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Abstract

For the high speed processing of databases, it is
fundamental to introduce various VLSI
architectures to the processing of basic
functions. Especially, sort and batch search
requires high speed modules. The VLSI algorithms
of them must make use of the time necessary for
the transfer of a large amount of data to and
from the modules. These modules should be
nonprogrammable in order to avoid serious
overheads. However, they should be able to
extend their capacity and wordlength by the
connection of them,

This paper solves the problem of how to extend
the wordlength of search and sort hardware
modules. It proposes bit-sliced architectures of
an interval search engine and a two-way-merge
sorter. The slicing of these engines does not
cause excessive overheads. The decrease of the
slice length decreases the hardware complexity,
and increases the flexibility of the modules,
Therefore, it increases the feasibility of the
VLSI implementation of these hardware modules.

1. Introduction

The arrival of high speed relational database
machines with large capacity is prompted by the
users application requirements for very large
databases and a wide range of datsbase
activities. The use of moving head disk units if
innevitable to provide a sufficiently large
storage space, While the provision of an
associative search mechnism to disk units might
enable some database processing to be directly
performed on disk tracks, data transfer to and
from the storage modules is inr :vitable to cope
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with more sophisticated database processing.
Besides, the parallel processing of database
operations requires the separation of storage
modules and processing modules. The arrival of
high performance database machines requires
innovations in the follwing technologies:

l. VLSI architectures for high-speed processing
of basic functioms.

2. Hierarchical memory organization for database
processing.

3. Control mechanism for cooperative coordination
of massively parallel processes.

This paper concerns the first item. Since the
transfer of a large amount of data is innevitable
in database processing, VLSI architectures for
basic functions must be able to make much use of
the transfer time for their processing.

The relational model of databases provides a set
of database operations as listed below:

union, intersection,
set difference.

set operations :

relational operations : projection, selection,
restriction, join,
division,

aggregate operations : count, sum, average,
maximum, minimum.
others : sort.

Suppose that no relations is sorted apriori with
respect to some attribute, nor provided with an
auxiliary files such as inverted files or link
files, Suppose also that the size of each
relation is proportional to a single parameter n.
Then the time complexity of each operation above
is either O(n) or O(n*logn)., They are classified
as follows:

selection, restriction, count, sum,

average, maximum, minimum.

o(n) :

union, intersection, set difference,
projection, join, division, sort.

O(n*logn) :

Operations in the first class can be executed by
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The table is stored in an engine preceding to the
batch search processing, in which m search keys
are sent to the engine one after another as a
stream (kps kys «ees k ;). For each input key k,
the ISEE outputs an interval (AY, A") of table
addresses. A Search Engine (SEE) that was
previously froposed can output only A™, The
addresses A™ and A™ are the minimum addresses
that satisfy respectively the following two
conditions:
T(AY) 2 k and T(AR®) > k.

These two table addresses are respectively called
the left address and the right address of the
search key k in the table T, Obviously, their
difference AR-aAl is equal to the number of
keywords in T that are equal to k.

In an ISEE, a search table is represented by a
binary tree called a left-sided binary tree. This
is similar to an SEE. The height of trees is
determined by the capacity of the hardware
implementation. The i+lst keyword T(i) is stored
in the node labelled i in Fig. 2.1. An ISEE with
L levels can store a table with no more than 2L-]
keywords. The number of nodes at each level of a
tree that are loaded with keywords is referred to
by the load factor of this level. This is
denoted by LOAD(j), where j denotes the level
number.,

load factor
1

VANAN
D/ \2 lt/ \6 8/ \10 °/ \°

The loading starts from here.

Fig. 2.1. A half-loaded left-sided binary tree.

An ISEE has a hardware configuration as shown in
Fig 2.2, It has multiple levels. Each level has
dedicated logic circuits and a dedicated memorY
bank., The memory bank at the i-th level has 2%~
words. The nodes at the i-th level of the left-
sided binary tree are stored from left to right
in the memory bank at the i-th level. The i-th
node from the leftmost one at each level is
stored in the address i-1l, which is referred to
by the intra-level address of this node.

