
LANGUAGE SUPPORT FOR OFFICE MODELLINC

W. Lamersdorf'," G. MtillerZ

I Univ. Hamburg * IBM Deutschland
FB Informatik Scientific Center

SchlUterstraGe 70 Tiergartenstra6e 15
O-2000 HAMBURG 13 D-6900 HEIDELBERG

J.W. Schmidt'

3 Univ. Frankfurt
FB Informatik
DantestraDe 9

D-6000 FRANKFURT

ABSTRACT :

Office Modelling aims at providing abstract,
conceptual tools for describing office system se-
mantics in order to ease high-level, and more
likely correct application programming. Advanced
office systems are complex organizations of ob-
jects, locations, procedures, people, etc., com-
bining independent workstations which cooperate
concurrently in executing complicated office
tasks.

In our approach to office modelling we per-
ceive office procedures as being based on complex
data object constructors that accept selected ob-
ject components (e.g., addresses, dates,
text-fragments) and return office objects of com-
posite type (e.g., letters, forms, memos). We
gain the semantic primitives required for object
construction, component selection, and type re-
cognition by generalizing the corresponding sol-
utions provided by conventional record-based
database models. This leads us from the 'flat
structures' of traditional database models to
'recursive structures' allowing for flexible rep-
resentations of non-formatted and highly related
data objects as required for advanced office mod-
elling.

1. FRAMEWORK FOR OFFICE MODELLING

An office is a complex organization of ob-
jects, procedures, locations, communications,
and, last but not least, people. Advanced office
organizations are, in general, distributed sys-

Permission to copy wlrhout fee all or part of this material is granted
provided that the copies an not made or dlrtributed for direct commercial
odvantcrge, the VLDB copyright notice and the title of the publkation and its
date appear. and notice is given that copyb!g is by permission of the VW Large
Data Bose Endowment. To copy otherwise, or to republish. requires a fn
and/or special permission from the Endowment.

Proceedlnge of the Tenth lnternatlonal
Conference on Vety Large Data Baeee.

terns with independent workstations cooperating
concurrently in executing office tasks as well as
communicating with people. Office Modelling aims
at providing abstract, formal tools to represent
office semantics in order to ease high-level, and
and more likely correct application programming.
This paper introduces conceptual and linguistic
tools to aid the development of advanced, comput-
er based office information systems.

As "office work is, to a large extent, ulti-
mately people work" [Elli83], computer support
for advanced office systems has to concentrate on
an appropriate subset of office activities. Of-
fice applications of particular interest for this
paper are office information systems assisting
various user in

- definition, selection, and manipulation of of-
fice information containing large amounts of
not necessarily formatted office data objects,
and

- distributed execution of various office proce-
dures from user workstations which are nodes
in a distributed office network.

In the following chapter we identify basic re-
quirements for representing non-conventional in-
formation system applications (as, e.g., office
systems), and then demonstrate how a 'recursive'
data model can support them more adequately than
traditional, record-based database modelling.
The structural concepts for representing office
data objects are extended in chapter three and
applied to a major office example. Extended mod-
elling tools for office procedures are proposed
in chapter four. Specific aspects of data as
well as procedure communication in a distributed
office environment are, finally, addressed in
chapter five.

2. MODELLING COMPOUND DATA OBJECTS

Modelling advanced data-intensive applica-
tions requires primitives for representing com-
pound data objects adequately with respect to all
their structural as well as operational aspects.

Singapore, August, 1964

An important criterion for the adequacy of a data

model is the coherence of its modelling primi-
tives with the underlying semantic structures of
an intended class of applications. In office
systems, for example, data objects to be speci-
fied are characterized by a great variety of
structured components related by complex inner
relationships.

is difficult or, in some cases, impossible
[KSW81], [Klug80].

Limitations of traditional record-based data
models [Kent791 become especially obvious when
modelling data objects with highly varying struc-
tures which are semantically inter-related
[Codd79] as required, for instance, in CAD/CAM
[HaLo82], information retrieval [ScPi80], or of-
fice applications [GiTs83].

