
Bit-Sliced VLSI Algorithms for Search and Sort

Yoauru Tanaka

Department of Electrical Engineering
Eokkaido University

Sapporo, 060 JAPAN

Abstract

For the high speed processing of databases, it is
fundamental to introduce various VLSI
architectures to the processing of basic
functions. Especially, sort and batch search
requires high speed modules. The VLSI algorithms
of them must make use of the time necessary for
the transfer of a large amount of data to and
from the modules. These modules should be
nonprogrammable in order to avoid serious
overheads. However, they should be able to
extend their capacity and wordlength by the
connect ion of them.
This paper solves the problem of how to extend
the wordlength of search and sort hardware
modules. It proposes bit-sliced architectures of
an interval search engine and a two-way-merge
sorter. The slicing of these engines does not
csuse excessive overheads. The decrease of the
slice length decreases the hardware complexity,
and increases the flexibility of the mOdUle8.
Therefore, it increases the feasibility of the
VLSI implementation of these hardware modules.

1. Introduction

The arrival of high speed relational database
machines with large capacity is prompted by the
users application requirements for very large
databases and a wide range of database
activities. The use of moving head disk units ii
innevitable to provide a sufficiently large
storage space. While the provision of an
associative search mechnism to disk units might
enable some database processing to be directly
performed on disk tracks, data transfer to and
from the storage modules is inr !vitable to cope

Permission IO copy without fee ON or porn of this muter&l & grunted
provided that the copies ore not mode or distributed for direct commerciul
odvontoge, the VL.0~ copyright notice ond rhe title of ihe pubkotion ond its
dote qpeor, and notice is given that copyiw is by permission of the Very Large
Doto kse Endowment. To copy otherwise, or to repubbkh, requirea o fee
ondlor rpec&l permission from the Endowment.

Procwdlngs of tha Tenth Intematlonrl
cmfwsncs on Vey Larga Data Bun.

with more sophisticated database processing.
Besides, the parallel processing of database
operations requires the separation of storage
modules and processing modules. The arrival of
high performance database machines requires
innovations in the follwing technologies:

1. VLSI architecture8 for high-speed processing
of basic functions.

2. Hierarchical memory organization
processing .

3. Control mechanism for cooperative
of massively parallel processes.

for database

coordination

This paper concerns the first item. Since the
transfer of a large amount of data is innevitable
in database processing, VLSI architectures for
basic functions must be able to make much use of
the transfer time for their processing.

The relational model of databases provide8 a set
of database operation8 as listed below:

set operations : union, intersection.
set difference.

relational operation8 : projection, selection,
restriction, join.
division.

aggregate operation8 : count, sum, average,
maximum, minimum.

others : sort.

Suppose that no relations is sorted apriori with
respect to some attribute* nor provided with an
auxiliary files such as inverted files or link
files. Suppose also that the size of each
relation is proportional to a single parameter 8.
Then the time complexity of each operation above
is either O(n) or O(n*logn). They are classified
as follows:

O(n) : select ion, restriction, count. rum,
average, maximum, minimum.

O(n*logn) : union, intersection. set difference.
projection. join. division, sort.

Operations in the first cless can be executed by

sitI~Sp0r0, August, 1984

225

The table is stored in an engine preceding to the
batch search processing, in which m searchkeys
are sent to the engine one after another as a
stream (kg, kl, km-l). For eaih itput key k,
the ISEE outputs an interval (A , A) of table
addresses. A Search Engine (SEE) thft was
previously t can output only A . The
addresses A

ropos%d
and A are the minimum addresses

that satisfy respectively the following two
conditions :

T(AL) L k and T(AR) > k.

These two table addresses are respectively called
the left address and the right address of the
search key k in the table T.
difference AR-AL

Obviously, their
is equal to the number of

keywords in T that are equal to k.

In an ISEE, a search table is represented by a
binary tree called a left-sided binary tree. This
is similar to an SEE. The height of trees is
determined by the capacity of the hardware
implementat ion. The i+lst keyword T(i) is stored
in the node labelled i in Fig. 2.1. An ISEE with
L levels can store a table with no more than 2L-1
keywords. The number of nodes at each level of a
tree that are loaded with keywords is referred to
by the load factor of this level. This is
denoted by LOAD(j), where j denotes the level
number.

load factor

0 2 4 6 8 10 ’ ’ 6

/ The loading starts from here.

Fig. 2.1. A half-loaded left-sided binary tree.

