
Towards an Optimal Data-Structure : CB-trees

T.U.Frabhakar 8 H+U+Sahasrabuddhe

Comruter Sci. DeA,.r I+I+T+ Kanpurr INDIA : 208016

ABSTRACT: This is a proposal for a new
dati3-StrUCtUre called chained B-trees
(CE-trees). CE-trees exhibit a
superior access cost curve compared to
B-trees. Ther Provide the same amount
Of space utilisation as E-trees and
are not any more expensive to build.
In this Paper we define GE-trees and
studs their performance vis-a,vis
E-trees throuah extensive simulation
studies. Simulations were done
through a novel techninue which allows
large random trees to be simulated in
core,

1rINTRODUCTION: B-trees proposed bw
Barer8 McCrei$ht CBawer 723 are widelr
used for orfanisins larse indices,
Simple maintenance alziorithms,
rea5onable space utilisation and
logarithmic access cost are the main
reasons for their popularity. Several
variant5 of the E-tree data-structure
appeared in the literaturer (es.
B*Trees P B+trees CKnuth 73~ COMER 793~
Ditiital E-trees CLomet 813~ Sianature
Trees CFRABHAKAR 831 etc.). The main
thrust of these variants is in improvins
space utilisation and:or access costs.
We propose here wet another
data-structure based on the E-tree
model. We call it a Chained-B-tree or a

Pmnisaion to copy withoul fee all or part of this materM fs granted
provided that the copies arc not ma& or distributrd for direct
advantage, the VLDB copyright notice and the title of the publication and its A new ker to be inserted '
date appear, and notice is gtven that copying ia by pemdssion of the Very Large
Data &se Endowment. To copy otherwise, or to wbi&h. requires a fee

accomodated in a leaf node. If the le::
w

and/or apecbd permission from th- n-.+---# node oveflows (contains more than 2n I L,Y”“,,.V...
kers) it is split into two nodes each

CB-t ree for short. CD-trees exhibit an
access cost curve (number of keys vsr
average height) superior to that of a
B-treer Provide the same amount of space
utilisation and comparable construction
cost. Nodes ir a CB-tree might span
over two disk paties and accessins all
kers in such a node reauires two patie
fetches. Thus all leaf nodes nodes are
not at the same number of page fetches
away f ram the root. However? they are
different from heitiht-balanced-multiwar
trees CFagli 791,

In the next section we explain the
motivation behind modif'rinti the basic
B-tree definition. Section 3 defines
and discusses CD-trees. Here we also
examine them in relation to other data
structures proposed in the literature,
A novel techniaue to simulate in core
large randomly built tree structures is
used to examine the performance of
CE-t rees vis-a-vis' B-trees. In
section 4 we brief13 describe this
technioue and present simulation
results. Section 5 presents a summarw
and conclusions to the paper+

2.HOTIUATION: A E-tree of order n has
the followinG Properties:

1:Everr node except the root will
have at least n kers and at most 2n
kers.
2:A node with i kews will have
(itl) descendants*
3:The root maw have as few as 2
descendants.
4:All leaves are at the same
distance from the root.

with n kers and the centre key is pushed
UP to be accomodated at the parent node,

Proceedings ol1he Tenth IntemaUonal
Conference on Very Large Data Bases.

Slqjepore, Auguet, 1994

235

The tree grows in heisht when the root
splitsr the averacfe height soins UP bu
one + Then the iSVefa$@ heitiht sti3Ms
alNl05t constant till the next, 5plit of
the root+ Variation of avera~c? height
with number of keus can be seen in
fi2+5+1+

We observe that when the root is
5 F’ 1 i t t 0 ac!c!oNlodete an up-coainti ker I
all. sub-trees eminatirtti f roNI the root
are penal. ised hu increa,sing their
height+ This is necessi ated bu the
restriction that i3 I. 1 leaves be at the
same distance l from the root. If we
r e 1 a x this constraint, one WE13 to
acconiodate an IJacoNlinS kev is to chain a
new node to the root and absorb it there
a5 shown in fig,l+

Notice that onlr sub-trees NI and
(lIl+I.) have their height increased bu 1
and the rest of the siJb-tree5 retain
their earlier heidht. This results in a
tree whose averase height is le5rJ than

if the node has been split + With this
in Nlind we define the CR-tree.

