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Abstract 

For the high speed processing of databases, it is 
fundamental to introduce various VLSI 
architectures to the processing of basic 
functions. Especially, sort and batch search 
requires high speed modules. The VLSI algorithms 
of them must make use of the time necessary for 
the transfer of a large amount of data to and 
from the modules. These modules should be 
nonprogrammable in order to avoid serious 
overheads. However, they should be able to 
extend their capacity and wordlength by the 
connect ion of them. 
This paper solves the problem of how to extend 
the wordlength of search and sort hardware 
modules. It proposes bit-sliced architectures of 
an interval search engine and a two-way-merge 
sorter. The slicing of these engines does not 
csuse excessive overheads. The decrease of the 
slice length decreases the hardware complexity, 
and increases the flexibility of the mOdUle8. 
Therefore, it increases the feasibility of the 
VLSI implementation of these hardware modules. 

1. Introduction 

The arrival of high speed relational database 
machines with large capacity is prompted by the 
users application requirements for very large 
databases and a wide range of database 
activities. The use of moving head disk units ii 
innevitable to provide a sufficiently large 
storage space. While the provision of an 
associative search mechnism to disk units might 
enable some database processing to be directly 
performed on disk tracks, data transfer to and 
from the storage modules is inr !vitable to cope 
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with more sophisticated database processing. 
Besides, the parallel processing of database 
operations requires the separation of storage 
modules and processing modules. The arrival of 
high performance database machines requires 
innovations in the follwing technologies: 

1. VLSI architecture8 for high-speed processing 
of basic functions. 

2. Hierarchical memory organization 
processing . 

3. Control mechanism for cooperative 
of massively parallel processes. 

for database 

coordination 

This paper concerns the first item. Since the 
transfer of a large amount of data is innevitable 
in database processing, VLSI architectures for 
basic functions must be able to make much use of 
the transfer time for their processing. 

The relational model of databases provide8 a set 
of database operation8 as listed below: 

set operations : union, intersection. 
set difference. 

relational operation8 : projection, selection, 
restriction, join. 
division. 

aggregate operation8 : count, sum, average, 
maximum, minimum. 

others : sort. 

Suppose that no relations is sorted apriori with 
respect to some attribute* nor provided with an 
auxiliary files such as inverted files or link 
files. Suppose also that the size of each 
relation is proportional to a single parameter 8. 
Then the time complexity of each operation above 
is either O(n) or O(n*logn). They are classified 
as follows: 

O(n) : select ion, restriction, count. rum, 
average, maximum, minimum. 

O(n*logn) : union, intersection. set difference. 
projection. join. division, sort. 

Operations in the first cless can be executed by 
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The table is stored in an engine preceding to the 
batch search processing, in which m searchkeys 
are sent to the engine one after another as a 
stream (kg, kl, . . . . km-l). For eaih itput key k, 
the ISEE outputs an interval (A , A ) of table 
addresses. A Search Engine (SEE) thft was 
previously t can output only A . The 
addresses A 

ropos%d 
and A are the minimum addresses 

that satisfy respectively the following two 
conditions : 

T(AL) L k and T(AR) > k. 

These two table addresses are respectively called 
the left address and the right address of the 
search key k in the table T. 
difference AR-AL 

Obviously, their 
is equal to the number of 

keywords in T that are equal to k. 

In an ISEE, a search table is represented by a 
binary tree called a left-sided binary tree. This 
is similar to an SEE. The height of trees is 
determined by the capacity of the hardware 
implementat ion. The i+lst keyword T(i) is stored 
in the node labelled i in Fig. 2.1. An ISEE with 
L levels can store a table with no more than 2L-1 
keywords. The number of nodes at each level of a 
tree that are loaded with keywords is referred to 
by the load factor of this level. This is 
denoted by LOAD(j), where j denotes the level 
number. 

load factor 

0 2 4 6 8 10 ’ ’ 6 

/ The loading starts from here. 

Fig. 2.1. A half-loaded left-sided binary tree. 

An ISEE has a hardware configuration as shown in 
Fig 2.2. It has multiple levels. Each level has 
dedicated logic circuits and a dedicated memor 
bank. The memory bank at the i-th level has 2i- P 

words. The nodes at the i-th level of the left- 
sided binary tree are stored from left to right 
in the memory bank at the i-th level. The i-th 
node from the leftmost one at each level is 
stored in the address i-l, which is referred to 
by the intra-level address of this node. 

