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ABSTRACT 

A large class of relational database update transactions is 
investigated with respect to equivalence and optimization. 
Several basic results are obtained. It is shown that transaction 
equivalence can be decided in polynomial time. A number of 
optimality criLeria for transactions are then proposed, as well as 
two normal forms. Polynomial algorithms for transaction optimi- 
zation and normalization are exhibited. Also, an intuitively 
appealing system of axioms for proving transaction equivalence is 
introduced. Finally. a simple, natural subclass of transactions. 
called t-aiyclic, is shown LO have particularly desirable proper- 
ties. 

1. Introduction. 

Static aspects of databases have been extensively studied 
using the formal framework of the relational model jC, M: Ul]. 
More recently, some dynamic aspects have been considered in 
several investigations IAH, BS. BG, Br, CCF? CW. DeAZ, FUV, 
HK, PBR. R, Uh. Ve. Vii. Vi2.. However, there have been very 
few theoretical studies of database updates and transactions. 
Indeed, most previous investigations of transactions have focused 
on concurrency issues !BG, PBR;. In the present paper, we 
introduce a formal model of transactions in relational databases 
and present several basic results on transaction equivalence and 
optimization. 

Transactions are viewed here as sequences of elementary 
operations forming a semantic unit. In this paper, we focus on a 
widely accepted class of transactions. Specifically, the& transac- 
tions consist of sequences of insertions, deletions and updates, 
where the selection of tuples (to be delet.ed or updated) involves 
the inspection of individual attribute values for each tuple. Most 
of our results concern transaction equivalence and optimization. 
Indeed, our investigation can be regarded as the analogue for 
updates of fundamental invest,igat.ions on query equivalence and 
optimization. 

Permitsion to copy without fee all or part of this material & granted 
provided that the copies an not mode or dtetributed for direct commerc&l 
advantage, the VLDB copyright notice and the title of the publkation and its 
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Wit6 resp**f to equivalence, two techniques for proving 
transaction equivalence are exhibited. The first one is based on 
a graphical, non-procedural representation of a transaction. and 
leads to a polynomial time algorithm for deciding transaction 
equivalence. The second one is based on a system of axioms. and 
highlights the interaction between insertions, updates and de]+ 
tions. 

With regards to transaction optimization, several optimal- 
ity criteria are discussed and formalised (for instance, one criteria 
is the length of the transaction). It is shown that each given 
transaction can be optimired with respect to all the proposed cri- 
teria. A polynomial time optimiration algorithm is then 
presented. 

The paper is divided into six sections. The second section 
contains preliminary concepts. In Section 3 the formal model for 
our transactions is presented. A graphical, non-procedural way 
of representing the effect of transactions is introduced in Sec- 
tion 4. This is then used as an independent measure for the 
power of our transactions, and for showing that transaction 
equivalence is decidable. Section 5 is devoted to transaction 
optimization. Finally, in Section 6 the system of axioms for 
proving transaction equivalence is introduced. 

Due to space limitations. some results and definitions are 
presented informally and others are omitted. (In particular, no 
proofs are included.) 

2. Preliminaries. 

In this section we briefly present some well-known concepts 
used throughout the paper. 

We first present some basic concepts of relational data- 
bases. We assume dhr existence of an infinite set of symbols, 
called attributes, and for each attribute A, of an infinile set of 
values, denoted dam(A), called the domain of A. A relational 
schema is a finit.e set of attributes. Let U be a relational schema. 
A tupIc t over II is a mapping from U such that for each A in I!, 
t(A) is in dam(A). The set of tuples over U is denoted Tup(U). 
A relation over U is a finice set of tuples over U. 

A database rchcma is a pair (U,S) where U is a finite set of 
attributes, ahd S a set. of subsets of U such that 
U =- c!{X j X in S}. An instance 1 of a database schema (U,S) is 
a mapping from S such that l(X) is a relation over X for each X 
in S. The set of all the insLances of a database schema (U,S) is 
denoted lnst.(U,S). 

Wp now present some other concepts and notation used in 
t.he paper. A (directed) graph is a pair (V,E) where V is a finite 
set of clrmrnts, and E is a subset of V x V. An element in V is 
called a IFertez. An element in E is called an edge. Let 

(*) This work was partly performed while author was a Visiting Scientist at I.N.R.I.A. 
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G : (V.E) br a graph and p a vertex of G. The in-degree of p, 
denoted id(p), is the number of edges incident into p. The out- 
degree of p. denoted ad(p). is the number of edges incident from 

P. 

Let \’ be a set of elements. Let E and E’ be subsets of 
V x V. The product of E and E’, denoted E 0 E’, is defined by 
E 0 E’ = { <x,z> ] for some y, <x,y> in E and <y,z> in E’}. 

Finally, 
b 

B 
A 

means that B can be proven using the 

set of axioms A. 

3. A model for transactions. 

Informally, a transaction is a sequence of instructions 
viewed as a semantic unit. Most commercial database manage- 
ment systems provide three types of atomic instructions which 
are used to build up transactions. 

The three types of atomic instrucrions are: 

(1) insertions (appending to a relation a tuple or a 
set of luples), 

(2) deletions (suppressing from a relation all 
tuples satisfying a given condition), 
and 

(3) updates (modifying in a relation all tuples 
satisfying a given condition). 

in some dbms’s the conditions used to select from a relation 
the set of tuples to be deleted or updated can be quite complex. 
Generally, these conditions may use the full power of tuple rela- 
tional calculus. As a consequence, many basic quesrions about 
transactions (such as when two transactions have the same 
effect) are undecidable in an unrestricted framework. In this 
investigation, we focus on a tractable and widely used class of 
transactions. Specifically, we consider the important. class of 
“domain-based” transactions, where the selection of tuples only 
involves the inspection of each individual attribute value of a 
tuple, independently of other attribute values in the t,uple and of 
other tuples in the instance. 

The following is a simple example of a domain-based tran- 
saction in INGR.ES [INGRES]. 