An ISEE has a hardware configuration as shown in
Fig 2.2. It has multiple levels. Each level has
dedicated logic circuits and a dedicated memor
bank. The memory bank at the i-th level has 2i- P

words. The nodes at the i-th level of the left-
sided binary tree are stored from left to right
in the memory bank at the i-th level. The i-th
node from the leftmost one at each level is
stored in the address i-l, which is referred to
by the intra-level address of this node.

The interval search of a left-sided binary tree
Proceedings of the Tenth International

Conference on Very Large Data Bases.

1WOrd

The 1st level
2words

Thezndlevel

G 4 words

The 3rd level py-g

Memory banks

The Lth level (J-Jjffy-iJY-,

0 : Logic circuit

Fig. 2.2. The herdwe~ configuration of an ISEE.

for a search key k starts from the ro t o
tree, procedes downward. and outputs e Fhe (A , A) of
k from the bottom level. The logic circuits at

assumed to be always zero. Let Tj(i) denote the
keyword stored in the node at the intra-level
address i in the level j. The addresses wL(j+l)
and wR(j+l) are calculated as follows:

wL(j+l)

= if k < Tj(wL(j)) or wL(j) > LOAD(j)-1

then 2*wL(j)

else 2*wL(j)+l,

wR(j+l)

= if k < Tj(wR(j)) or wR(j) > LOAD(j)-1

then 2*wR(j)

else 2*wR(j)+l .

The search result (AL, AR) for a search key k is
obtained as the output addresses from the bottom
level, i.e., the following properties always
hold.

Property 2.1.
Suppose that an ISEE has L levels. The addresses
wL(L) and wR(L) that are output from the bottom
level as the search result for a key k are
respectively equal to the left address and the
right address of k in this search table. i.e.,

Singapore, August, 1994

226

AL = wL(L) and AR = w’(L).

The intra-level addresses wL(j) and w’(j) in each
level j are called respectively the left boundary
and the right boundary of the search for k at
level j. Figure 2.3 shows an example interval-
search process.

keywcrd/address

Search key - 7

.

left* ;” 8 Jlo

P
0 1

P? . .
.

4 4 k1

. Y&&z .

’ /\
010 101

c ;7:~osl* 9114 +----+-* p3

; t \
0100 1011

. II II
.:” .&” ..*.......................e..

;
4 11

Z.,......” .-.. “” .*................................... -I

Fig. 23. Pn exBnple of an interval search

Although the above description of operations has
concerned a single key search. an ISEE actually
searches a stream of keywords in a pipeline
f afhion.
(w (j+l).

Evgry time after having output a pair
w (j+l)) for a search key

level j gets a nelt search key ki+
boundaries <WI’(j). w (j)) from the leve
bggins the comparison to output
w (j+l)) for k.

an I&%
to the level j+l. At every

instance, treats as many keys as its
levels. The flow of keys forms a stream and it
flows downward through all the levels of the
ISEE.

2.2. Bit-sliced interval search engine

= if k < Tj(wR(j)) or wR< j) > LOAM j)-1

then 0

else 1.

Such a modified ISEE is referred to by an MISEE.

A bit-sliced ISEE with n-bit wordlength is
defined as a module that is connected to an MISEE
with m-bit wordlength in a way as shown in.Fig.
2.4 to form a new MISEE with (n+m)-bit
wordlen th.
lips e CO (j),

Eaih of its levels has two ou

CI (j).
CO (j). and two inpv lines CI

These two input lines CI (j) and
are respectively connected to COL(j) and COR(j)
of the corresponding level of the preceding m-bit
HISEE.

seam keys : a 0, c, l . .
a - %a, t> - bobI, c - cgl, -

.
. .
. .
. Cl

‘0 m-bit
b0

80

I . .
n-bit

bit-sliced ISEE

Now, let us consider how to realize a bit-sliced
architecture of an ISEE. First we shall modify
an ISEE to have two bits of output signals at
each level. The values of these signals are
defined as follows:

COL(j)

= if k s Tj(wL(j)) or wL(j) > LOAD(j)-1

then 0

else 1.

COR(j)
Proceedings ot the Tenth International

Conference on Very Large Data Sases.
227

(m+n)-bit MISEE

Fig. 2.4. comections Of an m-bit MISEE and an

n-Ott bit-sllcecl ISEE.