2.1. SEMANTIC MODELLING PRIMITIVES

In our approach to office modelling we per-
ceive office procedures as basically centered
around semantic primitives allowing for

- construction of compound data objects out of
elementary ones or those already constructed,

- selection of specific object components from
compound data objects, and

In comparison to the limited set of tools for
conventional database modelling, data modelling
in modern programming languages can be character-
ized by a great variety of modelling concepts
(i.e. data type generators) which can be combined
freely [Zi1184]. The objective of the following
'recursive' data model is to integrate data ab-
straction mechanisms from modern programming lan-
guages with high-level data structuring,
selection, and management concepts from current
database technology.

- recognition of the construction rules (or
types) underlying a compound data object in-
stance. 2.2. RECURSIVE DATA MODEL PRIMITIVES

For example, in an office system environment we
want to be able to

- construct a 'letter' instance from components
as, for example, names, addresses, dates, and
textual fragments,

Recursive data models [Lame841 are based on
simple as well as recursively defined data types
[Hoar751 and extend the modelling tools of clas-
sical data models by allowing representations of
variable length structured data objects, possibly
nested in a varying depth.

- select single letter components as, for in-
stance, the sender's address or the letter's
textual content, and

- recognize a given document as a letter (as op-
posed to a form, a memo, etc.).

Traditional database models as, for example,
the relational data model [Codd70], support the
semantic modelling primitives in a more limited
way:

For each recursively defined data type,
RcsType, a recursive data model provides a set of
different 'structure generators', Gen-i, to gen-
erate value instances of the respective recursive
type. Structure generators are based on limited
sets of component types, CompType-ij, which may,
recursively, contain other recursive data types
(including the data type to be defined), or con-
sist of simple data types as known from conven-
tional, high-level programming languages. Single
components can be identified by elementary 'com-
ponent selectors', sel-ij. Then,

- 'Record' and 'relation' constructors allow for
the representation of compound data objects of
a fixed resp. variable length using
content-based references (e.g. keys) for ob-
ject identification and association. However,
the gained flexibility ('relational
relativism') has to be paid for by 'referen-
tial integrity' problems [Date81], [LaSc84].

TYPE RcsType =

- Component selection is well supported in cases
where components can be represented by single
tuples or attribute values. However, se-
lection of more complex object components re-
presented by sets of tuples spread over
several relations requires complex query ex-
pressions that raise computational (relation-
al 'completeness') and performance issues.

(Gen-1 (sel-11: CompType-11;
sel-ln: CompType-ln)
1 Gen-i (...) 1

1 &en-k (sel-kl: CompType-kl: 1.1;
sel-km: CompType-km; 1;

defines a data type whose value set consists of
all hierarchically structured data values which
can be generated by (in general nested) applica-
tion of the generators 'Gen-i', Isilk, to compo-
nents of type 'CompType-ij'. (Syntactic Note: In
case of only a single structure generator, the
outmost brackets of a recursive type definition
may be omitted. Similarly, a single elementary
component selector may be dropped.)

- Recognition of the construction of compound So, a recursively defined data type provides
objects (i.e. types of relation expressions concepts for all three basic semantic modelling
including the corresponding key constraints) primitives:

Proceeding8 of the Tenth Intematlonal
Conference on Very Large Data Barea. 281

Singapore, August, 1984

- a set of structure generators, Gen,i , to con-
struct a recursive value from a given set of
component values (which are, in turn, either
constructed by application of some structure
generator, or are aenoted by simple, conven-
tional programming language expressions);

- for each structure generator a set of elemen-
tary component selectors, sel-i j, to select
a component from a recursive variable whose
value was generated by the generator 'Gen,i'.
Syntactically, component selectors are en-
closed in square brackets and written behind
the variable to be selected. So, for a
recursively defined variable, rcs-var, whose
value was generated by
'Gen-i (.. .,comp-val-ij,...)',

rcs-var [sel-ij] = camp-val-ij.
Component selectors identify component vari-
ables (i.e., they may be used in an expression
context, on the left-hand side of an assign-
ment statement, as well as nested). Nested
component variables are written one after an-
other and evaluated from left to right.

-a set of 6001 ean characteristic functions,
is-Gen-i, to recogrrfze a recursive value as
being constructed by some structure generator
'Gen-f'. For a recursive variable, rcs-var,
for example, whose value was generated by ap-
plication of the structure generator 'Gen-f
(...I',

is-Gen-i (rcs-var) = TRUE.

