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ABSTRACT : 

Office Modelling aims at providing abstract, 
conceptual tools for describing office system se- 
mantics in order to ease high-level, and more 
likely correct application programming. Advanced 
office systems are complex organizations of ob- 
jects, locations, procedures, people, etc., com- 
bining independent workstations which cooperate 
concurrently in executing complicated office 
tasks. 

In our approach to office modelling we per- 
ceive office procedures as being based on complex 
data object constructors that accept selected ob- 
ject components (e.g., addresses, dates, 
text-fragments) and return office objects of com- 
posite type (e.g., letters, forms, memos). We 
gain the semantic primitives required for object 
construction, component selection, and type re- 
cognition by generalizing the corresponding sol- 
utions provided by conventional record-based 
database models. This leads us from the 'flat 
structures' of traditional database models to 
'recursive structures' allowing for flexible rep- 
resentations of non-formatted and highly related 
data objects as required for advanced office mod- 
elling. 

1. FRAMEWORK FOR OFFICE MODELLING 

An office is a complex organization of ob- 
jects, procedures, locations, communications, 
and, last but not least, people. Advanced office 
organizations are, in general, distributed sys- 
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terns with independent workstations cooperating 
concurrently in executing office tasks as well as 
communicating with people. Office Modelling aims 
at providing abstract, formal tools to represent 
office semantics in order to ease high-level, and 
and more likely correct application programming. 
This paper introduces conceptual and linguistic 
tools to aid the development of advanced, comput- 
er based office information systems. 

As "office work is, to a large extent, ulti- 
mately people work" [Elli83], computer support 
for advanced office systems has to concentrate on 
an appropriate subset of office activities. Of- 
fice applications of particular interest for this 
paper are office information systems assisting 
various user in 

- definition, selection, and manipulation of of- 
fice information containing large amounts of 
not necessarily formatted office data objects, 
and 

- distributed execution of various office proce- 
dures from user workstations which are nodes 
in a distributed office network. 

In the following chapter we identify basic re- 
quirements for representing non-conventional in- 
formation system applications (as, e.g., office 
systems), and then demonstrate how a 'recursive' 
data model can support them more adequately than 
traditional, record-based database modelling. 
The structural concepts for representing office 
data objects are extended in chapter three and 
applied to a major office example. Extended mod- 
elling tools for office procedures are proposed 
in chapter four. Specific aspects of data as 
well as procedure communication in a distributed 
office environment are, finally, addressed in 
chapter five. 

2. MODELLING COMPOUND DATA OBJECTS 

Modelling advanced data-intensive applica- 
tions requires primitives for representing com- 
pound data objects adequately with respect to all 
their structural as well as operational aspects. 
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An important criterion for the adequacy of a data 

model is the coherence of its modelling primi- 
tives with the underlying semantic structures of 
an intended class of applications. In office 
systems, for example, data objects to be speci- 
fied are characterized by a great variety of 
structured components related by complex inner 
relationships. 

is difficult or, in some cases, impossible 
[KSW81], [Klug80]. 

Limitations of traditional record-based data 
models [Kent791 become especially obvious when 
modelling data objects with highly varying struc- 
tures which are semantically inter-related 
[Codd79] as required, for instance, in CAD/CAM 
[HaLo82], information retrieval [ScPi80], or of- 
fice applications [GiTs83]. 

2.1. SEMANTIC MODELLING PRIMITIVES 

In our approach to office modelling we per- 
ceive office procedures as basically centered 
around semantic primitives allowing for 

- construction of compound data objects out of 
elementary ones or those already constructed, 

- selection of specific object components from 
compound data objects, and 

In comparison to the limited set of tools for 
conventional database modelling, data modelling 
in modern programming languages can be character- 
ized by a great variety of modelling concepts 
(i.e. data type generators) which can be combined 
freely [Zi1184]. The objective of the following 
'recursive' data model is to integrate data ab- 
straction mechanisms from modern programming lan- 
guages with high-level data structuring, 
selection, and management concepts from current 
database technology. 

