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ABSTRACT: This is a proposal for a new 
dati3-StrUCtUre called chained B-trees 
(CE-trees). CE-trees exhibit a 
superior access cost curve compared to 
B-trees. Ther Provide the same amount 
Of space utilisation as E-trees and 
are not any more expensive to build. 
In this Paper we define GE-trees and 
studs their performance vis-a,vis 
E-trees throuah extensive simulation 
studies. Simulations were done 
through a novel techninue which allows 
large random trees to be simulated in 
core, 

1rINTRODUCTION: B-trees proposed bw 
Barer8 McCrei$ht CBawer 723 are widelr 
used for orfanisins larse indices, 
Simple maintenance alziorithms, 
rea5onable space utilisation and 
logarithmic access cost are the main 
reasons for their popularity. Several 
variant5 of the E-tree data-structure 
appeared in the literaturer (es. 
B*Trees P B+trees CKnuth 73~ COMER 793~ 
Ditiital E-trees CLomet 813~ Sianature 
Trees CFRABHAKAR 831 etc.). The main 
thrust of these variants is in improvins 
space utilisation and:or access costs. 
We propose here wet another 
data-structure based on the E-tree 
model. We call it a Chained-B-tree or a 
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accomodated in a leaf node. If the le:: 
w 

and/or apecbd permission from th- n-.+---# node oveflows (contains more than 2n I L,Y”“,,.V... 
kers) it is split into two nodes each 

CB-t ree for short. CD-trees exhibit an 
access cost curve (number of keys vsr 
average height ) superior to that of a 
B-treer Provide the same amount of space 
utilisation and comparable construction 
cost. Nodes ir a CB-tree might span 
over two disk paties and accessins all 
kers in such a node reauires two patie 
fetches. Thus all leaf nodes nodes are 
not at the same number of page fetches 
away f ram the root. However? they are 
different from heitiht-balanced-multiwar 
trees CFagli 791, 

In the next section we explain the 
motivation behind modif'rinti the basic 
B-tree definition. Section 3 defines 
and discusses CD-trees. Here we also 
examine them in relation to other data 
structures proposed in the literature, 
A novel techniaue to simulate in core 
large randomly built tree structures is 
used to examine the performance of 
CE-t rees vis-a-vis' B-trees. In 
section 4 we brief13 describe this 
technioue and present simulation 
results. Section 5 presents a summarw 
and conclusions to the paper+ 

2.HOTIUATION: A E-tree of order n has 
the followinG Properties: 

1:Everr node except the root will 
have at least n kers and at most 2n 
kers. 
2:A node with i kews will have 
(itl) descendants* 
3:The root maw have as few as 2 
descendants. 
4:All leaves are at the same 
distance from the root. 

with n kers and the centre key is pushed 
UP to be accomodated at the parent node, 
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The tree grows in heisht when the root 
splitsr the averacfe height soins UP bu 
one + Then the iSVefa$@ heitiht sti3Ms 
alNl05t constant till the next, 5plit of 
the root+ Variation of avera~c? height 
with number of keus can be seen in 
fi2+5+1+ 

We observe that when the root is 
5 F’ 1 i t t 0 ac!c!oNlodete an up-coainti ker I 
all. sub-trees eminatirtti f roNI the root 
are penal. ised hu increa,sing their 
height+ This is necessi ated bu the 
restriction that i3 I. 1 leaves be at the 
same distance l from the root. If we 
r e 1 a x this constraint, one WE13 to 
acconiodate an IJacoNlinS kev is to chain a 
new node to the root and absorb it there 
a5 shown in fig,l+ 

Notice that onlr sub-trees NI and 
(lIl+I.) have their height increased bu 1 
and the rest of the siJb-tree5 retain 
their earlier heidht. This results in a 
tree whose averase height is le5rJ than 

if the node has been split + With this 
in Nlind we define the CR-tree. 