The interval search of a left-sided binary tree
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1 word
The 1st level
2 words
The 2nd level
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Memory banks
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The Lth level fﬂ—]

O : Logic circuit

Fig. 2.2. The hardware configuration of an ISEE.

for a search key k starts from the ro t o%
tree, procedes downward, and outputs (A ,
k from the bottom level.

the
) of
The logic circuits at

each level j get 1lsearch key k and a pair of
addresses (w(j), %‘(J)) fro the upper level and
outputs k and (w™(j+l), w (j+1)) to the next

level j+l. The values of w&KO) .and w (0) are
assumed to be always zero. Let TJ(i) denote the
keyword stored in the node at the intra-level
addregs i in the level j. The addresses w (j+1)
and w (j+l) are calculated as follows:

wl(j+1)

if k < TI(w™(§)) or w™(j) > LoAD(j)-1

then 2%wl(j)
else 2%wl(j)+1,

wR(j+1)

if k < TIGR(3)) or wR(j) > LOAD(})-1
then Z*WR(j)
else 2xwR(j)+1.

The search result (AL, AR) for a search key k is
obtained as the output addresses from the bottom

level, i.e., the following properties always
hold.

Property 2.1.

Suppose that an ISEE has L levels. The addresses
w(L) and wR(L) that are output from the bottom
level as the search result for a key k are
respectively equal to the left address and the
right address of k in this search table, i.e.,
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AL = wI(1) and AR = «R(1).

The intra-level addresses vl(j) and wR(j) in each
level j are called respectively the left boundary
and the right boundary of the search for k at

level j. Figure 2.3 shows an example interval-
search process.
Keyworu/aidress L R
- v W
Search key = 7
0 0
bu“kny.wmgfmmmirwl_o
0 1

/<:; 01 10
2/1 5 1877 & 9713 —dormd i fu2
/\ /X /\4% /)\ gm gmj-
AW FL. YA VA
210 arf7ia 106 1/8 110912918 413
4./ / ¥ 0100 1011
: i [
' 4 4 11

/

s

Fig. 2.3. An example of an interval search.

Although the above description of operations has
concerned a single key search, an ISEE actually
searches a stream of keywords in a pipeline
faihion. Eﬁfry time after having output a pair
(w™(j+1)s w (j+1)) for a search key k;, each
level j gets a next search key kj;,; and its
boundaries (wl(j). w(j)) from the levei j-1, and
bﬁgins the comparison to output (w (j+l),
w (j+1)) for k., ., to the level j+l. At every
instance, an I%E% treats as many keys as its
levels. The flow of keys forms a stream and it
flows downward through all the levels of the
ISEE.

2.2. Bit-sliced interval search engine

Now, let us consider how to realize a bit-sliced
architecture of an ISEE. First we shall modify
an ISEE to have two bits of output signals at
each level. The values of these signals are
defined as follows:

col( 3

if k € TI(WH(3)) or wE(j) > LoAD(j)-1

then 0
else 1,

co®(j)
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if k < TI(wR()) or vR(j) > LoAD(j)-1
then 0

else 1.

A ha -
defined as a module that
with m-bit wordlength in a way as shown in Fig.
2.4 to form a new MISEE with (n+m)-bit
wordlenq}h. Each of its levels has two output
liges CO™(j), COR(j). and two inpuyt lines CI®(j),
CI"(j). These two input lines CI‘*(j) and CIR(j)
are respectively connected to COL(3) and COR(j)
of the corresponding level of the preceding m-bit
MISEE.