3.1 CR-tree: In a CR-tree of order n
1, Ever% node
node (E.1 IcoNlpa55~~

either a sisPle
A- C> one disk pose) or

a CoN~pOUnd node (encoNIpas5e5 two
disk. Fades).
2,EvrrY node except the root is at
least half full* That isr a simle
node will have a mi.niN~IJr of n kers
and a NI~:.:I.NIUNI of 2n ke?Usr A
coN~polJr~d node wi 11 have at least
(2n+l) kers and atnlost 4n kevs +
3,The root NIE)Y have onlv one ker (2

descendants 1 +
4.All leaf node5 hove the 5aNle
riiJNlbe r of node5 (either simple or
coN~pound~ in the path to the rOOt l

In a CoN~POlJr~d node the two Pi39E!c,

are referred to as the main and twin+
Ilisk. pages for these two nodes need not
he conti$uous and can he a55isned from
anYwhere on the disk., The twin can be
reached only via the nrairl paSee Hence
to access entries on a twirl an ,. e s.* t r a

page fetch is necessrY+ Leaf node5 are
enui-distant f roe the root, in node coclnt
but can differ br a ratio of I.:2 in pa9e
fetches.

A ker inriertion is done as in a
B-tree observin$ the followins rules:
RlJlf? 1: 110 1-10 t split an overf lowinz!
simrle node if doing so will CalJS@ the
root to split.
Rule 2: Alwars Firlit an overf lowin
CONlpOlJr~d node +

Proceedings of the Tenth International

Conference on Very Large Data Bases.

Rclle 3: Split a CONIPOIJ~~ node even if it
iS r#Ot full when doing so will not ca)use
the root to split.

When all the nodes in the path to
the root are saturated a split at the
leaf also splits the root . Rule i
indicatesr at slJch a time do not split
the leaf but chain a new patie converting
it into a CON~POUr~d node + We observe
that this operation retains the averi19e
heitiht of kevs in a CB-tree close to the
heitiht before insertion whereas a B-tree
would have grown in heisht br 1. Thus
in a C&tree first the leaf nodes
acnui re chains and hecome CONlpOclrid
nodes +

Accordins to rule 2~ a CONP OlJnd
node is alwars 5rlit if it overflows+
This misht result in the root splitting
if it is alreadu a comround node which
is full,

It is possible to have CONIPOlJnd

nodes i n the tree even when their
ancestor nodes are not satlJrated* This
can occclr a5 follows: Consider a node
“a’ with *x9 and “Y’ as two of its
descendants + Node ‘a’ is 5atlJrated and
80 are it5 ancestor5. Now .x’ and ‘3’
overflow and are converted to CONlPOUnd
node5 9 ’ x-x ’ ’ and ‘Y---Y”. If the
CONlPOUnd node l :.:-:.:’ ’ again overflows it
is split into two simple nodesi. A k.eu

I be pushed UP and node ‘a’ is
converted to a CoePound node l a-a“ .
One can see that the CON~POUnd node
‘a-a’, can accomodate more kegs but it
has a descendant which is also a
c!onlPolJnd node. In such a situation when
the next ker insertion occurs in ‘k~--y’~ f
it is split into two simple nodes nodes
with the uPcomina k.er acc!omodated at the
ComPOiJr~d node ‘a-a’ ’ l Fig+2 illustrates
this semence of events*

ANIon the data-structures reported
1 n the 1 i terature of related interest

are heisht-halanced-multiwa% tree5
CPagli 7979 Srnmetric Binarv B-trees
CEaser 73,Wirth 773 and Ilirrital B-trees
CLoNlet 811 l Heisht-balanced-aultiwav
trees are like AVL tree5 CKnuth 733
where the height of all siJb-tr?es at an%
node NlaY differ bu one+ Srnmetric
binarr B-trees have been proposed to
avoid rre-allocation of space to nodes
which are arIywa9 senerallr not fclll.
Here a 2-3 tree node with 2 keur; and 3
pointers is constructed out of 2 nodes
with 1 k.eu and 2 pointer5 + Digital
B-trees have nodes which can 5pan over