3.1 CR-tree: In a CR-tree of order n 
1, Ever% node 
node (E.1 IcoNlpa55~~ 

either a sisPle 
A- C> one disk pose) or 

a CoN~pOUnd node (encoNIpas5e5 two 
disk. Fades). 
2,EvrrY node except the root is at 
least half full* That isr a simle 
node will have a mi.niN~IJr of n kers 
and a NI~:.:I.NIUNI of 2n ke?Usr A 
coN~polJr~d node wi 11 have at least 
(2n+l) kers and atnlost 4n kevs + 
3,The root NIE)Y have onlv one ker (2 

descendants 1 + 
4.All leaf node5 hove the 5aNle 
riiJNlbe r of node5 (either simple or 
coN~pound~ in the path to the rOOt l 

In a CoN~POlJr~d node the two Pi39E!c, 

are referred to as the main and twin+ 
Ilisk. pages for these two nodes need not 
he conti$uous and can he a55isned from 
anYwhere on the disk., The twin can be 
reached only via the nrairl paSee Hence 
to access entries on a twirl an ,. e s.* t r a 

page fetch is necessrY+ Leaf node5 are 
enui-distant f roe the root, in node coclnt 
but can differ br a ratio of I.:2 in pa9e 
fetches. 

A ker inriertion is done as in a 
B-tree observin$ the followins rules: 
RlJlf? 1: 110 1-10 t split an overf lowinz! 
simrle node if doing so will CalJS@ the 
root to split. 
Rule 2: Alwars Firlit an overf lowin 
CONlpOlJr~d node + 
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Rclle 3: Split a CONIPOIJ~~ node even if it 
iS r#Ot full when doing so will not ca)use 
the root to split. 

When all the nodes in the path to 
the root are saturated a split at the 
leaf also splits the root . Rule i 
indicatesr at slJch a time do not split 
the leaf but chain a new patie converting 
it into a CON~POUr~d node + We observe 
that this operation retains the averi19e 
heitiht of kevs in a CB-tree close to the 
heitiht before insertion whereas a B-tree 
would have grown in heisht br 1. Thus 
in a C&tree first the leaf nodes 
acnui re chains and hecome CONlpOclrid 
nodes + 

Accordins to rule 2~ a CONP OlJnd 
node is alwars 5rlit if it overflows+ 
This misht result in the root splitting 
if it is alreadu a comround node which 
is full, 

It is possible to have CONIPOlJnd 

nodes i n the tree even when their 
ancestor nodes are not satlJrated* This 
can occclr a5 follows: Consider a node 
“a’ with *x9 and “Y’ as two of its 
descendants + Node ‘a’ is 5atlJrated and 
80 are it5 ancestor5. Now .x’ and ‘3’ 
overflow and are converted to CONlPOUnd 
node5 9 ’ x-x ’ ’ and ‘Y---Y”. If the 
CONlPOUnd node l :.:-:.:’ ’ again overflows it 
is split into two simple nodesi. A k.eu 

I be pushed UP and node ‘a’ is 
converted to a CoePound node l a-a“ . 
One can see that the CON~POUnd node 
‘a-a’, can accomodate more kegs but it 
has a descendant which is also a 
c!onlPolJnd node. In such a situation when 
the next ker insertion occurs in ‘k~--y’~ f 
it is split into two simple nodes nodes 
with the uPcomina k.er acc!omodated at the 
ComPOiJr~d node ‘a-a’ ’ l Fig+2 illustrates 
this semence of events* 

ANIon the data-structures reported 
1 n the 1 i terature of related interest 

are heisht-halanced-multiwa% tree5 
CPagli 7979 Srnmetric Binarv B-trees 
CEaser 73,Wirth 773 and Ilirrital B-trees 
CLoNlet 811 l Heisht-balanced-aultiwav 
trees are like AVL tree5 CKnuth 733 
where the height of all siJb-tr?es at an% 
node NlaY differ bu one+ Srnmetric 
binarr B-trees have been proposed to 
avoid rre-allocation of space to nodes 
which are arIywa9 senerallr not fclll. 
Here a 2-3 tree node with 2 keur; and 3 
pointers is constructed out of 2 nodes 
with 1 k.eu and 2 pointer5 + Digital 
B-trees have nodes which can 5pan over 
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several contisuous disk Paties* However y 
onlr one of these disk pages need be 
fetched for each data access+ This is 
achieved br usins bits of the kews to 
decide which disk block is to be 
fetched, 