Ezomple. Suppose the relation emp (employee) has been defined 
(its attributes are name, depart, and rank). The following tran- 
saction fires the manager of the parts department, transfers the 
manager of the sales department to the parts department, and 
hires a new manager for the sales departnient: 

range of e is emp 

delete e where e.depart. = “parts” 
and e.rank = “manager” 

replace e(depart = “parts”) where 
e.depart = “sales” 

replace e(depart. = “parts”) 
and e.rank = “manager” 

append 1.0 emp (name = “Mar”, depart = “sales”, 
rank = “manager”). 

We now formally define the notions of a “condition” and 
satisfaction of a condition by a tuple. 

Defin&ion. Let U be a set of attributes. A condition over U is an 
expression of the form A=a or A#a, where A E U and 
a E dam(A). A tuple u over U satisfies a condition A=a (A#a) 
iff u(A) = a (u(A) # a). The fact that a tuple u satisfies condi- 
tion c is denoted by u k c. 

We will not explicitly use logical connectors to build up 
complex conditions (it can be easily seen that this would not add 
power to our transactions). However, we will define satisfaction 
of a set of conditions, which is analogous to satisfaction of the 
conjunction of all conditions in the set. 

A set of conditions with no mutually exclusive conditions is 
called “meaningful. ” We next define formally meaningful sets of 
conditions. First though, we need the following: 

Defiition. Let C be a set of conditions over U, and X C U. 
The reetriction of C to X is the set CIx = {c E C j c is a 
condition over X}. 

We now have: 

De&&on. A set C of conditions over U is meaningful if for each 
A in U, A=a E C implies CIA={A=a}. 

Thus, the sets of conditions {A=5, A#5} and {A=5, A=6) 
are not meaningful. The set of conditions {A= 5, B#7} is mean- 
ingful. 

A tuple u satisfies a meaningful set C of conditions (denot- 
ed t p C) if t k c for each c in C. Note that a set of conditions 
is meaningful if and only if it is satisfied by some tuple. All sets 
of condit,ions considered from here on will be meaningful, unless 
otherwise specified. 

A set, of conditions over U is used to specify a set. of tuples 
over U (those satisfying the conditions). Due to the form of our 
conditions, we use the intuitively suggestive term “hyperplane” 
LO identify such sets of tuples: 

Definition. The hyperplane H(U,C) defined by a (meaningful) set 
C of conditions over U is the set (tcTup(U) / t F C}. 

As ment.ioned earlier, H(U,C) # 0 if C is meaningful. 
Also, H(U,C,) = H(U,C*) implies that C1 = C,. For simplicity, 
we sometimes use the same notation for a set C of conditions 
over U and for the hyperplane H(U,C) defined by C. Thus, we 

say “hyperplane C” instead of “hyperplane H(U,C)“, whenever 
U is understood. 

We shall next define the atomic instructions used to build 
our transactions. These will be called “elementary transactions.” 
The syntax and semantics of elementary transactions are defined 
next. The semantics of an elementary transaction is described by 
a mapping associating the old instances and new inst,ances. Such 
mappings are called “actions”. Formally, we have: 

Definition. An action over a schema (U,S) is a mapping from 
InsL(U,S) to lnst(U,S). 

The syntax and semantics of elementary transactions are 
now defined as follows: 

Definition. Let (U,S) be a schema. 
1) An insertion over the schema (U,S) is an expression of the 

form ix(C), where X 6) S and C is a condition which speci- 

fies a complete tuple H(X,C) over X. The effert of an 
insertion ix(C) is the action 
eff] ix(C)] : Inst(U,S) * Inst(U,S) defined by 

I(Z) if Z#X 

eff[ix(C)] (1) (Z) = 

1 
I(X) u H(X.C) if Z = X 

In the following we sometimes write ix(<a,,...,a,,>) instead 

of ix({A,=a, ,..., A,,=a,}). 

(*) If X = A,...A,, then C = {A, = al, . . . . A, = h) for some 
q E dom(Ai), 1 < i Q n. 
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An elementary transaction over the schema (U,S) is an 
insertion, a deletion, or an update over (U,S). 0 

Informally, an updat,c ux(C,:&) is specified using two sets 
of conditions. The set C, is used to specify the tuples over X to 
be updated. The set Cz describes the hyperplane obtained after 
applying the update to the hyperplane C,. The equalities 
present in Cs but not in C, indicapc how tuples in H(X,C,) have 
to be modified. (All inequalities present in Cz are “inherited” 
from Cl. Thus, if A+a is in Cz: it is also in C, and the value of 
A remains unchanged in the update.) 

&amp/e. Consider a database consisting of a single relation 
EMPLOYEE with attributes U = {NAME, DEPARTMENT, 
RANK, SALARY}. The following are elementary transactions 
over U: 

1) iv (<MOE. PARTS, MANAGER, SOK>), 

2) du (NAME - MOE, DEPARTMENT = 
PARTS. RANK = MANAGER) 

(this deletes all managers in the parts department 
whose names are not Moe), 

3) ug (DEPARTMENT = PARTS, 
RANK # MANAGER; 

DEPARTMENT = SERVICE, RANK f 
MANAGER, SALARY = 20K) 

This transfers all employees who are not managers from the parts 
department. to the service department. The rank remains 
unchanged. The new salary is 20K. 

In the following we sometimes omit the subscripts in writ.- 
ing elementary transactions. For instance, we write i(C) instead 
of i,(C), if X is understood. 

We can now formally define the notion of transaction and 
its effect on the database: 
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A deletion over the schema (U,S) is an expression of the 
form dx(C) where X E S and C is a set of conditions. The 
effect of dx(C) is the action 

elf jdx(C)! : lnst(U,S) + Inst(U,S) defined by 

I(Z) ifZ#X 

em idx(c)i (1) VI = 
( 

I(X) - H(X,C) if Z = X . 

An update over the schema (U,S) is an expression 
ux (C,; C,) where X E S and for each A E X either 
C,IA = &IA or A=a E C, for some a E dam(A). For each 
tuple t, in H(X,C,), the updated version ux(C,;C+) (11) of tI 
under ux(C,;C,) is the tuple 12 E H(X,C2) where 

t,(A) if ‘,IA = C21A 

t,(A) = 

a if A=a isinC,. 

