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ABSTRACT: This is a srorosal for a3 new

data-structure called chained B-trees
(CB~trees). CB-trees exhibit a
sureriaor access cost curve comrared to
B-trees. They rrovide the same amount
of srace utilisation as B-trees and
are not any more exrensive to build.
In this rarer we define CB-trees and
study their rerformance vis_a_vis
B-trees through extensive simulation
studies. Simulations were done
through a3 novel techniaue which allaows
larde random trees to be simulated in
core,

B-trees rrorosed bw
CBaver 72] are widelw
larde indices.

1.,INTRODUCTION:

‘Baserl McCreight
used for ordsnising
Simrle maintenance aldorithmsy
reasonable srace utilisation and
lodarithmic access cost are the main
reasorns for their rorularity. Several
variants of the B-tree data-structure
arreared in the literature. (esd.,
B¥Treesy B*trees ([Knuth 73y COMER 791,
Digitsl B-trees [Lomet 81)y Sidnature
Trees [FRABHAKAR 831 etc.)., The main
thrust of these varisnts is in imrroving
srace utilisation andlor access costs.,
We Frorose here et another
data-structure based on the B-tree
model. We call it a3 Chasined-B-tree or a3
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CB~tree for short. CBR-trees exhibit an
access cost curve (number of keuys vs.
averade height ) surerior to that of a
B-tree» rrovide the same amount of srace
utilisation and comrarable construction
cost., Nodes im &8 CB-tree wmight sran
over two disk radges and sccessing all
keys in such a2 node reauires two rade
fetches. Thus 211 leaf nodes nodes are
not at the same number of rade fetches
away from the root. Howevers thew are
different from bheight-bslanced-multiway
trees [Pagli 791.

In the next section we exelain the
motivation behind modifwing the basic
B-tree definition. Section 3 defines
and discusses CB-trees. Here we 3lso
examine them in relation to other data
structures rFrorosed in the literature.
A novel technicue to simulate in core
larde randomly built tree structures is
used to examine the rerformance of
CR-trees vis-a-vis’ B-trees. In
section 4 we brieflw describe this
technicue and rresent simulation
results. Section S5 rresents a summary
and conclusions to the rarer.,
2.MOTIVATION? A B-tree of order n has
the following prorerties!

1iEvery node excert the

have at least n kews andg
keds.

2:A node with i

(itl1l) descendants.,

3:The root maw have

descendants.

4:All leaves are at

distance from the root.

root will
at most 2n
will

keus have

few 2

a8s 36

the same

A new kew +to0 be inserted is
accomodated in a leaf node., If the leaf
node oveflows (contains more than 2n
kews) it is split into two nodes each
with n kews and the centre kew is pushed

ur to be accomodated at the rarent node.
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The tree drows in height when the root
srlitsy the averade heidght dgoing ur bu
one . Thern the averadge height staus
almost constant till the next selit of
the root. Variation of averadge heidght
with rumber of Lkews c2n be seen in
figofﬁviv

We observe that when the root is
seelit  to  accomodate an ur-coming kews
all sub-~trees eminating from the root
are renalised i increasing their
heidght. This is necessiated by the

restriction that 8ll leaves be at the
same distance *from the root. If we
relax this constraint: one waw to

sccomodate an urcoming kew is to chain a3
rew node to the root and absorb it there
a8s shown in fig.l.

Notice that only sub-trees m and
(m+1) have their heidght increazsed bhw 1
and the rest of the sub-trees retain
their earlier height. This results in a

tree whose averadge heidght is  less than
if the mnode has been srlit. With this
in mind we define the CR~tree.

3.1 CB-tree! Irn 3 CB-tree of order n

1.Every node is either a8 simrle
riode(encomrasses one disk rase) or
a comround node(encomrasses two

disk rades).

2.Every node excert the root is at
least half full. That is» 38 simrle
node will have a3 minimum of N  kews
and g maximum of 2n kews. A
comround node will have a8t least
(2r41) kews and atmost 4n kews.

3.The root mav have only one kew (2
descendants) .,

4.A11 1leaf nodes have the same
number of nodes (either simrle or

comeound) in the eath to the root.