In terms of a recursive data model, an example
'document' type can now be defined- as follbws
(for component type definf tions see section 3.2):

DocumentType =
(Letter (sender,

receiver
from, to

NameType;
AddressType;

date-mailed, date-received:
DateType; content: TextType)

1 Form (. . .)
(Memo(...) 1 .,.);

Recursively defined data types comprise com-
plex data values which are, in different ways,
generated by (in general nested) applications of
the structure generators defining the respective
data types. Our recursive approach generalizes
traditional (record-based) data models, re-
stricted to data objects with an identical struc-
ture [Kent79], to more advanced data models that
allow for the definition and manipulation of data
objects sharing some structuring concept. In
other words, recursive data models are based on a
limited number of modellfng primitives and gain
their power by allowing for their orthogonal com-
bination.

Proceeding8 ot the Tenth Intatmational
Conforencr on Very Loge Data Baaea.

3. EXTENDED STRUCTURING TOOLS

In order to ease linguistic expressions for
specific classes of office object semantics, we
extend the recursive data model by a higher-level
layer of abstract structural and operational mod-
elling concepts.

3.1. ABSTRACT OBJECT REPRESENTATIONS

In general, recursive data structures are pow-
erful enough to express all of the following data
object representations. Subsequently, some addi-
tional data structuring mechanisms are introduced
as short hand notations for those semantic struc-
tures which represent concepts occurring fre-
quently in office system semantics.

3.1.1. Ordered Objects

The first important concept to be supported is
that of an 'order' defined on application objects
and leads to a 'list' type data structuring mech-
anism. Instead of defining a list type explicit-
ly, as, for instance, by

ListType
(Empty CT

I Append-list (last: ElementType;
rest: ListType));

ElementType = . . .;

we provide as a syntactically shorter, seman-
tically equivalent alternative the predeffned
type definition for variable length lists:

ListType = LIST OF ElementType,

Single list instances are generated applying a
typed standard generator for lists, 'ListType
(...I'. (The syntax for complex value
constructors follows that of a typed generator
construct as, for
[Wfrth82].)

example, in Modula-2

Together with the 'list' type come the usual
list operation primitives as, for instance, the
element selectors 'LAST' (yields the most recent-
ly added element) and 'REST' (yields the list
without the last element), 'lfst[i]' (selects the
i-th element),
elements),

'ELEMS' (returns set of all list
'LENGTH' (returns number of elements)

'VOID' (Boolean test for zero elements), I:+;
(appends r.h.s.
able), etc.

elements to 1.h.s. list vari-

For example, a document 'file' data type can
now be.modelled as

FileType = LIST OF DocumentType.

hgapore, Auguti, 1981

282

Then, for a corresponding 'file' variable,
'file[j]' selects the j-th document from a given
file (if existent), and 'file [LAST]' selects the
most recently added one; 'FileType
{dot-1, dot-n)' generates a file instance
from given document instances, dot-1, dot-n.

3.1.2. Object Ranges

Representing application object ranges leads
to a 'set' type structuring concept. Sets have
varying cardinality and no duplicate element val-
ues are allowed. The usual set operators (u, n,
IN, :+, :-, etc.) are defined for set types which
are specified syntactically as:

SetType = SET OF ElementType.

Set instances are generated applying a standard
set generator 'SetType {...}I. Set restriction
is based on first-order predicate expressions
following the line of first-order query lan-
guages:

SetType { <element-id> IN <set>
SUCH THAT <predicate> 1

For example, a file cabinet may be perceived
as a set of drawers:

FileCabinetType = SET OF DrawerType.

Then, 'cabinet-l :+ cabinet-2' integrates into
the set of drawers of a file cabinet variable,
cabinet-l, the drawers' of 'cabinet-2', and
'FileCabinetType {draw IN cabinet-l SUCH THAT
<predicate>)' selects a certain subset of drawers
from 'cabinet-l'.

3.1.3. Object Identification

Object identification is an essential concept
in office system applications and can be repres-
ented by 'mapping' object identifiers to the ob-
jects to be identified. Maps, in turn, are sets
of pairs E (Domain x Range) where 'Domain' and
'Range' are again sets, and no two element pairs
have the same domain value; syntactically:

MapType = (DomainType ---> RangeType).

Map instances are created using a map generator
'MapType {d-1-->r-1, d-n-->r-n)'. The oper-
ations on maps are 'DOM' (domain value set),
'RNG' (range value set), I:+' (map extension,

inserting new pairs), ':&I (map update, i.e.
AvZrwriting existing pairs), 'map (argument)'
(application of a map to an argument), etc.