The effect of ux(C,;C2) is the action 
eff lux(C&,)i : Inst(U,S) + Inrt(U,S) defined by 

I(Z) if Z # X 

eff lu&;C2)1 (1) W = 
(I(X) - W,Ct)) u M’W32) 0-1 

t E H(X,CJ II I(X)} if Z = X. 

D&&ion. Let (U,S) be a database schema. A tranraetion over 
(U,S) is a finite sequence of elementary transactions over (U,S). 
(The empty transaction is denoted by c .) The effect of a tran- 
saction t = e,... e, (n > 0) is the action eff(t) = eff(el) 

0 . . . o eff(e,). (The effect oft is the identity mapping.) 

Thus, ‘the effect of a transaction is the composition of the 
effects of the elementary transactions that make it up. Two 
transactions are equivalent if they have the same effect: 

D&diOVI. Two transactions t, and t2 over a given schema are 
equivalent, denoted t, w t,, iKeff(t,) = eff(t.J. 

Our first result (Proposition S.1) indicates that in the 
present context only unirelational schemas need to be considered. 
First we need the following: 

Noktion. Let t be a transaction over a schema (U,S). For each 
X E S, let tlX be the transaction over (X,(X}) obtained by eras- 
ing from t all elementary transactions which are not over 

ow~)~ 

9.1. Proporitior. Let tt and t2 be transactions over a schema 
(U,S). Then t, w I, if trlX *r t21X for each X E S. 

In view of the above, we only consider transactions over 
unirelational schemas from here on. 

4. Transitions and Realitability. 

In this section we introduce a non-procedural method for 
describing the effect of a transaction on a database. The effect is 
described at the tuple level using the notion of a “transition.” 
Transitions can be specified in an intuitively appealing manner 
and are useful in several respects. First., they will be used to 
measure the power of our transactions. Second, transition specif- 
ications will be used to st,udy the equivalence and optimisation of 
transactions. Intuitively, the relation between transactions and 
transition specifications is.somrwhat similar to that betbeen rela- 
tional algebra expressions and tuple calculus expressions. 
(Indeed, transition specifications offer a non-procedural, graphical 
alternative to transactions which may be more appealing to cer- 
tain users.) 

Informally, a transition describes at the tuple level I 
change in the database state. For each tuple, a transition indi- 
cates whether the tuple is deleted or. if not, how it is updated. 
In addition, a transition gives a finke set of inserted tuples. 
Since there are an infinke number of tuples to be considered, 
only certain transitions can be effectively specified. Here, we 
only need to consider transitions which can be specified using our 
conditions. Thus, a transition will be specified by first partition- 
ing the space of tuples into sufficiently many hyperplanes. The 
choice of hyperplanes will ensure that all tuples in each hyper- 
plane of the partition are either deleted or updated to yield 
another hyperplane in the partition. This is specified using a 
“transition graph” whose vertices are the hyperplanes in the par- 
tition. If H, is updated to H,, there is an edge from H, to H,. tf 
H, is deleted there is no edge leaving HI. 

The set of inserted tuples cannot be conveniently specified 
using the graph, sud is given separately. 

We now formally define a transition specification. 

Defiition. Let V be a finite set of attributes. A transition 
specification over U is a couple (G.lnserc) where Insert is a finite 
set of tuples over II and G is a graph (V,.E,). where: 



(i) VG is a finite set of disjoint hyperplanes over U 

such that (J C = Tup(U), 
CE vu 

(ii) if C1,C2) E EG then for each A in-U either 

C 1 A = dA I or A=aEC+ for some a E dam(A), 

(iii) for each C in Vc, ad(C) < 1. 

(iv) Insert E V,. 

The graph G is called the transition graph of the transition 

specification. Insert is called the insert set. 

Note that condition (ii) implies that C, can be updated to 

Cz (or, in other words, that u(C,;C2) is a legal update). Condi- 
tion (iii) follows from the assumption that the result of updating 

a hyperplane is a single hyperplane in VG. If ad(C) = 0 then all 

tuples in C are deleted. 

We now give a simple example of a transition specification, 

followed by a more complex one. 

4.1. Ezampics. a) Let U = AB and G be the transition graph 

represented below (Figure 4.1) 

Figure 4.1 

Let Insert = { {A=l,B=l}}. Then (GJnsert) is a transition 

specification over AB. The transition specified by (G,Insert) 

consists of replacing all tuples t where t(A) = 0 by the tuple 

<l,l>. All other tuples remain unchanged. The tuple <l,l> is 

inserted. 

b) Let U = AB, Insert = 0, and G be the transition graph 

represented(*) . m Figure 4.2. Then (G,Insert) is a transition 

specification. 

(*) We abbreviate the conditions A # al, A f a~, ...I A Z % 

by A # al,Bz,...,%. 
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A#O,l B=O C#O 

A#O,l B=O C=O 

IA=0 B#O,l C=Ol 

A=1 B=l c=O 

A#O,l B#OJ C=O 

Figure 4.2 

We now look at the connection between transition specifi- 

cations and actions. Given a transition specification and a data- 
base state, one can obtain a new state by applying the transition 
to each tuple in the database. Therefore, each transition specifi- 

cation generates an action in a natural manner. However, transi- 

tion specifications ‘are more “refined” than actions, since they are 

tuple oriented rather than global. Indeed, two different transi- 

tion specifications can generate the same action. This is illus- 

trated by the following: 

Example. Let U = AB and G be the transition graph 

represented below (Figure 4.3). 

cf) A=1 B#l 

Figure 4.3 

Let. Insert = { {A= 1, B=l} }. It is easily seen that the transition 
specification (GJnsert) and that of Example 4.1(a) generate the 

same action. (Since <l,l> is inserted, the resulting action is the 
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same whether the hyperplsne {A=O) is dekted or updated to 
<1,1>.) 

Following is a characterization of when two transition 
specificat ions generate the same action. 

4.2. Proporition. Two transition specifications (Cl,lnsertl) and 
(G&sertz) over a given set of hyperplanes (*I generate the same 
action iff the following conditions hold: 

(i) Insert, = Insert* 

(ii) For each B, C E Voir and C 4 Inserti (i = 1,2), 

(B,C) E Eo, iff (B,C) E I%,+. 

