 ms establish record in hashlist 
th = 0.25 ms test if record is in hashlist 
tc = 0.25 ms compare two records in work. 

space. 
tm = 0.1 ms move one record 
1 = 100 B number of bytes per record. 

Space for filters iS not counted with the work 

space. The size of the result table depends of 
selectivity and comes in addition to all times 
shown in the following comparisons. 

The different methods are named: 
NL - nested loop join 
SM - sort merge join 
PH - partition hash join 
PHF - partition hash with filter join. 

Two important cases are analyzed: 1) Both 

operands have the same size (even operands). and 

2) Operand B has a volume 9 times larger than A 
(uneven operands). 

Nested loop versus sort-merge 

Figures 4 and 5 show join execution times as a 

function of operand volume for all methods dis- 

cussed in this paper. As seen in fig.4 the nested 

loop algorithm is better than any method for 

small volumes. Another important effect is clear- 
1Y demonstrated: When one operand becomes much 

larger than the other; nested loop takes advant- 

age of this, but it is a disadvantage for sort- 
merge. 

Nested loop is hopelessly inadequatd for large 
operand volumes. The nested loop method is much 

depending on available workspace. This can be 

seen in fig. 10. Computations indicate that 

nested loop is better than sort merge when 

operand volume is less than 4 to 12 times the 

workspace. This is for equally sized operands. 
Generally it seems that nested loop is better 

than sort merge when the smallest operand is less 
than 3 to 8 times the workspace. 

As seen especially in fig. 10 sort-merge is not 

clever to take advantage of larger workspace. 

This was indeed unexpected, but the computation 

time increases with more buffer space, SO much 
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that there is almost no gain after a certain 

size. If we use a faster processor the operation 
becomes IO-bound and the picture will change. 

Fig. 4 Operation times as a function of total 
operand volume. Buffer size is 4K and the number 
of buffers is 16, giving a total workspace of 64 
KB. Even operands. 

f 
Time in seconds 

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 MB 

Fig. 5 Operation times as a function of total 

operand volume. Buffer size is CK and the number 

of buffers is 16, giving a total workspace of 64 
KB. Uneven operands, VB=S*VA. 

Sort merge versus partitioning 

Partitioning always performs better than sort- 
merge. The difference seems to grow with larger 
workspace, and to shrink with larger operand 

volumes. This becomes more clear when we look 
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separately on [O-time and CPU-time. For even 
sized operands Tsmj is proportional to V(3+2*w) 

where V=VA*VB. and lphj is proportional to 
v(l*i!*w). The quotient q:Tsmj/Tphj is 
(3*2*w)/(1+2*w). w can take values 0, 1 and is 
continous above 1.0. A brief tabulation of the 
quotient yivor: 

kL0:1:2:3:4:5:G; 
q: 3 : 1.66: 1.40: 1.29: 1.22: 1.16: 1.16: 

w have the same value for both operands and also 
in both methods. 

L 

1 c 
0.1 0.4 1.6 6.4 25.6 MB 

Fig. 6 Partition/sort-merge quotient as a func- 
tion of workspace and operand volume. Workspace 
in no. of buffers. varying from 2 to 512. Page 
size is CKB. Even operands, total. operand size is 
6.4 HB. 

8 Tph/- 7 \ 

2 

t 

- 
\--- 

l\ 
01 OA 1.6 6.4 25.6 MB 

fig. 7 Partition/sort-merge quotient as a func- 
tion of workspace and operand volume. Workspace 
in no. of 4KB buffers. varying from 2 to 512. 
Uneven operands, total operand volume is 6.4 MB. 

CPU- time spent on each record grows with w for 
both methods. For sorting it also grows with 
O(log St41 in initial sorting and with 
during 

O(log2 s) 
merge. When each comparison takes about 

250 microseconds this can add considerably to the 
processing time. Variable processsing time in a 

Pro~eedlngr of the Tenth Intematlonal 
Conference on Very Large Data Bases. 

1HB buffer and 4KB pages amounts to about 5ms per 
record. Using a large workspace does not add to 
processing cost for partitioning. On the other 

side, sorting can even take longer time when more 
workspace is used. This is seen in fig.10. 