In 2 comround node the two rades
referred to a3 the main and twin,
radges for these two nodes need not
be contiduous and can be assidned from
angwhere on the disk., The twin can be
reached only via the main rade. Hence
to asccess entries on a twin an extra
rade fetceh is necessry. Leaf nodes are
eaui-distant from the root in node count
but can differ bw a ratio of 112 in rade
fetches.,

are
Nisk

A kew insertion is done as in 3
E-tree observing the followind rules:

Rule 13 Do mot selit  an overflowins
simrle mode if doing so will cause the
root to srlit.

Rule 2! Alwauys srlit an overflowing

comround node.
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Rule 3! Srlit 3 comround node even if it
iz not full when doind so will not cause
the root to selit.

all the nodes in the rath to
are saturated a srlit at the
leaf also selits the root . Rule 1
indicatesy at such 8 time do not selit
the leaf but chainm 2 new radge converting
it imto & comround nrode. We observe
that this orerstion retains the averade
heidht of kews in 3 CRB-tree close to the
height bhefore insertion whereas a B-tree
would have drown in height by 1. Thus
in a8 CB-tree first +the leaf nodes
acquire chains and become comround
nodes.

When
the root

rule 2y 3 comround
rnode 1is always selit if it overflows.
This might result in the root selitting
if it is already 3 comround node which
is full.

According  to

It is rossible to thave comround

nodes in the +tree even whern their
ancestor nodes are not sasturated. This
can occur as follouwst! Consider a8 node
*a' with and "4* 85 two of its
descendants., Node ®"a® is saturated and
so are its sncestors. Now " and "u‘
overflow and are converted to comround
nodesy Y-t andd Ywewt, if the
comround node *x-x’" adz3in overflouws it
is selit into two simrle nodes. A lkeuw

1 be rushed wr and node "a" 1is
converted to 8 comround node “*s-a8°",
One can see that the comround node
"s-8’" can accomodate more kews but it
has 3 descendant which is also =&
comround rnode,. In such a situation when
the next kew insertion occurs in "w~-w' "y
it is srlit into two simrle nodes nodes
with the urcoming kew accomodated at the
comround node "a-a3’". Fig.2 illustrates
this seaquence of events.

LEWS ]
~n

Among the data-structures rerorted
im the literature of related interest
are height-halanced-multiway trees
CFagli 79y Summetric Binargy HB-trees
CRawver 73sWirth 771 and Didital RB-trees
ClLomet 8131. Heidht-balasnced-multiway
trees are like AVL trees [Knuth 731
where the height of all sub-trees at anu
node maw differ by one. Summetric
binary ERE-trees have been rrorosed to
avoid rre—allocstion of srace to nodes
which are anwwaw dgenperally not full,
Here 8 2-3 tree node with 2 kews sand 3
rointers is constructed out of 2 nodes
with 1 kew and 2 rointers. Digital
E-trees have nodes which oan sran over
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several contisuous disk rages. Howevery
only one of these disk rades need be
fetched for each data access. This is

achieved by using bits of the keus to

decide which disk block is to be
fetched,

CR-trees are different from 2ll
these data-structures. Unlike in a
heidght-balanced-multiway tree the

rath lendgth in a3 CB-tree can be
twice as much as the londgest epath lendth
in 3 neidhbouring sub-tree. CBR~trees
are not higher order deneralisations of
summetric binarg B-trees either where an
order 2n node could be comeposed by 2
order n nodes. This is so because when
an order n node gets full in a3 symmetric
binary B~tree it automaticallwy dets
chained to another order n node to
rrovide a full node of order 2n. In 3
CB~tree such chains are made onlw under
certain conditions. Didital B-trees are
clearly different since theu use
rrefixes ( digital sesrching ) and are
ot comearison based. But like in 2
CB~tree an overflowing node in &
Digitazl—-B-tree can be srlit or
comproundd. A comroundd digital BR-tree
node occuries tuwo consecutive disc
Fases. After doublingy entries in its
ancestor are modified so that only one
of these two disc radges need be fetched
at ans time.’ The choice between
doubling or splittind a8 node is decided
by considering the utilisation of its
ancestor and siblinds, Note that in 3
CR—-tree the decision to srlit or chain
is arrived at bw consulting the
utilisation of its ancestors.

londgest

3.2 CB-tree Aldorithms. Nodes in a8
CB-tree are comrosed of the following
record structure?
node = record
TWIN ¢ boolean #
REYSHERE ¢ 1..2n ¥
REYS ¢ arraw [1..2n] of
hew~-ture §
F t array L0..2n] of
~ node
end #
field onmn & node will
is a8 comround node. For
the TWIN flad on main is
and FPL2N] roints to its
twin + On a8 twin rnode ‘TWIN’ is &zlwauys
set to false. KEYSHERE is 3 count for
the number of keus on the node.