-
2]
"
o]
it

o
™

n-bit

(S

<&

“-

col(o
co'®

co'@ | ci'@
! 1)

cd)
co')

o ci'(w)
—»| o1ty

n-bit
bit-sliced ISEE

m-bit MISEE

{m+n)-bit MISEE

Fig. 2.4. Connections of an m-bit MISEE and an
n-bit bit-sliced ISEE.

Suppose that all keywords and all search keys
have a common leftmost m bits. Then the (m+n)-
bit MISEE in Fig. 2.4 may be considered same as
an n-bit MISEE since the leftmost m bits of each
value are insignificant, This n-bit part is
actually treated by the n-bit bit-sliced ISEE,
which, in this case, works as ag n-bit MISEE. In
this case, the input signals CI™(j) and CI'(j) at
Singapore, August, 1984



each level are always set equal to zero and one
respectively by the preceding m-bit MISEE.
Therefore, an n-bit bit-sliced ISEE with each
cI (3) and CI (J) respectively set to zero and
one should work in a same way as an n-bit MISEE.

Abit-sliced ISEE is designed to have a similar
hardware configuration as an ISEE. The node
where T(i) is stored in an ISEE stores the
rxghtmost n bits of T(i), which is denoted by
TR(i). The bit-sliced ISEE 1n Fig. 2.4 can not
see the boundaries Wfkj) and w (J) calculated at
each level of its lefthand MISEE. However, we
first assume &Pey are visible, They are denoted
by W¥j) and W(j) for the distinction from those
of the bit-sliced ISEE, Since the rightmost n
bits of keywords and search keys are used to
refine the search result obtained by the leftmost
m-bit processing, the following relations must
hold at each level j:

wE() < wB(H) = WR’() s wR(p.

These relations also hold at the next level.
However, the addresses at the level j+1 is
related to those at the upper level j as follows:

wh(j+1) = 2awh(3)+cIb(3),
WR(j+1) = 2aR(3)+cIR(3),
wE(i+1) = 2xel(§)+col(5),
WR(3+1) = 2mR(§)+CcoR(3),

where CI and CO signals of the bit-sliced ISEE
are used. Therefore, the following relations must
hold:

2wl (§)+c1l(5) < 2x(3)+c00(3)

s 2aR(3)vcoR(3) < 2aR(3)ct().
Considerations on these relatlons gives the logic
to determine COL(]) and CO &] For simplicity,
two signals COY(3) and COX(j) are comsidered

separately.

As to the calculation of COL(j). four possible
cases should be considered:

(1) case xF : wh(3) = wl(3) = wR(i),
(2) case LY : Wi = w5 < W),
(3) case NV : wh(i) < w3 < wR(i),
(4) Case RL : wh(i) < w3 = wR(H).

The signal COL(j) is determined as shown in Table
2.1 (a). This table can be made based on the
following analyses.

Case XL
In this case, WY(j), w'(j), and WR(J)Rc01nc1de.
OLf CIX(3)=CI®(j) then WM(j+1) and WR(j+1) will
Proceedings of the Tenth International
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Table 2.1. Calculations of CO (J) ana CO ()

(a) Calcuiations of COL(j).
conattion cxﬁgal:
ksTaj(w M or wL(j))LOAD(j)—l

L R L
Case o' ') cond co(
xt 0 o - 0
D 1 F 1
0 1 T 0
1 0 - -
1 1 - 1
Lt 0 - F 1
0 - T 0
1 - - 1
Nt - - F 1
- - T g
Rt - 0 - 0
- 1 F 1
- 1 T 0

(o) Calculations of COR(j).
Conaition CXDhI)

kT W@ or wipLosog-1

L R R R
Case cl() o) cono co ()
xR 0 0 - 0
0 1 F 1
0 1 T 0
1 0 - -
11 - 1
LR o - F 1
0 - T 0
1 - - 1
YA - - F 1
- - T 0
rR* - 0 - 0
- 1 F 1
- 1 T 0

also coincide, and hence wL(j+1) must be equal to
them.

