
A TEMPORAL FRAMEWORK FOR
OATABASE SPECIFICATION AN0 VERIFICATION +

C.H. Kung*
Dept. of Computer Science

The Norwegian Institute of Technology
Trondheim NORWAY

ABSTRACT: A database specification consists of
static and temporal constraints and a set of
database operation descriptions. A database iS
viewed as a dynamic object and a sequence of
database states constitutes an evolution of the
database. A formal method for verifying database
specifications is proposed. The method checks if
the static constraints are consistent, analyses

the database operation descriptions with respect
to the static constraints to ensure that each
operation can ever be executed, and finally, it
verifies that each permissible sequence of

operations satisfies all the temporal
constraints.

KEYWORDS AND PHRASES: Software Engineering,
Temporal Database, Semantic Integrity, Formal
Verification of Specifications.

IINTRODUCTION

The data models and database description
languages that have been proposed during the last
decade can be roughly classified into four types:

1)

2)

Static models provide facilities for
describing only a snapshot of the
application. They may include process models
which can be interpreted as sequences of

computer instructions. Examples are the

relational model of data, the Entity-
Relationship model and the NIAH model.

Dynamic models provide declarative facilities
for modelling state transitions without
considering in full detail the mechanisms
which achieve them. Usually a database

operation is specified by a pair of one
precondition and one postcondition. Examples
are condition/event Petri-nets, ACH/PCM,
BASIS [201. and 1121.

l This research is financially supported by
NORAD. NORwegian Agency for international
Development.
* On leave from the Chinese Academy of
Sciences, Beijing, China.

Proceeding? of the Tenth Intemrtlonal
Conference on Vety Lerge Date Baeea.

3J

41

Temporal models allow the specification of
time dependent constraints such as "age must
not decrease". Examples are found in
~B1~141~341. Temporal logic is commonly used.
Our approach is a combination of the dynamic
and temporal .approaches.

Full time perspective models emphasize the
important role and particular treatment of
time in modelling reality (see e.g., t711.
CIAH IS1 belongs to this type. Other
researches are found in [4][231111.

Static approaches were proposed and focused by
the mid-1970's, dynamic approaches started during
the late 1970's and temporal/full time
perspective approaches begin in the 1980's. More
about the 4 types of models are in 1191.

Despite this development in data modelling, the
qualitative aspects such as model validity,
consistency and reliability has yet received very
little attention from the research community. In
particular, few results have been published on
formal verification of database specifications.

BY formal verification of a database
specification, we mean a formal process which
ensures that the various components of the
specification are free from conflict. That is,
the database specification must be consistent.
There are two important aspects concerning formal
verification of database specifications. First,
the consistency of a database specificaiton is a
necessary condition for a database to be regarded
as a representation of some perceived world I261.
Second, it is shown in cl11 and T71, that faults
which are introduced during database
specification and design have a major impact on
systems development effort. If a database
specification is formally verified before
implementing it, then certain specification
errors might be removed prior to the operational
phase, which might reduce the total systems cost.

In this paper, we propose a temporal framework
for database specification and verification. A
database specification consists of three parts:
11 Specification of stat& ms (53.1). 2)
Specification of a constraints (93.31 and
31 Specification of poera tioas (53.51.

Singepore,Auguet,lgB4

91

Correspondingly, the consistency checking method
also consists of three parts: 1) Consistency

checking of static constraints (94.1). 2)
Operation analysis (34.2) and consistency
checking of temporal constraints (94.3) which
will only be outlined in this paper. The interest
reader is referred to 1191.

z-WORKS

A survey of more than 70 reports about
computerized information systems along the
temporal dimension is found in c31. Some
temporal/time perspective approaches for
information systems specifications and design are
found in [34lC261171 and [321. An analysis of
three conceptual models with time perspective is
found in 1161. Some temporal frameworks for
database specification are presented in talT141
and c331. In I61 and Ct41, constructs for
specifying static constraints, transition
constraints and database operations are provided.
Database transactions are assumed to be specified
in terms of database operations. In C331, a set
of static, dynamic and side-effect axioms are
stated for maintaining the consistency of a

database.

Our framework is similar to te11141. The
difference is in the explicit specification of

preconditions and the postconditions of
operations. In this sense, our approach is in

agreement with the opinion held by 12116lC351.
That is, a specification should specify the rules
and assumptions explicitly and suppress
exceptional details (when needed), in order to
facilitate comprehension and change.

Formal methods for verifying information

system/database specifications are found in

~261C201~221151. The work in 151 concentrates on
the specification and verification of static
constraints: insert, delete, update operations
are not considered. An actual database iS
required in the verification makes it very
expensive to use. A method for verifying liveness
of concurrent programs is found in I291 which
influences the semantics and verification of the
temporal constraints in this paper. Finally, an

application of our approach to the verification
of communication protocals is found in Cl51 which
contains a PROLOG implementation of some relevant
parts.