The interval search of a left-sided binary tree 
Proceedings of the Tenth International 
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1WOrd 

The 1st level 
2words 

Thezndlevel 

G 4 words 

The 3rd level py-g 

Memory banks 

The Lth level (J-Jjffy-iJY-, 

0 : Logic circuit 

Fig. 2.2. The herdwe~ configuration of an ISEE. 

for a search key k starts from the ro t o 
tree, procedes downward. and outputs e Fhe (A , A ) of 
k from the bottom level. The logic circuits at 

assumed to be always zero. Let Tj(i) denote the 
keyword stored in the node at the intra-level 
address i in the level j. The addresses wL(j+l) 
and wR(j+l) are calculated as follows: 

wL( j+l) 

= if k < Tj(wL(j)) or wL(j) > LOAD(j)-1 

then 2*wL( j) 

else 2*wL( j)+l, 

wR( j+l) 

= if k < Tj(wR(j)) or wR(j) > LOAD(j)-1 

then 2*wR(j) 

else 2*wR( j )+l . 

The search result (AL, AR) for a search key k is 
obtained as the output addresses from the bottom 
level, i.e., the following properties always 
hold. 

Property 2.1. 
Suppose that an ISEE has L levels. The addresses 
wL(L) and wR(L) that are output from the bottom 
level as the search result for a key k are 
respectively equal to the left address and the 
right address of k in this search table. i.e., 
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AL = wL(L) and AR = w’(L). 

The intra-level addresses wL(j) and w’(j) in each 
level j are called respectively the left boundary 
and the right boundary of the search for k at 
level j. Figure 2.3 shows an example interval- 
search process. 

keywcrd/address 

Search key - 7 

. 

left . . . . . . ...* ;” . . . . . . . 8 . . . . Jlo 

P 
0 1 

P? . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 4 k1 

. . . . . . Y&&z . 

’ /\ 
010 101 

c ;7:~osl* 9114 +----+-* p3 

; t \ 
0100 1011 

. II II 
.: . . . ...” . . . . . . . . . . . . . . . . . . . . . . . .&” . . . . . . . . . . . . . . . . . . . . ..*.......................e.. 

; 
4 11 

Z.,......” .-.. “” .*................................... - . . . . . . . . . ..I . . . . 

Fig. 23. Pn exBnple of an interval search 

Although the above description of operations has 
concerned a single key search. an ISEE actually 
searches a stream of keywords in a pipeline 
f afhion. 
(w (j+l). 

Evgry time after having output a pair 
w (j+l)) for a search key 

level j gets a nelt search key ki+ 
boundaries <WI’(j). w (j)) from the leve 
bggins the comparison to output 
w (j+l)) for k. 

an I&% 
to the level j+l. At every 

instance, treats as many keys as its 
levels. The flow of keys forms a stream and it 
flows downward through all the levels of the 
ISEE. 

2.2. Bit-sliced interval search engine 

= if k < Tj(wR(j)) or wR< j) > LOAM j)-1 

then 0 

else 1. 

Such a modified ISEE is referred to by an MISEE. 

A bit-sliced ISEE with n-bit wordlength is 
defined as a module that is connected to an MISEE 
with m-bit wordlength in a way as shown in.Fig. 
2.4 to form a new MISEE with (n+m)-bit 
wordlen th. 
lips e CO (j), 

Eaih of its levels has two ou 

CI (j). 
CO (j). and two inpv lines CI 

These two input lines CI (j) and 
are respectively connected to COL(j) and COR(j) 
of the corresponding level of the preceding m-bit 
HISEE. 

seam keys : a 0, c, l . . 
a - %a, t> - bobI, c - cgl, - 

. 
. . 
. . 
. Cl 

‘0 m-bit 
b0 

80 

I . . 
n-bit 

bit-sliced ISEE 

Now, let us consider how to realize a bit-sliced 
architecture of an ISEE. First we shall modify 
an ISEE to have two bits of output signals at 
each level. The values of these signals are 
defined as follows: 

COL( j) 

= if k s Tj(wL( j)) or wL( j) > LOAD(j)-1 

then 0 

else 1. 

COR( j) 
Proceedings ot the Tenth International 
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(m+n)-bit MISEE 

Fig. 2.4. comections Of an m-bit MISEE and an 

n-Ott bit-sllcecl ISEE. 

Suppose that all keywords and all search keys 
have a common leftmost m bits. Then the (m+at>- 
bit MISEE in Fig. 2.4 may be considered same as 
an n-bit MISEE since the leftmost m bits of each 
value are insignificant. This n-bit part is 
actually treated by the n-bit bit-sliced ISEE. 
which, in this case, works as al n-bit MISEE. In 
this case. the input signals CI (j) and CI (j) at 
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each level are always set equal to zero and one 
respectively by the preceding m-bit MISEE. 
Therefore, an n-bit bit-sliced ISEE with each 
GIL(j) and CIR(j) respectively set to zero and 
one should work in a same way as an n-bit MISEE. 