The ‘TWIN
indicate if it
a comround node
set to ‘true’

3.2.1 SEARCH: Searching for a8 kews in
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the tree in similar to searching in a
B~tree. Fid.3 dgives a3 function to
search for 2 kew in 3 CB-tree.

The main advantage of 38 CB-tree
over 3 B-tree is in the averade rade
fetches reauired for a3 search. In both
the treer 8 search 1s comrleted in
0 (log N) timesy for N kews in the tree.

In the worst case a3 B-tree search will
take 1+|lod, (N+;)A rade fetches. For s
CE-tree“ the farthest node in the worst

case mav be leoan (Nt1) {] r3ges 3way.
At the same time 3Xhere will be leaf
nodes nearer to the root than this worst
caser rteducing the averade height.The
averade height is sometimes better than
the averade height of a B-tree. We do
not wet have an exeression for the
exracted averadge heidght of & CR-tree.
Exrperiments were conducted to comrare
the averade heights of random B-trees
and CR~trees. The next section dgives
details of these exreriments.

insertion in -3
in such a8 way thst

3.2.2 INSERTION: Key
CR-tree is handled

overflowing nodes renalize as little  as
rossible the rest of the tree. As
exrlained befores an overflowindg simrle
node dHets srlit or dets converted to a
comround node derending on its
ancestors’ occurancy. An  overflowing
comround node is alwaus srlit. A
comround node maw sometimes dgets srlit
ever, when it does not overflow. Fid,.,4
sketches the aldorithm for insertindg a
kew in a8 CR~tree. Hevre +the sredicate
THERE._IS.SFACE.HERE is true for a node
if it is not full, That isy» for a
simrle node THERE.IS.SPACE.HERE is true
if it has less than 2n entries and for a
comround node less than 2n entries on
its twin(the main will alweas have 2n
entries). Similarly
THERE_IS_SPACE_AROVE is true for anu
node if for any of its ancestors
THERE..IS.SPACE_HERE is true.

Like in a8 B-tree an insertion will
O0Clog m) rasge reads and rade

Accessing the entries on 8 tuwin
rade of a comrournd node recuires an
extra rage fetch., If 8 key were +to be
inserted on the main rage of a comround
rnode the twin slso rneed be fetched andg
rewritten.

take
writes,

2.2.3 Key Deletion! Deleting a kew is
vers similar to kew deletion in 3
E-tree. When a3 rnode underflows it is
merded with its siblinds to maintain S50%

OCCUFaNCY . A underflowing comround
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node gets converted to a simrle node.
4,1 STHULATION RESULTS: In absence
of analuticsal results to evaluate
CR-treesy we decided to examine their
rerformance through simulation studies.
Simuylations were done wusing a novel
techniaeue which allows random trees of
larde size to built in the main
MEMOTY . (See LYao 781 for the
definition of random trees). This
method of simulation does not store the
kew wvalues in the tree. Only the
structural information ¢ number of keus
at each nodevin each sub-treesrointers
to the sub-tree) is retained. A lew
ingertion is dome bw navidating throush
this to a wradge containing 3 random
rnumber in the range 1 to (N+1) and
urdating its kew count (There are N keus
n tree

the

e

in the tree ), This wag an ovder
with N kews can be simulsted for
structural information in O(N/Rn) memory

a8 million kew
accomodated in

locations., For examrle
tree of order 50 can be
under 100k butes,

these simulation
CB-tree vis-a—-vis
rerformance

Our obdective in
studies was to examine
E-trees for the following
messures?t

1. Averadge height

2+ Storasge utilisation

3. Construction cost

Averade heidght of a8 +tree is the
averade rmber of links
traversed(including the link +to reach

execute a successful search
Storade utilisation is the
the srace occuried and
Construction cost is
read and written to

the root) to
oreration,
ratio between
srace allotted.
measured in Fadges
build the tree.