3 DATABASE SPECIFICATION

3.1 Static Constraints

Static constraints of a database are specified as
first order sentences. Examples of static
constraints are:

Proceedings of the Tenth International
CmkmnCa on Very Large Data Bases.

SC1 : Every employee earns more than $20,000.

(VxI(Vy)(E(x,yI -- y > 20,000 1

where E(x,y) means that x is an employee with
salary y.

SC2 : Every manager is an employee.
(Vx)(iy)T Mo() - E(x,y) 1

where M(x) means that x is a manager.

3.2 Thg Semantics

A database state is defined as a structure STu,I)
of the first order language L, where u is called
the universe of the structure which is a non-
empty set of individuals: I is the interpretation
of the structure which assigns an element of u to
each constant symbol, a mapping from IF to U to
each m-ary function symbol, and an n-ary relation
R# to each n-ary predicate symbol of L. A
structure scu, I) satisfies a closed wff w iff w
is true under the interpretation. In this case,
we write SpU to mean that w is satisfied by S. A
theory T of L is defined as a set of sentences of

LB it follows that SFT iff S@ for all w6T. S is
called a model of T iff SkT. For our purpose, it
is convenient to regard a database state as
consisting of a set 5 of atomic or the negation
of atomic formulae (i.e., literals) such that for
no aGS, "aES. Let SC be the set of static
constraints of a database. By definition, a
database state Si is a legal database state iff
Si FSC.

A result from model theory seems to be very
useful for our purpose. It states that a set of
wffs is consistent iff it has a model (m
extended completeness theorem [91I. It follows
that if SC is inconsistent, then there exists no
legal database state; and if there is a model for
SC then SC is consistent which implies that there
will be at least one legal database state.

3.3 TemDod constram

Temporal constraints are defined in a temporal
language. In the definition, we use the following
abbreviations: ta stands for temporal assertion,
tap (taf) for temporal assertion to the past
(future). top (tqf) for temporal quantifier to
the past (future). The temporal quantifier
J~IIY!+ is read “always in the past excluding the
present", and sya~+,' is read 'ever in the future
including the present. ” The other 6 temporal
quantifiers can be phrased similarly.

In BNF, the temporal language can be defined as
follows, where <op> denotes the name of an
operation, which will be defined in 33.5.

<temporal-constraint> ::= <ta>
<ta) ::= "<ta> 1 <tal> b <ta2> 1 <tap> 1 <taf> 1

<wff'> 1 EXECUTABLE(<op>)

Singapore, August, 1984

92

<tap> ::= <tqp><wff'> 1 <tqp><tap> 1 -<tap> 1
<tapl>b<tap2>

<taf> ::= <tqf><wff'> 1 <tqf><taf> I "<taf> I
<tafl>b<taf2>

<tqp> : := AlIAYA+ I AhAYL+ I 1YLL+ I SYSLC’
<tqf> : := AlYAYA+ I 11IAYA”’ I AYAE+ I rlZ1”*
<wff'> ::= wff in which free variables are

<parameter>s.
<parameter> ::= X I i I . . 1

<function-symbol>I<parameter-list>)
<parameter-list> ::= <parameter> I

<parameter>,<parameter-list>
<function-symbol> ::= any function symbol of L.

The above definition is extended to include V and
- as usual.

In agreement with [14]. we distinguish global and
local quantifications. We use the concept of
-. While a universally quantified
variable (e.g., VxJ ranges over the individuals
in a particular database state, a parameter
(e.g., XI ranges over all the individuals of all
the database states. In a particular state, a
parameter represents an arbitrary individual
having some property, e.g., being an employee.
When talking about a sequence of states, e.g., a
temporal assertion, a parameter may assume a
value in a database state, however, all the
occurrences of the parameter must assume the same
value throughout the temporal assertion.

As an example, the temporal constraint stating
that ‘salary must not decrease” can be expressed
as TE(x,yl is as defined in 03.1):

tc1: E(x,y) - d~ry~+tVz)t Etx,z)-z>y 1

The temporal constraint stating that ‘whoever has
been an employee cannot be hired again” can be
expressed as:

tc2: aya~+’ (Iy)E(x,y) - -EXECUTABLE(hireInlI

where hire(x) is the operation of hiring x, which
is to be defined in the next subsection. This
expression specifies that sometimes in the past
including the present if i has been an employee,
then the hire(x) operation is not executable.