Singapore, August, 1984

236

several contisuous disk Paties* However y
onlr one of these disk pages need be
fetched for each data access+ This is
achieved br usins bits of the kews to
decide which disk block is to be
fetched,

CR-trees are different from all
these data-structures. Unlike in a
height-balanced-multiwas tree the
lonfest path len$th in a CB-tree can he
twice as much as the longest path length
in a neiShbOlJrins sub-tree. CE-t rees
are not hitiher order seneralisations of
srmmetric binary B-trees either where an
order 2rl node COlJId be composed bu 2
order n nodes. This is so because when
an order n node gets full in a srmmetric
binary P-tree it automaticallu $ets
chained to another order n node to
Provide a full node of order 2n. In a
CR-tree SlJCh chains are made onlr under
certain conditions. Disital P-trees are
clearly different since thev use
prefixes (disital searchins 1 and are
not comparison based. But like in a
CE-tree an overf lowins node in a
Digital-P-tree can be split or
compot-lndd + A compoundd difital R-tree
node occupies two corlsecut ive disc
Pales l After doubIinsr entries in its
ancestor are modified so that onlr one
of these two disc pages need be fetched
at anL3 time. The choice between
doubl inn or splitting a node is decided
br considering the utilisation of its
ancestor arid siblin$s9 Note that in a
IX--tree the decision to split or chain
is arrived at hr consultin$ the
utilisation of its ancestors.

3.2 CR-tree Algorithms. Nodes i n a
CB-tree are composed of the following
record structure:

node = record
TWIN : boolearl i
KEYSHERE : 1. +2rl i
KEYS : array Cl. .2rl3 of

k.r:d-trrse i
P : array C0+.2n7 of

- node
end i

The 'TWIN' field on a node will
indicate if it is a comPound node+ For
a comPolJnd node the TWIN flas on main is
set to ‘trUe’ and PC2Nl Points to its
twin . On a twin node 'TWIN' is alwars
set to false. KEYSHERE is a count for
the number of keys on the node,

3.2.1 SEARCH: Searching for a key i n

prmmdlngs of the Tenth InternatIOnal
Conference on Very Large Data gases.

777

the tree in similar to searching in a
E-tree. Firl.3 tiives a function to
search for a kew in a CB-tree.

The main advantase of a CR-tree
over a R-tree is in the averatie pa,9e
fetches renuired for a search, In both
the tree? a search is completed in
0 (109 N) time9 for N kers in the tree.
In the worst case a E-tree search will
take lt 103~
CR-tree L the

<&p A Pase fetches. For a
fart est node in the worst

case maw be 21110% (Nx) 1) pages awaw.
At the same time there will he leaf
nodes nearer to the root than this worst
case I reducins the avera$e heisht.The
averaae height is sometimes better than
the averatie height of a B-tree. We do
not wet have an expression for the
expected averale heisht of a CR-tree.
ExPeriments were conducted to compare
the average heights of random B-trees
and CP-trees. The next section Sives
details of these experiments.

3.2.2 INSERTION: Ker insertion in a
CE-t ree is handled in such a way that
overflowins nodes penalize as little ;as
Possible the rest of the tree. As
explained before9 an overflowins simple
node tiets split or sets converted to a
compound node depending on its
ancestors e occuPanctlr An overflowing
compound node is alwaus split. A
ComPolJnd node mad sometimes sets split
even when it does not overflow + Fiti.
sketches the algorithm for inserting a
ker in a CR-tree. Here the predicate
THERE,IS,SPACE,HERE is true for a node
if it is not full. That isr for a
simple node THERE,IS,SPACE,HERE is triJe
if it has less than 2n entries and for a
conPound node less than 2n entries on
its twintthe main will alwuas have 2n
entries). Similarly
THERE,IS-SPACE-ABOVE is true for any
node if for al-13 of it5 ancestors
THERE-IS,SPACE,HERE is t,rlJe.