For example, the 'DrawerType' referred to
above can be modelled as a map from file identi-
fiers to the corresponding files in the drawer:

Proceedings of the Tenth lnternatlonal
Conference on Very Large Data Bases.

DrawerType = (FileIdType ---> FileType);
FileIdType = TOKEN.

(File identifiers are regarded as unstructured
'tokens', only subject to equation tests.) Then,
for example, 'drawer :+ DrawerType
{file-i --> file)' extends the content of a given
drawer by a new file which is identified by
'file-i'.

3.2. OFFICE OBJECTS EXAMPLE

In the following, we complete the example rep-
resentation of a file cabinet containing files
and documents as a subset of an office environ-
ment:

TYPE
FileCabinetType = SET OF DrawerType;
DrawerTvoe
FileType'
DocumentType

= (FileIdType --S' FileType);
= LIST OF DocumentType;
= (Letter (sender,

receiver : NameType;
from, to : AddressType;
date-mailed,
date-received : DateType;
content : TextType)

1 Form (type-no, serial-no :
INTEGER; entries :
(EntryIdType-->EntryType))

1 Memo (...) 1 . . .);

Components of
again be defined

NameType

AddressType

DateType

EntryType

ContentType
FileIdType
EntryIdType

letters, forms, memos, etc. may
recursively:

= Name (first, middle,
last : WordType);

= Address (organization :
LIST OF WordType;
street, city, state,
country : WordType;

' : INTEGER);
= DaFz'(:A!r: (1950..1990);

month : (1. .12);
day : (1. .31));

= Entry (descr : TextType;
content : ContentType;
domain: SET OF ContentType);

= . . .;
= TOKEN;
= TOKEN;

A more complex structured data type is the
'TextType' comprising component types for para-
graphs, sentences, words, etc.:

TextType = LIST OF ParagraphType;
ParagraphType = (Titled-para (title :

SentenceType;
cant : ParagraphType)

1 Untitled-para (para :
LIST OF SentenceType));

Singapore, August, 1984

283

SentenceType = Sentence (elems :
LIST OF ElementType;
end-mark: (I.', '!I,
'7'

ElementType = f p", jyo+$:,
. ..>I.

WordType = LIST OF CHAFi; ' '

Finally, we are able to declare a single com-
pound variable representing a file cabinet with
all its structured content:

VAR file-cabinet : FileCabinetType.

3.3. DATA OBJECT INTEGRITY

In the proposed extended recursive data model,
referential ,integrity problems are, in most
cases, avoided by choosing appropriate data
structuring primitives. In order to impose addi-
tional integrity constraints on data objects ex-
plicitly, Boolean 'invariant' predicates can be
formulated with a data type definition. For a

,simple example, the following invariant restricts
'file' instances to containing not more than 99
documents:

INVARIANT FileType (file);
CARD ELEMS file s 99

END.

Object type invariants, however, have to be
checked for validity after each manipulation of a
corresponding object instance.

4. EXTENDED OPERATIONAL TOOLS

The basis for modelling office procedure . _ _ se-
mantics are the operational primitives of the ex-
tended object types in the proposed data model.
They provided mechanisms for compound data object
construction, decomposition, and recognition.
More powerful operations on recursive objects
can be defined (recursively) in terms of the ele-
mentary operators.

4.1. DATA OBJECT SELECTION

4.1.1. Elementary Selectors

For example, elementary selection of object
components can be modelled in terms of the opera-
tional primitives as demonstrated in the follow-
ing examples for a 'file-cabinet' variable as
declared above:

"select the drawers from a file cabinet which
contain a 'file-i"' :

DrawerType { draw IN file-cabinet
SUCH THAT file-i IN DOM draw 1

."select the 4th document from 'file-i' in a given
drawer" :

drawer (file-i) [4]

"is that document a form ?" :

is-Form (drawer (file-i) [4])

"select the content of the corresponding 'date'
entry" :

drawer (file-i) [4] [entries] (date) [content]

A more complex example selects "the latest let-
ter(s) from a sender 's' in a file If"' :

SET OF DocumentType { dot IN ELEMS f SUCH THAT
(is-Letter (dot)

AND (dot [sender] = s)
AND ALL dot' IN ELEMS f ((is-Letter (dot')

AND dot' [sender] = s) ==>
(dot [date] 2 dot' [date]))) 1

4.1.2. Dedicated Selectors

Since component selection is frequent and, as
shown in the last examples, sometimes complex in
structured data object applications, it is sup-
ported additionally by 'dedicated component se-
lectors'. Similar selector or view mechanisms
have been proposed for the relational database
model by [Ston75], [Rous82], and [MRS84], and are
defined for the recursive data model in [Lame84].