- recognition of the construction rules (or 
types) underlying a compound data object in- 
stance. 2.2. RECURSIVE DATA MODEL PRIMITIVES 

For example, in an office system environment we 
want to be able to 

- construct a 'letter' instance from components 
as, for example, names, addresses, dates, and 
textual fragments, 

Recursive data models [Lame841 are based on 
simple as well as recursively defined data types 
[Hoar751 and extend the modelling tools of clas- 
sical data models by allowing representations of 
variable length structured data objects, possibly 
nested in a varying depth. 

- select single letter components as, for in- 
stance, the sender's address or the letter's 
textual content, and 

- recognize a given document as a letter (as op- 
posed to a form, a memo, etc.). 

Traditional database models as, for example, 
the relational data model [Codd70], support the 
semantic modelling primitives in a more limited 
way: 

For each recursively defined data type, 
RcsType, a recursive data model provides a set of 
different 'structure generators', Gen-i, to gen- 
erate value instances of the respective recursive 
type. Structure generators are based on limited 
sets of component types, CompType-ij, which may, 
recursively, contain other recursive data types 
(including the data type to be defined), or con- 
sist of simple data types as known from conven- 
tional, high-level programming languages. Single 
components can be identified by elementary 'com- 
ponent selectors', sel-ij. Then, 

- 'Record' and 'relation' constructors allow for 
the representation of compound data objects of 
a fixed resp. variable length using 
content-based references (e.g. keys) for ob- 
ject identification and association. However, 
the gained flexibility ('relational 
relativism') has to be paid for by 'referen- 
tial integrity' problems [Date81], [LaSc84]. 

TYPE RcsType = 

- Component selection is well supported in cases 
where components can be represented by single 
tuples or attribute values. However, se- 
lection of more complex object components re- 
presented by sets of tuples spread over 
several relations requires complex query ex- 
pressions that raise computational (relation- 
al 'completeness') and performance issues. 

( Gen-1 (sel-11: CompType-11; . . . . 
sel-ln: CompType-ln) 
1 Gen-i (...) 1 

1 &en-k (sel-kl: CompType-kl: 1.1; 
sel-km: CompType-km; 1; 

defines a data type whose value set consists of 
all hierarchically structured data values which 
can be generated by (in general nested) applica- 
tion of the generators 'Gen-i', Isilk, to compo- 
nents of type 'CompType-ij'. (Syntactic Note: In 
case of only a single structure generator, the 
outmost brackets of a recursive type definition 
may be omitted. Similarly, a single elementary 
component selector may be dropped.) 

- Recognition of the construction of compound So, a recursively defined data type provides 
objects (i.e. types of relation expressions concepts for all three basic semantic modelling 
including the corresponding key constraints) primitives: 
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- a set of structure generators, Gen,i , to con- 
struct a recursive value from a given set of 
component values (which are, in turn, either 
constructed by application of some structure 
generator, or are aenoted by simple, conven- 
tional programming language expressions); 

- for each structure generator a set of elemen- 
tary component selectors, sel-i j, to select 
a component from a recursive variable whose 
value was generated by the generator 'Gen,i'. 
Syntactically, component selectors are en- 
closed in square brackets and written behind 
the variable to be selected. So, for a 
recursively defined variable, rcs-var, whose 
value was generated by 
'Gen-i (.. .,comp-val-ij,...)', 

rcs-var [sel-ij] = camp-val-ij. 
Component selectors identify component vari- 
ables (i.e., they may be used in an expression 
context, on the left-hand side of an assign- 
ment statement, as well as nested). Nested 
component variables are written one after an- 
other and evaluated from left to right. 

-a set of 6001 ean characteristic functions, 
is-Gen-i, to recogrrfze a recursive value as 
being constructed by some structure generator 
'Gen-f'. For a recursive variable, rcs-var, 
for example, whose value was generated by ap- 
plication of the structure generator 'Gen-f 
(...I', 

is-Gen-i (rcs-var) = TRUE. 