U Lhe Semantica

Let 0 = ...S-1SoS1S2..., denote a sequence of
database states, where SO denotes the current
state, . . .S-2 S-1 denotes the history, and
Sl s2.. . denotes the future of the database. Let
aj denote the sequence of states . . . Sj-1Sj or
the sequence of states SjSj+l..., depending on j
=< 0 or j >=O. Further, we use 6(<op>,S,) to
denote the state resulting from executing the
operation <op> in state 5,. The semantics of the
temporal assertions are as follows:

Proceedings of the Tenth International
Conference on Very Large Data Bases.

If w is not a temporal assertion, then ob iff
sob.
Now let w denote any temporal assertion, then
okl_rryitw iff (Vj<Ol (oj bU,
okl_rdyl+‘w iff tVj=<O) (0, k1
okrtS+w iff (ij<OI (0, bI
ok~r~*‘w iff (3j=<OI(o, bV,
oklrayi* iff (Vj>Ol(o, k)
okl~*yr+‘w iff (Vj>=Ol (oj bl
okrz~+w iff (Ij>O1(oj k)
ok~z~+‘w iff (ij>=OJ(ol bU,
ok-w iff not ob
0kxEcuuut cop> 1 iff the following conditions
hold :
okhe temporal assertion of the operation <op>.
SoFthe precondition of the operation <op>.
6(<op>, So 1 kthe postcondition of <op>.

Let wl and w2 be two temporal assertions:
ok(wlbw2 1 iff obl and ob2. The definition is
similarly extended to include V and -.

We must define the,semantics for oj, we have:

If w is not a temporal assertion, th
sj b*

0; klygyi+'w iff j>=O a
of &rrtw iff j=<O and
oj k~~~+‘w iff j=<O and
oj krlr+w iff j>=O and
oj kr~S+‘w iff j>=O and
0, k-w iff not oj b
aI P+UUMU(<op> 1 iff

If w is a temporal assertion, then
oi kl!rylcW iff j=<O and (Vk<j) (ok bLI)
Oj &~I~Y~+‘w iff j=<O and (Vk=<jI(ak~
Oj &rryr+w iff j>=O and (Vk>j)(okbw)

nd (Vk>=jI(i+b
(Ik<j)(ok~)

lIk=<j)(ok~V)
(Ik>j)(okbW)

(Ik>=j)(okl3v)

a,Ft.he temporal assertion of the operation <op>.
Sj bhe precondition of the operation <op>.
it<op>, Si I Ithe postcondition of <op>.

n oj b iff

If Wl and q are two temporal assertions:
oj ~(w,bw2) iff oj bl and oj hp. The definition is
similarly extended to include V and -.

U PParatioa Description?

An operation description consists of a temporal
assertion to the past, which specifies the
condition on the database history for applying
the operation, a precondition and a
postcondition. Syntactically, an operation is
defined fin BNF) as follows:

<operation> ::= <op>: <op-desc>
<op> ::= <op-name>(<parameter-list>) I

<op-name>* (<parameter-list> 1
<op-name> : : = string of lower-case letters
<op-desc> ::= <tap'>, S, k<pre>

==> i(<op>,S,)k<post>
<tap'> : := *fly I <tap>
<pre> ::= <wff’>
<post> ::= <wff’>

Singapore, August, 1984

93

In the above definition, <parameter-list>, <tap>,
and <wff'> are as in 93.3. <op-name>* denotes an
update operation while <op-name> denotes an

insert or delete operation. We assume in this
paper that an insert (delete) operation makes one
or more atomic formulae become true (false). An

update operatt 2n changes some of the terms of
atomic formulae. 2"~ is used as a dummy temporal
assertion when there is no need to refer to the

past.

The following examples serve to illustrate the
specification of some operations. The meanings of
the predicate symbols are as defined in 53.1.

hire(x): ~~ry_~+ -(lyIE(i,yIl Sib-(3y)E(x,yl
==> 6(hire(xI,SiI ~(~y)(E(x,y)&y>ZOOOO)

It states that “if it was always true in the past
(the temporal assertion), and it is true. in state
Si I that x is not an employee, then in the state
resulting from hiring x in state Si we will know
that x is an employee with some salary y>20000."
Note that the temporal assertion “~1~iyz+
-(fy)E(x,y)" is required in this operation
description because of tc2 in 93.3. We require
that y>20000 because of SC1 in 53.1. Other
operation descriptions are listed below:

fire(x): iny, Sib(ly)E&y) b -H(x)
==> li(fire(x1 ,Si !k:(ly)E(x,y)

raise*(x,lO%*y): II!Y s SikE(x,y) ==>-
~(raise*(~,10%*~),Si)~E(x,~+10Z*y)&y+10%*;)20000
promote(i): ?nY I Sib(3y)E!x,y1 b -t$xl

