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ABSTRACT: A database specification consists of 
static and temporal constraints and a set of 
database operation descriptions. A database iS 
viewed as a dynamic object and a sequence of 
database states constitutes an evolution of the 
database. A formal method for verifying database 
specifications is proposed. The method checks if 
the static constraints are consistent, analyses 

the database operation descriptions with respect 
to the static constraints to ensure that each 
operation can ever be executed, and finally, it 
verifies that each permissible sequence of 

operations satisfies all the temporal 
constraints. 
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IINTRODUCTION 

The data models and database description 
languages that have been proposed during the last 
decade can be roughly classified into four types: 

1) 

2) 

Static models provide facilities for 
describing only a snapshot of the 
application. They may include process models 
which can be interpreted as sequences of 

computer instructions. Examples are the 

relational model of data, the Entity- 
Relationship model and the NIAH model. 

Dynamic models provide declarative facilities 
for modelling state transitions without 
considering in full detail the mechanisms 
which achieve them. Usually a database 

operation is specified by a pair of one 
precondition and one postcondition. Examples 
are condition/event Petri-nets, ACH/PCM, 
BASIS [201. and 1121. 
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Temporal models allow the specification of 
time dependent constraints such as "age must 
not decrease". Examples are found in 
~B1~141~341. Temporal logic is commonly used. 
Our approach is a combination of the dynamic 
and temporal .approaches. 

Full time perspective models emphasize the 
important role and particular treatment of 
time in modelling reality (see e.g., t711. 
CIAH IS1 belongs to this type. Other 
researches are found in [4][231111. 

Static approaches were proposed and focused by 
the mid-1970's, dynamic approaches started during 
the late 1970's and temporal/full time 
perspective approaches begin in the 1980's. More 
about the 4 types of models are in 1191. 

Despite this development in data modelling, the 
qualitative aspects such as model validity, 
consistency and reliability has yet received very 
little attention from the research community. In 
particular, few results have been published on 
formal verification of database specifications. 

BY formal verification of a database 
specification, we mean a formal process which 
ensures that the various components of the 
specification are free from conflict. That is, 
the database specification must be consistent. 
There are two important aspects concerning formal 
verification of database specifications. First, 
the consistency of a database specificaiton is a 
necessary condition for a database to be regarded 
as a representation of some perceived world I261. 
Second, it is shown in cl11 and T71, that faults 
which are introduced during database 
specification and design have a major impact on 
systems development effort. If a database 
specification is formally verified before 
implementing it, then certain specification 
errors might be removed prior to the operational 
phase, which might reduce the total systems cost. 

In this paper, we propose a temporal framework 
for database specification and verification. A 
database specification consists of three parts: 
11 Specification of stat& ms (53.1). 2) 
Specification of a constraints (93.31 and 
31 Specification of poera tioas (53.51. 
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Correspondingly, the consistency checking method 
also consists of three parts: 1) Consistency 

checking of static constraints (94.1). 2) 
Operation analysis (34.2) and consistency 
checking of temporal constraints (94.3) which 
will only be outlined in this paper. The interest 
reader is referred to 1191. 

z-WORKS 

A survey of more than 70 reports about 
computerized information systems along the 
temporal dimension is found in c31. Some 
temporal/time perspective approaches for 
information systems specifications and design are 
found in [34lC261171 and [321. An analysis of 
three conceptual models with time perspective is 
found in 1161. Some temporal frameworks for 
database specification are presented in talT141 
and c331. In I61 and Ct41, constructs for 
specifying static constraints, transition 
constraints and database operations are provided. 
Database transactions are assumed to be specified 
in terms of database operations. In C331, a set 
of static, dynamic and side-effect axioms are 
stated for maintaining the consistency of a 

database. 

Our framework is similar to te11141. The 
difference is in the explicit specification of 

preconditions and the postconditions of 
operations. In this sense, our approach is in 

agreement with the opinion held by 12116lC351. 
That is, a specification should specify the rules 
and assumptions explicitly and suppress 
exceptional details (when needed), in order to 
facilitate comprehension and change. 

Formal methods for verifying information 

system/database specifications are found in 

~261C201~221151. The work in 151 concentrates on 
the specification and verification of static 
constraints: insert, delete, update operations 
are not considered. An actual database iS 
required in the verification makes it very 
expensive to use. A method for verifying liveness 
of concurrent programs is found in I291 which 
influences the semantics and verification of the 
temporal constraints in this paper. Finally, an 

application of our approach to the verification 
of communication protocals is found in Cl51 which 
contains a PROLOG implementation of some relevant 
parts. 

3 DATABASE SPECIFICATION 

3.1 Static Constraints 

Static constraints of a database are specified as 
first order sentences. Examples of static 
constraints are: 

Proceedings of the Tenth International 
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SC1 : Every employee earns more than $20,000. 