A bit-sliced ISEE is designed to have a similar 
hardware configuration as an ISEE. The node 
where T(i) is stored in an ISEE stores the 
rightmost n bits of T(i), which is denoted by 
TR(i). The bit-slit d 
see the boundaries w 4 

ISEE in Fig. 2.4 can not 
j) and wR(j) calculated at 

each level of its lefthand MISEE. However, we 
firs 
by W 4 

assume ihey are visible. They are denoted 
j) and W (j) for the distinction from those 

of the bit-sliced ISEE. Since the rightmost n 
bits of keywords and search keys are used to 
refine the search result obtained by the leftmost 
m-bit processing, the following relations must 
hold at each level j: 

WL(j) s wL(j) 5 wR(j) < wR(j). 

These relations also hold at the next level. 
However, the addresses at the level j+l is 
related to those at the upper level j as follows: 

WL( j+l) = 2*WL( j)+CIL( j), 

wR( j+l) = 2*WR( j)+CIR( j), 

wL( j+l) = 2+wL( j)+COL( j), 

wR( j+l) = 2*wR(j)+COR(j), 

where CI and CO signals of the bit-sliced ISEE 
are used. Therefore. the following relations must 
hold: 

2*WL( j)+CIL( j) 5 2*wL( j)+COL( j) 

5 2-lwR( j)+COR( j) S 2*wR< j)+CIL( j) . 

Considerations on these relations gives the logic 
to determine CO’(j) and CORki). For simplicity, 
two signals COL( j) and CO (j) are considered 
separately. 

As to the calculation of COL(j), four possible 
cases should be donsidered: 

L (1)CaseX : WL( j) = wL(j) = #<j), 

(2) Case LL : WL( j) = wL(j) < WR(j), 

(3) Case NL : WL(j) < wL(j) < WR(j)* 

(4) Case R L : WL(j) < wL(j) = WR(j). 

The signal CO’(j) is determined as shown in Table 
2.1 (a). This table can be made based on the 
following analyses. 

Case XL 
In this case, WL( j), wL( jl, and WR( j) coincide. 
OIf CIL(j)=CIR( j) then W (j+l) and WR( j+l) will 
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Table 2.1. Calculattons of CO’@ anb CORO. 

(a) CalcuIaUons of colll). 
corKilum CONCJ‘: 

k,pi(wLo) or wL(j)XOAD(j)-l 

et(j) CIR@ caNoL cd(j) 

XL 0 0 - 0 
0 1 F 1 
0 1 T 0 
10 - - 
11 - 1 

t-L 0 - F 1 
0 - T 0 
1 - - 1 

RL - cl - 0 
1 F 1 
1 T 0 

(b) Caltiaths of COR(j) 
condluon pomR: 

k<TRJ(wRO)) or w~~LCIAD(,j)-1 
, 

CaSe cr’u, CIR(j) cmoR coR(j) 
t 

XR 0 0 - 0 
0 1 F 1 
0 1 T 0 
1 0 - - 
1 1 - 1 

LR 0 - F 1 
0 - T 0 
l- - 1 

INRII: ‘T ; 
RR - 0 - 0 

1 F 1 
1 T 0 

also coincide, and hence wL(j+l) must be equal to 
them. 
OIf CIL(j)=O and CIR(j)=l, then the search 

OSince WL(j+l)sWR(j+l), (CI (j). CI (j)) can not 
direction is determined by tv compatison result. 
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be (1, 0). 

Care LL 
In this case, WL( j)Land wL( j) coincide and W”(j) 
is different from w (j). 
OIf CIL( j)=l, then the search can not proceed to 
t e left son, i.e., 

e 
w’(j+l) must be equal to 

W (j+l)t 
OIf CI (j)=O. then the search direction is 
determined by the comparison result. 

Cue NL 
In this case. the search process will never 
encounter the interval boundaries determined by 
the NISEE. The search direction is determined by 
the comparison result. 

Cue ILL 
Similar to LL. 

As to CO”(j), the possible cases are 

(1) Case XR : WL( j) = wR<j) = Wa<j). 

(2) Case LR : W4j) = P(j) < W%j), 

(3) Case NR : W’(j) < wR(j) < WR<j), 

(4) Case RR : WL(j) < wR<j) = WaCj), 

and the calculation is as shown in Table 2.1 (b), 
which can be obtained based on similar analyses 
as before. 