==> 6(promote(x),Sj)l?lM(x)
demote(x): my, SikM(x)

==> 6(demote(x),fi)YM(~)
Engage(x): *Ry, Sik"(3y)E(x,y) b -M(i)

==> b(engage(x).Si)tM(K)

Note that a postcondition in problem-solving of
artificial intelligence may be divided into two
parts: the "added' and the "deleted" statements.
Further, there are the "frame axioms” which
specify that anything that is not changed by an
operation remains true in the new state 12411171.
The distinction of added and deleted statements

as well as the frame axioms are implicit in our
approach. They are to be treated by the checking
method because a database specification is not
meant to be an executable object. We will return
to this point in 54.2.

h VERIFICATION w DATABASE SPECIFICATION

u Verification gf Static Constraints

We first briefly review the results from [211
which may be used to reduce the effort in using a
theorem-prover, e.g., the resolution principle
[31]. Let C be a set of fiausec. The ynifim
diaraoh GIC)=<C,E> is a directed graph with C as
its points and <ci,~i>EE if Ci contains a

positive literal which is unifiable with the

negation of some negative literal in c1 (for
unification see [27][31]). If G(C) consists Of

Proceedings of the Tenth International
Conference on Very Large Data Bases.

several subdigraphs, G(C,), i = 1, 2, then C
is consistent iff each Ci is consistent. If G(C)
contains no point of indegree (outdegree) zero,
then C is consistent. If G(C) has no semicycle
and C contains no two clauses cl, c2 with snme
distinct literals a, fiEc, and some distinct
literals y ,nEc2, such that a is unifiable with -y
and g is unifiable with -n, then C is said to be
compact,. If C is compact, then the consistency of
C is decidable, i.e., only finite many new
clauses can be produced by unrestricted
resolution 1211.

We may now present the verification process:

1) Transform the set SC of static constraints
into a set CsC of clauses. This can be easily
done (see e.g., T271).
2) Construct a unifiability digraph G(CscI for
the set CsC of clauses obtained in 11. For each
subgraph G(CiI of G(CsC), where Ci~CSC, perform
the following steps. If each Ci is consistent,
so is CsC .
3) According t 0 Robinson's purity grincinle
T311, we may remove any point of G(Ci) whrch
contains a literal not unifiable with the
negation of any literal of Ci without affecting
the consistency of Ci. (This can be done more
easily in a sonnection w [ISI). Repeatedly
apply this principle until no clause can be
removed. Denote the resulting digraph by G(CI 1.
4) From G(C' 1 determine if CI is consistent.'
5) If the consistency 'of CI cannot be
determined in 41, then use G(C: 1 #.o determine
if C: is a compact set of clahses. If so, then
a bottom-up resolution process is stopped when
the empty clause is generated (then Cl is
inconsistent) or no new clauses can 1 be
generated (then Cl is consistent). Otherwise,
certain time bound Lust be set depending on the
theorem- prover used and the complexity of the
input. When the bound is reached before any
inconsistency is detected we take it for
granted that CI must be consistent. An
alternative is tb modify the static constraints
so that the Cy resulting from 3) is either
consistent or'compact and hence its consistency
can be formally checked.

Our example 1 scl, sc2 1 in 93.1 is consistent
since both of them can be removed in step 3).
Nontrivial examples can be found in T191.

(.2 Doeration Analvsis

4 2 1 Informal Discussion of Basic Ideas L

Suppose that we have a relational database with
only one static constraint: scl': (Vx)(fy)(H(x)
---, E(x,y) b y>20000) which says that every
manager is an employee having some salary more
than 20000. For simplicity, we assume that there
are only one person identified by name n and two
salary values s<20000 and s'>20000. It can be
easily seen that Sl, S2, S3 in Fig.la are legal

Singapore, August, 1984

94

database states. Now consider the operation f(n),
i.e., fire the person identified by name n, which
is applicable in a legal database state if

<n,s’>CE and after applying f (n1, <n,s’> is
deleted from E. Depending on the state in which
f(n) is applied, different state transitions may
occur tel. There are three transitions to be
considered in this example which we denote as fl,
f2 and f3 for easy explanation (Fig.lbI.

tl E f2 f3
51 (1 t<n,s’>I S2 s3 SC
s2 fl 0
S3 t<n>I {<n,s’>I
S4 I<n>I II

nz

fl p2
s5 II t<n,s>I Pl
S6 f<n>l f<n,s>l Sl 55 S6

a b

Transition fl has the following properties: the
operation is applicable in a legal database
state: the application yields some legal database
state; anything that is not specified to be
changed by the operation remains true in the
resulting state (i.e., the frame problem).
Transition f2 does not have the last property
since it has deleted <n> from H which is not
specified in the fire operation. Transition f3
does not have the second property and hence it
should never occur in a database. It can be seen
that the operation description is not sufficient
for carrying out the operation: If transition fl
is wanted, then the operation description should
contain in the “precondition” that the operation
can be applied if <n,s’>fE and <n>CH. If
transition f2 is wanted, then the operation
description should contain in the ‘postcondition’
that after executing the operation, <n.s’>bE and
<n>@l.