(VxI(Vy)( E(x,yI -- y > 20,000 1 

where E(x,y) means that x is an employee with 
salary y. 

SC2 : Every manager is an employee. 
(Vx)(iy)T Mo() - E(x,y) 1 

where M(x) means that x is a manager. 

3.2 Thg Semantics 

A database state is defined as a structure STu,I) 
of the first order language L, where u is called 
the universe of the structure which is a non- 
empty set of individuals: I is the interpretation 
of the structure which assigns an element of u to 
each constant symbol, a mapping from IF to U to 
each m-ary function symbol, and an n-ary relation 
R# to each n-ary predicate symbol of L. A 
structure scu, I) satisfies a closed wff w iff w 
is true under the interpretation. In this case, 
we write SpU to mean that w is satisfied by S. A 
theory T of L is defined as a set of sentences of 

LB it follows that SFT iff S@ for all w6T. S is 
called a model of T iff SkT. For our purpose, it 
is convenient to regard a database state as 
consisting of a set 5 of atomic or the negation 
of atomic formulae (i.e., literals) such that for 
no aGS, "aES. Let SC be the set of static 
constraints of a database. By definition, a 
database state Si is a legal database state iff 
Si FSC. 

A result from model theory seems to be very 
useful for our purpose. It states that a set of 
wffs is consistent iff it has a model (m 
extended completeness theorem [91I. It follows 
that if SC is inconsistent, then there exists no 
legal database state; and if there is a model for 
SC then SC is consistent which implies that there 
will be at least one legal database state. 

3.3 TemDod constram 

Temporal constraints are defined in a temporal 
language. In the definition, we use the following 
abbreviations: ta stands for temporal assertion, 
tap (taf) for temporal assertion to the past 
(future). top (tqf) for temporal quantifier to 
the past (future). The temporal quantifier 
J~IIY!+ is read “always in the past excluding the 
present", and sya~+,' is read 'ever in the future 
including the present. ” The other 6 temporal 
quantifiers can be phrased similarly. 

In BNF, the temporal language can be defined as 
follows, where <op> denotes the name of an 
operation, which will be defined in 33.5. 

<temporal-constraint> ::= <ta> 
<ta) ::= "<ta> 1 <tal> b <ta2> 1 <tap> 1 <taf> 1 

<wff'> 1 EXECUTABLE(<op>) 
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<tap> ::= <tqp><wff'> 1 <tqp><tap> 1 -<tap> 1 
<tapl>b<tap2> 

<taf> ::= <tqf><wff'> 1 <tqf><taf> I "<taf> I 
<tafl>b<taf2> 

<tqp> : := AlIAYA+ I AhAYL+ I 1YLL+ I SYSLC’ 
<tqf> : := AlYAYA+ I 11IAYA”’ I AYAE+ I rlZ1”* 
<wff'> ::= wff in which free variables are 

<parameter>s. 
<parameter> ::= X I i I . . 1 

<function-symbol>I<parameter-list>) 
<parameter-list> ::= <parameter> I 

<parameter>,<parameter-list> 
<function-symbol> ::= any function symbol of L. 

The above definition is extended to include V and 
- as usual. 

In agreement with [14]. we distinguish global and 
local quantifications. We use the concept of 
-. While a universally quantified 
variable (e.g., VxJ ranges over the individuals 
in a particular database state, a parameter 
(e.g., XI ranges over all the individuals of all 
the database states. In a particular state, a 
parameter represents an arbitrary individual 
having some property, e.g., being an employee. 
When talking about a sequence of states, e.g., a 
temporal assertion, a parameter may assume a 
value in a database state, however, all the 
occurrences of the parameter must assume the same 
value throughout the temporal assertion. 

As an example, the temporal constraint stating 
that ‘salary must not decrease” can be expressed 
as TE(x,yl is as defined in 03.1): 

tc1: E(x,y) - d~ry~+tVz)t Etx,z)-z>y 1 

The temporal constraint stating that ‘whoever has 
been an employee cannot be hired again” can be 
expressed as: 

tc2: aya~+’ (Iy)E(x,y) - -EXECUTABLE(hireInlI 

where hire(x) is the operation of hiring x, which 
is to be defined in the next subsection. This 
expression specifies that sometimes in the past 
including the present if i has been an employee, 
then the hire(x) operation is not executable. 