O1f cI1L(j)=0 and CIR(j)=1, then the search
d1rect1onL1s determlned by t%? compa ison result.
Osince Wi(j+1)swR(j+1), (c1X(3j), CI (j)) can not
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be (19 0).

Case LI‘

In this case, WL(j and wL(j) coincide and WR(j)
is difierent from w(j).

OIf CI™(j)=1, then the search can not proceed to
tte left son, i.e., w'(j+l) must be equal to
W (j+1).L

OIf CI™(j)=0, then the search direction is
determined by the comparison result.

Case Nl

In this case, the search process will never
encounter the interval boundaries determined by
the MISEE. The search direction is determined by
the comparison result,

Case RL
Similar to LL.

As to COR(j). the possible cases are

(1) Case xR ; wh(i) = WR(H) = wR(3),
(2) case IR : wh(i) = () < (i),
(3) Case NF ; wi(i) <R <Ry,
(4) Case R} ; w3 < WR(5) = W,

and the calculation is as shown in Table 2.1 (b),
which can be obtained based on similar analyses
as before.

Although we have assumed that WL(j) and WR(j) are
visible, actually they are not. This problem is
solved by introducing states of a search process.
For each search key, its search process changes
its state as it moves from the top level to the
bottom level. The following combinations of the
cases that are respectively chosen from Table 2.1
(a) and (b) can be considered as all the possible

states of search processes, i.e.,

xk, ®) Wk = W) = R = wR(i,
al, iy o+ wkp) = wBH) = R < WG,
(al, B o wl) = W) < WRG) < wRG),
al, BB ¢ Wl = W) < VR = Wi,
(oL, MRy Wk < wR(H) s WR(5) < W),
(NE, BB 1 wWE(H) < wB(3) < WR(5) = wRd),
®E, BB ¢ Wl < wB(§) = WR(H) = v,

At the top 1eve1£ each search process initializes
its state to (X*, X*)., The state transition is

specified by two automata, each of which
specifies transitions ampng either the set {X",
LY‘. Nf. RE} or the set {;‘f. Lf. t:lﬁ. Rn} These
asutomata are described in Table 2.2 (a) and (b).
These tables can be obtained by similar analyses
made for CO“(j) before. A part of Table (a) can
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Table 2.2 The state transition of search processes.

(a) the state transition among x‘, L", NL, and R%,
Condition UQO'CD L, .
KsT (w (@) or w()LOAD()-1

el () cf'() COND' Next State

- oo
L~ ]
It =M

[ = N —]
-

-

() the state transition among X L® N® ana R®
Condition COND"®:
Ry R
KT W (@) or wiDPLOAD(-1

L R R
CI() CI() COND Next State

- - 0a0
-~
t =M

-0
t
-4

-

be obtained as follows.

Case XI‘ R
o1£ c1l(j)=c1®(j), then wl(j+1) and wR(j+1) yill
also coincide, i.e., the state will stay at X".
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01f c1L(3)=0 and CIR(J) 1, WE(3+1) and wR(j+D)
will sepaya te, and w (ﬁ+1) will become equal to
either W"(j+1) or W"(j+1) depending on the
compaison result. Hence, the next state will be
either L® or R™.

Other transitions in the table can be similarly
understood.

An example search process with a 1- d1g1t MISEE
and a 1-digit bit-sliced ISEE is shown in Fig.

2.5.

Search key = 31 boundary
¥¥ S0 35 ok ‘
LS AY

23 3 71 2 7 1 6§

J(§ i .....
1st slice 2nd slice

Fig. 25. An example search process with two
bit-sliced ISEE.

A set of bit sliced ISEE with a same width., when
concatenated, forms a wider ISEE with arbitrary
wordlength. The i-th slice of a search key must
be input to the i~th module at the time (i-1)

steps after the input of the first slice. The
result of each serach process is OuRPut from the
rightmost module as its w L1y and w(L).

