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Abstract

In this paper we describe the nroner-

ties of the 1line graoh of ¥-acyclic
hynergraphs, Based on the oronerties, an
efficient algorithm is given for

determining whether a hypergraph is 7-

acyclic., The algorithm runs in O(n(n+e))
time for a hypercranh with its line granh
having n vertices and e edges,

1. Introduction

There is a natural corresnondence
between database schemes and hypergraohs,
A number of basic desirable pronerties of
database schemes have been shown to be
equivalent to acyclicity (2) . Further
R. Fagin has recently defined two tyvpes
acyclicity for hypergraphs which he calls
B-acyclicity and 7-acyclicity (2) ( where
the early type of acyclicity he calls A-
acyclicity). He proves that p-acyclicity
is" equivalent to some more desirable
conditions involving monotone-increasing
joins and wunique relationship amonag
attrbutes, which are not equivalent to
other acyclicities,

There have been polynomial-time
algorithms for determining a-acyclicity
(L,2), B=acyclicity (3) and ¥Y-acyclicity
(5,3), respectively, A linear~time
algorithm for a-acyclicity has recently
been given by Tarjan and Yannakakis (6).
We also note that Karen Chese (7) offers
two methods to make a a-cyclic hyper=-
araph to be da-acyclic. The purpose of
this paper is to discuss the proverties
of the line graph corresponding to -
acyclic hynergraph. Based on the proper-
ties an efficient algorithm is jiven for
determining whether a hypergraph is -
acyclic by means of the line graph of
the hynergranh,

2. Y-acvclicity

A hypergraph (1) is a pair (N, E),
where N is a finite set of nodes and E is
a set of edges which are arbitrary
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nonemnty subset of N,

A y-cycle in a hypergranh H is a
sequence
(S, ,X, ySz ’xzy--07sm9xuusm+l )
that
éa% X, ,e009X, are distinct nodes of H:
b) S

, 5e0+,9m are distinct edoges of H
and Sy =S 3

such
(c) m23, that is, there are at least 3
edges involved;
gd) x; is in S¢ and Se¢n (1€i€m); and
e) if 1<i<m, then x; is no S; except
S¢ and S¢n .
where m is the size of ¥ -cycle,
Definition 1 A hyoeraraoh is y-cyclic if
it has a y-cycle,

Let (S1,...sSm,Smer ) be a secuence of
sets, where S,,...,S, are distinct and
Smet=S: . Let us call Sy and Si;u neighbors
(1€i<m); note, in oarticular, that Sa and
S, are neiahbors. Le% us call (S,,...,Sm,
Smet) @ pure cycle if m23 and if whenever
i#j, then S;NSj is nonempty if and only
if S¢ and Sj are neighbors.

Definition 2 A hyoergraoh is ¥-cyclic if

it has either a y-cycle of size 3 or a
pure cycle,

Lemma 1 Definition 1-2 of ¥-cyclicity
are eguivalent (3).

A hynergranh is ¥-acyclic if it is not
¥ -cyclic, It is easy to see that a
hypergranh is ¥-cyclic accordina to
Definition 2 if it contains at least one
of two kinds of "fortidden conficurations"
as shown in Figure 1.

Figure !
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3. A Characterization of Line Graph
of a Hypergraph

Let H=(N;X, ,Xs...,Xn) be a hypergraoh
with n edges. The 1line graph of H is
defined to be the simple graph L(H) of
order n whose vertices X, ,Xz,...,Xp
respectively represent the edges X, ,X2,
«..,Xp of H and with vertices x; and x;
joined by an edge if and only if X;NXj=¢.
We say that Wgj is the weight of the edge
between x; anc]’ x5 in L(H) if Wi =X;NX;j
and Wsj #4. Figure 2 shows a hypergraph,
its corresponding line graph and weights.

5T

Figure 2

A graph G is a chordal araph if every
cycle in G with at least four distinct
vertices has a chord. There are many
important results about chordal graph (8),

Lemma 2 Line graph L(H) of a
hypergraph H is chordal.