U Lhe Semantica 

Let 0 = ...S-1SoS1S2..., denote a sequence of 
database states, where SO denotes the current 
state, . . .S-2 S-1 denotes the history, and 
Sl s2.. . denotes the future of the database. Let 
aj denote the sequence of states . . . Sj-1Sj or 
the sequence of states SjSj+l..., depending on j 
=< 0 or j >=O. Further, we use 6(<op>,S,) to 
denote the state resulting from executing the 
operation <op> in state 5,. The semantics of the 
temporal assertions are as follows: 

Proceedings of the Tenth International 
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If w is not a temporal assertion, then ob iff 
sob. 
Now let w denote any temporal assertion, then 
okl_rryitw iff (Vj<Ol (oj bU, 
okl_rdyl+‘w iff tVj=<O) (0, k1 
okrtS+w iff (ij<OI (0, bI 
ok~r~*‘w iff (3j=<OI(o, bV, 
oklrayi* iff (Vj>Ol(o, k) 
okl~*yr+‘w iff (Vj>=Ol (oj bl 
okrz~+w iff (Ij>O1(oj k) 
ok~z~+‘w iff (ij>=OJ(ol bU, 
ok-w iff not ob 
0kxEcuuut cop> 1 iff the following conditions 
hold : 
okhe temporal assertion of the operation <op>. 
SoFthe precondition of the operation <op>. 
6(<op>, So 1 kthe postcondition of <op>. 

Let wl and w2 be two temporal assertions: 
ok(wlbw2 1 iff obl and ob2. The definition is 
similarly extended to include V and -. 

We must define the,semantics for oj, we have: 

If w is not a temporal assertion, th 
sj b* 

0; klygyi+'w iff j>=O a 
of &rrtw iff j=<O and 
oj k~~~+‘w iff j=<O and 
oj krlr+w iff j>=O and 
oj kr~S+‘w iff j>=O and 
0, k-w iff not oj b 
aI P+UUMU( <op> 1 iff 

If w is a temporal assertion, then 
oi kl!rylcW iff j=<O and (Vk<j) (ok bLI) 
Oj &~I~Y~+‘w iff j=<O and (Vk=<jI(ak~ 
Oj &rryr+w iff j>=O and (Vk>j)(okbw) 

nd (Vk>=jI(i+b 
(Ik<j)(ok~) 

lIk=<j)(ok~V) 
(Ik>j)(okbW) 

(Ik>=j)(okl3v) 

a,Ft.he temporal assertion of the operation <op>. 
Sj bhe precondition of the operation <op>. 
it<op>, Si I Ithe postcondition of <op>. 

n oj b iff 

If Wl and q are two temporal assertions: 
oj ~(w,bw2) iff oj bl and oj hp. The definition is 
similarly extended to include V and -. 

U PParatioa Description? 

An operation description consists of a temporal 
assertion to the past, which specifies the 
condition on the database history for applying 
the operation, a precondition and a 
postcondition. Syntactically, an operation is 
defined fin BNF) as follows: 

<operation> ::= <op>: <op-desc> 
<op> ::= <op-name>(<parameter-list>) I 

<op-name>* (<parameter-list> 1 
<op-name> : : = string of lower-case letters 
<op-desc> ::= <tap'>, S, k<pre> 

==> i(<op>,S, )k<post> 
<tap'> : := *fly I <tap> 
<pre> ::= <wff’> 
<post> ::= <wff’> 
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In the above definition, <parameter-list>, <tap>, 
and <wff'> are as in 93.3. <op-name>* denotes an 
update operation while <op-name> denotes an 

insert or delete operation. We assume in this 
paper that an insert (delete) operation makes one 
or more atomic formulae become true (false). An 

update operatt 2n changes some of the terms of 
atomic formulae. 2"~ is used as a dummy temporal 
assertion when there is no need to refer to the 

past. 

The following examples serve to illustrate the 
specification of some operations. The meanings of 
the predicate symbols are as defined in 53.1. 

hire(x): ~~ry_~+ -(lyIE(i,yIl Sib-(3y)E(x,yl 
==> 6(hire(xI,SiI ~(~y)(E(x,y)&y>ZOOOO) 

It states that “if it was always true in the past 
(the temporal assertion), and it is true. in state 
Si I that x is not an employee, then in the state 
resulting from hiring x in state Si we will know 
that x is an employee with some salary y>20000." 
Note that the temporal assertion “~1~iyz+ 
-(fy)E(x,y)" is required in this operation 
description because of tc2 in 93.3. We require 
that y>20000 because of SC1 in 53.1. Other 
operation descriptions are listed below: 

fire(x): iny, Sib(ly)E&y) b -H(x) 
==> li(fire(x1 ,Si !k:(ly)E(x,y) 

raise*(x,lO%*y): II!Y s SikE(x,y) ==>- 
~(raise*(~,10%*~),Si)~E(x,~+10Z*y)&y+10%*;)20000 
promote(i): ?nY I Sib(3y)E!x,y1 b -t$xl 

==> 6(promote(x),Sj )l?lM(x) 
demote(x): my, SikM(x) 

==> 6(demote(x),fi)YM(~) 
Engage(x): *Ry, Sik"(3y)E(x,y) b -M(i) 

==> b(engage(x).Si)tM(K) 