Suppose that all keywords and all search keys
have a common leftmost m bits. Then the (m+at>-
bit MISEE in Fig. 2.4 may be considered same as
an n-bit MISEE since the leftmost m bits of each
value are insignificant. This n-bit part is
actually treated by the n-bit bit-sliced ISEE.
which, in this case, works as al n-bit MISEE. In
this case. the input signals CI (j) and CI (j) at

Singapore, August, 1994

each level are always set equal to zero and one
respectively by the preceding m-bit MISEE.
Therefore, an n-bit bit-sliced ISEE with each
GIL(j) and CIR(j) respectively set to zero and
one should work in a same way as an n-bit MISEE.

A bit-sliced ISEE is designed to have a similar
hardware configuration as an ISEE. The node
where T(i) is stored in an ISEE stores the
rightmost n bits of T(i), which is denoted by
TR(i). The bit-slit d
see the boundaries w 4

ISEE in Fig. 2.4 can not
j) and wR(j) calculated at

each level of its lefthand MISEE. However, we
firs
by W 4

assume ihey are visible. They are denoted
j) and W (j) for the distinction from those

of the bit-sliced ISEE. Since the rightmost n
bits of keywords and search keys are used to
refine the search result obtained by the leftmost
m-bit processing, the following relations must
hold at each level j:

WL(j) s wL(j) 5 wR(j) < wR(j).

These relations also hold at the next level.
However, the addresses at the level j+l is
related to those at the upper level j as follows:

WL(j+l) = 2*WL(j)+CIL(j),

wR(j+l) = 2*WR(j)+CIR(j),

wL(j+l) = 2+wL(j)+COL(j),

wR(j+l) = 2*wR(j)+COR(j),

where CI and CO signals of the bit-sliced ISEE
are used. Therefore. the following relations must
hold:

2*WL(j)+CIL(j) 5 2*wL(j)+COL(j)

5 2-lwR(j)+COR(j) S 2*wR< j)+CIL(j) .

Considerations on these relations gives the logic
to determine CO’(j) and CORki). For simplicity,
two signals COL(j) and CO (j) are considered
separately.

As to the calculation of COL(j), four possible
cases should be donsidered:

L (1)CaseX : WL(j) = wL(j) = #<j),

(2) Case LL : WL(j) = wL(j) < WR(j),

(3) Case NL : WL(j) < wL(j) < WR(j)*

(4) Case R L : WL(j) < wL(j) = WR(j).

The signal CO’(j) is determined as shown in Table
2.1 (a). This table can be made based on the
following analyses.

Case XL
In this case, WL(j), wL(jl, and WR(j) coincide.
OIf CIL(j)=CIR(j) then W (j+l) and WR(j+l) will

Proceedings of the Tenth International

Conference on Very Large Data Baees.

Table 2.1. Calculattons of CO’@ anb CORO.

(a) CalcuIaUons of colll).
corKilum CONCJ‘:

k,pi(wLo) or wL(j)XOAD(j)-l

et(j) CIR@ caNoL cd(j)

XL 0 0 - 0
0 1 F 1
0 1 T 0
10 - -
11 - 1

t-L 0 - F 1
0 - T 0
1 - - 1

RL - cl - 0
1 F 1
1 T 0

(b) Caltiaths of COR(j)
condluon pomR:

k<TRJ(wRO)) or w~~LCIAD(,j)-1
,

CaSe cr’u, CIR(j) cmoR coR(j)
t

XR 0 0 - 0
0 1 F 1
0 1 T 0
1 0 - -
1 1 - 1

LR 0 - F 1
0 - T 0
l- - 1

INRII: ‘T ;
RR - 0 - 0

1 F 1
1 T 0

also coincide, and hence wL(j+l) must be equal to
them.
OIf CIL(j)=O and CIR(j)=l, then the search

OSince WL(j+l)sWR(j+l), (CI (j). CI (j)) can not
direction is determined by tv compatison result.

Singapore, August, 1984

be (1, 0).

Care LL
In this case, WL(j)Land wL(j) coincide and W”(j)
is different from w (j).
OIf CIL(j)=l, then the search can not proceed to
t e left son, i.e.,

e
w’(j+l) must be equal to

W (j+l)t
OIf CI (j)=O. then the search direction is
determined by the comparison result.

Cue NL
In this case. the search process will never
encounter the interval boundaries determined by
the NISEE. The search direction is determined by
the comparison result.

Cue ILL
Similar to LL.

As to CO”(j), the possible cases are

(1) Case XR : WL(j) = wR<j) = Wa<j).