CR-trees are different from all 
these data-structures. Unlike in a 
height-balanced-multiwas tree the 
lonfest path len$th in a CB-tree can he 
twice as much as the longest path length 
in a neiShbOlJrins sub-tree. CE-t rees 
are not hitiher order seneralisations of 
srmmetric binary B-trees either where an 
order 2rl node COlJId be composed bu 2 
order n nodes. This is so because when 
an order n node gets full in a srmmetric 
binary P-tree it automaticallu $ets 
chained to another order n node to 
Provide a full node of order 2n. In a 
CR-tree SlJCh chains are made onlr under 
certain conditions. Disital P-trees are 
clearly different since thev use 
prefixes ( disital searchins 1 and are 
not comparison based. But like in a 
CE-tree an overf lowins node in a 
Digital-P-tree can be split or 
compot-lndd + A compoundd difital R-tree 
node occupies two corlsecut ive disc 
Pales l After doubIinsr entries in its 
ancestor are modified so that onlr one 
of these two disc pages need be fetched 
at anL3 time. The choice between 
doubl inn or splitting a node is decided 
br considering the utilisation of its 
ancestor arid siblin$s9 Note that in a 
IX--tree the decision to split or chain 
is arrived at hr consultin$ the 
utilisation of its ancestors. 

3.2 CR-tree Algorithms. Nodes i n a 
CB-tree are composed of the following 
record structure: 

node = record 
TWIN : boolearl i 
KEYSHERE : 1. +2rl i 
KEYS : array Cl. .2rl3 of 

k.r:d-trrse i 
P : array C0+.2n7 of 

- node 
end i 

The 'TWIN' field on a node will 
indicate if it is a comPound node+ For 
a comPolJnd node the TWIN flas on main is 
set to ‘trUe’ and PC2Nl Points to its 
twin . On a twin node 'TWIN' is alwars 
set to false. KEYSHERE is a count for 
the number of keys on the node, 

3.2.1 SEARCH: Searching for a key i n 
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the tree in similar to searching in a 
E-tree. Firl.3 tiives a function to 
search for a kew in a CB-tree. 

The main advantase of a CR-tree 
over a R-tree is in the averatie pa,9e 
fetches renuired for a search, In both 
the tree? a search is completed in 
0 (109 N) time9 for N kers in the tree. 
In the worst case a E-tree search will 
take lt 103~ 
CR-tree L the 

<&p A Pase fetches. For a 
fart est node in the worst 

case maw be 21110% (Nx) 1) pages awaw. 
At the same time there will he leaf 
nodes nearer to the root than this worst 
case I reducins the avera$e heisht.The 
averaae height is sometimes better than 
the averatie height of a B-tree. We do 
not wet have an expression for the 
expected averale heisht of a CR-tree. 
ExPeriments were conducted to compare 
the average heights of random B-trees 
and CP-trees. The next section Sives 
details of these experiments. 

3.2.2 INSERTION: Ker insertion in a 
CE-t ree is handled in such a way that 
overflowins nodes penalize as little ;as 
Possible the rest of the tree. As 
explained before9 an overflowins simple 
node tiets split or sets converted to a 
compound node depending on its 
ancestors e occuPanctlr An overflowing 
compound node is alwaus split. A 
ComPolJnd node mad sometimes sets split 
even when it does not overflow + Fiti. 
sketches the algorithm for inserting a 
ker in a CR-tree. Here the predicate 
THERE,IS,SPACE,HERE is true for a node 
if it is not full. That isr for a 
simple node THERE,IS,SPACE,HERE is triJe 
if it has less than 2n entries and for a 
conPound node less than 2n entries on 
its twintthe main will alwuas have 2n 
entries). Similarly 
THERE,IS-SPACE-ABOVE is true for any 
node if for al-13 of it5 ancestors 
THERE-IS,SPACE,HERE is t,rlJe. 