Note that a postcondition in problem-solving of 
artificial intelligence may be divided into two 
parts: the "added' and the "deleted" statements. 
Further, there are the "frame axioms” which 
specify that anything that is not changed by an 
operation remains true in the new state 12411171. 
The distinction of added and deleted statements 

as well as the frame axioms are implicit in our 
approach. They are to be treated by the checking 
method because a database specification is not 
meant to be an executable object. We will return 
to this point in 54.2. 

h VERIFICATION w DATABASE SPECIFICATION 

u Verification gf Static Constraints 

We first briefly review the results from [211 
which may be used to reduce the effort in using a 
theorem-prover, e.g., the resolution principle 
[31]. Let C be a set of fiausec. The ynifim 
diaraoh GIC)=<C,E> is a directed graph with C as 
its points and <ci,~i>EE if Ci contains a 

positive literal which is unifiable with the 

negation of some negative literal in c1 (for 
unification see [27][31]). If G(C) consists Of 
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several subdigraphs, G(C,), i = 1, 2, . . . . then C 
is consistent iff each Ci is consistent. If G(C) 
contains no point of indegree (outdegree) zero, 
then C is consistent. If G(C) has no semicycle 
and C contains no two clauses cl, c2 with snme 
distinct literals a, fiEc, and some distinct 
literals y ,nEc2, such that a is unifiable with -y 
and g is unifiable with -n, then C is said to be 
compact,. If C is compact, then the consistency of 
C is decidable, i.e., only finite many new 
clauses can be produced by unrestricted 
resolution 1211. 

We may now present the verification process: 

1) Transform the set SC of static constraints 
into a set CsC of clauses. This can be easily 
done (see e.g., T271). 
2) Construct a unifiability digraph G(CscI for 
the set CsC of clauses obtained in 11. For each 
subgraph G(CiI of G(CsC), where Ci~CSC, perform 
the following steps. If each Ci is consistent, 
so is CsC . 
3) According t 0 Robinson's purity grincinle 
T311, we may remove any point of G(Ci) whrch 
contains a literal not unifiable with the 
negation of any literal of Ci without affecting 
the consistency of Ci. (This can be done more 
easily in a sonnection w [ISI). Repeatedly 
apply this principle until no clause can be 
removed. Denote the resulting digraph by G(CI 1. 
4) From G(C' 1 determine if CI is consistent.' 
5) If the consistency 'of CI cannot be 
determined in 41, then use G(C: 1 #.o determine 
if C: is a compact set of clahses. If so, then 
a bottom-up resolution process is stopped when 
the empty clause is generated (then Cl is 
inconsistent) or no new clauses can 1 be 
generated (then Cl is consistent). Otherwise, 
certain time bound Lust be set depending on the 
theorem- prover used and the complexity of the 
input. When the bound is reached before any 
inconsistency is detected we take it for 
granted that CI must be consistent. An 
alternative is tb modify the static constraints 
so that the Cy resulting from 3) is either 
consistent or'compact and hence its consistency 
can be formally checked. 

Our example 1 scl, sc2 1 in 93.1 is consistent 
since both of them can be removed in step 3). 
Nontrivial examples can be found in T191. 

(.2 Doeration Analvsis 

4 2 1 Informal Discussion of Basic Ideas L 

Suppose that we have a relational database with 
only one static constraint: scl': (Vx)(fy)( H(x) 
---, E(x,y) b y>20000) which says that every 
manager is an employee having some salary more 
than 20000. For simplicity, we assume that there 
are only one person identified by name n and two 
salary values s<20000 and s'>20000. It can be 
easily seen that Sl, S2, S3 in Fig.la are legal 
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database states. Now consider the operation f(n), 
i.e., fire the person identified by name n, which 
is applicable in a legal database state if 

<n,s’>CE and after applying f (n1, <n,s’> is 
deleted from E. Depending on the state in which 
f(n) is applied, different state transitions may 
occur tel. There are three transitions to be 
considered in this example which we denote as fl, 
f2 and f3 for easy explanation (Fig.lbI. 

tl E f2 f3 
51 (1 t<n,s’>I S2 s3 SC 
s2 fl 0 
S3 t<n>I {<n,s’>I 
S4 I<n>I II 

nz 

fl p2 
s5 II t<n,s>I Pl 
S6 f<n>l f<n,s>l Sl 55 S6 

a b 

Transition fl has the following properties: the 
operation is applicable in a legal database 
state: the application yields some legal database 
state; anything that is not specified to be 
changed by the operation remains true in the 
resulting state (i.e., the frame problem). 
Transition f2 does not have the last property 
since it has deleted <n> from H which is not 
specified in the fire operation. Transition f3 
does not have the second property and hence it 
should never occur in a database. It can be seen 
that the operation description is not sufficient 
for carrying out the operation: If transition fl 
is wanted, then the operation description should 
contain in the “precondition” that the operation 
can be applied if <n,s’>fE and <n>CH. If 
transition f2 is wanted, then the operation 
description should contain in the ‘postcondition’ 
that after executing the operation, <n.s’>bE and 
<n>@l. 