Suppose that the relational database imposes one
more static constraint sc2’: IVxI(VyI(E(x,yl --+
y<ZOOOO) which says that every employee has
salary less than 20000. SC1 * and sc2’ are
consistent since 52 and S.5 in Fig. la are two
legal database states, although in this case Sl
and 53 are no longer legal. Now consider the
operation p(n), i.e., promote n, which specifies
that if <n,s>EE and <n>CH then its application
leads to the state in which <n>CH, i.e., pl in
Fig.lb. However S6 is not a legal database state
since SC1 * does not hold. If we change the
postcondition so that after applying the
operation, <n>EH and <n,s> is replaced by <n,s’>,
i.e., p2 in Fig.lb, then sc2’ will not hold. In
fact, there is no way to promote any individual
to be a manager because scl’ and SCZ’ together
prevents us from inserting any tuple into M.

In the next section, we will present a method
which will analyse each operation description to
make sure that the operation is applicable,
yielding legal states and the description is

Prooeedlnae of the Tenth International
Conference on Very Large Date Bases.

95

sufficient for characterizing the POStState.

. .
~22 ~orlllrl AnrlvrFs nf !i!mdAm DescrrDtrons

First notice that when we start to analyse the
operations, we already have a consistent set SC
of static constraints. Second, following Gallaire
and Nicolas and Hinker I131I261t251, we
distinguish two kinds of static Constraints:

those that are used as integrity constraints
(e.g., every manager is an employee 1 and those
that are used as derivation rules (e.g., xc)y b
y>z -+ x>tl.

In what follows, let P and 0 denote the clause
forms of the precondition and the postcondition
of an operation top> in question. Let SC and
SCTgSC denote the set of static constraints and
integrity constraints and let CSc and CT be the
clause forms of SC and SCT respectively. We have
the following

JHEDRFW u An operation is applicable in some
legal database state iff P IJ CSc is consistent.
(We put the proof in the appendix)

Let C be any set of clauses. Let R(C) denote the
union of C with the set of all clauses that can
be obtained by resolution between pairs of
ciauses in C. By g*(C) we mean lT(lT(C) 1, and go(C)
= C. It can be proved that for all c for all k,
cEllk (C) implies that c is a logical consequence
of c. In particular, the set of literals
logically following C is defined by #(C)={a : a
is a literal b (Ik)(aEITk~C))I. We have

JHFoRFfl u Let Si be a legal database state and
a any literal. If aEllk (CTUP) (resp. lTk LCTUQ)) for
some k and Si p (resp., Si HI. then Si pl. (We put
the proof in the appendix)

COROLLARY. If CTUP (resp. CTlJgl is compact, then
#(CTUP) (resp. #(CTUQIl is finite and hence Si is
finite.

The operation analysis is performed in two main
steps: II The analysis of the insert and delete
operations. III The analysis of the update
operations.

I) The analysis of the insert and delete
operations: If <op> denotes an insert or delete
operation, then

il <op> is applicable in some legal database
state iff P U CSC is consistent (Theorem
4.1). If so, the prestate of <op> is
characterized by the set (Theorem C.2)

prestate(<op>) = $CCT UP)

This set is not a complete representation of
the prestate but only a characterization of
a relevant part of a legal database state

such that the integrity constraints are true

Singapore, August, 1994

in it. The characterization of the prestate
is similar to the use of the integrity
constraints as generation rules under a
closed world assumption (conf. 1261).
Furthermore, if CIUP is compact, then
Q(CIUP) is finite. Otherwise, we have to use
some of the SC1 as derivation rules in order
to gaurantee that Si is finite (Theorem
4.2).

ii) The application of <op> yields some legal
database state iff poststate(<op>) U CsC is
consistent, where

poststate(<op>)
={a : aE$(QU+(<op>))) U +(<op>) and

+(<op>)=Ia: aE$(PUCI)btaIUQ is consistent)

Intuitively, O(<op>) denotes those literals
that are true in the prestate and are not
falsified by (the postcondition of) <op>.
Note that the frame problem is implicitly
treated in this step.