(2) Case LR : W4j) = P(j) < W%j),

(3) Case NR : W’(j) < wR(j) < WR<j),

(4) Case RR : WL(j) < wR<j) = WaCj),

and the calculation is as shown in Table 2.1 (b),
which can be obtained based on similar analyses
as before.

Although we have assumed that WL(j) and WR(j) are
visible. actually they are not. This problem is
solved by introducing states of a search process.
For each search key, its search process changes
its state as it moves from the top level to the
bottom level. The following combinations of the
cases that are respectively chosen from Table 2.1
(a) and (b) can be considered as all the possible
states of search processes, i.e.,

(XL, XR) : WL(j) = wL(j) = wR(j) = WR<j)r

(LL, LR) : WL(j) = wL(j) = WRCj) < wR(j>,

(LL, NR) : WL(j) = wL(j) < w”(j) < W’(j),

(LL, RR) : WL(j) = wL(j) < wR(j) = wR<j).

(NL, NR) : WL(j) < wL(j) 5 wR<j) < wR(j>,

(NL, RR) : WL(j) < wL(j) < wR<j) = wR<j).

(RL, RR) : W4j) < wL(j) = wR(j) = wR<j).

each search process initializes
:‘L 8% atto! tlo”c’:t , XR) . The state transition is
specified by two automata, each of whicLh
;l;c;f ieR3L;roarn;ki;I: ;FngLf:t#r ;F se;izs;

automa’ta are described in’Table 2.; (a)‘and (b).
These tables can be obtained by similar analyses
made for COL(j) before. A part of ‘PRble (a) can

procwd\ngr of the Tenth International

Table2.2 Thestatetrwithofsearchprocesm

(a) the State translU#r among X‘, L‘, NC. and R‘.

ccNldluon qobd:

GIL@ CID ad Next state
XL 0 0 - 0 1 F R”:

0 1 T LL
10 -
1 1 - ii1

L1 O - F ‘;“:. 0 - T
1 - - LL

I NL - _ I N‘ I

RL - 0 - RL
1 F RL
1 T NL

ttJ) v# State UanslUDn am#19 X”, LR, N’, Bnd RR.

CondiuDtl coNDR:

k<Tsl(“Ro) or wtJ)>LOtW@l

crl(D Cl”u, cmDR Mxt state
XR 0 0 -

0 1 F
$

0 1 T LR
10 -
1 1 - iR

LR 0 - F $
0 - T
1 - - LR

RR - 0 -
1 F
1 T NR

be obtaiued as follows.

Case XL
OIf CIL(j)=CIR(j), then WL(j+l) and W’(j+l) Ii11
also coincide. i.e., the state will stay at X .

Slngrpore, August, 1994

Conference on Very Large Data S~M)S. 229

OIf CIL(j)=O and CIR(j)=l, WL(j+l) and WR(j+l)
will sepa ate, and wL(‘+l) will become equal to
either W E (j+l) or Ii W (j+l) depending on the
compaison result. Hence, the next state will be
either LL or RL.

Other transitions in the table can be similarly
understood.

An example search process with a l-digit MISEE
and a l-digit bit-sliced ISEE is shown in Fig.
2.5.

Search key = 31

Fig. 25. An example search process with two
bit-sliced ISEE.

A set of bit sliced ISEE with a same width. when
concatenated. forms a wider ISEE with arbitrary
wordlength. The i-th slice of a search key must
be input to the i-th module at the time (i-l)
steps after the input of the first slice. The
result of each serach process is out ut Rp

from the
rightmost module as its wL(L) and w (L).

A bit-sliced ISEE with L levels and 1 bit width
requires 6L+l pins; 1 pin for data input both in
table loading and in batch searchessing, 4L pins
for the connections between conycutive slpes,
and 2L pins for the output of w (L) andL w (L).
Fv L=12, It becomes 73 pins. However, w (L) and
w (L) need not be output by each slice.
Actually, they can be constructed by a simpLe
circuit from COLs and CORs output from the least
signif icant slice. Therefore. the pin complexity
can be decreased to 4L+l. For L=12. this is 49
pins, which seems to be acceptable.

The slicing method proposed above causes no
serious overheads, nor it excessively increases
the pin complexity. Therefore, the width of each
slice can be decreased to a single bit without
causing any problems, which decreases the
hardware complexity and increases both the
flexibility of the module and the feasibility of
its VLSI implementation.