Proof, Let H be a ¥-acyclic hypergranh,
and L(H) be its line graph. Assume that
L{H) is not chordal. We shall show that H
is Y-cyclic,

Since L(H) is not chordal, there is a
cycle (X, ,€) 4000y Xks€K, Xhpr) in L(H) ( if
no cycle, then L(H) must be chordal),
such that

(a) X, ,X3,...,Xx are distinct vertices
and Xy =X 3

¥ -acyclic

?b) e ,€2,...,6x are distinct edges;
c) kzb; and
(d) there are no edges in L(H) connect-

ing two vertices of the cycle,
except e, ,84,...,4€EK.

It follows immediately that there is a
cycle (S, ,S2,...,5,Skn) in H corresoond-
ING 1O Xi ,Xa2,.009Xk,Xxtt (NnOte where Siw =S,
). It is easy to see that SiNSj=¢ if and
only if S; and Sj are neighbors. Together
with k24, we claim the cycle in H is a
pure cycle, From Definition 2, H is 7=
cyclic, This 1is a contradiction., Thus
Lemma 2 is proved.

Now, let us see the case of the cycle
with size 3 in a hypergraoh, Let us say
that a hypergraph H is pairwise nondis-
joint if every nair of edges in H is
nondisjoint, Let us call a complete granh
Ks isosceles trianagle if there are at
least two edges with precisely the same
weight in K,.
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Lemma 3 If a pairwise nondisjoint hyner-
graoh H with 3 edges is ¥ -acyclic, thken
its L(H) is an isosceles triangle.

Proof. lLet H be a
h%perqranh with 3
obvious that L(H)

Assume L{H) is

pairwise nondisijoint
edges, then it is
is a triangle,

not isosceles. Let A, B
and C be vertices of L(H), W, ,W, and ''s
be weights of the edges in L(H), resoec-
tively, as shown in Figure 3,

A
W W,
B W, C
Figure 3

By assumption, we know that W, #V,,
Ws#Ws and W,#Ws;. Now we show that ncne of
the followings is true.

W, =WzU W, 3.1)
Wa =W, U Ws 3.2)
Wy =W, U Wz (3.3)

Because of symmetry, we only need to deny
(3.1). Since by (3.1), W,W, and gk, ,
then for each aéW,, it follows aeW,, or
aeB. On other hand, aeW,, that is, ae€A.
Therefore a€ANB, or a€W;. So W,GW; .
Similarly, for each béWs;, we obtain that
beA, beW, and b€C. From beA\C or beéW., we
claim WsgW,, thus Wy=Ws. The contradic-
ﬁion shows that none of those equations
olds.

Now we shall prove that at least two
following equations are true,

W, -WaUWs# @ 3.h§
N;-W.UW;#¢ 305
Wy =W, UW. # ¢ 3.6)

We can assume without loss of generality
that neither (3.4) nor (3.5) is true,

that is, W, =WaUWs=¢ and W, -W,UW; =@, Based
on (3.15 and (3.2), we obtain
WiCW:UWs (3.7)
W2CW, UWs (3.8)

Let F=W,NWa, F, =W, «F and F;=W;-F ( note,
there is at least one of F, and F; being
nonempty, otherwise W,=W,=F), There are
three cases as follows:

Case 1, F, is nonempty. By (3.7),
FlchFzUFUW’, i,e., F|CF;UWQ, SO
FicWs (because F,NF.=¢), It follows
FicA. On the other hand, FicW,, i.e.,
FicC. Hence, F,cANC, i.e., F,cW,y, it
is impossible;

Case 2, F, is nonempty. Similar to Case 1},
by (3.8), we can obtain F,cW,, "t is
also impossible;
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Case 3. Both F, and F, are nonempty,
Similar to Case 1 and Case 2,

Thus there exist distinct nodes a and
b, such that

ae W, ~WaUWs
be Wy -W,UW3

We can also select a node ceWs ( of
course, a#c, b#c). It is clear that (A,a,
B,b,C,c,A) is a ¥-cycle. This is the
desired contradiction which proves Lemma
3.

In fact, the converse to Lemma 3 is
also true, Let us see the following
theorem by which an efficient algorithm
is civen later.

