
Transactions in Relational Databases

(Preliminary Report)

Serge Abheboul
Institut National de Recherche en Informatique et en Antomatique

Domaine de Voluceau-Rocquencourt, B.P. 105,78153
Le Chesnai Cedex, FRANCE

Victor Vianu(*)
Department of Electrical Engineering and Computer Sciences,

University of California, San Diego, MC CO14
La Jolla, California 92093. USA

ABSTRACT

A large class of relational database update transactions is
investigated with respect to equivalence and optimization.
Several basic results are obtained. It is shown that transaction
equivalence can be decided in polynomial time. A number of
optimality criLeria for transactions are then proposed, as well as
two normal forms. Polynomial algorithms for transaction optimi-
zation and normalization are exhibited. Also, an intuitively
appealing system of axioms for proving transaction equivalence is
introduced. Finally. a simple, natural subclass of transactions.
called t-aiyclic, is shown LO have particularly desirable proper-
ties.

1. Introduction.

Static aspects of databases have been extensively studied
using the formal framework of the relational model jC, M: Ul].
More recently, some dynamic aspects have been considered in
several investigations IAH, BS. BG, Br, CCF? CW. DeAZ, FUV,
HK, PBR. R, Uh. Ve. Vii. Vi2.. However, there have been very
few theoretical studies of database updates and transactions.
Indeed, most previous investigations of transactions have focused
on concurrency issues !BG, PBR;. In the present paper, we
introduce a formal model of transactions in relational databases
and present several basic results on transaction equivalence and
optimization.

Transactions are viewed here as sequences of elementary
operations forming a semantic unit. In this paper, we focus on a
widely accepted class of transactions. Specifically, the& transac-
tions consist of sequences of insertions, deletions and updates,
where the selection of tuples (to be delet.ed or updated) involves
the inspection of individual attribute values for each tuple. Most
of our results concern transaction equivalence and optimization.
Indeed, our investigation can be regarded as the analogue for
updates of fundamental invest,igat.ions on query equivalence and
optimization.

Permitsion to copy without fee all or part of this material & granted
provided that the copies an not mode or dtetributed for direct commerc&l
advantage, the VLDB copyright notice and the title of the publkation and its
date appear, and notice & given that copying is by permission of the Very Large
Data he Endowment. To CODY otherwise. or to reoubbkh. reoutres a fee

Wit6 resp**f to equivalence, two techniques for proving
transaction equivalence are exhibited. The first one is based on
a graphical, non-procedural representation of a transaction. and
leads to a polynomial time algorithm for deciding transaction
equivalence. The second one is based on a system of axioms. and
highlights the interaction between insertions, updates and de]+
tions.

With regards to transaction optimization, several optimal-
ity criteria are discussed and formalised (for instance, one criteria
is the length of the transaction). It is shown that each given
transaction can be optimired with respect to all the proposed cri-
teria. A polynomial time optimiration algorithm is then
presented.

The paper is divided into six sections. The second section
contains preliminary concepts. In Section 3 the formal model for
our transactions is presented. A graphical, non-procedural way
of representing the effect of transactions is introduced in Sec-
tion 4. This is then used as an independent measure for the
power of our transactions, and for showing that transaction
equivalence is decidable. Section 5 is devoted to transaction
optimization. Finally, in Section 6 the system of axioms for
proving transaction equivalence is introduced.

Due to space limitations. some results and definitions are
presented informally and others are omitted. (In particular, no
proofs are included.)

2. Preliminaries.

In this section we briefly present some well-known concepts
used throughout the paper.

We first present some basic concepts of relational data-
bases. We assume dhr existence of an infinite set of symbols,
called attributes, and for each attribute A, of an infinile set of
values, denoted dam(A), called the domain of A. A relational
schema is a finit.e set of attributes. Let U be a relational schema.
A tupIc t over II is a mapping from U such that for each A in I!,
t(A) is in dam(A). The set of tuples over U is denoted Tup(U).
A relation over U is a finice set of tuples over U.

A database rchcma is a pair (U,S) where U is a finite set of
attributes, ahd S a set. of subsets of U such that
U =- c!{X j X in S}. An instance 1 of a database schema (U,S) is
a mapping from S such that l(X) is a relation over X for each X
in S. The set of all the insLances of a database schema (U,S) is
denoted lnst.(U,S).

Wp now present some other concepts and notation used in
t.he paper. A (directed) graph is a pair (V,E) where V is a finite
set of clrmrnts, and E is a subset of V x V. An element in V is
called a IFertez. An element in E is called an edge. Let

(*) This work was partly performed while author was a Visiting Scientist at I.N.R.I.A.

Proceudlngs of tha Tenth International Siqspore, August, 1994

Conference on Very Law Data Ba8n.
46

G : (V.E) br a graph and p a vertex of G. The in-degree of p,
denoted id(p), is the number of edges incident into p. The out-
degree of p. denoted ad(p). is the number of edges incident from

P.

Let \’ be a set of elements. Let E and E’ be subsets of
V x V. The product of E and E’, denoted E 0 E’, is defined by
E 0 E’ = { <x,z>] for some y, <x,y> in E and <y,z> in E’}.

Finally,
b

B
A

means that B can be proven using the

set of axioms A.

3. A model for transactions.

Informally, a transaction is a sequence of instructions
viewed as a semantic unit. Most commercial database manage-
ment systems provide three types of atomic instructions which
are used to build up transactions.