In terms of a recursive data model, an example 
'document' type can now be defined- as follbws 
(for component type definf tions see section 3.2): 

DocumentType = 
( Letter (sender, 

receiver 
from, to 

NameType; 
AddressType; 

date-mailed, date-received: 
DateType; content: TextType) 

1 Form ( . . . ) 
(Memo(...) 1 .,. ); 

Recursively defined data types comprise com- 
plex data values which are, in different ways, 
generated by (in general nested) applications of 
the structure generators defining the respective 
data types. Our recursive approach generalizes 
traditional (record-based) data models, re- 
stricted to data objects with an identical struc- 
ture [Kent79], to more advanced data models that 
allow for the definition and manipulation of data 
objects sharing some structuring concept. In 
other words, recursive data models are based on a 
limited number of modellfng primitives and gain 
their power by allowing for their orthogonal com- 
bination. 
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3. EXTENDED STRUCTURING TOOLS 

In order to ease linguistic expressions for 
specific classes of office object semantics, we 
extend the recursive data model by a higher-level 
layer of abstract structural and operational mod- 
elling concepts. 

3.1. ABSTRACT OBJECT REPRESENTATIONS 

In general, recursive data structures are pow- 
erful enough to express all of the following data 
object representations. Subsequently, some addi- 
tional data structuring mechanisms are introduced 
as short hand notations for those semantic struc- 
tures which represent concepts occurring fre- 
quently in office system semantics. 

3.1.1. Ordered Objects 

The first important concept to be supported is 
that of an 'order' defined on application objects 
and leads to a 'list' type data structuring mech- 
anism. Instead of defining a list type explicit- 
ly, as, for instance, by 

ListType 
( Empty CT 

I Append-list (last: ElementType; 
rest: ListType) ); 

ElementType = . . .; 

we provide as a syntactically shorter, seman- 
tically equivalent alternative the predeffned 
type definition for variable length lists: 

ListType = LIST OF ElementType, 

Single list instances are generated applying a 
typed standard generator for lists, 'ListType 
(...I'. (The syntax for complex value 
constructors follows that of a typed generator 
construct as, for 
[Wfrth82].) 

example, in Modula-2 

Together with the 'list' type come the usual 
list operation primitives as, for instance, the 
element selectors 'LAST' (yields the most recent- 
ly added element) and 'REST' (yields the list 
without the last element), 'lfst[i]' (selects the 
i-th element), 
elements), 

'ELEMS' (returns set of all list 
'LENGTH' (returns number of elements) 

'VOID' (Boolean test for zero elements), I:+; 
(appends r.h.s. 
able), etc. 

elements to 1.h.s. list vari- 

For example, a document 'file' data type can 
now be.modelled as 

FileType = LIST OF DocumentType. 
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Then, for a corresponding 'file' variable, 
'file[j]' selects the j-th document from a given 
file (if existent), and 'file [LAST]' selects the 
most recently added one; 'FileType 
{dot-1, . . . . dot-n)' generates a file instance 
from given document instances, dot-1, . . . . dot-n. 

3.1.2. Object Ranges 

Representing application object ranges leads 
to a 'set' type structuring concept. Sets have 
varying cardinality and no duplicate element val- 
ues are allowed. The usual set operators (u, n, 
IN, :+, :-, etc.) are defined for set types which 
are specified syntactically as: 

SetType = SET OF ElementType. 

Set instances are generated applying a standard 
set generator 'SetType {...}I. Set restriction 
is based on first-order predicate expressions 
following the line of first-order query lan- 
guages: 

SetType { <element-id> IN <set> 
SUCH THAT <predicate> 1 

For example, a file cabinet may be perceived 
as a set of drawers: 

FileCabinetType = SET OF DrawerType. 