Intuitively, Proposition 4.2 shows that two distinct transi- 
tion specifications can generate the same action only when their 
differences are “masked” by the insert set. In particular, we 
have: 

4.3. CoroUory. Two transition specifications (($,a ) and (G,J ) 
over the same set of hyperplanes generate the same action iff 
G, = G,. 

We next investigate the relation between transactions and 
transitions. We will show that for each transaction there exists a 
corresponding transition which represents the final effect of the 
cransaclion. Then we show that, one can specify transitions 
which cannot be realized by any transaction. Finally, we charac- 
terize those transitions which are realizable. Intuitively, the set 
of realizable transitions is a measure of the power of our transac- 
tions. 

An algorithm is next presented for constructing the transi- 
tion specification corresponding to a given transaction. First, 
however, it is necersary to perform some “preprocessing” of the 
transaction. Specifically, the transaction is modified so that all 
hyperplanes corresponding to distinct sets of conditions occurring 
in the transaction are disjoint. A transaction having this pro- 
perty is said to be in First Normal Form (1NF). The 1NF pro- 
pe.rty simplifies considerably our algorithm as well as other 
results. We next define 1NF and show how to construct, for 
each transaction, an equivalent 1NF transaction. First though, 
we need the following: 

No-a. Let t be a transaction over U. For each A in U, let 
the oetiue domain of A with rcrpcct to t be the set adom(A,t) of 
all constants in dom(A).occurring in t. We now ass oc&e;th t 
a partition HJJ of Tup(l!) into hyperplanes as follows. 

H(t) = 1 u CA for each A E U , 
AEC 
C, = {A= a}. a E adom(A,t), or 

CA = (AFa aEadom(A.t)}) . 

Clearly. H(t) covers Tup(U) and every two distinct hyperplanes 
in H(t) are disjoint. 

With the above notation, we have 

De+ition. A transaction t over U is in Firrt Normal Form 
(INF) iff every set. of conditions occurring in t is in H(t). 

(a) (GJnsert), where G = (Vc,Eo), is over the set of hyper- 
planes Va. 

H Here again we blur the distinction between a set of condi- 
tions and the hyperplane corresponding to it. 
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If a transaction t is in lNF, then every two hyperplanea 
corresponding to distinct sets of conditions occurring in t are dis- 
joint. WC require the first. normal form property, rather than 
simply the disjointness condition, since this will simplify the 
statements of some results. 

The following illustrates the definition of 1NF: 

Example. Consider the transaction 

t, = d(A=O) u(A#‘I; A=5). 

Then H(t,) = { {A=O} {A=7} {A=S} {A#0,5,7}}. Since 
{A#7} is not in H(1,), ~1 is not in 1NF. Consider next the tran- 
saction 

t2 = d(A=O) u(A: 0: A=5) u(A#0,5,7; A=5). 

Then H(t,) = H(L,),~ Go is equivalent to L,, and tz is in INF. 

Each transaction can be transformed into an equivalent 
1NF transaction by “splitting” each hyperplane occurring in it 
into sufficiently small hyperplanes. For instance, consider tran- 
saction tl and ts from the previous exqple. One can obtain t0 
from tl by splitting the hyperplane {A#?} into {A=O}, {A=S), 
{A#0,5,7}. The update u(A#7; A=5) is split accordingly and 
becomes u(A=O; A=5) u(A=S; A=5) u(A#0,5,7; A=5) (the 
second update leaves the hyperplane {A=S} unchanged and can 
be ignored). Thus, ts is obtained. We next show how each tran- 
saction can be transformed into an equivalent 1NF transaction 
using two simple transformation rules, called “SPLIT” axioms. 

Dejindion. Let U be a set of attributes. The following two rules 
are the SPLIT ozioms for transactions over U, where A E U. 
a E dam(A), and C is a condition over U such that A#a $ C 
and A=b $ C for all b: 

SPLITI. 
d(C) m d(C U {A it a)) d(cl,- A u {A= 4). 

SPLIT% 
u(C;C’) m u(C u {A # a}; C,) 

u(CIU-A~{A=a};CI), where C1 = C1 = C’ if 
A=bE C’forsome b,andC,= C’U {A#.}, 

cZ = c’jU-A u {A=a} otherwise. 

Intuitively, hyperplane H(U,C) is split into the hyperplanes 
H(U,C) n H(U,{A=a}) and H(U,C) n H(U,{A#a}). The update 
and deletion operations are then applied to the resulting hyper- 
planes. (Note that all resulting sets of conditions are meaning- 
ful.) 

It can be easily seen that the SPLIT axioms are sound. 
Furthermore, they can be used to bring any transaction to First 
Normal Form. Formally, we have: 

4.4. Theorem. For any transaction t there exists an equivalent 

1NF transaction t’, such that 
h tmt’. 

We are now ready to outline the algorithm to construct 
from a given transaction t a corresponding transition specifica- 
tion TS(t) = (G,Insert). Let t = e,...e,, n 2 1, be a 1NF tran- 
saction over U, where each ei (1 < i Q n) is an elementary tran- 
saction. Let Insert = t(0 ). We next define the transition graph 
G = (Vo,Ec). Let Vc = H(t). It is left to construct E&. For 
each elementary transaction e occurring in t, let E(e) be the set 
of edges defined as follows: If e = d,, (C), let 
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E(e) = {<H,H> ) H E H(t), H # C}. If e = uu (C,;C,), let 

E(e) = {<H,H> ( H E H(t), H # C,} u {<C,,Cs>}. Finally, if 

If e = iu (C), let E(e) = {<H,H> 1 H g H(t)}. Now let 

EG = E(e,) 0 . . . 0 E(e,). The transaction spec’fication 

TS(t) = (G,Insert) is now completely defined. (*f The transaction 

t and the transition specification TS(t) define the same transition 
and therefore the same action. 

Ezample. Consider the following transaction over A : 

Definition. A transition specification (GJnsert) is realizable if 

there exists a transaction defining the same action as (GJnsert). 