Like in a E-tree an insertion will
take O(losi n) pase reads arid rage
writes, Accessin the entries on a twin
page of a comPol.Jrld node reauires an
extra pale fetch. If a ker were to be
inserted on the main page of a compound
node the twin also need be fetched and
rewritten,

3.2.3 Key Deletion: Deletins a ker is
very similar to ker deletion in a
E-tree, When a node underflows it is
mertied with its siblings to maintain SOY.
occiJPancv. An lJnderf lowinzl compound

Singapore, August, 1984

node Set5 converted to a simrle node.

4.1 SIMULATION RESULTS: In the absence
Of analrtical resl.Jl ts to evaluate
CP-treesr we decided to examine their
~r~rformance throurJh simulation studies.
Simulations were done using a rlove 1
techninue which allows random trees of
larrle size t C) be built in the main
memor9 + (See EYi30 781 for the
dcf inition of random trees). This
a&hod of simulation does not store the
key vall.Jes i n the tree. Gnlr the
structural information (number of keu5
at eiach nodeyin each sub-tree,FJointers
to the sl..lb-tree) i 5 retairled, A key
insertion is done by navigating through
this to a page containinS a r;3rldom
niJmbe r in the range 1 to (Wtl) and
updating its keu count (There are N keys
in the tree) + This wa% an order rl tree
with N keus car1 be simulated for
structt.Jral information in O(N/n) memor9
lc)catJ.ons. For example a million keg
tree of order 50 can be isccomodated i rl
under lOOk. bytes+

Our objective in these simulation
studie5 was to examine CH-tree vis-a-vis
E-trees for the followins Performance
measures:

1, Average heitiht
2 + Storese util isation
3, Carlr;truction cost
AveraS height of a tree is the

average number of 1 i r&s
t,raversed(includin9 the link. to reach
the root) to execute a successful search
0Peration. Stora%e utilisation is the
ratio between the space occupied arid
space allotted, Construction cost is
measured i n Paties read and written to
build the tree,

Trees of medium order(15r20~25r30)
were examined for their rerformarlce over
an operating rande extendind to 100000
kers. Each tree Wi35 studied over 20
instances of rsndonllr generated trees +

heilht stars constant for a large number
of insertions(til1 the next 5plit).
C&-trees exhibit a more gradual increase
in height with increase in tree size.
Thev are like B-trees (in fact? thev
‘are’ E-trees) till the Point where the
root of a E-tree would have been split.
After that they lrow different19 for
some time and aWin emuire the shape of
B-trees. When the root splits in a
B-tree? a CD-tree leaf acnuires a chain
becomins a compound node+ Heisht of the
CR-tree grows sraduallr as more and more
nodes become comrourld nodes + When the
CR-tree root Sets saturated as a
compourld rlode it splits. This is the
point when its heiziht overshoots that of
a El-tree(This overshoot is too small to
observe in t ree5 of order 20 and 25).
But nuicklu after that it loses all its
COll1P0Und nodes and continues to grow
like P-tree till one of the leaf nodes
become a C!OIIlPOlJnd rlode.

Areas under the E-tree and CE-tree
access cost curves were comPuted for
con+arisonr Table 1 indicates the same
alor& with the standard deviation
recorded for each of these areas+ If
each of them is assumed to be normallY
distributed about their means 9 the
random variable

T- u
T = -d---L--

(s:/n, t SE/n,)
k

where s:= 1(x.,- %)‘and

St= E: (Y; - 75

n, vn%= number of sasrles in X and Y+

is aPProximatelu distributed as a
Student-t with I degrees of freedom
where I is calculated as CGreerl 7811

L
4.2 Avera4e Height: Figures 5.1 to 514 1 1 sf/ rl,
give the avera9e access cost cclrves for --- = ----- t ------e-w--

these trees. Also showrl is the access I (n, -1)
cost cxlrve of arl ‘ideal tree’. An ideal