For example, the previous component selector
example can now be expressed recursively using a
generic, parameterized 'selector' mechanism. The
definition of the selector 'last-letter-from' is
based on the fact that the latest letter was
filed last (with unary list operators binding
stronger than selectors):

SELECTOR last-letter-from FOR f: FileType

IF VOID f
(s: NameType) : DocumentType;

THEN <EXCEPTION: message ("There is
no letter from", 5, "in",, f)>

ELSE IF is-Letter (f [LAST])
AND f [LAST] [sender] = s

THEN SELECT f (LAST]
ELSE SELECTf [REST]

[last-letter-from (s)]
END last-letter-from,

An application of this selector to file 'f'
'f [last-letter-from (s)]', selects either thi

Procesdlngs ot ths Tenth Intwnational
Conterence on Very Largs Data Basm.

Singapore, August, 1984

284

required document or raises the defined excep-
tion.

4.2. DATA OBJECT MANIPULATION

the use of structure generators can be restricted
to ADT operations only. In the example above
this means that a user may not simply append a
document to a given file, but instead has to call
a special 'file manipulation' function checking
all consistency constraints.

Data objects are represented by variables as,
for example, demonstrated in section 3.2. The
simplest case of data object manipulation is to
select an object or an object component, and then
to replace it by a new value. For example, set-
ting the receiving date of the last letter from a
sender, s, in a given file to ‘1983-11-23’ is:

5. SUPPORT FOR OFFICE COMMUNICATION

file [last-letter-from (s)] [date-received]
:= Date (1983,11,23)

Representing advanced office applications
with cooperating processes on different, distinct
locations (as, e.g., outlined in [HKMS84]) re-
quires additional support for modelling data as
well as process communication.

Insertion, deletion, or update of object (com-
ponent) instances is expressible via set-oriented
update operators and operands constructed by the
extended operational primitives. For example:

"insert a file identified by 'file-i' into a giv-
en drawer" :

5.1. DATA COMMUNICATION

drawer :+ DrawerType {file-i ---> file)

"delete some values from the domain of a given
data entry" :

In a first approach, we suppose that office
procedures on different workstations communicate
via sending data to globally accessible 'mail-
boxes' of respective peer work stations.

entry [domain] :- SET OF ContentType
{value-l, value-n)

In such a case, our data model supports the
representation of mailboxes by distinct global
variables, and modelling data communication by
communicating procedures accessing and changing
these variables. The communicated data is re-
presented by data objects as defined before. For

"replace the last document in a file by a new example, if a global variable contains a 'mail-
one" : box' for each distinct workstation,

file [REST] :+ new-document

More powerful query and data manipulation lan-
guage constructs may include multi-component se-
lection mechanisms as well as extended
manipulation functions and control structures de-
fined in terms of sets, lists, maps, etc. of ob-
ject components.

TYPE MboxesType = (WorkstationIdType
---> FileType);

VAR Mailboxes : MboxesType;

a simple 'send' procedure could be user-defined
as follows:

4.3. OPERATION INTEGRITY

Integrity mechanisms could be provided to re-
strict procedure executions to states where cer-
tain 'pre- and/or post-conditions' hold (compare,

'dynamic consistency constraint' specifi-
Ea:ions in [BjJo78]). However, since in an ap-
propriate programming language environment
Boolean constraint checks can be specified any-
where in a procedure definition, the model does
not support pre- and post-conditions explicitly.

PROCEDURE send (dot: DocumentType;
to : WorkstationIdType);

VAR mailbox : FileType;
BEGIN mailbox := Mailboxes (to);

mailbox :+ dot;
Mailboxes :& MboxesType

(to --> mailbox 1
END send.

In order to avoid concurrency anomalies
[EGLT76], shared variables have to be appropri-
ately locked for access by more than one office
procedure. Sophisticated locking strategies for
parallel access to complex data objects can take
advantage of the hierarchical structure of
recursively defined data objects [GLP75].