As shown by the next example, not all transition specifica- 

tions are realizable. 

Ezamplc. Let (Glnsert) be the transition specification over A, 

where Insert = 0 and G is represented by: 

t = i(A=5) u(A=O; A=5) 

u(A= 5; A= 7) u(A#O,5,7; A= 5) d(A= 5). It can be shown that (G-Insert) is not realizable. 

Note first that t is in lNF, and H(t) = 

{ {A=O} {A=5} {A=7} {A+O,5,7)}. We now construct 

TS(t) = (GJnsert), where G = (Vo,E,). Now 
Insert = t(0) = {<7>}. The set Vo is H(t), and 

Eo = El 0 Er 0 Es 0 E, 0 Es, where: 

It is useful to distinguish between realieable transition 

specifications and those that can be obtained directly from some 

transaction via the algorithm TS. This motivates the following. 

Definition. A transition specification (G,Insert) is directly 

realizable if (G,Insert) = TS(t) for some 1NF transaction t. 

(i) E, = E(i(A=5) ) is represented by: Some transaction specifications are realizable without being 

directly realizable. For instance, it can be shown that the transi- 

tion specification (G,,0), where Gi is represented in Figure 4.4 is 

realizable but not directly realizable. 

(ii) Es = E(u(A=O; A=5) ) is represented by: 

(iii) Es = E(u(A=5; A=7) ) is represented by: 

(iv) El = E(u(A#0,5,7; A=5) ) is represented by: 

Q@Jtpzy] 

(v) Es = E(d(A=S)) is represented by: 

@ipq~&ki-~ 
Finally, E. = E, 0 Es 0 Es 0 EI 0 Es is represented by: 

With the above algorithm and, in view of Proposition 4.2, 

we now have: 

4.5. Theorem. It is decidable whether two transactions are 

equivalent. 
0 

It can be shown that transact,ion equivalence can be 

decided in polynomial time (in the size of the transactions). 

We have shown earlier how to obtain from each transaction 

t a transition specification TS(t) which defines the same transi- 

tion as t. Consider now the converse. If the action defined by 
the transition specification (G,Insert) can be implemented by 

some transaction, then (G,Insert) is called “realieable.” Thus, 

we have: 

(e) Note that TS(t) is undefined for t = c . 
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Intuitively, the set of realizable transition specifications 

constitutes a measure for the power of our transactions. The 
main results of the section characteriee realizable and directly 

realizable transition specifications. Before presenting them, we 

need two definitions, a lemma, and some notation. 

Figure 4.4 

Definition. Let C be a set of conditions over U. The support of 

C is the set Supp(C) = {A E U I A = a E C for some 

a E dam(A)). 

It is easy to verify the following: 

4.0. Lemma. Let (GJnsert) be a transition specification over 

U. If C, and C, are nodes of G which belong to the same cycle 

of G, then Supp(C,) = Supp(Cs). 

In view of Lemma 4.6, we can extend the definition of sup- 

port to a cycle: 

Definition. Let (G,lnsert) be a transition specification and c a 

cycle of G. Then the support of c is Supp(c) = Supp(C) for 

some node C belonging to c. (Supp(c) is well-defined, by the 

above lemma.) 

Notation. For each transition specification (GJnsert), let 

2-Cycles(G) = {c 1 c is a cycle of G of length at least 2). 

With the above, we now have the following characteriea- 

tion of directly realizable transition specifications. 

4.7. Theorem. A transition specification (GJnsert) is directly 
realizable iff for each cycle c E P-Cycles(G) there exists a vertex 
v(c) of G which does not belong to any cycle of G, such that 

Supp(c) = Supp(v(c) ) 

As we have seen earlier, a transition specification (G,Insert) 

can be realizable without being directly realizable. In such a 

case, however, (G,lnserb) can be easily transformed into an 

equivalent, directly realizable transition specification. There are 
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two types of transformations involved. The tlrst consists 01 
%plitting” G, i.e. splitting some of the vertices of G into smaller 
hyperplanes (the new edges are those induced by the old edges, 
by rules analogous to the SPLIT rules). For instance, consider 
again the transition specification (G,,B) (Figure 4.4) which is 
realisable but not directly realirable. The transition specification 
(Gs,0) (Figure 4.5) is directly realieable and G, is obtained from 
G, by splitting the vertex {A#O,l} into {A=2} and {A#0,1,2}. 

Figure 4.5 

The second type of transformation involves the elimination 
from G of all edges made unnecessary by the insertions.. For 
example, consider the transition specification (G,,lnsert), where 
Insert = {A=l} and G, is represented in Figure 4.6(a). Now 
(G,,lnsert) is realisable but not directly real&able. Since the 
tuple <l> is inserted, the tuple <O> can be deleted rather than 
updated to cl>, without changing the final effect. Thus, the’ 
edge ({A=O}, {A=l}) can be deleted from Gi yielding Gs, 
represented in Figure U(b). Clearly (Gs,Insert) is directly real- 
&able. 

Figure 4.6(a) Figure 4.6(b) 

The previous discussion is summarized by the following 
result characterizing realieable transition specifications. 

4.8. Theorem.(*) A transition specification (GJnsert) is realis- 
able # there exists a directly realizable transition specification 

(GsJnsert) obtained by splitting G and by removing all edges of 
the form (C,,C,) where C, E Insert. 

Consider again the characterisation of directly realirable - 
transition specifications. Intuitively, the role of the node v(c) 
associated with cycle c is that of a temporary storage variable. 
This is needed in order bo permute the content of two or more 
hyperplanes. The need for temporary storage would disappear if 
one could perform two updates u(C&s) and u(Cs;C,) simultane- 
ously. Thus, suppose we added to the set of elementary transac- 
tions the instruction i’switch (C,;Cr)“, whose effect would be the 
same as performing u(Ci;Cr) and u(Cr;C,) simultaneously. Then 
it can be shown t at every transition specification would be 
directly realirable. 64 

5. Transaction optimitation. 

In this section we focus on the problem of transaction 
optimization. We propose three int.uitively appealing optimisa- 
tion criteria for transactions over a given set of hyperplanes, and 
show that they can be satisfied simultaneously. Then we show 

(zore formal statement of this theorem is given in the full 

paper. 