3. Bit-Sliced Sort Bardvare
Proceedings of the Tenth International

Conference on Very Large Data Bases.

3.1. Tvo-way-merge sorter

This section describes briefly the operations
performed by the two-way-merge sorter proposed by
S. Todd [TODD7 81. He proposed a sorting
algorithm that repetitively applies merge
operations to every two sorted runs in an input
stream to increase the length of sorted runs.
The initial input stream is considered as a
sequence of sorted runs of length one. Each
stage merges every two runs from the head of the
input stream to output a sorted run of double
length. The sequence of these output runs
becomes an input stream of the next stage. In
order to perform these repetitive merge operaions
in a pipeline fashion. a two-way-merge sorter has
a hardware configuration similar to that of an
ISEE in Fig. 2.2, however their logic circuits at
each level are different. An input stream flows
into this module at the top level, and flows out
from the bottom level. The Logic circuits at
each level performs the following operations. At
every time when the next two input runs arrives
at a stage, it begins to merge these two runs to
output a merged run to the next level. Each
input element is first stored in the memory bank
at this stage before it is manipulated. A
hardware module with L levels outputs from the
bottom level a sorted run of length 2L. and hence
it can sort a set of no more than 2L elemens.

A bit-sliced architecture of this module can be
easily designed if we can find out how to slice a
merger used at each level of this module. Let L
and R denote two sorted streams of same length,
and L(i), R(i) their i+lst elements. The stream
L is referred to by the left stream, while R the
right stream. The logic circuits at each level
of a two-way-merge sorter receive two streams L
and R one after another and merge them. The
circuits can be decomposed into two parts. The
first part receives an input element at every
step and stores it at a proper address of the
memory bank at this level. while the second part
merges two streams, whose next elements are
always guranteed to have been already stored in
the memory bank by the first part of the
circuits. As to the merge operation, the
following property holds.

Property 3.1
At every time, say, j steps after the arrival of
the head of the second stream RI the merger can
see L(i) and R(i) if the index i is less than or
equal to j and if they have not been output yet.

The design of a bit-sliced merger applicable to a
two-way-merge sorter should take this property
into consideration.

3.2. Bit-sliced merger applicable to a
tvo-way-merge sorter

Singapore, August, 1984

230

A bit-sliced merger has two l-bit input lines LI
and RI, and two l-bit output lines LO and BO.
These lines are used to connect multiple bit-
sliced mergers to form a single merger with an
arbitrary wordlength as shown in Fig. 3.1. The
operation of the i-th slice module is delayed (i-
1) steps from that of the leftmost module.

4 4 44 44 44
a e atI etl 4 4 4 4
b f 0, f, a1 Sl

c g co 90 bl fl
d II do “0 Cl Ql 4 4

d, nl a” e”

Flgn 3.1. comeCtim Of bit-Sliced IVErgers.

The slicing of a merger can not be achieved in a
straight forward way because of the following
reason. Suppose that the next elements of the
two input streams have a common value at the
leftmost slice. Then we can not decide which one
to take out. Suppose that we have chosen the
left one. Suppose also that. in this case, the
next element of the right stream is less than
that of the left stream at the second slice.
Then the second slice should choose the right
head to output. However, this .malces it
insignificant to continue further comparison
operations at these two slices because the pairs
of the elements compared next at these two slices
do not correspond with each other.

This problem can be solved as follows. Let US

introduce two pointers pointing to the next
elements of the input streams. The left pointer
lp points to the next element of the left stream,
while rp points to that of the right stream. If
L(lp) and R(rp) are equal at the leftmost slice,
we will advance both of the two pointers, and
make the module at this slice to output one value
that is equal to both L(lp) and R(rp). The
output signals LO and RO are both set to one.
The signal LO denotes the advance of the left
pointer, while RO the advance of the right
pointer. They are set to one if their
corresponding pointers are advanced. Otherwise,
they are set to zero.

Suppose that-the next i elements of L and the
next j elements of R have a same value v at the
leftmost slice. Assume that i is less than or
equal to j. Then the first (i+j) output values

Proceedings of the Tenth International

Conference on Very Large Data Bases.

from this module should be equal to v. During
the first i steps, both pointers will be
simultaneously advanced, and the value v will be
output i times. After these operationsr the
module is said to have reached the left boundary.
During the following (j-i) steps, only the
pointer rp will be advanced.’ Finally, both L(lp)
and R(rp) will become greater than V. At this
time, the module is said to have reached both the
left boundary and the right boundary. The module
has already output v j times. however there still
remain i elements to output the value v.
Therefore, the module must output v during the
following i steps. During this period. the
comparison of the next elements is suspended, and
hence neither of the pointers is advanced.