iii) The operation description is sufficient for
characterizing the poststate if
$(ClUQ)_cpoststate(<op>l. (Theorem 4.21

iv) If one of the above test fails, we must
modify the static constraints and/or the
operation description and repeat the whole
process until each operation description
passes the above tests.

v) At this stage, we should have a list of
state transitions each of which can be
depicted as

0
<opi>

si
Q ‘j

prestate(<opi>) poststate(<opi>)
where Si , Sj are the (unique) names given to
the prestate and the poststate of the
operation <opi>.

vi) We now merge some of the prestates andlor
poststates as followst:

a) LetSt be a presetate and S1 be a
prestate or a poststate. If Sk&+
(improper set inclusion), merge Sk into Sl
(i.e., draw an arc from 51 to S, for each
arc from Sk to S, for all m and label the
arc accordingly; remove Sk along with its
arcs 1. This step is repeated until no
merge is possible.

b) Let Sk, S1 be two poststates. If Sk"S1
merge Sk into S1 . Repeat this step until
no merge is possible.

t Sometimes we have to rename the parameters
and/or the variables, however we cannot
discuss this here due to space limit.

Proceedings of the Tenth International

Conference on Very Large Data Basas.

vii) At this stage, we should have a transition
diagram for the insert and delete
operations.

Fig.2 shows the result of analysing the operation
descriptions defined in 93.5.

prestate
hire 5, =j-E(x,Y) I

-Ho()~~ _
fire S3ftE(x,f(x)),

f(x)>20000, -M(n:
pro- S,=(E(kf(x)),

poststate
S,;IE(i,f(xH,
f(x)>20000,-M(i
S4ft"E(x,y). _

11 f(x)>20000,-H~x)~
S6=IE&,f(x)),

mote fK)>2~000, "H(i)1 f(;)>ZOOOO M(n)) - 1
de- S,ftE(x,f(x)), S8iIE(x,f(x)),
mote f(x)>20000, M(x)) f(x)>20000, -M(x)1

hire(x) demote(x)

fire(x) promote(x)

fie 2, Ilk Dan ition. Qiaaram fes Lb2 insert aaQ
L 9Derations

Note that the engage operation cannot pass
substep ii) and we have chosen to remove the
engage operation description from our study.

III In a similar way, we may analyse the update
operations. The result is shown in Fig.3. The
detailed steps and the interpretation of Fig.3
can be found in 1191.

hire(x) demote(x)

Fig.3 The transition diagram of the example 4-

(.3 Yerification nf lemoorti gonstraintq

The basic ideas and steps for verifying the
temporal constraints can be informally stated as
follows (1191 gives the details):

1) Transform the transition diagram of the last
section into a family of finite automata fai.
This is done by taking in turn each state of
the transition diagram as the initial state
and let every state be a final state. Si is
interpreted as the current database state.
The fai's are used to generate test sequences
and construct the pushdown automata pai's.

2) Generate test sequences: There is a method
for generating a set of && jieouences for
any given finite automaton with initial state

Singapore, August, 1994

S, [lOI. Let TV denote the set of test
sequences that is generated for fa,. Then for
every transition from Sjt to Sj2 on <opk>,
there are sequences w and w<opk> in TI such
that w forces fa, into Fill from its initial
state Si . Further, every WET, is of length
less than or equals to n. where n is the
number of states of fa, .

3) Construct pai’s: By definition, a temporal
constraint specifies some condition which
must be satisfied by every permissible
sequence of operations. A sequence of
operations is a permissible sequence if it is
permitted, by the operation descriptions, to
be executed on the database, which is in some
current state S,. To analyse whether a test
sequence is a permissible sequence, we
transform the fa, into a pushdown automaton
pai where the pushdown ‘symbols’ of pai are
temporal assertions. The top element of the
pushdown store is intended to represent the
database history before and excluding the
current state at all time. At each step, the
Pai examines if the stack top implies the
temporal assertion of the operation in
question. If so, it enters a new state and
tries to remember that something has happened
by pushing a temporal assertion onto the
stack. This temporal assertion thus
represents the new database history and it is
obtained by considering the preceding
database history and the precondition of the
operation in question. A test sequence is
permitted to be executed in the database
state Si iff it is accepted by pa,.

4) Verify temporal constraints: For each test
sequence cop, >. . . <op,>Er, that is accepted by
Pai I there is a sequence of states
SiSi+l* * eSi*. SUCh that Si+j is entered from
Si+j-1 on <OPj> in fai, j=l,..., m. We call
such a sequence of states a partial execution
sequence since it represents only the future
seen from Si or only the past seen from Si+a.
The set of all partial execution sequences
over all i is denoted by I’. It is an easy
task of forming the set I of total execution
sequences. If wsj, 5, n are in I’, then WSjq
is in 1: Sj is interpreted as the current
state, w the history, and n the future of the
database. We see that each element of I is of
the form ...S-lSOSl . . . which we have used to
define the semantics of the temporal language
in 93.4. Thus, the verification of the
temporal constraints is to verify that each
element of I satisfies each of the temporal
constraints according to the semantics
defined in 93.4.