(r9 This observation is due to W. Lipski 
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how an equivalent optimal transaction can be obtained from each 
given transaction. Furthermore, we show that optimal transac- 
tions can be obtained which have a certain desirable form that 
we call Second Normal Form. 

We now discuss the three factors we will cons’der when 
optimising a transaction. The fvst factor is the length t* 1 of the 
transaction (e.g., d(A=O) is preferred over d(A=O) d(A=O)). 
The second factor is the maximum number of times a tuple is 
modified by the transaction (e.g., d(A=O) d(A=l) is preferred 
over u(A=O; A=l) d(A=l) since in the second transaction <O> 
js unnecessarily updated to <l> before being deleted). Finally, 
the third factor is the complexity of the elementary transactions 
composing the transaction. We propose the following increasing 
order of complexity among elementary transactions: 

(0) u(W) (C remains unchanged) 

(1) i(C) 
(2) d(C) 
(3) UGCZ), where Ci # Cr. 

While the proposed ordering is intuitively appealing, it may 
clearly be invalid for certain specific implementations of the ele- 
mentary transactions. However, it is likely that the ordering will 
be compatible with most reasonable implementations. 

Not&m. For every elementary transactions e and f, e c f 
denotes that e is of lesser or equal complexity than f according to 
the above ordering. 

We now formally define optimal transactions with respect 
to the criteria discussed above. 

Definition. A transaction t = ei...e,, n 2 0, over the set of 
hyperplanes H(t) is optimal (with respect to H(t)) if for every 
transaction t’ over H(t) which is equivalent to t, the following 
hold: 

(4 t ’ is at least as long as t, 

(ii) the maximum number of times t’ modif=s a 
tuple is at least the maximum number of times 
t modifies a tuple, and 

(iii) if t ’ and t have the same length then there 
exists a permutation e ;...ek of t ’ such that (**I 

Ci < ei, 1 Q i ( n. 

We next outline an algorithm that constructs, for each 
given transaction, an equivalent, optimal transaction over the 
same set of hyperplanes. First though, we need two definitions, 
one technical lemma, and some notation. 

Dcjinition. Let G be a transition graph. A storage assignment 
for G is a mapping v : 2-Cycles(G) + Vo such that for each 
c E 2-Cycles(G), Supp(c) = Supp(v(c)) and v(c) does not belong 
to any cycle of G. 

By Theorem 4.7, (GJnsert) is directly realizable if and only 
if there exists a storage assignment for G. A storage assignment 
is “safe” if it does not give rise to deadlock. Formally, we have: 

Definition. A storage assignment v for a transition graph G is 
rafe if there exists an enumeration Ci,...,Cs of all connected 

(* ) A transaction t = e l...enr n ) 0, has length n (ei, 1 < i < n, 
are elementary transactions). 

(**) The transaction e ;...ek is not necessarily equivalent 
to t’. 
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components of G with at least two nodes, such that for each i 

(1 < i Q n) and c in P-Cycles (Ci), 

(i) v(c) 4 Cj for any j, i < j < n, and 

(ii) if v(c) is in Ci, then it is adjacent to c 

(i.e., (v(c),C) E Eo for some vertex C of c). 

The following shows that a safe storage assignment can bc 
found for each directly realisable transition specification. 

5.1. Lcmmo. If (GJnsert) is a directly realizable transition 
specification then there exists a safe storage assignment for G. 

Finally, we need the following: 

No~afion. If T is a finite set of transactions, let t FT t and 

@ T denote a transaction t,...t,,, where t, ,..., t, is some 

enumeration of the elements of T. (If T = 0, let @ T = c .) 

We now outline the optimiration algorithm for transac- 

tions. 

Algorithm OPT. 

Input: 
output: 

1. 

2. 

3. 

4. 

7. 

8. 

9. 

10. 

11. 

a transaction t in 1NF. 
a transaction OPT(t). 

Construct TS(t) = (G,lnsert) (G = (Vo,Eo)). 

Eo := Eo - {(C,,Cr) / Ci E Vo, Cs E Insert). 

D := {C E Vo j od(C)=O} n Insert. 

If there is c in 2-Cycles(G) with Supp(c) = U 

then 

5. If there is no C E Vo - D such that 
Supp(C) = U and C does not belong to 

any cycle of G then 

6. Remove one vertex from D. 

Eo := Eo i-1 {(CC) C E D). 

Compute a safe storage assignment v for G. 

Construct(*) an enumeration C,...C, of all con- 
nected components of G with at least two ver- 
t,ices, such that for each Ci and cycle c in 2- 

CYCleS(Ci), V(C) $ Cj (1 < i <j < n). 

Let td = @ {d(C) ) C E Vo, od(C)=O}, 

ti = @ {i(C) 1 C E Insert). 

For each cycle 

c = {(CI~CZ),...~(G-I~ G),(G,Cd) of G(n (2 2) 
let 

t, = u(C,;v(c)) UP%-,;Cn) 
. . . u(C,;CJ u(v(c);C,) , where 

(vk)tG) E- EG if v(c) is adjacent to c. 

12. Let to = td @ {tc ) od(v(c)) = 0, id(v(c)) = 0). 

13. Remove all cycles from Ci,...,Cs (only edges are 

removed). 

14. For i := 1 to n do 

15. MAX := {C E Ci 1 od(C)=O, id(C) > O}. 

16. While there are edges left in Ci do 

17. t,: = to@ {tc ( v(c) E MAX 

@ {u(C’;C) 1 C E MAX, (C’,C) E Ci, 
C’ is not v(c’) for 

c’ E 2-Cycles(C9) 

@ {t,, 1 (V(C’),C) E Ci for 

some C E MAX, and id(v(c’)) 

= 0). 

18. Remove from Ci all edges 

(C’,C) where C E MAX. 

19. MAX: = {C E Ci 1 od (C) = 

0, id(C) > 0). 

20. to := toti. 

21. output to. 