Suppose that the relational database imposes one 
more static constraint sc2’: IVxI(VyI( E(x,yl --+ 
y<ZOOOO ) which says that every employee has 
salary less than 20000. SC1 * and sc2’ are 
consistent since 52 and S.5 in Fig. la are two 
legal database states, although in this case Sl 
and 53 are no longer legal. Now consider the 
operation p(n), i.e., promote n, which specifies 
that if <n,s>EE and <n>CH then its application 
leads to the state in which <n>CH, i.e., pl in 
Fig.lb. However S6 is not a legal database state 
since SC1 * does not hold. If we change the 
postcondition so that after applying the 
operation, <n>EH and <n,s> is replaced by <n,s’>, 
i.e., p2 in Fig.lb, then sc2’ will not hold. In 
fact, there is no way to promote any individual 
to be a manager because scl’ and SCZ’ together 
prevents us from inserting any tuple into M. 

In the next section, we will present a method 
which will analyse each operation description to 
make sure that the operation is applicable, 
yielding legal states and the description is 
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sufficient for characterizing the POStState. 

. . 
~22 ~orlllrl AnrlvrFs nf !i!mdAm DescrrDtrons 

First notice that when we start to analyse the 
operations, we already have a consistent set SC 
of static constraints. Second, following Gallaire 
and Nicolas and Hinker I131I261t251, we 
distinguish two kinds of static Constraints: 

those that are used as integrity constraints 
(e.g., every manager is an employee 1 and those 
that are used as derivation rules (e.g., xc)y b 
y>z -+ x>tl. 

In what follows, let P and 0 denote the clause 
forms of the precondition and the postcondition 
of an operation top> in question. Let SC and 
SCTgSC denote the set of static constraints and 
integrity constraints and let CSc and CT be the 
clause forms of SC and SCT respectively. We have 
the following 

JHEDRFW u An operation is applicable in some 
legal database state iff P IJ CSc is consistent. 
(We put the proof in the appendix) 

Let C be any set of clauses. Let R(C) denote the 
union of C with the set of all clauses that can 
be obtained by resolution between pairs of 
ciauses in C. By g*(C) we mean lT(lT(C) 1, and go(C) 
= C. It can be proved that for all c for all k, 
cEllk (C) implies that c is a logical consequence 
of c. In particular, the set of literals 
logically following C is defined by #(C)={a : a 
is a literal b (Ik)(aEITk~C))I. We have 

JHFoRFfl u Let Si be a legal database state and 
a any literal. If aEllk (CTUP) (resp. lTk LCTUQ)) for 
some k and Si p (resp., Si HI. then Si pl. (We put 
the proof in the appendix) 

COROLLARY. If CTUP (resp. CTlJgl is compact, then 
#(CTUP) (resp. #(CTUQIl is finite and hence Si is 
finite. 

The operation analysis is performed in two main 
steps: II The analysis of the insert and delete 
operations. III The analysis of the update 
operations. 

I) The analysis of the insert and delete 
operations: If <op> denotes an insert or delete 
operation, then 

il <op> is applicable in some legal database 
state iff P U CSC is consistent (Theorem 
4.1). If so, the prestate of <op> is 
characterized by the set (Theorem C.2) 

prestate(<op>) = $CCT UP) 

This set is not a complete representation of 
the prestate but only a characterization of 
a relevant part of a legal database state 

such that the integrity constraints are true 
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in it. The characterization of the prestate 
is similar to the use of the integrity 
constraints as generation rules under a 
closed world assumption (conf. 1261). 
Furthermore, if CIUP is compact, then 
Q(CIUP) is finite. Otherwise, we have to use 
some of the SC1 as derivation rules in order 
to gaurantee that Si is finite (Theorem 
4.2). 

ii) The application of <op> yields some legal 
database state iff poststate(<op>) U CsC is 
consistent, where 

poststate(<op>) 
={a : aE$(QU+(<op>)) ) U +(<op>) and 

+(<op>)=Ia: aE$(PUCI )btaIUQ is consistent) 

Intuitively, O(<op>) denotes those literals 
that are true in the prestate and are not 
falsified by (the postcondition of) <op>. 
Note that the frame problem is implicitly 
treated in this step. 

iii) The operation description is sufficient for 
characterizing the poststate if 
$(ClUQ)_cpoststate(<op>l. (Theorem 4.21 

iv) If one of the above test fails, we must 
modify the static constraints and/or the 
operation description and repeat the whole 
process until each operation description 
passes the above tests. 

v) At this stage, we should have a list of 
state transitions each of which can be 
depicted as 

0 
<opi> 

si 
Q ‘j 

prestate(<opi>) poststate(<opi>) 
where Si , Sj are the (unique) names given to 
the prestate and the poststate of the 
operation <opi>. 