Although we have assumed that WL( j) and WR(j) are 
visible. actually they are not. This problem is 
solved by introducing states of a search process. 
For each search key, its search process changes 
its state as it moves from the top level to the 
bottom level. The following combinations of the 
cases that are respectively chosen from Table 2.1 
(a) and (b) can be considered as all the possible 
states of search processes, i.e., 

(XL, XR) : WL( j) = wL(j) = wR(j) = WR<j)r 

(LL, LR) : WL( j) = wL(j) = WRCj) < wR(j>, 

(LL, NR) : WL( j) = wL(j) < w”(j) < W’(j), 

(LL, RR) : WL( j) = wL(j) < wR(j) = wR<j). 

(NL, NR) : WL(j) < wL(j) 5 wR<j) < wR(j>, 

(NL, RR) : WL(j) < wL(j) < wR<j) = wR<j). 

(RL, RR) : W4j) < wL(j) = wR(j) = wR<j). 

each search process initializes 
:‘L 8% atto! tlo”c’:t , XR) . The state transition is 
specified by two automata, each of whicLh 
;l;c;f ieR3L;roarn;ki;I: ;FngLf:t#r ;F se;izs; 

automa’ta are described in’Table 2.; (a)‘and (b). 
These tables can be obtained by similar analyses 
made for COL(j) before. A part of ‘PRble (a) can 
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Table2.2 Thestatetrwithofsearchprocesm 

(a) the State translU#r among X‘, L‘, NC. and R‘. 

ccNldluon qobd: 

GIL@ CID ad Next state 
XL 0 0 - 0 1 F R”: 

0 1 T LL 
10 - 
1 1 - ii1 

L1 O - F ‘;“:. 0 - T 
1 - - LL 

I NL - _ I N‘ I 

RL - 0 - RL 
1 F RL 
1 T NL 

ttJ) v# State UanslUDn am#19 X”, LR, N’, Bnd RR. 

CondiuDtl coNDR: 

k<Tsl(“Ro) or wtJ)>LOtW@l 

crl(D Cl”u, cmDR Mxt state 
XR 0 0 - 

0 1 F 
$ 

0 1 T LR 
10 - 
1 1 - iR 

LR 0 - F $ 
0 - T 
1 - - LR 

RR - 0 - 
1 F 
1 T NR 

be obtaiued as follows. 

Case XL 
OIf CIL( j)=CIR( j), then WL( j+l) and W’(j+l) Ii11 
also coincide. i.e., the state will stay at X . 
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OIf CIL( j)=O and CIR( j)=l, WL( j+l) and WR( j+l) 
will sepa ate, and wL(‘+l) will become equal to 
either W E (j+l) or Ii W (j+l) depending on the 
compaison result. Hence, the next state will be 
either LL or RL. 

Other transitions in the table can be similarly 
understood. 

An example search process with a l-digit MISEE 
and a l-digit bit-sliced ISEE is shown in Fig. 
2.5. 

Search key = 31 

Fig. 25. An example search process with two 
bit-sliced ISEE. 

A set of bit sliced ISEE with a same width. when 
concatenated. forms a wider ISEE with arbitrary 
wordlength. The i-th slice of a search key must 
be input to the i-th module at the time (i-l) 
steps after the input of the first slice. The 
result of each serach process is out ut Rp 

from the 
rightmost module as its wL(L) and w (L). 

A bit-sliced ISEE with L levels and 1 bit width 
requires 6L+l pins; 1 pin for data input both in 
table loading and in batch searchessing, 4L pins 
for the connections between conycutive slpes, 
and 2L pins for the output of w (L) andL w (L). 
Fv L=12, It becomes 73 pins. However, w (L) and 
w (L) need not be output by each slice. 
Actually, they can be constructed by a simpLe 
circuit from COLs and CORs output from the least 
signif icant slice. Therefore. the pin complexity 
can be decreased to 4L+l. For L=12. this is 49 
pins, which seems to be acceptable. 

The slicing method proposed above causes no 
serious overheads, nor it excessively increases 
the pin complexity. Therefore, the width of each 
slice can be decreased to a single bit without 
causing any problems, which decreases the 
hardware complexity and increases both the 
flexibility of the module and the feasibility of 
its VLSI implementation. 

3. Bit-Sliced Sort Bardvare 
Proceedings of the Tenth International 

Conference on Very Large Data Bases. 