3 CONCLUDINC REMARKS

In this paper, we have presented a temporal
framework for database specification and
verification. The specification of databases is
declarative and application oriented. For
simplicity, we have chosen in this paper to
specify the static constraints in the first order
logic. In fact, many-sorted logic could have been
used instead. In this case, the unification
algorithm will be slightly different, see e.g.
[301. Further extention of the temporal language
that is used to specify the temporal constraints
and the temporal assertions of the operations is
possible. For example, we may include tense logic
operators such as “before”, “after”, “at” etc.
1341. We want to stress that queries to the
database can be expressed in the framework by
using set notions and set operations, although we
did not discuss this aspect in the paper.

The verification of a database specification can
be supported by existing theorem-proving
mechanisms, e.g., the resolution principle. In
this paper, we have chosen to present the
verification framework in a straight way without
considering efficient strategies for carrying out
the tasks. In practice, heuristic information and
more intelligent strategies should be used
12711171.

The author wants to thank Prof.Solvberg for his
encouragement and constructive discussions.
Thanks to Tore Amble for informal discussions and
to Even Johansen for making the macros for the
mathematical symbols.

REFERENCES

Cl3

t21

t31

141

Anderson, T.L., The Database
Semantics of Time, Doctoral Thesis,
Univ. of Washington, Jan., 1991.

Balzer, R and Neil Goldman,
Principles of good software
specification and their implications
for specification languages, National
Computer Conference, USA, 1981.
pp.393--400.

Bolour, A., T.L. Anderson, L.J.
Oekeyser and H.K.T. Wong, The role of
time in information processing: a
survey, ACM SIGART Newsletter April
1982. pp.28--48.

Bolour, A. and L.J. Dekeyser,
Abstractions in temporal information,
in Inform.Syst., vol.8, no.1, 1983.
pp.ll--49.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1904

97

[51

[61

171

161

191

1101

Ill1

ll21

[131

I141

1151

[161

Brodie, M.L., Specification and
Verification of Database Semantic
Integrity, Ph.D Thesis, Computer
Systems Research Group, Univ. of
Toronto, 1978.

Bubenko, J.A. jr., On the role of
'understanding models' in conceptual
schema design, Proc. of 5th Intl'
Conf. on VLDB, Rio De Janeiro,
Brazil, Oct.3--5, 1979. pp.129--139.

Bubenko jr J. A., Information
modelling in the context of system
development. Invited paper to IFIP
Congress, 1960. pp.395--411.

Castilho, J.M.V. de, M.A. Casanova,
and A.L. Furtado, A temporal
framework for database
specifications, Proc. on 6th VLOB
Conf., Mexico City. Mexico, Sept.B--
10, 1982. pp.280--291.

Chang, C.C. and H.J. Keisler, Model
Theory, N.H. Publ. Comp., 1973.

Chow, T.S., Testing software design
modeled by finite-state machines,
IEEE Trans. on Software Engineering,
Vol. SE-4, No.3, May 1976. pp.176--
187.

Connor, M.F., Structured analysis and
design technique, in Systems Analysis
and Design, A Foundation for the
1980's, Edited by Cotterman, W.W. et
al, N.H. Publ. Comp., 1981. pp.213--
234.

Furtado, A.L., Dynamic modelling of a
simple existence constraint, in
Information Systems, Vo1.6, 1981.
pp.73--80.

Gallaire, H. and J.Hinker, Logic and
Data Bases, Plenum Press, N.Y., 1976.

Golshani, F., T.S.E. Haibaum and M.R.
Sadler, A modal system of algebras
for database specification and

query/update language support, Proc.

of 9th Intl’ Conf. on VLDB, Florence,
ttaly, Oct.31--Nov.2, 1983. pp.331--

340.

Hove, J.O., Kungs Metode for
Konsistensbevis og Modellkonstruksjon
Anvendt pa Kommunikasjons
Protokaller, Master Thesis, Dept. of
Computer Science, The Norwegian Inst.
of Tech., Trondheim, NORWAY, 1964.

Kowalski, R., A proof procedure using
connection graphs, JACM, vo1.22,

1975. pp.572--595.
Proceedings otthe Tenth International
Conterence on Very Large Data Bases.

1171

tiei

t191

t201

c211

1221

t231

1243

t251

1261

[271

1281

98

Kowalski, R., Logic for Problem
Solving, Elseview, N.H., Inc., 1979.