An alternative approach to guaranteeing data
object integrity is to restrict all operations
manipulating instances of a data type to only the
integrity preserving ones. This leads to the in-
troduction of abstract data types (ADT) as uti-
lized for databases by, for example, [Schm79].
ADTs can be supported by the data model, provided

Further extensions of the data model include a
more general model for process communication and
synchronization. Hoare's 'communicating sequen-
tial processes' (CSP) [Hoar781 provide the con-
cepts for a non-deterministic communication
scheme between concurrent processes coupled with

Proceedings of the Tenth International

Conference on Very Large Data Bases. 285

Singapore, August, 1984

process synchronization. The corresponding prim-
itives for the office model are:

SEND <value> TO <workstation-id>; and
RECEIVE <variable> FROM <workstation-id>;

Different from CSP, however, in our model only
'receive' involves process synchronization (that
is an implicit 'wait' for the message to be re-
ceived), whereas 'send' is not synchronized but
supported by an automatic buffering mechanism for
messages sent but not yet received.

5.2. PROCESS COMMUNICATION

Besides communicating data, cooperating of-
fice procedures need inter-process communication
in order to be able to synchronize their activ-
ities. So, execution of an office procedure on
one workstation may either depend on the termi-
nation of a procedure on another workstation
(control convergence), or may initiate a remote
procedure on a different workstation which then
executes concurrently (control brcmch). In our
model, both kinds of synchronization primitives
are supported, respectively, by a 'wait' and a
'trigger' construct.

TRIGGER <workstation> : <procedure-call>;
WAIT <workstation> : <procedure-id>;

IF is-Form (dot)
AND dot [serial-no] = form [serial-no]
THEN IF dot [entries] (manager-ok) = TRUE

THEN BEGIN
TRIGGER travel-office-ws : book (dot);
WAIT travel-office-ws : book;
SENO dot TO archive-ws EN0

ELSE . . . <*application rejected*>...
ELSE . ..<*wrong form returned*>...

END travel-application;

Process synchronization may always lead to
situations where a 'wait' condition never occurs,
and, thus, the waiting procedure is delayed in-
definitely. Deadlock detection or prevention
mechanisms are only useful in special cases, In
general, the data model has to provide concepts
for expressing exception handling procedures to
be executed after a certain 'time out' interval
has passed in order to limit waits to a
user-defined maximum.

In the 'travel-application' procedure above,
for example, the 'wait' construct could be ex-
tended by the following exception handling mech-
anism:

WAIT travel-office-ws : book;
FOR <*time-out-interval*>
EXCEPTION TRIGGER travel-office-ws :

reminder (dot); . . . END;

A 'trigger' activates execution of an office pro-
cedure on another workstation; a 'wait' delays a
currently active procedure until a procedure on a 6. CONCLUOtNG REMARKS

different location has terminated execution.

Data communication between office procedures This paper is a first attempt to develop con-

to be synchronized is either achieved via stand- ceptual and linguistic tools to support formal

ard communication primitives (as defined above) repreSentatiOt’IS of office system semantics and to

or, in case of a control branch, via actual 'val- ease high-level office application programming.

ue' parameters passed to the triggered procedure. The choice of the proposed data structuring mech-
anisms is influenced on the one hand by the rela-

For example, an office procedure processing an tional approach to data management [Codd70], and,

employee's travel application on his own work- in particular, by our experience with relations

station may cooperate, in various ways, with of- in a programming language environment [Schm77].

fice procedures on other, remote office On the other hand, our approach draws heavily

workstations:
from insights gained by applying 'META IV', the
meta-language of the semantic specification meth-

PROCEDURE travel-application (form: DocumentType; od 'Vienna Development Method' (VOM) [BjJo78] in

manager-ws, travel-office-ws, a database context (see, [BjLs82]

archive-ws: WorkstationIdType); [LaSc80]). Another approach toe?pe'cifying da&

VAR dot : DocumentType;
spaces based on recursive structures can be found

BEGIN
in [CrHi82).

. . . <*fill out form*>...;
form [entries] :=

TRIGGER manager-ws : approve-form (form);
. . . <*other, concurrent activities*>...
RECEIVE dot FROM manager-ws;

The paper concentrates on proposing conceptual
tools for office data object and office procedure
semantics modelling. The concepts are the kernel
for an very high level office programming lan-
guage as, for example, outlined in [HaKu80] or
[SLTC82]. A complete office programming language
can be derived by imbedding the proposed con-

Prcceedlngs of the Tenth lntrrnatlonal
Conference on Very Large Data Bases.