Now let us consider the second slice of a merger.
Suppose that, in the leftmost slice, the left
boundary and the right boundary are respectively
located at the i-th next element and at the j-th
next element as before. The second slice of a
merger operates in a similar way as the leftmost
one does unless it reaches either the left
boundary or the right boundary of the leftmost
slice. If it reaches, say, the left boundary, it
must stop the advance of the left pointer. The
following output must be selected from the right
stream until1 the right pointer also reaches the
right boundary of the leftmost slice.

From these considerations, a bit-sliced merger
works as the leftmost slice of a merger if both
of its connection input LI and IA are set to one.
The following classification of the processing
status will make it easier to describe the
operations of a bit-sliced merger. Let us first
introduce several notations:

c :

vo :

DL :

DR :

A counter that counts how many times the
two pointers are simultaneously advanced.
Init ially zero.

The previous output; initially zero.

The difference of lp between the current
slice and the preceding slice. It becomes
zero when the module reaches the left
boundary of the preceding slice. Otherwise,
it is kept positive. Initially zero.

The difference of rp between the current
slice and the preceding slice. It becomes
zero when the module reaches the right
boundary of the preceding slice. Otherwise.
it is kept positive. Initially zero.

DL, = DL+LI.

DR, = DR+RI.

The classification and the operations in each
case are described below:

Case 1. DLf = DR* =c =o : nonexistent.
Singapore, August, 1994

231

Case 2. DLc = DRV = 0, C (= n> > 0

The two pointers lp and rp have reached the
boudaries specified by the lefthand slices,
however, there are still n elements with a value
v. that remains to be output during the following
n steps. In this case, neither of the pointers
should be advanced.
is decreased by one.

The value v. is output and C

(LO, RO) f (0. 0); output vo; C + C-l;

DL + DLl; DR f DRl.

Case 3. DLt = 0, DR1 > 0

The pointer lp has reached the left boundary
specified by the lefthand slices.

Case 3.1. C = 0 or R(rp) = v.

There remains no elements equal to v. that
are to be output before the next comparison.
Or R(rp) is equal to vo. In this case, R(rp)
is output, and rp is advanced.

(LO, RO) + (0, 1); output R(rp);

v. + R(rp); rp c rp+l; DL + DL*;

DR 4 DR+-1.

Case 3.2. C # 0 and R(rp) f v.

The pointer rp has reached the right
boundary of this slice. In this case, the
advance of rp and lp should be suspended.
The remaining v. is output, and hence C is
decreased by one.

(LO, RO) 4 (0. 0); output vo; C 4 C-l;

DL4 DLt; DR 4 DRt.

Case 4. DLc > 0, DRc = 0

Similar to Case 3. The roles of left and right
are interchanged.

Case 4.1. C = 0 or L(lp) = v.

L(lp) is output, and lp is advanced.

(LO,RO) 4 (1. 0); output L(lp);

v. f L(lp); lp f lp+l; DL 4 DL+-1;

DR 4 DR* .

Case 4.2. C f 0 and L(lp) f v0

The advance of the pointers should be
suspended. The remaining v. is output, and
hence C is decreased by one.

(LO, RO) + (0, 0); output vo; C 4 C-l;

Proceedings of the Tenth International

Conference on Very Large Data Bases.
232

DL 4 DL1; DR 4 DR,,

Case 5. DLc > 0. DRV > 0

Neither of the pointers has reached the boundary
specified by the lefthand slices.

Case 5.1. min(L(lp), R(rp)) f v. and C f 0

Both of the pointers have reached the
boundaries specified by this slice. In this
case, the advance of rp and lp should be
suspended. The remaining v. is output, and
hence C is decreased by one.

(LO, RO) 4 (0, 0); output vo; C f C-l;

DL+DL,; DR+DRt .

Case 5.2. C = 0 or min(L(lp), R(rp)) = v.

There remains no element equal to v. that
are to be output before the next comparison.
Or the smaller of L(lp) and R(rp) is equal
to vo.

Case 5.2.1. L(lp) < R(rp)

The next element of the left stream is
less than that of the right one. L(lp)
is chosen to output, and lp is
advanced.