Like in a E-tree an insertion will 
take O(losi n) pase reads arid rage 
writes, Accessin the entries on a twin 
page of a comPol.Jrld node reauires an 
extra pale fetch. If a ker were to be 
inserted on the main page of a compound 
node the twin also need be fetched and 
rewritten, 

3.2.3 Key Deletion: Deletins a ker is 
very similar to ker deletion in a 
E-tree, When a node underflows it is 
mertied with its siblings to maintain SOY. 
occiJPancv. An lJnderf lowinzl compound 
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node Set5 converted to a simrle node. 

4.1 SIMULATION RESULTS: In the absence 
Of analrtical resl.Jl ts to evaluate 
CP-treesr we decided to examine their 
~r~rformance throurJh simulation studies. 
Simulations were done using a rlove 1 
techninue which allows random trees of 
larrle size t C) be built in the main 
memor9 + (See EYi30 781 for the 
dcf inition of random trees). This 
a&hod of simulation does not store the 
key vall.Jes i n the tree. Gnlr the 
structural information ( number of keu5 
at eiach nodeyin each sub-tree,FJointers 
to the sl..lb-tree) i 5 retairled, A key 
insertion is done by navigating through 
this to a page containinS a r;3rldom 
niJmbe r in the range 1 to (Wtl) and 
updating its keu count (There are N keys 
in the tree ) + This wa% an order rl tree 
with N keus car1 be simulated for 
structt.Jral information in O(N/n) memor9 
lc)catJ.ons. For example a million keg 
tree of order 50 can be isccomodated i rl 
under lOOk. bytes+ 

Our objective in these simulation 
studie5 was to examine CH-tree vis-a-vis 
E-trees for the followins Performance 
measures: 

1, Average heitiht 
2 + Storese util isation 
3, Carlr;truction cost 
AveraS height of a tree is the 

average number of 1 i r&s 
t,raversed( includin9 the link. to reach 
the root) to execute a successful search 
0Peration. Stora%e utilisation is the 
ratio between the space occupied arid 
space allotted, Construction cost is 
measured i n Paties read and written to 
build the tree, 

Trees of medium order(15r20~25r30) 
were examined for their rerformarlce over 
an operating rande extendind to 100000 
kers. Each tree Wi35 studied over 20 
instances of rsndonllr generated trees + 

heilht stars constant for a large number 
of insertions(til1 the next 5plit). 
C&-trees exhibit a more gradual increase 
in height with increase in tree size. 
Thev are like B-trees ( in fact? thev 
‘are’ E-trees ) till the Point where the 
root of a E-tree would have been split. 
After that they lrow different19 for 
some time and aWin emuire the shape of 
B-trees. When the root splits in a 
B-tree? a CD-tree leaf acnuires a chain 
becomins a compound node+ Heisht of the 
CR-tree grows sraduallr as more and more 
nodes become comrourld nodes + When the 
CR-tree root Sets saturated as a 
compourld rlode it splits. This is the 
point when its heiziht overshoots that of 
a El-tree(This overshoot is too small to 
observe in t ree5 of order 20 and 25). 
But nuicklu after that it loses all its 
COll1P0Und nodes and continues to grow 
like P-tree till one of the leaf nodes 
become a C!OIIlPOlJnd rlode. 