Singapore, August, 1994

286

structs into a conventional high-level program-
ming language, or into an integrated database and
programming language environment (e.g.
[Schm84]).

In the examples sketched in the paper, the
hosting programming language has an 'imperative',
Pascal-like flavor. In general, however, the
proposed concepts could also be adapted to a
functional or logic-based programming language
environment.

The basis for the proposed office data model
recursive data model as introduced in

;tamz84]. A prototype implementation of the re-
cursive data model has been implemented at the
University of Hamburg [Saun84], [LaSc84] utiliz-
ing a compiler writing system and a relational
database environment. The prototype implementa-
tion maps our recursive approach to office object
construction, selection, recognition, and manip-
ulation down to the data objects and operations
provided by the database programming language
Pascal/R [ScMa80].

7. REFERENCES

[BjJo78] :

[BjL082] :

[BMS84] :

[Codd79] :

[Codd70] :

D.BjBrner, C.B. Jones (Eds.) : "The
Vienna Development Method: The Meta
Language", Lecture Notes in Computer
Science, no.61, Springer Verlag,
Berlin Heidelberg New York, 1978.

D. Bj0rner, H. Llvengreen:
"Formalization of Database Systems -
and a Formal Definition of IMS", Proc.
8th VLDB, Mexico City, September 1982,
pp.334-347.

M.L. Brodie, J. Mylopoulos, J.W.
Schmidt ,(Eds.) : "On Conceptual Mod-
elling: Perspectives from Artificial
Intelligence, Databases, and Program-
ming Languages", Springer Verlag,
Berlin Heidelberg New York, 1984.

E.F. Codd : "Extending the Relational
Database Model to Capture More Mean-
ing", ACM TODS, ~01.4, no.4, Dec.
1979, pp.397-434.

E.F. Codd : "A Relational Model of Da-
ta for Large Shared Databanks", Comm.
ACM, vo1.13, no.6, June 1970,
pp.377-387.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

[CrHi80] :

[Date811 :

[Elli83] :

[EGLT81] :

[GiTs83] :

[GLP75] :

[HaKu80] :

[HaLo82] :

[Hoar781 :

[Hoar751 :

[HKMS84] :

[Kent791 :

A.B. Cremers, T.N. Hibbard : "Specifi-
cation of Data Spaces by Means of
Context-free-grammar-controlled Prim-
itive Recursion", Comp. Sci. Techn.
Rep. no.107, Univ. Dortmund, 1980.

C.J. Date : "Referential Integrity",
Proc. 7th Conference on VLDB, Cannes,
France, September 1981, ~~-2-12.

C.A. Ellis : "Formal and Informal Mod-
els of Office Activity", in: R.E.A.
Mason (Ed.): Proc. IFIP Congress 1983,
Elsevier Science Publishers B.V.
(North Holland), 1983, pp.ll-22.

K.P. Eswaran, J.N. Gray, R.A. Lorie,
I.L.Traiger: "The Notions of Consist-
ency and Predicate Locks in a Database
System", Comm. ACM, vo1.19, no.11,
Nov. 1976.

S. Gibbs, D. Tsichritzis : "A Data
Modelling Approach for Office Infor-
mation Systems", ACM Transactions on
Office Information Systems, ~01.1,
no.4, Oct. 1983, pp.299-319.

J.N. Gray, R.A. Lorie, G.R. Putzolu :
"Granularity of Locks in a Shared Data
Base", Proc. 1st Conference on VLDB,
New York, Sept. 1975, pp.428-451.

M.M. Hammer, J.S. Kunin : "Design
Principles for an Office Specifica-
tion Language", Proc. NCC 1980, AFIPS
Press, 1980, pp.541-547.

R.L. Haskins, R.A. Lorie : "On Ex-
tending the Functions of a Relational
Database System", Proc. ACM SIGMOD
Int. Conf. on Management of Data,
Orlando, Florida, June 1982,
pp.207-212.

C.A.R. Hoare : "Communicating Se-
quential Processes", Comm. ACM,
vo1.21, no.8, August 1978,
pp.666-677.

C.A.R. Hoare : "Recursive Data Struc-
tures", International Journal of Com-
puter and Information Science, ~01.4,
no.2, 1975, pp.105-132.