(LO, RO) 4 (1. 0); output L(lp);

v. 4 L(lp); lp f lp+l; DL 4 DLV-1;

DR 4 DR1 .

Case 5.2.2. L(lp) > R(rp)

The next element of the right stream is
less than that of the left one. R(rp)
is chosen to output, and rp is
advanced.

(LO, RO) 4 (0. 1); output R(rp);

v. 4 R(rp); rp f rp+l; DL f DL+;

DR 4 DR1-1,

Case 5.2.3. L(lp) = R(rp)

The two next elements are same. Their
common value is output. Both of the
pointers are simultaneously advanced,
and C is increased by one.

(LO,RO) f (1,l); output L(lp);

VO f L(lp); c f c+1; lp 4 lp+l;

rp f rp+l; D f DI’-1; DR 4 DR1-1. L

An example merge process with two bit-. riced
Singapore, August, 1984

mergers is shown in Appendix.

The slicing method described above is applicable
to a two-way-merge sorter. The operation of this
bit-sliced merger is consistent with Property 3.1
of the mergers that are used in a two-way-merge
sorter. The bit-sliced two-way-merger thus
obtained does not suffer from the serious
increase of the pin complexity. A module with L
levels and 1 bit width requires (4L+l) pins, 1
pin for data input and data output, and 4L pins
for connections between consecutive slices. For
L=lZ, this is 49 pins, which seems to be
acceptable. The hardware complexity is much
decreased by the bit-slicing, while its
flexibility is increased. Its VLSI
implementation becomes far more feasible than a
nonsliced two-way-merge sorter.

4. Conclusion

For the high speed processing of databases, it is
fundamental to introduce various VLSI
architectures to the processing of basic
functions. Especially, sort and batch search
that are fundamental in database processing
require high speed modules. The VLSI algorithms
of them should make much use of the time
necessary for the transfer of a large amount of
data to and from the modules. Besides, these
modules should be nonprogrammable in order to
avoid serious overheads that are likely to be
caused by the introduction of the
programmability. However, they should be able to
extend their capacity and wordlength by the
connection of them.

This paper has solved the problem of how to
extend the wordlength of search and sort hardware
modules. It has proposed the bit-sliced
architectures of an interval search engine and a
two-way-merge sorter. The slice of these engines
does not cause excessive overheads. The decrease
of the slice length decreases the hardware
complexity, and increases the flexibility of the
modules. Therefore, it increases the feasibility
of the VLSI implementation of these hardware
modules.

The two different bit-sliced VLSI architectures
respectively for search and sort both require
(4L+l) pins per each chip. For L=12, i.e., if
the capacity of each module is restricted to
4095 words, their pin complexity becomes 49+a,
where a pins are necessary for power supply.
clock supply, and mode control. This number
seems to be acceptable. The bit-sliced ISEE with
L levels and 1 bit width consists of 2L-l memory
cells (, for L=12, 4095 cells) as a whole. and
two 4 state automata at each level, while the
bit-sliced sorter with L levels and 1 bit width
consists of 2(2L-l) memory cells as a whole, and
a simple logic circuit with several registers at
each level. Therefore, even if we use static RAM

Proceedings of the Tenth International

Conference on Very Large Data Bases.

technology. each module wi h L levels and 1 bit
5 width requires less than 10 transistors. This

number ensures their feasibility.

Bit-slicing is fundamental for the flexibility
increase. The arrangement shown in Fig. 4.1, for
example, can reconfigure itself to cope with
various wordlength. Consecutive modules in the
array of bit-sliced ISEEs are separated by a
control signal line controli. When control. is
set to one, the subarray of modules to the f eft
of this control signal line and the remaining
right subarray can work independently. If all
control signals are set to eero* the whole array
of modules can work as a single ISEE. The same
kind of reconfigurable arrangement is also
possible for bit-sliced two-way-merge sorters.

1c

bit-sliced
ISEE

1 4 cf w

control 1

bit-sliced
ISEE

Fig 4.1. Wordlength-controllable connections of
bit-sliced ISEEs.

Peferrences

CBATC681 Batcher. K.E., ‘Sorting networks and
their applications.* Proc. SJCC. Apr. 1968,
pp.307-314.

CHIRS~~I Hirschberg, D.S., ‘Fast parallel sorting
algorithms.’ CACM, vol. 21,‘no. 8, Aug. 1978,
pp.657-661.