Trees of medium order(15,20,25,30)
were examined for their rerformance over
an orerating rande extending to 100000
keus, Each tree wass studied over 20
instances of randomly denerated trees,

Aversde Heidht! Fidures S.1 to 5.4

the averade asccess cost curves for
Also shown is the asccess
‘idesl tree’. An idesl
best rossible averade
height for a3 multiwaws tree. In herey
the leaves maw differ in height by one
and only  the unsaturated nodes are the
farthest nodes,

4,2
give
these trees.
cost curve of an
tree dives the

average height of a8 B-tree
sharr sters 3t the roints where
srlits. After a root srlit the

The
grows in
the root
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heidght staus constant for 3 lardge number
of insertions(till the next srlit).
CR-trees exhibit a more dgradual increase
in height with increase in tree size.
Thew are like B-trees ( in facty they
‘are’ B-trees ) till the roint uwhere the
root of a B-tree would have been srlit.
After that thew drow differently for
some time and adain acauire the share of
B-trees. When the root srlits in »
B-treey a8 CB-tree leaf acauires a chain
becoming a8 compound node. Height of the
CR-tree drows gradually as more and more

nodes become comround nodes. When the
CE-tree root dgets saturated as a
comround node it srlits, This 1is the

roint when its height overshoots that of
a2 B~tree(This overshoot is too small to
ohserve in trees of order 20 and 285).
But ruickly after that it loses 811 its
comrourd nodes and continues to grow
like B~tree till one of the leaf nodes
hecome a comround node.

under the B-tree and CE-tree
curves were comruted for
comerarison. Table 1 indicates the same
along with the standard deviation
recorded for each of these areas. If

Areas
access cost

each of them is assumed to be normallw
distributed about their mearssy the
random varisble

x-Y

o A oo ese cane e he e

T = s a y
(s‘/n.+ 51/”L)

Z

_— &
where 52,'=Z(‘A.‘— X) and

—
S’;=2(B-"" Y)y

noens number of samrles in X and Y.
is asrrroxdimatelwy distributed as a
Student—-t with I dedrees of freedom
where I is calculated as [Green 781
2 N
1 1 a8y/ n,
v B e e oo e X [ ~—m e
I (n, -1) s*/n + s¥/n
\ a b3
2.
Y AL YA S
(rn_~-1) ST/nl+ s:/nk

The comruted sidnificance level for
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the hurothesis! Areaz under the CB-tree
acess cost curve is less than Area under
‘B-tree access cost curve came out to
nedligibly small.

4,3 Storade Utilisation? No marked
differences were observed asmonsg the
number of rades that each tree occuries.
Table 2 indicates the averasge storade
utilisation for trees of order 25 at
various roints of their drwoth. Also
shown are the standard deviations for
these samrles and the confidence level
for the hurothesis!
0.?25%Mean(B~tree)
1.05%Mean(B-tree)
These are comruted using the t-statistic
described earlier.

Mean(CE-tree)

Lz

4.4 Construction Cost! This rarameter
does not earticularly asrear Lo be in
favour of anw of the two trees, Table 3
shows & samrle of the rade asccesses
(reads and writes) incurred rer
insertion for contructing these trees.
Even though CR-trees recquired less rade
accesses at the maximum tree size
simulateds it is more likelw that the
oscillatory behaviour indicated in the
earlier readings to continue.

S5.CONCLUSIONS! A data-structure (Chained
B-trees) for indey organisation has bean
rrorosed, It is obtasined bw modifuwing
the B-tree defTinition to sllow leaf
nodes at different distances (measured
in rage fTelches) awaw from the root.
Simulation studies were conducted to
examing its rerformance as comrared to
B-trees, The following conclusions were
resched?
1) CB-trees exhibit a more dradusl
dgrowth in their averase height with
increase ir number of heds.,
Comeasved to a8 B-btree this dgrowth
curve is nearer to the best
rossible by 8 multiway tree.

2) CB-trees rrovide the same amount
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of space utilisation as B~trees.
3) It is no more exrensive
constryct a CR-tree than 3 B-tree

to
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function SEARCH(K!KEY~ture 4 X ¢ ~ to A NODE )!boolean }
{ SEARCH FOR K IN THE TREE POINTED BY X. SEARCH IS TRUE IF KEYS
IS FOUND OR FALSE OTHERWISE >
bedin
if X=nil then SEARCH !{= false
else with X™ do
bedin
case K of

in {KCIJ,KL21y..KCKEYSHEREJ]) ! SEARCH (= true
< KE11 ! SEARCH $= SEARCH(KPLO1)
« KCIY < KCI+411 ! SEARCH $= SEARCH(Ks»PLKEYSHERE]) +
¥ KCKEYSHERE] { SEARCH (= SEARCHILKsyFLKEYSHERE)