3.1. Tvo-way-merge sorter 

This section describes briefly the operations 
performed by the two-way-merge sorter proposed by 
S. Todd [TODD7 81. He proposed a sorting 
algorithm that repetitively applies merge 
operations to every two sorted runs in an input 
stream to increase the length of sorted runs. 
The initial input stream is considered as a 
sequence of sorted runs of length one. Each 
stage merges every two runs from the head of the 
input stream to output a sorted run of double 
length. The sequence of these output runs 
becomes an input stream of the next stage. In 
order to perform these repetitive merge operaions 
in a pipeline fashion. a two-way-merge sorter has 
a hardware configuration similar to that of an 
ISEE in Fig. 2.2, however their logic circuits at 
each level are different. An input stream flows 
into this module at the top level, and flows out 
from the bottom level. The Logic circuits at 
each level performs the following operations. At 
every time when the next two input runs arrives 
at a stage, it begins to merge these two runs to 
output a merged run to the next level. Each 
input element is first stored in the memory bank 
at this stage before it is manipulated. A 
hardware module with L levels outputs from the 
bottom level a sorted run of length 2L. and hence 
it can sort a set of no more than 2L elemens. 

A bit-sliced architecture of this module can be 
easily designed if we can find out how to slice a 
merger used at each level of this module. Let L 
and R denote two sorted streams of same length, 
and L(i), R(i) their i+lst elements. The stream 
L is referred to by the left stream, while R the 
right stream. The logic circuits at each level 
of a two-way-merge sorter receive two streams L 
and R one after another and merge them. The 
circuits can be decomposed into two parts. The 
first part receives an input element at every 
step and stores it at a proper address of the 
memory bank at this level. while the second part 
merges two streams, whose next elements are 
always guranteed to have been already stored in 
the memory bank by the first part of the 
circuits. As to the merge operation, the 
following property holds. 

Property 3.1 
At every time, say, j steps after the arrival of 
the head of the second stream RI the merger can 
see L(i) and R(i) if the index i is less than or 
equal to j and if they have not been output yet. 

The design of a bit-sliced merger applicable to a 
two-way-merge sorter should take this property 
into consideration. 

3.2. Bit-sliced merger applicable to a 
tvo-way-merge sorter 
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A bit-sliced merger has two l-bit input lines LI 
and RI, and two l-bit output lines LO and BO. 
These lines are used to connect multiple bit- 
sliced mergers to form a single merger with an 
arbitrary wordlength as shown in Fig. 3.1. The 
operation of the i-th slice module is delayed (i- 
1) steps from that of the leftmost module. 

4 4 44 44 44 
a e atI etl 4 4 4 4 
b f 0, f, a1 Sl 

c g co 90 bl fl 
d II do “0 Cl Ql 4 4 

d, nl a” e” 

Flgn 3.1. comeCtim Of bit-Sliced IVErgers. 

The slicing of a merger can not be achieved in a 
straight forward way because of the following 
reason. Suppose that the next elements of the 
two input streams have a common value at the 
leftmost slice. Then we can not decide which one 
to take out. Suppose that we have chosen the 
left one. Suppose also that. in this case, the 
next element of the right stream is less than 
that of the left stream at the second slice. 
Then the second slice should choose the right 
head to output. However, this .malces it 
insignificant to continue further comparison 
operations at these two slices because the pairs 
of the elements compared next at these two slices 
do not correspond with each other. 

This problem can be solved as follows. Let US 

introduce two pointers pointing to the next 
elements of the input streams. The left pointer 
lp points to the next element of the left stream, 
while rp points to that of the right stream. If 
L(lp) and R(rp) are equal at the leftmost slice, 
we will advance both of the two pointers, and 
make the module at this slice to output one value 
that is equal to both L(lp) and R(rp). The 
output signals LO and RO are both set to one. 
The signal LO denotes the advance of the left 
pointer, while RO the advance of the right 
pointer. They are set to one if their 
corresponding pointers are advanced. Otherwise, 
they are set to zero. 

Suppose that-the next i elements of L and the 
next j elements of R have a same value v at the 
leftmost slice. Assume that i is less than or 
equal to j. Then the first (i+j) output values 
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from this module should be equal to v. During 
the first i steps, both pointers will be 
simultaneously advanced, and the value v will be 
output i times. After these operationsr the 
module is said to have reached the left boundary. 
During the following (j-i) steps, only the 
pointer rp will be advanced.’ Finally, both L(lp) 
and R(rp) will become greater than V. At this 
time, the module is said to have reached both the 
left boundary and the right boundary. The module 
has already output v j times. however there still 
remain i elements to output the value v. 
Therefore, the module must output v during the 
following i steps. During this period. the 
comparison of the next elements is suspended, and 
hence neither of the pointers is advanced. 