The following can now be shown: 

5.2. Theorem. For each t,ransact.ion t in lNF, the tran- 

saction OPT(t) constructed by Algorithm OPT is 

equivalent to t, and optimal (wit.h respect to H(t)). Furth- 

ermore, the algorithm is polynomial in the length oft. 

Note that, technically, the optimality of a transaction 

was defined with respect to a given partition of the tuple 

space into hyperplanes. However, if an optimal transaction 

with respect to a given partition is split according to a dif- 

ferent partition, the resulting transaction remains optimal 

with respect to the new partition. Formally, we have: 

5.3. Proporitior Let t be an optimal transaction with 

respect to H(t). If 1~ t w t’, where t’ is a 1NF tran- 

saction, then t ’ is optimal with respect to H(t ‘). 

The following illustrates the effect of Algorithm OPT 

on a simple transaction. 

5.4. Ezamplc. Consider the transaction over AB: 

t = u(AfO,B=l; A#O,B=2) i(<O,l>) i(<8,2>) 
u(A=O,B=l; A=o,B=2) u(A#O,B=O; A#O,B=l) 

u(A=o,B=O; A=O,B=l) u(A#O,B=2; A+O,B=O) 

u(A=O,B=2; A=O,B=O) d(A#O,B=O) 

The transition specification of t is TS(t) = (G,Insert), where 
Insert = {<O,O>} and G is represented in Figure 5.1. 

The transaction output by Algorithm OPT is 

OPT(t) = d(A#O,B=l) d(A#O,B=2) u(A=O,B=l; A=O,B=2) 
u(A=O,B=O; A=O,B=l) u(A=O,B=2; A=O,B=O) 

u(A#O,B=O; A#O,B=l) i(<O,O>) 

Figure 5.1 

(a) Step (9) is possible by Lemma 5.1. 
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Rmd. In general, a tuple in a database can be modified any 
number of times in the course of a transaction. However. it can 
be seen that an optimal transactidn does not. modify any tu le in 
the database more than twice. Thus, the total number 6) of 
tuple updates and deletions performed b r a optimal transaction 
is at most twice the size of the database. I4 

Consider once more the transactions t and OPT(t) from 
Example 5.4 and let I be the instance over AB represent,ed in 
Figure 5.2. 

A B 
1 1 
2 2 

Figure 5.2 

Applying transaction t to I results in the performance o f-t***) g 
tuple updaLes, 3 deletions, and 2 insertions. On the other hand. 
applying the optimal transaction OP$(t) to the same instance 
results in only 0 tuple updates. 2 deletions, and 1 insertion. 
Thr fact that OPT(t) is optimal accounts for part of the 
difference, but not all. For instance, consider 
1, = d(A#O,B=l) d(A#O,B=2)u(A=O,B-I; A=O.B=Z) 
u(A=O,B=O; A=O,B=l)i(<0,2>) u(A=O,B=2; A-0,&O) 
u(A+O,B=O; A#O,B=l). Then tl wt and t, is also optimal. 
However, 1, performs one more update than t when applied on 1. 
This is so because t, inserts the tuple <0,2> first and then 

updates it to <O,O>, whereas t directly inserts the tuple <O,O>. 
Thus, the relative order of updates, deletions and insertions in a 
transaction sffccts the total number of operations performed. 
Specifically, the example suggests that all insertions should be 
performed last. Similarly, all deletions should be performed first 
(if not, some tuples may be updated first, and then deleted). 
Thus, it is preferable that a transaction consist of deletions, fol- 
lowed by updates, followed by insertions. A transaction having 
this property is said lo be in “Second Normal Form.” Formally, 
we have: 

Dcjiinition. A transaction t is in Second Normal Form if it is in 
First Normal Form and t = d,...dh uI...u, il...& where the dj are 
deletions (I c j f k), the uj are updates (1 ( j f m), and the ij 
are insertions (1 6 j G n). 

Note that the transaction OPT(t) output by Algorithm 
OPT is in Second Normal Form. Thus. we have: 

5.5. Theorem. For each transaction t there exists an 
equivalent. optimal transaction in Second Normal Form. 

Rem4rtr. (a) Let us briefly look at an alternative notion of 
optimality based on the number of tuple operations performed by 
a transaction. For each transaction I. over I’ and relation r over 
U, let NOPS(t,r) be the total number of tuple operations (i.e., 
tuple deletions. updates and insrrt.ions) performed when t is 

(*) Updates and deletions of newly inserted tuples were not 
counted. 

(**) Actually, a smaller, more accurate bound can be given. 

(***) We include here updates and deletions of tuples inserted by 
the transaction. 
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applied to r. It would be appealing to define a notion of %trong” 
optimality as follows. A transaction t is strongly optimal if for 
each t’, t’ w-t, and relation r over U, NOPS(t,r) 6 NOPS(t’,r) 
(i.e., t. does at least as well as any other equivalent transaction 
on ON databases). Unfortunately, it can be seen that, in general, 
there are no strongly optimal transactions equivalent to a given 
transaction. (In fact, a strongly optimal transaction equivalent 
to t exists iff the transition graph corresponding to t is 2-a~y- 
clic.(*) And, in this case, OPT(t) is strongly optimal.) A weaker 
but more promising notion is that of “weak” optimality. A tran- 
saction t is weakly optimal if for every equivalent t’, 
NOPS(t,r) > NOPS(t ‘,r) for some r implies that 
NOPS(t,r’) < NOPS(t ‘.r’) for some r ‘. In other words, if there 
is a transaction t’ which does bet.ter than t on some database, it 
does worse than 1, on another database. It. can be seen that if t is 
optimal and 2NF then t is weakly optimal. In particular, 
OPT(t) is weakly optimal for every L. 
(b) The optimization criteria considered so far do not take into 
account the number of hyperplanes occurring in a transaction. 
(Indeed, the way the space is split into hyperplanes does not 
sffect the number or type of tuple operations performed by a 
transaction.) However, the cost of a transaction may also 
depend on the number of hyperplanes involved in the transac- 
tion. Given a transaction t, one can use the SPLIT rules to find 
an equivalent transaction t ’ with a minimum number of hyper. 
planes. Unfortunately, it can be seen that it is not always po& 

ble to 6nd a transaction with a minimum number of byperplanes 
which also satisfies the other optimality criteria. The choice 
between minimizing the number of hyperplanes and satisfying 
the other optimality criteria has to be made depending on the 
particular implementation. 