5:/n, t st/n,)

tree gives the best Possible averaSe
height for a mi.Jltiwar tree. In here, 2
the leaves ma3 differ in height tm orle 1
and only the unsaturated rlodes are the t *

c

5:/n L
----- -----------

farthest rlodes + (rlz -1) sr /rl, t 5:/n ~ 1

The average height of a E-tree
tirows in sharp steps at the points where The computed sitinificance level for
the root srlits, After a root split the

Proceedings of the Tenth International
Conference on Vety Large Data Bases.

238

Singapore, August, 1984

the hrpothesis: Area under the CD-tree
aces5 cost curve is less than Area under

‘B-tree access cost curve came out to
neti isiblv small.

4.3 Storage Utilisation: No marked
differences were observed a,conS the
number of ra31es that each tree occuries.
Table 2 indicates the averase storage
utilisation for trees of order 25 at
various Points Of their srwoth, Also
shown are the standard deviations for
these samples and tne confidence level
for the hupothesis:
0,95*Mean(&tree) (= Mean(CB-tree)
(= l.OStMean(B-tree)
These are computed using the t-statistic
described earlier.

4.4 Construction Cost: This parameter
does not Particularlr appear to be in
f avour of any of the two trees. Table 3
shows a sample of the patie accesses
(reads and writes) incurred per
insertion for contructins these tree5.
Even thoush CD-trees reeuired less patie
accesses at the maxinrunr tree size
sisulatedr it is Ntore likelu that ” the
oscillatorr behaviour indicated in the
earlier readings to continue.

S+CONCLUSXONS: A data-StrUcture (Chained
B-trees) for index orsanisation has bean
Proposed + It is obtained bw modifrirrs
the R-tree definition to al low leaf
nodes at different distances (measured
i n Pale fetches 1 i3WZlY from the root,
Simulation studies were conducted to
e:.:aminF*
B-tree; +

its PerforNlance as coNtrared to
The followir& conclusiw-IS were

reached:
1) CB-trees exhibit a Nlcre $radlJal
growth in their average height, wit,h
irlcruaclie i r8 nuabe I of keus.
CoNlPared to a B-tree this growth
curve is nearer to the best
Possible br a multiuar tree.
2) (X-trees Provide the same amount

of space utilisatian as P-trees.
3) It is no more expensive to
construct a CD-tree than a R-tree

6,REFEREMCES :

[BAYER 723 1 BarerrR. a McCreisht,E. 9
‘Orlanisation and Maintenance of Larse
Indices’ I Acta Informaticar Uol lr
173-189

CEAYER 7331 : Ea%ervR. ‘Srmmetric Einarr
B-trees:Data Structure and Algorithms’ 9
Acta Inforaatica Uol li4r 290-306

[COMER 793 :ComerrDI p ‘The UbiaiJi tous
E-Tree’ I ACM Computing Surveusr
Uol 11(2)r1979~121-138

CGREEN 78Ii : GreenrJ.R. 7 Marserisonrll. p
‘Statistical Treatment of Experimental
Dsta’ 9 Elsevier/North-Holland Inc. v
First Revised Reprint

CKNUTH 733 : KnuthrD. ‘Art of
Frosramminsr Uol 3’~ Addison Wesler

CLOMET 811 : L0retrD.E. ‘Digital
E-trees’, Frdc. 7 Intnl. Conf . on

Uerr Large Data Bases

CFAGLI 793 : Patili.rL. ‘Heisht Balanced
tlultiwar Trees’, Info. !&stems Vol.41
290-306

CFRABHAKAR 837 : Frabhak.arrTIU, &
Sahas rabuddhe I H + U . ‘Sisnature Trees -- A
nata St#rcrcture for QrSanisinB Larde
Indices ‘I Froc. IEEE Intnl. Conf + on
S&ems Man & Crberneticsr New-Delhi
Dee 83-Jan 84

CWIRTH 773 : WirthrN. ‘Algorithms t
Data Structures = Prosrams’ I
Prenrice-Hall Inc.