A bit-sliced ISEE with L levels and 1 bit width
requires 6L+1 pins; 1 pin for data input both in
table loading and in batch searchessing, 4L pins
for the connections between coni‘cutlve slices,
and 2L pins for the output of w (L) and w (L).
F%{ 1=12, It becomes 73 pins. However, w (L) and

(L) need not be output by each slice,
Actually, they_ can be %?nstructed by a simple
circuit from CO™s and CO"s output from the least
significant slice. Therefore, the pin complexity
can be decreased to 4L+1. For L=12, this is 49
pins, which seems to be acceptable.

The slicing method proposed above causes no
serious overheads, nor it excessively increases
the pin complexity. Therefore, the width of each
slice can be decreased to a single bit without
causing any problems, which decreases the
hardware complexity and increases both the
flexibility of the module and the feasibility of
its VLSI implementatiom.

3. Bit-Sliced Sort Hardware
Proceedings of the Tenth International
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3.1. Tvo-vay-merge sorter

This section describes briefly the operations
performed by the two-way-merge sorter proposed by
S, Todd [TODD78]. He proposed a sorting
algorithm that repetitively applies merge
operations to every two sorted runs in an input
stream to increase the length of sorted runs.
The initial input stream is considered as a
sequence of sorted runs of length one. Each
stage merges every two runs from the head of the
input stream to output a sorted run of double
length, The sequence of these output runs
becomes an input stream of the next stage. In
order to perform these repetitive merge operaionms
in a pipeline fashion, a two~way-merge sorter has
a hardware configuration similar to that of an
ISEE in Fig. 2.2, however their logic circuits at
each level are different. An input stream flows
into this module at the top level, and flows out
from the bottom level, The logic circuits at
each level performs the following operations. At
every time when the next two input runs arrives
at a stage, it begins to merge these two runs to
output a merged run to the next level. Each
input element is first stored in the memory bank
at this stage before it is manipulated. A
hardware module with L levels outputs from the
bottom level a sorted run of length 2L. and hence
it can sort a set of no more than 2° elemens.

Abit-sliced architecture of this module can be
easily designed if we can find out how to slice a
merger used at each level of this module. Let L
and R denote two sorted streams of same length,
and L(i), R(i) their i+lst elements. The stream
L is referred to by the left stream, while R the
right stream. The logic circuits at each level
of a two-way-merge sorter receive two streams L
and R one after another and merge them. The
circuits can be decomposed into two parts. The
first part receives an input-element at every
step and stores it at a proper address of the
memory bank at this level, while the second part
merges two streams, whose next elements are
always guranteed to have been already stored in
the memory bank by the first part of the
circuits. As to the merge operation, the
following property holds.

Property 3.1

At every time, say, j steps after the arrival of
the head of the second stream R, the merger can
see L(1i) and R(i) if the index i is less than or
equal to j and if they have not been output yet.

The design of a bit-sliced merger applicable to a
two~way-merge sorter should take this property
into consideration.

3.2. Bit-sliced mexrger applicable to a

tvo-way-merge sorter
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A bit-sliced merger has two l-bit input lines LI
and RI, and two l-bit output lines LO and RO.
These lines are used to connect multiple bit-
sliced mergers to form a single merger with an
arbitrary wordlength as shown in Fig. 3.1. The
operation of the i-th slice module is delayed (i-
1) steps from that of the leftmost module,

4
4

LI tOMm L]l LOMH» -9 L] LO
merger | =

RI RO Rl RO~ Rl RO
4 4 44 4 4

$ 4

¢
Y
b f by fo a e
c g Co 9 b1 f
g n O, Ny ©C O 4 4
d M a, e,

Fig. 3.1. Connections of bit-sliced mergers.