Now let us consider the second slice of a merger. 
Suppose that, in the leftmost slice, the left 
boundary and the right boundary are respectively 
located at the i-th next element and at the j-th 
next element as before. The second slice of a 
merger operates in a similar way as the leftmost 
one does unless it reaches either the left 
boundary or the right boundary of the leftmost 
slice. If it reaches, say, the left boundary, it 
must stop the advance of the left pointer. The 
following output must be selected from the right 
stream until1 the right pointer also reaches the 
right boundary of the leftmost slice. 

From these considerations, a bit-sliced merger 
works as the leftmost slice of a merger if both 
of its connection input LI and IA are set to one. 
The following classification of the processing 
status will make it easier to describe the 
operations of a bit-sliced merger. Let us first 
introduce several notations: 

c : 

vo : 

DL : 

DR : 

A counter that counts how many times the 
two pointers are simultaneously advanced. 
Init ially zero. 

The previous output; initially zero. 

The difference of lp between the current 
slice and the preceding slice. It becomes 
zero when the module reaches the left 
boundary of the preceding slice. Otherwise, 
it is kept positive. Initially zero. 

The difference of rp between the current 
slice and the preceding slice. It becomes 
zero when the module reaches the right 
boundary of the preceding slice. Otherwise. 
it is kept positive. Initially zero. 

DL, = DL+LI. 

DR, = DR+RI. 

The classification and the operations in each 
case are described below: 

Case 1. DLf = DR* =c =o : nonexistent. 
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Case 2. DLc = DRV = 0, C (= n> > 0 

The two pointers lp and rp have reached the 
boudaries specified by the lefthand slices, 
however, there are still n elements with a value 
v. that remains to be output during the following 
n steps. In this case, neither of the pointers 
should be advanced. 
is decreased by one. 

The value v. is output and C 

(LO, RO) f (0. 0); output vo; C + C-l; 

DL + DLl; DR f DRl. 

Case 3. DLt = 0, DR1 > 0 

The pointer lp has reached the left boundary 
specified by the lefthand slices. 

Case 3.1. C = 0 or R(rp) = v. 

There remains no elements equal to v. that 
are to be output before the next comparison. 
Or R(rp) is equal to vo. In this case, R(rp) 
is output, and rp is advanced. 

(LO, RO) + (0, 1); output R(rp); 

v. + R(rp); rp c rp+l; DL + DL*; 

DR 4 DR+-1. 

Case 3.2. C # 0 and R(rp) f v. 

The pointer rp has reached the right 
boundary of this slice. In this case, the 
advance of rp and lp should be suspended. 
The remaining v. is output, and hence C is 
decreased by one. 

(LO, RO) 4 (0. 0); output vo; C 4 C-l; 

DL4 DLt; DR 4 DRt. 

Case 4. DLc > 0, DRc = 0 

Similar to Case 3. The roles of left and right 
are interchanged. 

Case 4.1. C = 0 or L(lp) = v. 

L(lp) is output, and lp is advanced. 

(LO,RO) 4 (1. 0); output L(lp); 

v. f L(lp); lp f lp+l; DL 4 DL+-1; 

DR 4 DR* . 

Case 4.2. C f 0 and L(lp) f v0 

The advance of the pointers should be 
suspended. The remaining v. is output, and 
hence C is decreased by one. 

(LO, RO) + (0, 0); output vo; C 4 C-l; 
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DL 4 DL1; DR 4 DR,, 

Case 5. DLc > 0. DRV > 0 

Neither of the pointers has reached the boundary 
specified by the lefthand slices. 

Case 5.1. min(L(lp), R(rp)) f v. and C f 0 

Both of the pointers have reached the 
boundaries specified by this slice. In this 
case, the advance of rp and lp should be 
suspended. The remaining v. is output, and 
hence C is decreased by one. 

(LO, RO) 4 (0, 0); output vo; C f C-l; 

DL+DL,; DR+DRt . 

Case 5.2. C = 0 or min(L(lp), R(rp)) = v. 

There remains no element equal to v. that 
are to be output before the next comparison. 
Or the smaller of L(lp) and R(rp) is equal 
to vo. 

Case 5.2.1. L(lp) < R(rp) 

The next element of the left stream is 
less than that of the right one. L(lp) 
is chosen to output, and lp is 
advanced. 

(LO, RO) 4 (1. 0); output L(lp); 

v. 4 L(lp); lp f lp+l; DL 4 DLV-1; 

DR 4 DR1 . 

Case 5.2.2. L(lp) > R(rp) 

The next element of the right stream is 
less than that of the left one. R(rp) 
is chosen to output, and rp is 
advanced. 