CYao 783 : Yao,A,C. ‘On RandoN 2-3
Trees’ 9 Acta Informatica Uol 9r 159-170

Proceedings of tb Tenth Intematlonal
Conierence on Very Lf~ge DatN Bases.

Singapore, August, 1984

239

; v-I-....-*.I - __---_-___; ; ---.----------....-I; ;a-“--..--..----.-;

I
I : -“..--..--> : : :-3; : ; .- ; -.- ; -..-.-- -.. -. --- ; . : :- ;-- ;-.......-.-----;-; i ;-:-- ;-----------;

I I I I I t : I : : I
: : 8 I I : : I : I :
v v V v v I 1,--l v v
1 ‘I? 1 1 2 Ill Ins-i

Fis+ 1 Chaininti Insteed of SFl.ittinS

.t .-_---. * .--. -.---- -...-.-.-.---...--.--- f

: :

: A :
.t”- ; w-.-w ; ---- 1-1..-.-..--; --...-- -: -.+

I
I : I I I

: V 1
f t t . . . +..“+ ,

: : x : : Y I

v t---t tt t m-w

i .__” ______-- -we...------------ +

: :

f A I

t- ! ..,..“.e-; e-v-....--- --; -----...; -+

I I I I I :

: V V I
; . ..-- t t t t -...- :

: : x t-t : Y t-t :
v t---t : t -.-+ ; v

V V
t t --- t t -....-

: x': : Y':
t t .--.w t t . . .

(3) (b)

+----" -_-. ---- --.--- -"..-.."-- ----. + t -_.--------^--------------- t
: : ------- : I I
I A : : A' :
t- ; VI"-.-; - -..-;---.w-.. -.-m--w; -+ t-;----;-------------------t

: , I : I I t : I
I V : V I :

I

: t -.-.-. t: t t -__-. : : :

: :x:: : Y t-t : : :

v t---t : t --- t: v V V

V V
t t m-e .t---+

: x’: I Y’:
+-.--+ t t ---

(cl

(d)

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1984

240

function SEARCH(K:KEY-twe i X : cI to A NODE):booIeen ;
.C SEARCH FOR K IN THE TREE POINTED BY X. SEARCH IS TRUE IF KEYS

IS FOUND OR FALSE OTHERWISE 3
besin

if X=rril then SEARCH := false
else with X^ do

besiin
case K of

K in -CKC13~KC23tr.KCKEYSHERE1) : SEARCH := true i
K e: KC11 : SEARCH := SEARCH(KvPt03) i
K .< KC13 c; KCItll : SEARCH := SEARCH(KtPCKEYSHERE1) i
K :‘* KCKEYSHEREI : SEARCH := SEARCHCKvPtKEYSHEREl)

end end end i

FIG.3 Function SEARCH

rrocedure INSERT i
.C TO INSERT A KEY K IN THE SUB-TREE ROOTED AT X- 3

besin
if X=nil then PUSH THE KEY UP
else
with X^ do

besin
if TWIN then

hesin
FIND THE APPROPRIATe SUB-TREE in THE
COMPUND NODE THROUGH A BINARY SEARCH;
INSERT KEY in THE SUB-TREE;
if SUB-TREE SPLITS
then

if (THERE-IS-SPACE-HERE) and (not THERE-IS-SPACE-ABOVE)
then ABSORB THE UPCOHING KEY

else
besin SPLIT THE COMPOUND NODE

ABSORB THE UPCOMING KEY
PUSH A KEY UP

end
else if (THERE,IS,SPACE,ABOUE) then begin

SPLIT THE COMPOUND
NODE.PUSH A KEY UP

end
end

else C node is a simple node 3
begin

FIND APPROPRIATe SUB-TREE in NODE BY BINARY SEARCH;
INSERT KEY in SUB-TREED
if (SUB-TREE SPLITS) then

if (THERE IS SPACE HERE) then ABSORB THE UPCOHING KEY
else if (THERE IS SPACE ABOVE)

then
betiin SPLIT THE NODEi

ABSORB THE UPCOMING KEY;
PUSH A KEY UP

end
else

besin
CONVERT THE SItlPLE NODE to A CGHPOU
NODE RY CHANING A NEW PAGE;
ABSORB THE UPCOMING KEY

end end end
end i

Fig.4 Procedure to Insert a ker in a M-tree

Procndim O? the Tenth Intomatlonal
Conlwenoa on Vey Larf# Data Baser.