The slicing of a merger can not be achieved in a
straight forward way because of the following
reason. Suppose that the next elements of the
two input streams have a common value at the
leftmost slice. Then we can not decide which one
to take out. Suppose that we have chosen the
left one. Suppose also that, in this case, the
next element of the right stream is less than
that of the left stream at the second slice.
Then the second slice should choose the right
head to output. However, this makes it
ingignificant to continue further comparison
operations at these two slices because the pairs
of the elements compared next at these two slices
do not correspond with each other.

This problem can be solved as follows. Let us
introduce two pointers pointing to the next
elements of the input streams. The left pointer
lp points to the next element of the left stream,
while rp points to that of the right stream. If
L(1p) and R(rp) are equal at the leftmost slice,
we will advance both of the two pointers, and
make the module at this slice to output one value
that is equal to both L(lp) and R(rp). The
output signals LO and RO are both set to one.
The signal LO denotes the advance of the left

pointer, while RO the advance of the right
pointer. They are set to one if their
corresponding pointers are advanced. Otherwise,

they are set to zero.

Suppose that the next i elements of L and the

next j elements of R have a same value v at the

leftmost slice. Assume that i is less than or

equal to j. Then the first (i+j) output values
Proceedings of the Tenth International
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from this module should be equal to v. During
the first i steps, both pointers will be
simultaneously advanced, and the value v will be
output i times. After these operations, the
module is said to have reached the left boundary.
During the following (j-i) steps, only the
pointer rp will be advanced. Finally, both L(1lp)
and R(rp) will become greater than v. At this
time, the module is said to have reached both the
left boundary and the right boundary. The module
has already output v j times, however there still
remain i elements to output the value v.
Therefore, the module must output v during the
following i steps. During this period, the
comparison of the next elements is suspended, and
hence neither of the pointers is advanced.

Now let us consider the second slice of a merger.
Suppose that, in the leftmost slice, the left
boundary and the right boundary are respectively
located at the i-th next element and at the j-th
next element as before. The second slice of a
merger operates in a similar way as the leftmost
one does unless it reaches either the left
boundary or the right boundary of the leftmost
slice. If it reaches, say, the left boundary, it
must stop the advance of the left pointer. The
following output must be selected from the right
stream untill the right pointer also reaches the
right boundary of the leftmost sglice.

From these considerations, a bit-sliced merger
works as the leftmost slice of a merger if both
of its connection input LI and LO are set to one,
The following classification of the processing
status will make it easier to describe the
operations of a bit-sliced merger. Let us first
introduce several notations:

C : A counter that counts how many times the
two pointers are simultaneously advanced.
Initially zero.

vo ¢ The previous output; initially zero.

pL : The difference of lp between the current
slice and the preceding slice. It becomes
zero when the module reaches the left
boundary of the preceding slice. Otherwise,
it is kept positive. Initially zero.

DR : The difference of rp between the current
slice and the preceding slice. It becomes
zero when the module reaches the right
boundary of the preceding slice. Otherwise,
it is kept positive. Initially zero.

plr = pleLl.

pRt = pReri,

The classification and the operations in each
case are described below:

nonexistent.
Singapore, August, 1984
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Case 2. plt = pRe = 0, C(=n) >0

The two pointers 1lp and rp have reached the
boudaries specified by the lefthand slices,
however, there are still n elements with a value
vy that remains to be output during the following
n steps. In this case, neither of the pointers
should be advanced. The value Vo is output and C
is decreased by one.

(L0, RO) « (0, 0); output vy; C + C-13

L Ry

Li; pR « pRey,

ol « D
case 3. DX* = 0, DR* > 0

The pointer lp has reached the left boundary
specified by the lefthand slices.
Case 3.1. C = 0 or R(xp) = v,

There remains no elements equal to Vo that
are to be output before the next comparison,
Or R(rp) is equal to vj. In this case, R(xp)
is output, and rp is advanced.