(LO, RO) 4 (0. 1); output R(rp); 

v. 4 R(rp); rp f rp+l; DL f DL+; 

DR 4 DR1-1, 

Case 5.2.3. L(lp) = R(rp) 

The two next elements are same. Their 
common value is output. Both of the 
pointers are simultaneously advanced, 
and C is increased by one. 

(LO,RO) f (1,l); output L(lp); 

VO f L(lp); c f c+1; lp 4 lp+l; 

rp f rp+l; D f DI’-1; DR 4 DR1-1. L 

An example merge process with two bit-. riced 
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mergers is shown in Appendix. 

The slicing method described above is applicable 
to a two-way-merge sorter. The operation of this 
bit-sliced merger is consistent with Property 3.1 
of the mergers that are used in a two-way-merge 
sorter. The bit-sliced two-way-merger thus 
obtained does not suffer from the serious 
increase of the pin complexity. A module with L 
levels and 1 bit width requires (4L+l) pins, 1 
pin for data input and data output, and 4L pins 
for connections between consecutive slices. For 
L=lZ, this is 49 pins, which seems to be 
acceptable. The hardware complexity is much 
decreased by the bit-slicing, while its 
flexibility is increased. Its VLSI 
implementation becomes far more feasible than a 
nonsliced two-way-merge sorter. 

4. Conclusion 

For the high speed processing of databases, it is 
fundamental to introduce various VLSI 
architectures to the processing of basic 
functions. Especially, sort and batch search 
that are fundamental in database processing 
require high speed modules. The VLSI algorithms 
of them should make much use of the time 
necessary for the transfer of a large amount of 
data to and from the modules. Besides, these 
modules should be nonprogrammable in order to 
avoid serious overheads that are likely to be 
caused by the introduction of the 
programmability. However, they should be able to 
extend their capacity and wordlength by the 
connection of them. 

This paper has solved the problem of how to 
extend the wordlength of search and sort hardware 
modules. It has proposed the bit-sliced 
architectures of an interval search engine and a 
two-way-merge sorter. The slice of these engines 
does not cause excessive overheads. The decrease 
of the slice length decreases the hardware 
complexity, and increases the flexibility of the 
modules. Therefore, it increases the feasibility 
of the VLSI implementation of these hardware 
modules. 

The two different bit-sliced VLSI architectures 
respectively for search and sort both require 
(4L+l) pins per each chip. For L=12, i.e., if 
the capacity of each module is restricted to 
4095 words, their pin complexity becomes 49+a, 
where a pins are necessary for power supply. 
clock supply, and mode control. This number 
seems to be acceptable. The bit-sliced ISEE with 
L levels and 1 bit width consists of 2L-l memory 
cells (, for L=12, 4095 cells) as a whole. and 
two 4 state automata at each level, while the 
bit-sliced sorter with L levels and 1 bit width 
consists of 2(2L-l) memory cells as a whole, and 
a simple logic circuit with several registers at 
each level. Therefore, even if we use static RAM 
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technology. each module wi h L levels and 1 bit 
5 width requires less than 10 transistors. This 

number ensures their feasibility. 

Bit-slicing is fundamental for the flexibility 
increase. The arrangement shown in Fig. 4.1, for 
example, can reconfigure itself to cope with 
various wordlength. Consecutive modules in the 
array of bit-sliced ISEEs are separated by a 
control signal line controli. When control. is 
set to one, the subarray of modules to the f eft 
of this control signal line and the remaining 
right subarray can work independently. If all 
control signals are set to eero* the whole array 
of modules can work as a single ISEE. The same 
kind of reconfigurable arrangement is also 
possible for bit-sliced two-way-merge sorters. 

1c 

bit-sliced 
ISEE 

1 4 cf w 

control 1 

bit-sliced 
ISEE 

Fig 4.1. Wordlength-controllable connections of 
bit-sliced ISEEs. 
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APPENDIX An example merge process with two M&Wed merger. 

input stream : L - (00, 00, 01, 11, **) ( y : delimiter ) 
R - (00, 01, 10, 11, **) 

1st slice : L = (0, 0, 0, 1, *) 2nd slice : L = (0, 0, 1, 1, “) 
R = (0, 0, 1, 1, “1 R = (0, 1, 0, 1, *) 

operations 

tlwe 0 i 1 i 2 i 3 . iQf51b. ; 7 ; 8 

1st slice 
1P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..." . . . . . . . ̂ . . . . . . . . . . . . . . . . . I . . . . . 
v . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-................-.I . . . . 
Wp)=Wrp) . ..” . . . . . . . . I...” . . . . . . . . . . . . . ...” . . . . . . . . I... . . . . . . . . . . . . . . . . . . . . . . . . . 
min(L(lpLR(rp))=vg ..“.“I” . . . . . . . -...“-“.““-” . . . . ..-Y.. “..I . . . . . - 
C . . . . . . . . . . . . . . . . . . . . . I . . . . . . ..."..." . . . . . . . . . . . . . . . . . . . . . . . ..." . . . . . . . . . 