R. Holliday, D. Kropp, G. MUller, W.
Schulz : "Enduser Applications in
Open Systems", IBM HDSC Techn. Report
no. 84.06.007 IBid Heidelberg, June
1984.

W. Kent : "Limitations of Record Based
Information Models", ACM TODS, ~01.4,
no.1, March 1979, pp.107-131.

Singapore, August, 1984

281

[Klug80] :

[KSWIIl] :

[Lame841 :

[LaSc84] :

[LaScSO] :

[MRS84]

[Rous82] :

[Saun84] :

[ScPi82]

[Schm84]

A. Klug : "Calculating Constraints on
Relational Expressions", ACM TOOS,
~01.5, no.3, Sept. 1980, pp.260-290.

J. Koch, J.W. Schmidt, V. Wunderlich :
"Type Derivation for First-Order Re-
lational Expressions", Techn. Report

79/81 Fachbereich Informatik,
iiiversitI{ Hamburg, June 1981.

W. Lamersdorf : "Recursive Data Models
for Non-Conventional Database Appli-
cations", Computer Data Engineering
Conference (COMPDEC), IEEE Computer
Society, Los Angeles, April 1984.

W. Lamersdorf, J.W. Schmidt : "Spec-
ification and Prototyping of Data Mod-
el Semantics", Proc. Working Conf.
on Prototyping, Namur, Belgium,
Springer Verlag, Berlin Heidelberg
New York, 1984.

W. Lamersdorf, J.W. Schmidt : "Spec-
ification of Pascal/R", Techn. Re-
ports no. 73 and 74, Fachbereich
:;r&rmatik, UniversitEt Hamburg, July

Mall, M. Reimer, J.W. Schmidt : "Data
Selection, Sharing, and Access Con-
trol in a Relational Scenario", in
[BMS84].

N. Roussopoulos : "View Indexing in
Relational Databases", ACM TODS,
~01.7, no.2, June 1982, pp.258-290.

L. Saunus : "Adaptive User Interfaces
for Relational Systems Utilizing Com-
piler Writing Techniques" (in
German), Diploma Thesis, Fachbereich
Informatik, Universitgt Hamburg,
1984.

H.-J. Schek, P. Pistor : "Data Struc-
tures for an Integrated Database Man-
agement and Information Retrieval
System", 8th Conference on VLDB,
Mexico City, Sept. 1982, pp.197-207.

J.W. Schmidt : "Database Programming:
Language Constructs and Execution
Models", in: U. Amman (Ed.): Proc.
8th GI Fachtagung on "Programming Lan-
guages and Program Development", ETH
Zurich, Switzerland, Informatik
Fachberichte ~01.77, Springer Verlag,
Berlin Heidelberg New York Tokio,

[Schm79] :

[Schm77] :

[ScMa80] :

[SLTC82] :

[Ston75] :

[Wirt82] :

[Zi1184] :

J.W.Schmidt : "Type Concepts for Da-
tabase Definition", Proc. Intern.
Conf. on: Databases - Improving Usa-
bility and Responsiveness, 8.
i;;;iderman (Ed.), Haifa, August

.

J.W. Schmidt : "Some High Level Lan-
guage Constructs for Data of Type Re-
lation", ACM TODS, ~01.2, no.3, Sept.
1977, pp.247-261.

J.W. Schmidt, M. Mall : "Pascal/R -
Report", Techn. Report no.66,
Fachbereich Informatik, Universittit
Hamburg, West Germany, Jan. 1980.

N.C. Shu, V.Y. Lum, F.C. Tung, C.L.
Chang : "Specification of Forms Proc-
essing and Business Procedures for Of-
fice Automation", IEEE Transactions
on Software Eng., ~01.8, no.5, 1982.

M. Stonebraker : "Implementation of
Integrity Constraints and Views by
Query Modification", Proc. ACM SIGMOD
Conf., 1975, pp.65-77.

N. Wirth : "Programming in Modula-E",
Springer Verlag, Berlin Heidelberg
New York Tokio, 1982.

S.N. Zilles : "Types, Algebras, and
Modelling", in: [BMS84], pp.441-450.

1984, pp.l-25.

Proceedings of the tenth Intsmatlonal
Conference on Vety Large Data Bawfs.

Slngapors, August, 1964

288