Then, 'cabinet-l :+ cabinet-2' integrates into 
the set of drawers of a file cabinet variable, 
cabinet-l, the drawers' of 'cabinet-2', and 
'FileCabinetType {draw IN cabinet-l SUCH THAT 
<predicate>)' selects a certain subset of drawers 
from 'cabinet-l'. 

3.1.3. Object Identification 

Object identification is an essential concept 
in office system applications and can be repres- 
ented by 'mapping' object identifiers to the ob- 
jects to be identified. Maps, in turn, are sets 
of pairs E (Domain x Range) where 'Domain' and 
'Range' are again sets, and no two element pairs 
have the same domain value; syntactically: 

MapType = (DomainType ---> RangeType). 

Map instances are created using a map generator 
'MapType {d-1-->r-1, . . . . d-n-->r-n)'. The oper- 
ations on maps are 'DOM' (domain value set), 
'RNG' (range value set), I:+' (map extension, 

inserting new pairs), ':&I (map update, i.e. 
AvZrwriting existing pairs), 'map (argument)' 
(application of a map to an argument), etc. 

For example, the 'DrawerType' referred to 
above can be modelled as a map from file identi- 
fiers to the corresponding files in the drawer: 
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DrawerType = (FileIdType ---> FileType); 
FileIdType = TOKEN. 

(File identifiers are regarded as unstructured 
'tokens', only subject to equation tests.) Then, 
for example, 'drawer :+ DrawerType 
{file-i --> file)' extends the content of a given 
drawer by a new file which is identified by 
'file-i'. 

3.2. OFFICE OBJECTS EXAMPLE 

In the following, we complete the example rep- 
resentation of a file cabinet containing files 
and documents as a subset of an office environ- 
ment: 

TYPE 
FileCabinetType = SET OF DrawerType; 
DrawerTvoe 
FileType' 
DocumentType 

= (FileIdType --S' FileType); 
= LIST OF DocumentType; 
= ( Letter (sender, 

receiver : NameType; 
from, to : AddressType; 
date-mailed, 
date-received : DateType; 
content : TextType) 

1 Form (type-no, serial-no : 
INTEGER; entries : 
(EntryIdType-->EntryType)) 

1 Memo (...) 1 . . . ); 

Components of 
again be defined 

NameType 

AddressType 

DateType 

EntryType 

ContentType 
FileIdType 
EntryIdType 

letters, forms, memos, etc. may 
recursively: 

= Name (first, middle, 
last : WordType); 

= Address (organization : 
LIST OF WordType; 
street, city, state, 
country : WordType; 

' : INTEGER); 
= DaFz'(:A!r: (1950..1990); 

month : (1. .12); 
day : (1. .31)); 

= Entry (descr : TextType; 
content : ContentType; 
domain: SET OF ContentType); 

= . . .; 
= TOKEN; 
= TOKEN; 

A more complex structured data type is the 
'TextType' comprising component types for para- 
graphs, sentences, words, etc.: 

TextType = LIST OF ParagraphType; 
ParagraphType = ( Titled-para (title : 

SentenceType; 
cant : ParagraphType) 

1 Untitled-para (para : 
LIST OF SentenceType)); 
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SentenceType = Sentence (elems : 
LIST OF ElementType; 
end-mark: (I.', '!I, 
'7' 

ElementType = f p", jyo+$:, 
. ..>I. 

WordType = LIST OF CHAFi; ' ' 

Finally, we are able to declare a single com- 
pound variable representing a file cabinet with 
all its structured content: 

VAR file-cabinet : FileCabinetType. 

3.3. DATA OBJECT INTEGRITY 

In the proposed extended recursive data model, 
referential ,integrity problems are, in most 
cases, avoided by choosing appropriate data 
structuring primitives. In order to impose addi- 
tional integrity constraints on data objects ex- 
plicitly, Boolean 'invariant' predicates can be 
formulated with a data type definition. For a 

,simple example, the following invariant restricts 
'file' instances to containing not more than 99 
documents: 

INVARIANT FileType (file); 
CARD ELEMS file s 99 

END. 