Effect of unequal size of operrnds 

Both nested loop and partitioning takes advantage 
of uneven operands. This is demonstrated in figs. 
6 and 9. However, nested loop is much more 
sensitive to available workspace and uneven 

operand volumes than partitioning. These effects 

must be considered in the selection of method for 
a given task. When even '2 1 2. e J 0uerJnds are 

joi rlrd ; nested loop is always chosen when VA iS 
less then 3*H i.e. V<6*H. When operands differ 
the crossover point moves. For the case shown in 

fig. 9, nested loop is the preferred method when 
VA is less than 2*H, i.e. V<20*W as VA=V/lO. 

Fig. 8 Improvement factor, operation time for 
even operands over operation time for uneven 
operands. When operands are uneven V8=9*VA. 

Effect of hrsh filters 

The effect of hash filters is an improvement from 
0 to about 4, best effect for few buffers in 
workspace. The effect is not much affected by 
differences in operand sizes, the good character- 
istics of partitioning is retained. For really 
large volumes the filtering effect is reduced 
because of high filter density. Instead of using 
all workspace for page buffers, it should be 
considered to use more space to reduce filter 
density. It should be noted that the filtering 
effect is reduced if selectivity is high, i.e. a 
large proportion of records will be included in 
the result table. 

Effect of rvrilrble worksprce 

Workspace is perhaps the most valuable resource. 
The nested loop algorithm has a processing time 
lnvcrsely proportional to available workspace. 
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Operand volume MB 

12.6 Partition hash 

region / / 
6A. 

0.1 
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1 
32 

, Buffer yolume M 
128 512 

Fig. 9 Choice of method as a function of 

available workspace and total operand volume and 

relative operand size. 

When one operand get room i workspace, nested 
loop is 3 times better than both sort-merge and 
partitioning. Partitioning will always benefit 
from more workspace. As mentioned already, sort- 
merge might perform slower with large workspace. 
Thus is actally the case in fig. 10. A workspace 
of 32 buffers gives a minimum processing time. 
When hash filters are used, more than minimum 
workspace is virtually vasted. 

ld 

, 
lo‘ 

10: 

10 

1 

Time in seconds 

\ 

1 e 
2 22 23 24 25 26 27 2a 2g s 

a 32 128 512 2048 KB 

Fig. 10 Processing time as a function of 
available workspace. Pages are C KB, operands are 
even. Solid lines for a total operand volume of 
6.1 ME, dashed lines for 0.8 MB. 
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Effect of increased page size 

Figs. 11 and 12 give examples of the effect of 

increased page size. In fig. 11 the total work 

space is kept constant at 128 Kg. and the page 

size is decreased from 64 KB to 0.25 KB. Large 
pages should be used. However, remember that page 
transfer time is constant in these computations. 
This is almost true for pages less or equal to 
one track. When page size is larger than one 

f Time in seconds 

103.. 

I 

2 22 23 24 25 26 2’ 28 2g 
w 
s 

64 32 16 8 4 2 1 0.5 0.25 KB 

Fig. 11 Effect of increasing pagesize while total 
workspace is kept constant. Workspace is 128 KB. 
Total operand volume is 6.4 MB. Even operands. 

103 
.t Time in seconds 

256 64 16 4 1 KB 

Fig. 12 Effect of increasing pagesize while total 
workspace is kept constant. Workspace is 512 KB. 
Total operand volume is 6.4 MB. Even operands. 
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track page transfrr time should be multiplieu 
with number of tracks necessary to store a va9e b 
Partitioning has a well defined optimum number of 

pages, namely 8 pages each 16 KB. This is also a 
practical page size. Small pages should be 

avoided. 

In fig. 12 workspace is 512KB. Still partitioning 
have 6 as the optimum number of pages. It should 
be noted that nested loop is better then sort- 
merge with this workspace. 

7. CONCLUSION 

For small volumes nested loop methods are 
preferable. Partitioning based on hashing is 
always superior to sorting. Partitioning methods 
are easily extended onto multicell or parallel 
systems. Partitioning takes advantage of 
different operand sizes. Hashing leaves more 
opportunities for disk transfer optimizations 
than sorting, because blocks of a subfile might 
be read or written in arbitrary order. Filters 
are readily combined with partitioning. 
Partitioning takes full advantage of large 
workspace without degrading performance due to 
internal processing as in sort-merge methods. It 
is the opininon of the author that hashing and 
partitioning are grossly underrated compared to 
sort-merge methods. The methods does not require 
special purpose hardware, the only exception 
might be for extremely parallel and high 
performance systems, for instance 5th generation 
systems. 
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