vi) We now merge some of the prestates andlor 
poststates as followst: 

a) LetSt be a presetate and S1 be a 
prestate or a poststate. If Sk&+ 
(improper set inclusion), merge Sk into Sl 
(i.e., draw an arc from 51 to S, for each 
arc from Sk to S, for all m and label the 
arc accordingly; remove Sk along with its 
arcs 1. This step is repeated until no 
merge is possible. 

b) Let Sk, S1 be two poststates. If Sk"S1 
merge Sk into S1 . Repeat this step until 
no merge is possible. 

t Sometimes we have to rename the parameters 
and/or the variables, however we cannot 
discuss this here due to space limit. 
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vii) At this stage, we should have a transition 
diagram for the insert and delete 
operations. 

Fig.2 shows the result of analysing the operation 
descriptions defined in 93.5. 

prestate 
hire 5, =j-E(x,Y) I 

-Ho()~~ _ 
fire S3ftE(x,f(x)), 

f(x)>20000, -M(n: 
pro- S,=(E(kf(x)), 

poststate 
S,;IE(i,f(xH, 
f(x)>20000,-M(i 
S4ft"E(x,y). _ 

11 f(x)>20000,-H~x)~ 
S6=IE&,f(x)), 

mote fK)>2~000, "H(i)1 f(;)>ZOOOO M(n)) - 1 
de- S,ftE(x,f(x)), S8iIE(x,f(x)), 
mote f(x)>20000, M(x)) f(x)>20000, -M(x)1 

hire(x) demote(x) 

fire(x) promote(x) 

fie 2, Ilk Dan ition. Qiaaram fes Lb2 insert aaQ 
L 9Derations 

Note that the engage operation cannot pass 
substep ii) and we have chosen to remove the 
engage operation description from our study. 

III In a similar way, we may analyse the update 
operations. The result is shown in Fig.3. The 
detailed steps and the interpretation of Fig.3 
can be found in 1191. 

hire(x) demote(x) 

Fig.3 The transition diagram of the example 4- 

(.3 Yerification nf lemoorti gonstraintq 

The basic ideas and steps for verifying the 
temporal constraints can be informally stated as 
follows (1191 gives the details): 

1) Transform the transition diagram of the last 
section into a family of finite automata fai. 
This is done by taking in turn each state of 
the transition diagram as the initial state 
and let every state be a final state. Si is 
interpreted as the current database state. 
The fai's are used to generate test sequences 
and construct the pushdown automata pai's. 

2) Generate test sequences: There is a method 
for generating a set of && jieouences for 
any given finite automaton with initial state 
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S, [lOI. Let TV denote the set of test 
sequences that is generated for fa,. Then for 
every transition from Sjt to Sj2 on <opk>, 
there are sequences w and w<opk> in TI such 
that w forces fa, into Fill from its initial 
state Si . Further, every WET, is of length 
less than or equals to n. where n is the 
number of states of fa, . 

3) Construct pai’s: By definition, a temporal 
constraint specifies some condition which 
must be satisfied by every permissible 
sequence of operations. A sequence of 
operations is a permissible sequence if it is 
permitted, by the operation descriptions, to 
be executed on the database, which is in some 
current state S,. To analyse whether a test 
sequence is a permissible sequence, we 
transform the fa, into a pushdown automaton 
pai where the pushdown ‘symbols’ of pai are 
temporal assertions. The top element of the 
pushdown store is intended to represent the 
database history before and excluding the 
current state at all time. At each step, the 
Pai examines if the stack top implies the 
temporal assertion of the operation in 
question. If so, it enters a new state and 
tries to remember that something has happened 
by pushing a temporal assertion onto the 
stack. This temporal assertion thus 
represents the new database history and it is 
obtained by considering the preceding 
database history and the precondition of the 
operation in question. A test sequence is 
permitted to be executed in the database 
state Si iff it is accepted by pa,. 

4) Verify temporal constraints: For each test 
sequence cop, >. . . <op,>Er, that is accepted by 
Pai I there is a sequence of states 
SiSi+l* * eSi*. SUCh that Si+j is entered from 
Si+j-1 on <OPj> in fai, j=l,..., m. We call 
such a sequence of states a partial execution 
sequence since it represents only the future 
seen from Si or only the past seen from Si+a. 
The set of all partial execution sequences 
over all i is denoted by I’. It is an easy 
task of forming the set I of total execution 
sequences. If wsj, 5, n are in I’, then WSjq 
is in 1: Sj is interpreted as the current 
state, w the history, and n the future of the 
database. We see that each element of I is of 
the form ...S-lSOSl . . . which we have used to 
define the semantics of the temporal language 
in 93.4. Thus, the verification of the 
temporal constraints is to verify that each 
element of I satisfies each of the temporal 
constraints according to the semantics 
defined in 93.4. 