Object type invariants, however, have to be 
checked for validity after each manipulation of a 
corresponding object instance. 

4. EXTENDED OPERATIONAL TOOLS 

The basis for modelling office procedure . _ _ se- 
mantics are the operational primitives of the ex- 
tended object types in the proposed data model. 
They provided mechanisms for compound data object 
construction, decomposition, and recognition. 
More powerful operations on recursive objects 
can be defined (recursively) in terms of the ele- 
mentary operators. 

4.1. DATA OBJECT SELECTION 

4.1.1. Elementary Selectors 

For example, elementary selection of object 
components can be modelled in terms of the opera- 
tional primitives as demonstrated in the follow- 
ing examples for a 'file-cabinet' variable as 
declared above: 

"select the drawers from a file cabinet which 
contain a 'file-i"' : 

DrawerType { draw IN file-cabinet 
SUCH THAT file-i IN DOM draw 1 

."select the 4th document from 'file-i' in a given 
drawer" : 

drawer (file-i) [4] 

"is that document a form ?" : 

is-Form (drawer (file-i) [4]) 

"select the content of the corresponding 'date' 
entry" : 

drawer (file-i) [4] [entries] (date) [content] 

A more complex example selects "the latest let- 
ter(s) from a sender 's' in a file If"' : 

SET OF DocumentType { dot IN ELEMS f SUCH THAT 
(is-Letter (dot) 

AND (dot [sender] = s) 
AND ALL dot' IN ELEMS f ((is-Letter (dot') 

AND dot' [sender] = s) ==> 
(dot [date] 2 dot' [date]))) 1 

4.1.2. Dedicated Selectors 

Since component selection is frequent and, as 
shown in the last examples, sometimes complex in 
structured data object applications, it is sup- 
ported additionally by 'dedicated component se- 
lectors'. Similar selector or view mechanisms 
have been proposed for the relational database 
model by [Ston75], [Rous82], and [MRS84], and are 
defined for the recursive data model in [Lame84]. 

For example, the previous component selector 
example can now be expressed recursively using a 
generic, parameterized 'selector' mechanism. The 
definition of the selector 'last-letter-from' is 
based on the fact that the latest letter was 
filed last (with unary list operators binding 
stronger than selectors): 

SELECTOR last-letter-from FOR f: FileType 

IF VOID f 
(s: NameType) : DocumentType; 

THEN <EXCEPTION: message ("There is 
no letter from", 5, "in",, f)> 

ELSE IF is-Letter (f [LAST]) 
AND f [LAST] [sender] = s 

THEN SELECT f (LAST] 
ELSE SELECTf [REST] 

[last-letter-from (s)] 
END last-letter-from, 

An application of this selector to file 'f' 
'f [last-letter-from (s)]', selects either thi 

Procesdlngs ot ths Tenth Intwnational 
Conterence on Very Largs Data Basm. 

Singapore, August, 1984 

284 



required document or raises the defined excep- 
tion. 

4.2. DATA OBJECT MANIPULATION 

the use of structure generators can be restricted 
to ADT operations only. In the example above 
this means that a user may not simply append a 
document to a given file, but instead has to call 
a special 'file manipulation' function checking 
all consistency constraints. 

Data objects are represented by variables as, 
for example, demonstrated in section 3.2. The 
simplest case of data object manipulation is to 
select an object or an object component, and then 
to replace it by a new value. For example, set- 
ting the receiving date of the last letter from a 
sender, s, in a given file to ‘1983-11-23’ is: 

5. SUPPORT FOR OFFICE COMMUNICATION 

file [last-letter-from (s)] [date-received] 
:= Date (1983,11,23) 

Representing advanced office applications 
with cooperating processes on different, distinct 
locations (as, e.g., outlined in [HKMS84]) re- 
quires additional support for modelling data as 
well as process communication. 