Theorem 1 A hyperaraph H is Y-acyclic if
and only if its L(H) is chordal and every
triangle in L(H) is isosceles.

Proof. (=>): Let H be a Y-acyclic hyvper-
graph, and L(H) be the line graph of H,
By Lemma 2, L(H) is chordal. For every
three pairwise nondisjoint edges in H,
since they are not ¥-cycle, their corres-~
ponding triangle in L(H) is isosceles,

(&): Let L(H) corresponding to H
be a chordal graph with every triangle
being isosceles. We must show that H is
Y-acyclic, Since L(H) is chordal, then H
has no pure cycle with size more than 3.

Consider every three pairwise nondis-
joint edces (S4,S;,S¢) in H which corres-
oonding to every isosceles triangle in
L(H), respectively. Assume without loss
of generality SiNS;=S;NSk, then no matter
how we select x € S;NSx, there exist
x € SiNS;, i,e., x€S5, Similary, for each
y € 5iNSj , we obtain ye€ S;NS«, i.e., ye€Sk.

Algorithm 1
BOOLEAN PROCEDRUE HYPERGRAPH(H);
REGIN L&

FOR each pair hyperedges

Therefore there is no 7Y-cycle of size 3
in H, Of course, there is no pure cycle
of size 3 in H, Thus H is % =-acyclic,

It is known that for some craph G,
there is no araph whose line granh is G.
A ordinary undirected oranh (without
self-loops) is, of course, a hyoergranh
whose each edges has only two or one node
For example, there is no graoh whose line
graoh is the granh shown in Figure bk,

A

D

Fiqure &

Here, we only consider tke cranhs
which are line graphs of given hyner-
granhs,

L, An Efficient Algorithm for Testinag

Y-acyclicity

Based on the nronerties of line araph
of 9 =-acyclic hypergranh, we annly the
following operations sequentially to
hypergraph H,

ag Transform H into its L(H);

b) Check whether L(H) is chordal, if it
is not, then H is 7-cyclic;

‘c) Check whether every triancle in L(H)

is isosceles, if one of triangle is

not isosceles, then H is ¥ -cyclic;

otherwise H is ¥-acyclic.

The algorithm is shown in Figure 5,

Et' ’ Ej _D.Q

IF E;AEj#¢ THEN BEGIN Wye E;AE
add Wgj to araph L as an edge:
COMMENT Ep and Wﬂt are bit string
representing the nodes of Hj;
END;
IF L'is not a chordal graph THEN RETURN FALSE;
FOR each edce ez of L DO
FOR each vertex xx of L DO
IF (x¢,%j,*xk) is in triangle Tik THEN
IF Tk is not isosceles THEN RETURN FALSE;

RETURN TRUE;

END,

Figure 5
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The following Lemma is important for our
algorithm,

Lemma 4 A chordal granh recoanition may
be performed in O(n+e) time, where n 1is
the number of vertices and e is the
number of edges in the graph.(9,10).

Theorem 2 Algorithm 1 is correct and
runs in O(n{n+e)) time, for L(H) having
n vertices and e edges,

Proof. By Theorem 1, Algorithm 1 is
correct,

Let us analyse the complexity of the
algorithm, First we consider the time
spent in forming L(H). The maximal number
of the edges in L(H) is 0(r). The
oneration for tesing chordal graph should
make our algorithm run in O(n+e) time
according to Lemma k4, Finally the time
spent in checking every isosceles tri-
angle is O(e-n). Thus, the bound is

0(n*+n+e+e-n)=0(n(n+e))
The proof is complete,.

However, the details of the algorithm
may be improved, such that the algorithm
would be more efficient. One thing
should be emphasized here, the input of
the algorithm is a matrix of a hyper-
granh, which may be called renresentative
m&dtrix,

5. Conclusion

We have discussed the prooerties of
line graphs corresponding to hyoergraohs.
" Those properties are also interesting
oraph-theoretic facts,

However, how to transform the cyclic
database scheme into the % -acyclic is
still the problem to be solved, Another
question to be settled is whether there
exist a linear-time alaorithm for testinag
y-acyclicity,
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