6. Axiomatieation of tran saclion equivalence. 

In the previous two sections, we provided algorithms for 
deciding whether two transactions are equivalent, and for optim- 
ising a given transaction. However, the algorithms do not pro- 
vide’ much insight into why two given transactions are 

equivalent, or why a given transaction is (or not) optimal. In 
this section, we introduce some intuitively suggestive axioms for 
proving transaction equivalence. The axioms are based on sim- 
ple transformation rules which highlight the interaction between 
deletions, updates and insertions. Due to space limitations, we 
only present here a brief, informal overview of our results. 

We first introduce a system Ax of axioms for proving the 
equivalence C two transactions over the same set H of disjoint 
hyperplanes. ih Ax consists of nineteen axioms grouped as fol- 
lows (Cl,C2C3C4 are hyperplanes in H): 

Update-update axioms: 

1) u(C1;Cz) u(C&) w u(C&) u(CL;C2) 
(C#C@l#Cq, and Cl#CQ), 

2) u(ClQj U(CfCS) zs u(C1;CQ) u(czc3)* 

3) u(C1;C~ u(c];cg) = u(C&) (Clf CZ). 
4) u(C1;C2) u(C&) = u(CI;C.j. 

(*) A graph is 2-acyclic if it has no cycles of length at least 2. 

(@9 Note that, if two transactions arc over different sets of hy- 
perplanes, they can be transformed into equivalent transac- 
tions over the same set of disjoint hyperplanes using the 
SPLIT axioms of Section 4. 
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Delete-delete axioms: 

5) d(Cl) d(Q) = d(C2) d(C1): 

6) d(C1) d(C1) = d(Q). 

Insert,-insert axioms: 

7) i(Q) i(C2) m i(Cz) i(C1). 

A) i(C1) i(C1) R i(C1). 

Updat,e-delet,e axioms: 

9) u(C1;Cz) d(C3) f: d(C3) u(C1;Cd (CQicCb C3#C2), 

10) uG;C2) WA) - d(G) d(G), 

11) d(G) u(‘kC2) = d&3, 

12) u(W32) W,) = uKW2) (GfC2). 

Update-insert axioms: 

13) u(GiC2) i(G) m i(G) uG;C2) (WCS), 

14) i(C,) u(C,:C,) w i(C,) u(CI;C2), 

15) u(CI;C2) i(C2) B d(C,) i(C,). 

Delete-Insert axioms: 

16) WJ i(C2) w i(G) V-2 FGfC2), 

17) d(G) i(G) FJ i(G), 

18) i(C,) d(C,) E=Z d(C,), and 

Identity axiom: 

19) U(CI,C,) 5% c 

l!nfortunately, it turns out that the set of axioms 
Ax C) SPLIT is not complete. (In fact, we conjecture that there 
is no proper finite axiomat.irat.ion for transaction equivalence.) 

Following is an example of two equivalent transart.ions whose 

equivalence cannot be proven using Ax c. SPLIT. 

Eromple. Consider the trasactions over -4: 

tl = d(A=3) u(A=4;A=3) u(A=l:A=4) 

u(A=2;A=l) u(A=4;A=2), and 

t2 = d(A=S) u(A=l;A=3) u(A=2;.4- 1) 
u(A=3;A=2) u(A=4;A=3) 

It can be seen that TS(t,) = TS(t2) = (G,B)! where G is the 

transition graph represented in Figure 6.1. Thus, t, m t,. 

(Intuitively, the only difference between t, and t, is that t, uses 
{A=4) to realize the cycle in the transition graph, while t2 uses 

{A=3}.) However, it can be shown that the equivalence canno; 

be proven using Ax CJ SPLIT. 

Figure 6.1 

As shown above. the set of axioms Ax u SPLIT is not com- 

plete. However. it is easy to see that Ax u SPLIT is complete 
within the large subclass of P-acyclic transactions. Furthermore, 

Ax is sufficiently powerful to essentially allow the optimiration of 
all given 1NF transactions and to bring them to Second Normal 
Form. Thus, Ax u SPLIT is sufficient for most practical pur- 
poses. 

Although we do not exhibit a complete set of axioms for 

proving transaction equivalence, we present in [AV] a mechanism 
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axiomatization. Informally, some “imaginary” hyperplanes UC 
introduced as temporary storage, and Ax is extended to these 

imaginary hyperplanes.(*) Then we show that two transactions tl 
and t, are equivalent iff ttl and tt2 can be proved equivalent 

using Ax, where t consists of a sequence of deletions of imaginary 

hyperplanes. 

In addition, a second method is presented in [AV] for prov- 

ing transaction equivalence using Ax. Specifically, it is shown 
that proving the equivalence of two arbitrary transactions can be 

reduced to proving the equivalence of several pairs of 2-acyclic 

transactions. 

Remork. The results in this and the previous sections have 

shown that the large class of 2-acyclic transactions has particu- 

larly desirable properties. First, strong optimality can always be 

attained for 2-acyclic transactions. (Furthermore, the OPT algo- 

rithm always yields a strongly optimal transaction when applied 
to a a-acyclic transaction.) Second, the system of axioms 

Ax u SPLIT is complete for proving 2-acyclic transaction 

equivalence. Therefore the introduction of imaginary hyper- 

planes is not required in the 2-acyclic case. (Also, proving the 

equivalence of arbitrary transactions can be reduced to proving 

the equivalence of 2-acyclic transactions.) Finally, note that all 

2-acyclic transition specifications are realizable. 

Acknowlc&enwnt. The authors would like to thank 
Francois Bancilhon, Richard Hull, and Witold Lipski for their 

comments and helpful suggestions. 

(*) Intuitively, the imaginary hyperplane corresponding to.hy- 
perplane C can be thought of as consisting of “marked” tu- 

ples of C, with values outside the domains of the attributes. 
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