Areas under the E-tree and CE-tree 
access cost curves were comPuted for 
con+arisonr Table 1 indicates the same 
alor& with the standard deviation 
recorded for each of these areas+ If 
each of them is assumed to be normallY 
distributed about their means 9 the 
random variable 

T- u 
T = -d---L-- 

(s:/n, t SE/n,) 
k 

where s:= 1(x.,- %)‘and 

St= E: (Y; - 75 

n, vn%= number of sasrles in X and Y+ 

is aPProximatelu distributed as a 
Student-t with I degrees of freedom 
where I is calculated as CGreerl 7811 

L 
4.2 Avera4e Height: Figures 5.1 to 514 1 1 sf/ rl, 
give the avera9e access cost cclrves for --- = ----- t ------e-w-- 

these trees. Also showrl is the access I (n, -1) 
cost cxlrve of arl ‘ideal tree’. An ideal 

5:/n, t st/n, ) 

tree gives the best Possible averaSe 
height for a mi.Jltiwar tree. In here, 2 
the leaves ma3 differ in height tm orle 1 
and only the unsaturated rlodes are the t * 

c 

5:/n L 
----- ----------- 

farthest rlodes + ( rlz -1) sr /rl, t 5:/n ~ 1 

The average height of a E-tree 
tirows in sharp steps at the points where The computed sitinificance level for 
the root srlits, After a root split the 

Proceedings of the Tenth International 
Conference on Vety Large Data Bases. 

238 

Singapore, August, 1984 



the hrpothesis: Area under the CD-tree 
aces5 cost curve is less than Area under 

‘B-tree access cost curve came out to 
neti isiblv small. 

4.3 Storage Utilisation: No marked 
differences were observed a,conS the 
number of ra31es that each tree occuries. 
Table 2 indicates the averase storage 
utilisation for trees of order 25 at 
various Points Of their srwoth, Also 
shown are the standard deviations for 
these samples and tne confidence level 
for the hupothesis: 
0,95*Mean(&tree) (= Mean(CB-tree) 
(= l.OStMean(B-tree) 
These are computed using the t-statistic 
described earlier. 

4.4 Construction Cost: This parameter 
does not Particularlr appear to be in 
f avour of any of the two trees. Table 3 
shows a sample of the patie accesses 
(reads and writes) incurred per 
insertion for contructins these tree5. 
Even thoush CD-trees reeuired less patie 
accesses at the maxinrunr tree size 
sisulatedr it is Ntore likelu that ” the 
oscillatorr behaviour indicated in the 
earlier readings to continue. 

S+CONCLUSXONS: A data-StrUcture (Chained 
B-trees) for index orsanisation has bean 
Proposed + It is obtained bw modifrirrs 
the R-tree definition to al low leaf 
nodes at different distances (measured 
i n Pale fetches 1 i3WZlY from the root, 
Simulation studies were conducted to 
e:.:aminF* 
B-tree; + 

its PerforNlance as coNtrared to 
The followir& conclusiw-IS were 

reached: 
1) CB-trees exhibit a Nlcre $radlJal 
growth in their average height, wit,h 
irlcruaclie i r8 nuabe I of keus. 
CoNlPared to a B-tree this growth 
curve is nearer to the best 
Possible br a multiuar tree. 
2) (X-trees Provide the same amount 

of space utilisatian as P-trees. 
3) It is no more expensive to 
construct a CD-tree than a R-tree 
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function SEARCH(K:KEY-twe i X : cI to A NODE ):booIeen ; 
.C SEARCH FOR K IN THE TREE POINTED BY X. SEARCH IS TRUE IF KEYS 

IS FOUND OR FALSE OTHERWISE 3 
besin 

if X=rril then SEARCH := false 
else with X^ do 

besiin 
case K of 

K in -CKC13~KC23tr.KCKEYSHERE1) : SEARCH := true i 
K e: KC11 : SEARCH := SEARCH(KvPt03) i 
K .< KC13 c; KCItll : SEARCH := SEARCH(KtPCKEYSHERE1) i 
K :‘* KCKEYSHEREI : SEARCH := SEARCHCKvPtKEYSHEREl) 

end end end i 

FIG.3 Function SEARCH 

rrocedure INSERT i 
.C TO INSERT A KEY K IN THE SUB-TREE ROOTED AT X- 3 

besin 
if X=nil then PUSH THE KEY UP 
else 
with X^ do 

besin 
if TWIN then 

hesin 
FIND THE APPROPRIATe SUB-TREE in THE 
COMPUND NODE THROUGH A BINARY SEARCH; 
INSERT KEY in THE SUB-TREE; 
if SUB-TREE SPLITS 
then 