FZAEARZE

end end end

FIG.3 Function SEARCH

erocedure INSERT 3§
{ TO INSERT A KEY K IN THE SUE-TREE ROOTED AT X~ >
bedin
if X=nil then PUSH THE KEY UP
else
with X do
bedin
if TUWIN then
bedin
FIND THE APPROFPRIATe SUB-TREE in THE
COMPUND NODE THROUGH A BINARY SEARCH}$
INSERT KEY imn THE SUR-TREES
if SUR-TREE SPLITS

then
if (THERE._IS.SFACE_HERE) and (not THERE.IS.SPACE..ABOVE)

then ARSORE THE UPCOMING KEY
else ’
bedin SFLIT THE COMPOUND NODE
ARSOREB THE UPCOMING KEY
FUSH A KEY UP
end

else if (THERE.IS_SFACE._ABOVE) then bedin
SPLIT THE COMPOUND

NODE.FUSH A KEY UP
end
end
else { node is a3 simrle node X

begin
FIND APFROFPRIATe SUB-TREE in NODE BY BRINARY SEARCH}#

INSERT KEY in SUB-TREE}

if (SUBR-TREE SFLITS) then
if (THERE IS SPACE HERE) then ABSORB THE UPCOMING KEY

else if (THERE IS SFACE ABOVE)
then
bedgin SPLLIT THE NODE?#
ARSOREB THE UPCOMING KEY}$
FUSH A KEY UF
end
else

bedgin
CONVERT THE SIMPLE NODE to A COMPOU

NODE RY CHANING A NEW PAGE}#
ARSORER THE UPCOMING KEY

end end end
end?
Fig.4 Procedure to Insert a kew in a CB-tree
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B-TREE CB-TREE

ORDER MEAN 8.0 MEAN S.D.
19 34675599200 1009.8646 336640.3100 2086.7847
20 364900.9800 1422.8034 312586.8800 1139.0156
23 345847 .46600 105.21402 30176943300 311.9264
30 281530.,5200 1515.3457 276414.7400 189.1412

TABLE 1. AREAS UNDER THE ACCESS COST CURVE

REYS MEAN STANDARD DEV. CONF
B-TREE CR~TREE B-TREE CB~TREE

1037 0.683582 0.682783 0.042821 0.019812 99.6679
2500 0.689363 ¢.707390 0.021834 0.022676 98,7485
4937 0.691083 0,695623 0.012508 0.017007 99.9999
10841 0.676409 0.689499 0.009957 0.007964 99.9999
21497 0.696491 0.,6%1716 0.006805 0.006014 99.9999
28827 0.688875 0.690629 0.,006490 0.005213 99.9999
42628 0.693709 0.691429 0.005045 0.004914 99,9999
63036 0.4685374 0.690657  0.004829 0.003951 99.9999
766355 0.690161 0.694073 0.002767 0.003542 99.9999
84530 0.692911 0.695727 0.003168 0.003900 99.9999
93219 0,6935055 0.697747 0.003496 0.003475 99.9999
102793 0.693298 0.699631 0.003372 0.003213 99.9999

TABLE 2. STORAGE UTILISATION
ORDER OF THE TREE = 25

CONF., = 1.0 - SIGNIFICANCE LEVEL OF THE HYFOTHESIS:
0.?5KkMEAN(B-TREE) <= MEAN(CB-TREE) <= 1.05XMEAN(B-TREE)

KEYS B~TREE N-TREE
MEAN ST.DEV. MEAN 8T. DEV,

1037 3.00376 0.00357 3.03905 0.00309

2500 3.30908 0.03165 3,16890 0.01910

4957 3.6801%5 0.01623 3.61846 0.04221
10841 3.88472 0.00729 3.94463 0.04186
21497 3.97033 0.00386 4.00065 0.02111
28827 3,99311 0.00285 4,01528 0.01551
424628 4.01374 0.00194 4,02902 0.,01058
63036 4,07762 0.01610 4,03887 0.00704
76655 4,25146 0.01290 4.05996 0.,00771
84530 4,32637 0.01166 4.08162 0.00889
932135 4,39433 0.01061 4,10993 0.01041
102793 4.,45627 0.00974 4,143560 0.01130

TABLE 3. PAGES READIWRITES/INSERTION
ORDER OF THE TREE = 235
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