(Lo, RO) + (0, 1); output R(rp);

. . pL L,

vp * R(rp)s rp « rp+l; D~ « D™';

DR « pRr-p,
Case 3.2. C X 0 and R(rp) X v

The pointer rp has reached the right
boundary of this slice. In this case, the
advance of rp and 1lp should be suspended.
The remaining Vo is output, and hence C is
decreased by one.

(L0, RO) « (0, 0); output vg; C + C-13
o « plry DR « DRr,
Case 4. DL' >0, DR' =0

Similar to Case 3., The roles of left and right

are interchanged.
Case 4.1. C = 0 or L(1lp) = v,

L(lp) is output, and lp is advanced.
(LO,RO) « (1, 0); output L(1lp);
vg + L(1p); 1p « 1p+1; pl « ple-p;
pR « pRe,

Case 4.2. C ¥ 0 and L(1p) X% v,

The advance of the pointers should be

suspended. The remaining vo is output, and
hence C is decreased by one.

(10, RO) + (0, 0); output vgs C + C-13
Proceedings of the Tenth International
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pl « DL'; p} « pRr,
Case 5. D' > 0, pRt > 0

Neither of the pointers has reached the boundary
specified by the lefthand slices.

Case 5.1. min(L(1p), R(xp)) X v, and C X 0

Both of the pointers have reached the
boundaries specified by this slice. In this
case, the advance of rp and 1lp should be

suspended. The remaining Vg is output, and
hence C is decreased by one.

(L0, RO) « (0, 0); output vgi C « C-1;
pY « plt; DR « pRe,
Case 5.2. C = 0 or min(L(1p), R(rp)) = v,
There remains no element equal to vo that
are to be output before the next comparison.
Or the smaller of L{1p) and R(rp) is equal
to Voo

Case 5.2.1. L(1lp) < R(rp)

The next element of the left stream is
less than that of the right ome. L(1lp)
is chosen to output, and 1lp is
advanced.

(L0, RO) « (1, 0); output L(lp);

vo + L(1p); 1p « 1p+1; L « plr-y;

pR « pRe,

Case 5.2.2. L(1p) > R(rp)

The next element of the right stream is
less than that of the left one. R(rp)
is chosen to output, and rp is
advanced.

(L0, RO) <« (0, 1); output R(rp);

vp * R(rp); rp <« rp+l; pl « DL';

DR « pReoy,

Case 5.2.3. L(1p) = R(rp)

The two next elements are same. Their
common value is output. Both of the
pointers are simultaneously advanced,
and C is increased by one.

(LO,R0) « (1,1); output L{lp);

vg + L(1p); C « C+1; 1p + 1p+1;

rp + rp+l; DL*-DI'-l; bR « DR'~1.

An example merge process with two bit-. iiced
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mergers is shown in Appendix,

The slicing method described above is applicable
to a two-way-merge sorter., The operation of this
bit-sliced merger is consistent with Property 3.l
of the mergers that are used in a two-way-merge
sorter. The bit-sliced two-way-merger thus
obtained does not suffer from the serious
increase of the pin complexity. A module with L
levels and 1 bit width requires (4L+1) pins, 1
pin for data input and data output, and 4L pins
for connections between consecutive slices. For
L=12, this is 49 pins, which seems to be

acceptable. The hardware complexity is much
decreased by the bit-slicing, while its
flexibility 1is 1increased. Its VLSI

implementation becomes far more feasible than a
nonsliced two-way-merge sorter.

4, Conclusion

For the high speed processing of databases, it is
fundamental to introduce various VLSI
architectures to the processing of basic
functions. Especially, sort and batch search
that are fundamental in database processing
require high speed modules. The VLSI algorithms
of them should make much use of the time
necessary for the transfer of a large amount of
data to and from the modules, Besides, these
modules should be nonprogrammable in order to
avoid serious overheads that are likely to be
caused by the 1introduction of the
programmability., However, they should be able to
extend their capacity and wordlength by the
connection of them,

This paper has solved the problem of how to
extend the wordlength of search and sort hardware
modules, It has proposed the bit-sliced
architectures of an interval search engine and a
two-way-merge sorter., The slice of these engines
does not cause excessive overheads. The decrease
of the slice length decreases the hardware
complexity, and increases the flexibility of the
modules., Therefore, it increases the feasibility
of the VLSI implementation of these hardware
modules.