Insertion, deletion, or update of object (com- 
ponent) instances is expressible via set-oriented 
update operators and operands constructed by the 
extended operational primitives. For example: 

"insert a file identified by 'file-i' into a giv- 
en drawer" : 

5.1. DATA COMMUNICATION 

drawer :+ DrawerType {file-i ---> file) 

"delete some values from the domain of a given 
data entry" : 

In a first approach, we suppose that office 
procedures on different workstations communicate 
via sending data to globally accessible 'mail- 
boxes' of respective peer work stations. 

entry [domain] :- SET OF ContentType 
{value-l, . . . . value-n) 

In such a case, our data model supports the 
representation of mailboxes by distinct global 
variables, and modelling data communication by 
communicating procedures accessing and changing 
these variables. The communicated data is re- 
presented by data objects as defined before. For 

"replace the last document in a file by a new example, if a global variable contains a 'mail- 
one" : box' for each distinct workstation, 

file [REST] :+ new-document 

More powerful query and data manipulation lan- 
guage constructs may include multi-component se- 
lection mechanisms as well as extended 
manipulation functions and control structures de- 
fined in terms of sets, lists, maps, etc. of ob- 
ject components. 

TYPE MboxesType = (WorkstationIdType 
---> FileType); 

VAR Mailboxes : MboxesType; 

a simple 'send' procedure could be user-defined 
as follows: 

4.3. OPERATION INTEGRITY 

Integrity mechanisms could be provided to re- 
strict procedure executions to states where cer- 
tain 'pre- and/or post-conditions' hold (compare, 

'dynamic consistency constraint' specifi- 
Ea:ions in [BjJo78]). However, since in an ap- 
propriate programming language environment 
Boolean constraint checks can be specified any- 
where in a procedure definition, the model does 
not support pre- and post-conditions explicitly. 

PROCEDURE send (dot: DocumentType; 
to : WorkstationIdType); 

VAR mailbox : FileType; 
BEGIN mailbox := Mailboxes (to); 

mailbox :+ dot; 
Mailboxes :& MboxesType 

( to --> mailbox 1 
END send. 

In order to avoid concurrency anomalies 
[EGLT76], shared variables have to be appropri- 
ately locked for access by more than one office 
procedure. Sophisticated locking strategies for 
parallel access to complex data objects can take 
advantage of the hierarchical structure of 
recursively defined data objects [GLP75]. 

An alternative approach to guaranteeing data 
object integrity is to restrict all operations 
manipulating instances of a data type to only the 
integrity preserving ones. This leads to the in- 
troduction of abstract data types (ADT) as uti- 
lized for databases by, for example, [Schm79]. 
ADTs can be supported by the data model, provided 

Further extensions of the data model include a 
more general model for process communication and 
synchronization. Hoare's 'communicating sequen- 
tial processes' (CSP) [Hoar781 provide the con- 
cepts for a non-deterministic communication 
scheme between concurrent processes coupled with 
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process synchronization. The corresponding prim- 
itives for the office model are: 

SEND <value> TO <workstation-id>; and 
RECEIVE <variable> FROM <workstation-id>; 

Different from CSP, however, in our model only 
'receive' involves process synchronization (that 
is an implicit 'wait' for the message to be re- 
ceived), whereas 'send' is not synchronized but 
supported by an automatic buffering mechanism for 
messages sent but not yet received. 

5.2. PROCESS COMMUNICATION 

Besides communicating data, cooperating of- 
fice procedures need inter-process communication 
in order to be able to synchronize their activ- 
ities. So, execution of an office procedure on 
one workstation may either depend on the termi- 
nation of a procedure on another workstation 
(control convergence), or may initiate a remote 
procedure on a different workstation which then 
executes concurrently (control brcmch). In our 
model, both kinds of synchronization primitives 
are supported, respectively, by a 'wait' and a 
'trigger' construct. 