3 CONCLUDINC REMARKS 

In this paper, we have presented a temporal 
framework for database specification and 
verification. The specification of databases is 
declarative and application oriented. For 
simplicity, we have chosen in this paper to 
specify the static constraints in the first order 
logic. In fact, many-sorted logic could have been 
used instead. In this case, the unification 
algorithm will be slightly different, see e.g. 
[301. Further extention of the temporal language 
that is used to specify the temporal constraints 
and the temporal assertions of the operations is 
possible. For example, we may include tense logic 
operators such as “before”, “after”, “at” etc. 
1341. We want to stress that queries to the 
database can be expressed in the framework by 
using set notions and set operations, although we 
did not discuss this aspect in the paper. 

The verification of a database specification can 
be supported by existing theorem-proving 
mechanisms, e.g., the resolution principle. In 
this paper, we have chosen to present the 
verification framework in a straight way without 
considering efficient strategies for carrying out 
the tasks. In practice, heuristic information and 
more intelligent strategies should be used 
12711171. 

The author wants to thank Prof.Solvberg for his 
encouragement and constructive discussions. 
Thanks to Tore Amble for informal discussions and 
to Even Johansen for making the macros for the 
mathematical symbols. 

REFERENCES 

Cl3 

t21 

t31 

141 

Anderson, T.L., The Database 
Semantics of Time, Doctoral Thesis, 
Univ. of Washington, Jan., 1991. 

Balzer, R and Neil Goldman, 
Principles of good software 
specification and their implications 
for specification languages, National 
Computer Conference, USA, 1981. 
pp.393--400. 

Bolour, A., T.L. Anderson, L.J. 
Oekeyser and H.K.T. Wong, The role of 
time in information processing: a 
survey, ACM SIGART Newsletter April 
1982. pp.28--48. 

Bolour, A. and L.J. Dekeyser, 
Abstractions in temporal information, 
in Inform.Syst., vol.8, no.1, 1983. 
pp.ll--49. 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

Singapore, August, 1904 

97 



[51 

[61 

171 

161 

191 

1101 

Ill1 

ll21 

[131 

I141 

1151 

[161 

Brodie, M.L., Specification and 
Verification of Database Semantic 
Integrity, Ph.D Thesis, Computer 
Systems Research Group, Univ. of 
Toronto, 1978. 

Bubenko, J.A. jr., On the role of 
'understanding models' in conceptual 
schema design, Proc. of 5th Intl' 
Conf. on VLDB, Rio De Janeiro, 
Brazil, Oct.3--5, 1979. pp.129--139. 

Bubenko jr J. A., Information 
modelling in the context of system 
development. Invited paper to IFIP 
Congress, 1960. pp.395--411. 

Castilho, J.M.V. de, M.A. Casanova, 
and A.L. Furtado, A temporal 
framework for database 
specifications, Proc. on 6th VLOB 
Conf., Mexico City. Mexico, Sept.B-- 
10, 1982. pp.280--291. 

Chang, C.C. and H.J. Keisler, Model 
Theory, N.H. Publ. Comp., 1973. 

Chow, T.S., Testing software design 
modeled by finite-state machines, 
IEEE Trans. on Software Engineering, 
Vol. SE-4, No.3, May 1976. pp.176-- 
187. 

Connor, M.F., Structured analysis and 
design technique, in Systems Analysis 
and Design, A Foundation for the 
1980's, Edited by Cotterman, W.W. et 
al, N.H. Publ. Comp., 1981. pp.213-- 
234. 

Furtado, A.L., Dynamic modelling of a 
simple existence constraint, in 
Information Systems, Vo1.6, 1981. 
pp.73--80. 

Gallaire, H. and J.Hinker, Logic and 
Data Bases, Plenum Press, N.Y., 1976. 

Golshani, F., T.S.E. Haibaum and M.R. 
Sadler, A modal system of algebras 
for database specification and 

query/update language support, Proc. 

of 9th Intl’ Conf. on VLDB, Florence, 
ttaly, Oct.31--Nov.2, 1983. pp.331-- 

340. 

Hove, J.O., Kungs Metode for 
Konsistensbevis og Modellkonstruksjon 
Anvendt pa Kommunikasjons 
Protokaller, Master Thesis, Dept. of 
Computer Science, The Norwegian Inst. 
of Tech., Trondheim, NORWAY, 1964. 

Kowalski, R., A proof procedure using 
connection graphs, JACM, vo1.22, 

1975. pp.572--595. 
Proceedings otthe Tenth International 
Conterence on Very Large Data Bases. 

1171 

tiei 

t191 

t201 

c211 

1221 

t231 

1243 

t251 

1261 

[271 

1281 

98 

Kowalski, R., Logic for Problem 
Solving, Elseview, N.H., Inc., 1979. 