- output . . . . . “.....” . . . . . . . . . . . . . . . . . . . . . . . . . “..” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
LO . . . . . . . . .._..........” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...” . . . . . . . . . . . . . . . 
RO 

t i 
2nd slice i ! I I 8 I ! i 

LX :il fl 11 i0 i-j \I to i0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

RI 
. . . . . . . . . . . . . . . . ...! . . . . . . . . . . . . . . . . . . .& . . . . . . . . . . . ““.A.” . . ....” ...... i ..................: ............... “.i ......*........... i .................. i .................... 

11 il 10 i0 i0 v . . . . . . . . . . ..-.......... “F..-““....“........, . . . . . . T . . . . . . . . . +“..“.“...“+” . ...” . . . . “.+.“-y”--. 2.....2~““““.., . 
il io 

. . . . 
1P ro ii1 2r2 2i2 3i3 313 3i3 414 4 . . . . .-................................-.................” . . . . . . . . ““.” ..“- . . . . . . . . . . L . . . . . . . . . . . . . . . . L.-” ‘...... t . . . . . “....” . . . . .&. 

i-J lil lil 
.I . . ..-.. i . . . . . . . . . . . ..L . . . . . . . . . . “..&“..” ..-.. “..i . . . . . . . . . . . . . . . . . . . . 

rp _....^..............” -........................-........................... . . . . . . . . . . . . . . . . . . . k . . . . . . . . . . . . . . . . . . 4 . . . . 
l!l 2j2 2f2 3j3 414 4 

. . . 
L(~P)=R(~P) !T jF 

..._.” . . . . . ‘” _............... f..W..w . . . . . p...ww.’ . . . . ..*............ . . . . . . . . . . . . . . . . . . +..... . . . . . . . . . 
iT ;T jF jF jT ;T 

. . . . . . . . . . . . . “.... . . . . . . “.....” . . . . . . . . . . - . . . . . . . ...” . . . . . . . . -... .*....-............ j . 
sln(L( lp), R(rp))= V. 

. . . . . . . . . . . . . . . j.“..““” . . . . . . p” . . . . . . . . . . . . t”“““““““‘” . . . . . . . . . . ...“..... y.“” . . ...*..... p...... . . . . ..“..Y....“” . . . . . . . . . . . 
i - ;T iF jT iF 1 ._........_” . . . . . ..._..” . . . ..-.--.-..-...........-- 

C 
” -......... . ..j” . . . . . . . . . . I . . ...” . ;F . . . “.......+ . ...” . ;T 
0 

. . . . . . . . . . . . y.. . . . . . . . +..” . . . . . . . . i...- -......... +“” . fF . . . . . . . . . . t’“” . . . . . . . . . I... 
;O 1:l I!1 010 lil OjO OiO lil 0 ” _..........-......._......-......-.........” . . . . . . ..--............. 

DL ’ 
..“.-” . . . ..-. “W..,-- . . . . . . . . . . . . . . i . . . . . . . . . . . . . + . ...” . . . . “..“.~ . . . . . . . . . . . . . . t”“‘............. j . . . . . . . . . . . . ..I.. i . . . . . . . . . . . . . . . . . . . . 
0 ‘1 Oil 0’1 lr1 oio 011 1’1 ($0 0 . ..-................-........... I . . . . . . . . ..-.....-..........--.... . . . . . . . . . . . . . ..-. i . . . . . . . . . . . . . . . . . . . i ..^..” . . . . . . . . ..i . . . . . . . . . . . . . “..+ . . . . . . . . . . . . . . . . . . . . . . . 

OR ’ ;I ();1 lil 
. . . . ...” . . . . . +. . . . . . . . “..f . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . ..( 

0 lil oio Oil Oil $0 0 . . . . . -..- . . . . . . . . . . . . ...” . . . . . . . ...” . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . - . . . . +.. . . . . . . “....p...... . . . . +. 
- output 

i 
..““.“...“..j.....“.” . . . . . . . . +.. . . . . . ..-...... 5 . . . . . . . ...” . . . . . . . . . . I . . . . . . . . . . . i” . . . . . . . . ..^.. . . 

0: 0; o!-~-._lr 0: 1: 1 ~~.p.“.-““...~~~~~” 
case t 152.3 $2.1 i 5.1 ; 5.2.3 1 2 f5.2.2 f 5.2.3 1 2 

, 
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