TRIGGER <workstation> : <procedure-call>; 
WAIT <workstation> : <procedure-id>; 

IF is-Form (dot) 
AND dot [serial-no] = form [serial-no] 
THEN IF dot [entries] (manager-ok) = TRUE 

THEN BEGIN 
TRIGGER travel-office-ws : book (dot); 
WAIT travel-office-ws : book; 
SENO dot TO archive-ws EN0 

ELSE . . . <*application rejected*>... 
ELSE . ..<*wrong form returned*>... 

END travel-application; 

Process synchronization may always lead to 
situations where a 'wait' condition never occurs, 
and, thus, the waiting procedure is delayed in- 
definitely. Deadlock detection or prevention 
mechanisms are only useful in special cases, In 
general, the data model has to provide concepts 
for expressing exception handling procedures to 
be executed after a certain 'time out' interval 
has passed in order to limit waits to a 
user-defined maximum. 

In the 'travel-application' procedure above, 
for example, the 'wait' construct could be ex- 
tended by the following exception handling mech- 
anism: 

WAIT travel-office-ws : book; 
FOR <*time-out-interval*> 
EXCEPTION TRIGGER travel-office-ws : 

reminder (dot); . . . END; 

A 'trigger' activates execution of an office pro- 
cedure on another workstation; a 'wait' delays a 
currently active procedure until a procedure on a 6. CONCLUOtNG REMARKS 

different location has terminated execution. 

Data communication between office procedures This paper is a first attempt to develop con- 

to be synchronized is either achieved via stand- ceptual and linguistic tools to support formal 

ard communication primitives (as defined above) repreSentatiOt’IS of office system semantics and to 

or, in case of a control branch, via actual 'val- ease high-level office application programming. 

ue' parameters passed to the triggered procedure. The choice of the proposed data structuring mech- 
anisms is influenced on the one hand by the rela- 

For example, an office procedure processing an tional approach to data management [Codd70], and, 

employee's travel application on his own work- in particular, by our experience with relations 

station may cooperate, in various ways, with of- in a programming language environment [Schm77]. 

fice procedures on other, remote office On the other hand, our approach draws heavily 

workstations: 
from insights gained by applying 'META IV', the 
meta-language of the semantic specification meth- 

PROCEDURE travel-application (form: DocumentType; od 'Vienna Development Method' (VOM) [BjJo78] in 

manager-ws, travel-office-ws, a database context (see, [BjLs82] 

archive-ws: WorkstationIdType); [LaSc80]). Another approach toe?pe'cifying da& 

VAR dot : DocumentType; 
spaces based on recursive structures can be found 

BEGIN 
in [CrHi82). 

. . . <*fill out form*>...; 
form [entries] := . . . . 

TRIGGER manager-ws : approve-form (form); 
. . . <*other, concurrent activities*>... 
RECEIVE dot FROM manager-ws; 

The paper concentrates on proposing conceptual 
tools for office data object and office procedure 
semantics modelling. The concepts are the kernel 
for an very high level office programming lan- 
guage as, for example, outlined in [HaKu80] or 
[SLTC82]. A complete office programming language 
can be derived by imbedding the proposed con- 
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structs into a conventional high-level program- 
ming language, or into an integrated database and 
programming language environment (e.g. 
[Schm84]). 

In the examples sketched in the paper, the 
hosting programming language has an 'imperative', 
Pascal-like flavor. In general, however, the 
proposed concepts could also be adapted to a 
functional or logic-based programming language 
environment. 

The basis for the proposed office data model 
recursive data model as introduced in 

;tamz84]. A prototype implementation of the re- 
cursive data model has been implemented at the 
University of Hamburg [Saun84], [LaSc84] utiliz- 
ing a compiler writing system and a relational 
database environment. The prototype implementa- 
tion maps our recursive approach to office object 
construction, selection, recognition, and manip- 
ulation down to the data objects and operations 
provided by the database programming language 
Pascal/R [ScMa80]. 
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