if (THERE-IS-SPACE-HERE) and (not THERE-IS-SPACE-ABOVE) 
then ABSORB THE UPCOHING KEY 

else 
besin SPLIT THE COMPOUND NODE 

ABSORB THE UPCOMING KEY 
PUSH A KEY UP 

end 
else if (THERE,IS,SPACE,ABOUE) then begin 

SPLIT THE COMPOUND 
NODE.PUSH A KEY UP 

end 
end 

else C node is a simple node 3 
begin 

FIND APPROPRIATe SUB-TREE in NODE BY BINARY SEARCH; 
INSERT KEY in SUB-TREED 
if (SUB-TREE SPLITS) then 

if (THERE IS SPACE HERE) then ABSORB THE UPCOHING KEY 
else if (THERE IS SPACE ABOVE) 

then 
betiin SPLIT THE NODEi 

ABSORB THE UPCOMING KEY; 
PUSH A KEY UP 

end 
else 

besin 
CONVERT THE SItlPLE NODE to A CGHPOU 
NODE RY CHANING A NEW PAGE; 
ABSORB THE UPCOMING KEY 

end end end 
end i 

Fig.4 Procedure to Insert a ker in a M-tree 
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B-TREE CB-TREE 

ORDER MEAN S.D MEAN S.D, 

15 367959*9200 1009*8646 336640.3100 2086.7847 

20 364900.9800 1422.8034 312586,880O 1139.0156 

2s 345847.6600 105.21402 301769.3300 311.9264 

30 281530.5200 lSlS.34S7 276414+7400 189.1412 

TABLE 1. AREAS UNDER THE ACCESS COST CURUE 

FXYS MEAN STANDARD DEV. 
B-TREE CR-TREE E-TREE CE-TREE 

CONF. 

1037 0.683582 0,682783 0.042821 0.019812 99.6679 
2500 0.689363 c.707390 0.021834 0.022676 98.7485 
4957 0.691083 01695623 0.012S08 0.017007 99.9999 

10841 0.696409 0.689499 0.009957 0.007964 99.9999 
21497 0.696491 0.691716 0.006805 0.006014 99.9999 
28827 01688875 0.690629 0.006490 0.005213 99.9999 
42628 01693709 0.691429 0~00S045 0.004914 99.9999 
63036 0.685374 0.690657 0+004829 0.003951 99.9999 
76655 0.690161 0.694073 0.002767 0.003542 99.9999 
84530 0.692911 0.695727 0.003168 0.003900 99.9999 
93215 0.695055 0.697747 0.003496 0.003475 99.9999 

102793 0.693298 0.699631 0.003372 OeOO3213 99.9999 

TARLE 2, STORAGE UTILISATION 
ORDER OF THE TREE = 25 

CONF. = 1.0 - SIGNIFICANCE LEVEL OF THE HYPOTHESIS: 
0,95bMEAN(H-TREE) <= HEAN(CB-TREE) c:= l.OStHEAN(B-TREE) 

KEYS B-TREE N-TREE 

MEAN ST.JJEV. MEAN ST. DE’J. 

1037 3eOO376 0*00357 3.03905 0.00309 
2500 3.30908 0.03165 3.16890 0.01910 
4957 3.68015 0.01623 3.61846 0.04221 

10841 3.88472 0.00729 3.94463 0.04186 
21497 3.97033 0.00386 4.00065 0.02111 
28827 3.99311 0.00285 4.01528 0.01SS1 
42628 4.01374 0.00194 4.02902 0.01058 
63036 4.07762 0.01610 4.03887 0.00704 
76655 4.25146 0.01290 4.05996 0.00771 
84530 4.32637 0.01166 4.08162 0.00889 
93215 4.39433 0.01061 4.10993 0.01041 

102793 4.45627 0.00974 4.14360 0.01130 

TABLE 3. PAGES READ:WRITES/INSERTION 
ORDER OF THE TREE = 25. 
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