Kung, C.H, An analysis of three 
conceptual models with time 
perspective, in Information Systems 
Design Methodologies : A Feature 
Analysis, Olle et al (ed.s), N.H. 
Publ. Comp., 1983. pp.iSi--16a. 

Kung. C.H, A Temporal Framework for 
Information Systems Specification and 
Verification, Doctoral Thesis, Dept. 
of Computer Science, The Norwegian 
Inst. of Tech., Trondheim, NORWAY, 
1984. 

Leveson, N.G., A.I. Wasserman, and 
D.H. Berry, BASIS: A behavioral 
approach to the specification of 
information systems, in Information 
Systems, Vo1.8, No.1, 1983. pp.15-- 
23. 

Lewis, H.R., Cycles of Unifiability 
and Decidability by Resolution, Aiken 
Computation Laboratory, Harvard 
Univ. I Tech. Rept., 1975. 

Lundberg, B., IHT - An information 
modelling tool, Pioc. IFIP WGa.1 WC 
on Automated Tools for IS Design and 
Development, New Orleans, USA, 1982. 

Lundberg, B., An axiomatization of 
events, BIT 22, 1982. 

Hcarthy, J. and P. Hayes, Some 
philosophical problems from the 
stanpoint of artificial intelligence, 
in Machine Intelligence no.4, 
B.Meltzer and D .Hichie (ed.s), 
Edinburgh Univ. Press, Edinburgh, 
1969. pp.463--502. 

Minker, J. and J.M. Nicolas, On 
recursive axioms in deductive 
databases, Inform.Syst., v01.8, no.1, 
1983. pp.i--13. 

Nicolas, J.M. and K. Yazdaman, 
Integrity checking in deductive 
databases, in Logic and Databases, 
Gallaire and Minker editors, Plenum 
Press, N.Y. 1978. pp.325--346. 

Nilsson, NILS J.. Problem-Solving 
Methods in Artificial Intelligence, 
McGraw-Hill Book Comp., 1971. 

Olive, A., Information derivability 
analysis in logical information 
systems, CACM Vo1.26, No.11, Nov., 
1983. pp.933--938. 

Singapore, August, 1994 



(291 

(301 

(311 

1321 

r331 

[341 

[351 

APPENDIX: 

Owicki. S. and L. Lamport. Proving 
liveness properties of concurrent 
programs, ACN Trans. on Prog. Lang. 
and Syst., vol.4, no.3, July 1982. 
pp.455--495. 

Reiter, R., An Approach to Oeductive 
Question-Answering, BBN Report 
No.3649, Cambridge, Hass. ( Sept. 
1977. 

Robinson, J.A., A machine-oriented 
logic based on the resolution 
principle, J.ACH. ~01.12, no.1, Jan. 
1965. pp.23--41. 

Rolland, C., 5. Leifert and C. 
Richard, Tools for information system 
dynamics management, Proc. 5th Intl’ 
Conf. on VLOB, Oct. 1979. pp.251-- 
261. 

Schiel. U., An abstract introduction 
to the temporal-hierarchic data model 
LTHH), Proc. 9th Intl’ Conf. on VLOB. 
Florence, Italy. Oct.31--Nov.2. 1983. 
pp.322--330. 

Sernadas, A., Temporal aspects of 
logical procedure definition, 
Info.Syst. vo1.5. No.3, 1960. 
pp.l67--107. 

Winograd, T., Beyond programming 
languages, CACH Vol.22 No.7, July 
1979. pp.391--401. 

PROOF (OF THEOREM 4.11. Suppose that P is true in 
a legal database state Si, i.e., SiFP. Since Si 
is legal, i.e., Si&C. Therefore, Sik(PUCSC) and 
hence PUCSC must be consistent. Now suppose that 
PUCSC is consistent and let Sj be a model of 
PUC*c. We have Sj KcsC and hence Sj is legal. 
However I since Sj p and hence the operation is 
applicable in some legal database state. E.Q. 

PROOF (OF THEOREM 4.2). We prove the case for the 
precondition. Suppose that Si is a legal database 
state and Si p. Since S, is legal, i.e., Si kCSC 
which implies that Sip,. Thus, SiF(PUCT 1. Since 
a611k(CLlJP) implies that a is a logical 
consequence of CTUP. This implies that every 
model of ClUP 1s a model of a and hence Siba. 
E.Q. 

Pcrmksion to copy without fet all or part of this moterkl is zmnted 
provided that the copies arc not made or dktributed for dkect commerckl 
advantage, the VLDB copyright not& and tht titk of the publication and its 
date appar, and not&r is given that copybtg Is by pwmltslon of the VW hW 
Data Base Endowment. To copy otherwke, or to npublkh, ~uircs a fee 
and/w speck1 pctmksion from the Endowment. 

Proceeding8 of the Tenth International 
Confrrenco on Very Large Date Baaea. 

Shopon, Auguat, 1984 