[MULL751 Muller, D.E. and Preparata. F. P.,
‘Bounds for complexity of networks for sorting
and switching.’ JACM. vol. 22, no. 2, Apr. 1975.
pp .195-201.

[NASS79] Nassimi. D. and Sahni, S., ‘Bitonic sort
Singapore, August, 1984

233

on a mesh connected parallel computer.’ IEEE CTANASOJ Tanaka, Y., Nozaka, Y. and Masuyama, A.,
Trans. on Computers, vol. c-27, no. 1, Jan. 1979, ‘Pipeline searching and sorting modules as
pp .2-7. components of a data flow database computer,’

IPIP Congress 80, Oct. 1980, ppk27-432.
[PREP783 Preparata, F.P.,*New parallel sorting
schemes,’ IEEE Trans. on Computers, vol. c-27, [THOM771 Thompson, C.D. anf Kung, LT., ‘Sorting
no. 7, July 1978. pp.669-673. on a mesh connected parallel computerr’ CACH.

vol. 20, no. 4, Apr. 1977, pp.263-271.
CSTON711 Stone, I1.S.. ‘Parallel processing with
the perfect shuffle.’ IEEE Trans. on Computers, [TODD781 Todd, S., ‘Algorithm and hardware for a
vol. c-20, no. 2, Feb. 1971, pp.153-161. merge sort using multiple processorsr’ IBM J.

R&D, vol. 22, no. 5, May 1978.

APPENDIX An example merge process with two M&Wed merger.

input stream : L - (00, 00, 01, 11, **) (y : delimiter)
R - (00, 01, 10, 11, **)

1st slice : L = (0, 0, 0, 1, *) 2nd slice : L = (0, 0, 1, 1, “)
R = (0, 0, 1, 1, “1 R = (0, 1, 0, 1, *)

operations

tlwe 0 i 1 i 2 i 3 . iQf51b. ; 7 ; 8

1st slice
1P ..." ̂ I
v - ..-................-.I
Wp)=Wrp) . ..” I...”” I...
min(L(lpLR(rp))=vg ..“.“I” -...“-“.““-”-Y.. “..I -
C . I"..." ..."

- output “.....” . “..” .
LO_..........” ...”
RO

t i
2nd slice i ! I I 8 I ! i

LX :il fl 11 i0 i-j \I to i0
. I .

RI
.!& ““.A.”” i: “.i*........... i i

11 il 10 i0 i0 v-.......... “F..-““....“........, T +“..“.“...“+”” “.+.“-y”--. 2.....2~““““.., .
il io

. . . .
1P ro ii1 2r2 2i2 3i3 313 3i3 414 4-................................-.................” ““.” ..“- L L.-” ‘...... t “....”&.

i-J lil lil
.I-.. iL “..&“..” ..-.. “..i .

rp _....^..............” -........................-........................... k 4
l!l 2j2 2f2 3j3 414 4

. . .
L(~P)=R(~P) !T jF

..._.” ‘” _............... f..W..w p...ww.’*............ +.....
iT ;T jF jF jT ;T

. “.... “.....” -” -... .*....-............ j .
sln(L(lp), R(rp))= V.

. j.“..““” p” t”“““““““‘”“..... y.“”*..... p......“..Y....“”
i - ;T iF jT iF 1 ._........_”_..”-.--.-..-...........--

C
” -......... . ..j” I” . ;F . . . “.......+” . ;T
0

. y.. +..” i...- -......... +“” . fF t’“” I...
;O 1:l I!1 010 lil OjO OiO lil 0 ” _..........-......._......-......-.........”--.............

DL ’
..“.-”-. “W..,-- i +” “..“.~ t”“‘............. jI.. i .
0 ‘1 Oil 0’1 lr1 oio 011 1’1 ($0 0 . ..-................-........... I-.....-..........--....-. i i ..^..”i “..+ .

OR ’ ;I ();1 lil
.” +. “..f *(

0 lil oio Oil Oil $0 0 -..-”” . * - +.. “....p...... +.
- output

i
..““.“...“..j.....“.” +..-...... 5” I i”^.. . .

0: 0; o!-~-._lr 0: 1: 1 ~~.p.“.-““...~~~~~”
case t 152.3 $2.1 i 5.1 ; 5.2.3 1 2 f5.2.2 f 5.2.3 1 2

,

Pmceedlngs ot the Tenth Intemetlonal
Conbrsnos on Very Largs Data Basea.

Slngspon, August, 1984

234