The two different bit-~sliced VLSI architectures
respectively for search and sort both require
(4L+1) pins per each chip. For L=12, i.e,, if
the capacity of each module is restricted to
4095 words, their pin complexity becomes 49+a,
where o pins are necessary for power supply,
clock supply, and mode control. This number
seems to be acceptable. The bit-sliced ISEE with
L levels and 1 bit width consists of 2b-) memory
cells (, for L=12, 4095 cells) as a whole, and
two 4 state automata at each level, while the
bit-sliced sorter with L levels and 1 bit width
consists of 2(2L-1) memory cells as a whole, and
a simple logic circuit with several registers at
each level. Therefore, even if we use static RAM
Proceedings of the Tenth International
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technologys each module with L levels and 1 bit
width requires less than 10” transistors. This
number ensures their feasibility.

Bit-slicing is fundamental for the flexibility
increase. The arrangement shown in Fig. 4.1, for
example, can reconfigure itself to cope with
various wordlength, Consecutive modules in the
array of bit-sliced ISEEs are separated by a
control signal line control.. When control; is
set to one, the subarray of modules to the féft
of this control signal line and the remaining
right subarray can work independently. If all
control signals are set to zero, the whole array
of modules can work as a single ISEE, The same
kind of reconfigurable arrangement is also
possible for bit-sliced two-way-merge sorters.

10 control control
 ait co'H{DH o oo o co
ot HY ot sspilch
bit-sliced bit-sliced bit-sliced
ISEE ISEE ISEE
ot e ot cadp{{ Aot cdf-
L { e oo ot col_=P{ o oo

Fig. 4.1. Wordlength-controllable connections of
bit-sliced ISEEs.
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An example merge process with two bit-sliced merger.

input stream : L = (00, 00, 01, 11, **) ( * : delimiter )
R = (00, 01, 10, 11, ==)
1st slice :L=(0, 0, 0, 1, *) 2nd slice :L=(0, 0, 1, 1, =)
R=(0,0 1 1, %) R=¢(0, 1,0, 1, *)
operations
time | © 1 2 3 4 5 6 7 8
1st slice
lp 0 1 2i2 3i3 3i3 3i3 44 A4 4
Ip 0 1 212 22 2i2 212 33 Aip &
L(1p)=R(rp) 7 T F T T T F T
ain(L(1p),R(rp))=ve|- iT T iF IF JF T iF
c 0 1i1 2i2 2i2 1i1 00 1i1 1i1 0
] output 0 0 o 0 ] 1 1 1
LO 1 1 1 0 0 1 0 0
RO 1 1 0 0 0 1 1 0
2nd slice
L1 1 1 1 0 0 1 o 0
RI 1 1 0 (1} 0 1 1 0
1p 0 1 2i2 2i2 3{3 3i3 33 4i4 4
rp o 1 1i1 1i1 2i2 2i2 3i3 44 &
L(1p)=R(rp) T F T T F F T T
min(L(1p).R(rp))= v, - T F F T T F F
c 0 0 1i1 1i1 0i0 1i1 0:i0 0i0 1i1 O
pt* 0 1 0i1 0i1 1i1 0i0 0i1 1i1 0i0 O
ok 0 1 0i1 1i1 1i1 0i0 0i1 0i1 0i0 O
output 0 0 0 1 1 0 1 1
case # 623 i521 i 51 523 2 (522 i523; 2
output -
- 1st slice 7 ‘u\ 0 0 0 0 1 1 1
2na slice \\}i}' 0 0 1 1 0 1 1
concatenation i0i o0 o0 (o1 (01 (10 i1 1
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