241

A
V

E
R

A
G

E

H
E

IG
H

T
A

V
E

R
A

G
E

H

E
IG

H
T

50
0

10
00

20
00

,5
00

o

10
00

0

20
00

0

40
00

0

60
00

0

10
00

00

,1
00

20
0

,5
00

,lO
O

O

*2
00

0

50
00

10
00

0

20
00

0

40
00

0

60
00

0

95
00

0

t-
5 ‘3

2

ORDER=25

CB TWQ

B Tree,

,3*5

,3

2-5

2

NO- OF KEYS

FIG.5*3 ACCESS COST CURVES

ORDER=30

0 T~QQ

NO- OF KEYS

FIG.5.4 ACCESS COST CURVES
Proceedings of the Tenth Internatlonal

Conference on Very Large Data Basea.
243

Slngapon, August, 1984

B-TREE CB-TREE

ORDER MEAN S.D MEAN S.D,

15 367959*9200 1009*8646 336640.3100 2086.7847

20 364900.9800 1422.8034 312586,880O 1139.0156

2s 345847.6600 105.21402 301769.3300 311.9264

30 281530.5200 lSlS.34S7 276414+7400 189.1412

TABLE 1. AREAS UNDER THE ACCESS COST CURUE

FXYS MEAN STANDARD DEV.
B-TREE CR-TREE E-TREE CE-TREE

CONF.

1037 0.683582 0,682783 0.042821 0.019812 99.6679
2500 0.689363 c.707390 0.021834 0.022676 98.7485
4957 0.691083 01695623 0.012S08 0.017007 99.9999

10841 0.696409 0.689499 0.009957 0.007964 99.9999
21497 0.696491 0.691716 0.006805 0.006014 99.9999
28827 01688875 0.690629 0.006490 0.005213 99.9999
42628 01693709 0.691429 0~00S045 0.004914 99.9999
63036 0.685374 0.690657 0+004829 0.003951 99.9999
76655 0.690161 0.694073 0.002767 0.003542 99.9999
84530 0.692911 0.695727 0.003168 0.003900 99.9999
93215 0.695055 0.697747 0.003496 0.003475 99.9999

102793 0.693298 0.699631 0.003372 OeOO3213 99.9999

TARLE 2, STORAGE UTILISATION
ORDER OF THE TREE = 25

CONF. = 1.0 - SIGNIFICANCE LEVEL OF THE HYPOTHESIS:
0,95bMEAN(H-TREE) <= HEAN(CB-TREE) c:= l.OStHEAN(B-TREE)

KEYS B-TREE N-TREE

MEAN ST.JJEV. MEAN ST. DE’J.

1037 3eOO376 0*00357 3.03905 0.00309
2500 3.30908 0.03165 3.16890 0.01910
4957 3.68015 0.01623 3.61846 0.04221

10841 3.88472 0.00729 3.94463 0.04186
21497 3.97033 0.00386 4.00065 0.02111
28827 3.99311 0.00285 4.01528 0.01SS1
42628 4.01374 0.00194 4.02902 0.01058
63036 4.07762 0.01610 4.03887 0.00704
76655 4.25146 0.01290 4.05996 0.00771
84530 4.32637 0.01166 4.08162 0.00889
93215 4.39433 0.01061 4.10993 0.01041

102793 4.45627 0.00974 4.14360 0.01130

TABLE 3. PAGES READ:WRITES/INSERTION
ORDER OF THE TREE = 25.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

Singapore, August, 1984

244