Kung, C.H, An analysis of three
conceptual models with time
perspective, in Information Systems
Design Methodologies : A Feature
Analysis, Olle et al (ed.s), N.H.
Publ. Comp., 1983. pp.iSi--16a.

Kung. C.H, A Temporal Framework for
Information Systems Specification and
Verification, Doctoral Thesis, Dept.
of Computer Science, The Norwegian
Inst. of Tech., Trondheim, NORWAY,
1984.

Leveson, N.G., A.I. Wasserman, and
D.H. Berry, BASIS: A behavioral
approach to the specification of
information systems, in Information
Systems, Vo1.8, No.1, 1983. pp.15--
23.

Lewis, H.R., Cycles of Unifiability
and Decidability by Resolution, Aiken
Computation Laboratory, Harvard
Univ. I Tech. Rept., 1975.

Lundberg, B., IHT - An information
modelling tool, Pioc. IFIP WGa.1 WC
on Automated Tools for IS Design and
Development, New Orleans, USA, 1982.

Lundberg, B., An axiomatization of
events, BIT 22, 1982.

Hcarthy, J. and P. Hayes, Some
philosophical problems from the
stanpoint of artificial intelligence,
in Machine Intelligence no.4,
B.Meltzer and D .Hichie (ed.s),
Edinburgh Univ. Press, Edinburgh,
1969. pp.463--502.

Minker, J. and J.M. Nicolas, On
recursive axioms in deductive
databases, Inform.Syst., v01.8, no.1,
1983. pp.i--13.

Nicolas, J.M. and K. Yazdaman,
Integrity checking in deductive
databases, in Logic and Databases,
Gallaire and Minker editors, Plenum
Press, N.Y. 1978. pp.325--346.

Nilsson, NILS J.. Problem-Solving
Methods in Artificial Intelligence,
McGraw-Hill Book Comp., 1971.

Olive, A., Information derivability
analysis in logical information
systems, CACM Vo1.26, No.11, Nov.,
1983. pp.933--938.

Singapore, August, 1994

(291

(301

(311

1321

r331

[341

[351

APPENDIX:

Owicki. S. and L. Lamport. Proving
liveness properties of concurrent
programs, ACN Trans. on Prog. Lang.
and Syst., vol.4, no.3, July 1982.
pp.455--495.

Reiter, R., An Approach to Oeductive
Question-Answering, BBN Report
No.3649, Cambridge, Hass. (Sept.
1977.

Robinson, J.A., A machine-oriented
logic based on the resolution
principle, J.ACH. ~01.12, no.1, Jan.
1965. pp.23--41.

Rolland, C., 5. Leifert and C.
Richard, Tools for information system
dynamics management, Proc. 5th Intl’
Conf. on VLOB, Oct. 1979. pp.251--
261.

Schiel. U., An abstract introduction
to the temporal-hierarchic data model
LTHH), Proc. 9th Intl’ Conf. on VLOB.
Florence, Italy. Oct.31--Nov.2. 1983.
pp.322--330.

Sernadas, A., Temporal aspects of
logical procedure definition,
Info.Syst. vo1.5. No.3, 1960.
pp.l67--107.

Winograd, T., Beyond programming
languages, CACH Vol.22 No.7, July
1979. pp.391--401.

PROOF (OF THEOREM 4.11. Suppose that P is true in
a legal database state Si, i.e., SiFP. Since Si
is legal, i.e., Si&C. Therefore, Sik(PUCSC) and
hence PUCSC must be consistent. Now suppose that
PUCSC is consistent and let Sj be a model of
PUC*c. We have Sj KcsC and hence Sj is legal.
However I since Sj p and hence the operation is
applicable in some legal database state. E.Q.

PROOF (OF THEOREM 4.2). We prove the case for the
precondition. Suppose that Si is a legal database
state and Si p. Since S, is legal, i.e., Si kCSC
which implies that Sip,. Thus, SiF(PUCT 1. Since
a611k(CLlJP) implies that a is a logical
consequence of CTUP. This implies that every
model of ClUP 1s a model of a and hence Siba.
E.Q.

Pcrmksion to copy without fet all or part of this moterkl is zmnted
provided that the copies arc not made or dktributed for dkect commerckl
advantage, the VLDB copyright not& and tht titk of the publication and its
date appar, and not&r is given that copybtg Is by pwmltslon of the VW hW
Data Base Endowment. To copy otherwke, or to npublkh, ~uircs a fee
and/w speck1 pctmksion from the Endowment.

Proceeding8 of the Tenth International
Confrrenco on Very Large Date Baaea.

Shopon, Auguat, 1984