The three types of atomic instrucrions are:

(1) insertions (appending to a relation a tuple or a
set of luples),

(2) deletions (suppressing from a relation all
tuples satisfying a given condition),
and

(3) updates (modifying in a relation all tuples
satisfying a given condition).

in some dbms’s the conditions used to select from a relation
the set of tuples to be deleted or updated can be quite complex.
Generally, these conditions may use the full power of tuple rela-
tional calculus. As a consequence, many basic quesrions about
transactions (such as when two transactions have the same
effect) are undecidable in an unrestricted framework. In this
investigation, we focus on a tractable and widely used class of
transactions. Specifically, we consider the important. class of
“domain-based” transactions, where the selection of tuples only
involves the inspection of each individual attribute value of a
tuple, independently of other attribute values in the t,uple and of
other tuples in the instance.

The following is a simple example of a domain-based tran-
saction in INGR.ES [INGRES].

Ezomple. Suppose the relation emp (employee) has been defined
(its attributes are name, depart, and rank). The following tran-
saction fires the manager of the parts department, transfers the
manager of the sales department to the parts department, and
hires a new manager for the sales departnient:

range of e is emp

delete e where e.depart. = “parts”
and e.rank = “manager”

replace e(depart = “parts”) where
e.depart = “sales”

replace e(depart. = “parts”)
and e.rank = “manager”

append 1.0 emp (name = “Mar”, depart = “sales”,
rank = “manager”).

We now formally define the notions of a “condition” and
satisfaction of a condition by a tuple.

Defin&ion. Let U be a set of attributes. A condition over U is an
expression of the form A=a or A#a, where A E U and
a E dam(A). A tuple u over U satisfies a condition A=a (A#a)
iff u(A) = a (u(A) # a). The fact that a tuple u satisfies condi-
tion c is denoted by u k c.

We will not explicitly use logical connectors to build up
complex conditions (it can be easily seen that this would not add
power to our transactions). However, we will define satisfaction
of a set of conditions, which is analogous to satisfaction of the
conjunction of all conditions in the set.

A set of conditions with no mutually exclusive conditions is
called “meaningful. ” We next define formally meaningful sets of
conditions. First though, we need the following:

Defiition. Let C be a set of conditions over U, and X C U.
The reetriction of C to X is the set CIx = {c E C j c is a
condition over X}.

We now have:

De&&on. A set C of conditions over U is meaningful if for each
A in U, A=a E C implies CIA={A=a}.

Thus, the sets of conditions {A=5, A#5} and {A=5, A=6)
are not meaningful. The set of conditions {A= 5, B#7} is mean-
ingful.

A tuple u satisfies a meaningful set C of conditions (denot-
ed t p C) if t k c for each c in C. Note that a set of conditions
is meaningful if and only if it is satisfied by some tuple. All sets
of condit,ions considered from here on will be meaningful, unless
otherwise specified.

A set, of conditions over U is used to specify a set. of tuples
over U (those satisfying the conditions). Due to the form of our
conditions, we use the intuitively suggestive term “hyperplane”
LO identify such sets of tuples:

Definition. The hyperplane H(U,C) defined by a (meaningful) set
C of conditions over U is the set (tcTup(U) / t F C}.

As ment.ioned earlier, H(U,C) # 0 if C is meaningful.
Also, H(U,C,) = H(U,C*) implies that C1 = C,. For simplicity,
we sometimes use the same notation for a set C of conditions
over U and for the hyperplane H(U,C) defined by C. Thus, we

say “hyperplane C” instead of “hyperplane H(U,C)“, whenever
U is understood.

We shall next define the atomic instructions used to build
our transactions. These will be called “elementary transactions.”
The syntax and semantics of elementary transactions are defined
next. The semantics of an elementary transaction is described by
a mapping associating the old instances and new inst,ances. Such
mappings are called “actions”. Formally, we have:

Definition. An action over a schema (U,S) is a mapping from
InsL(U,S) to lnst(U,S).

The syntax and semantics of elementary transactions are
now defined as follows:

Definition. Let (U,S) be a schema.
1) An insertion over the schema (U,S) is an expression of the

form ix(C), where X 6) S and C is a condition which speci-

fies a complete tuple H(X,C) over X. The effert of an
insertion ix(C) is the action
eff] ix(C)] : Inst(U,S) * Inst(U,S) defined by

I(Z) if Z#X

eff[ix(C)] (1) (Z) =

1
I(X) u H(X.C) if Z = X

In the following we sometimes write ix(<a,,...,a,,>) instead

of ix({A,=a, ,..., A,,=a,}).

(*) If X = A,...A,, then C = {A, = al, A, = h) for some
q E dom(Ai), 1 < i Q n.

Singapore, August, 1994 Proceedings of the Tenth International

Conference on Very Large Data Bases.
41

An elementary transaction over the schema (U,S) is an
insertion, a deletion, or an update over (U,S). 0

Informally, an updat,c ux(C,:&) is specified using two sets
of conditions. The set C, is used to specify the tuples over X to
be updated. The set Cz describes the hyperplane obtained after
applying the update to the hyperplane C,. The equalities
present in Cs but not in C, indicapc how tuples in H(X,C,) have
to be modified. (All inequalities present in Cz are “inherited”
from Cl. Thus, if A+a is in Cz: it is also in C, and the value of
A remains unchanged in the update.)

&/e. Consider a database consisting of a single relation
EMPLOYEE with attributes U = {NAME, DEPARTMENT,
RANK, SALARY}. The following are elementary transactions
over U:

1) iv (<MOE. PARTS, MANAGER, SOK>),

2) du (NAME - MOE, DEPARTMENT =
PARTS. RANK = MANAGER)

(this deletes all managers in the parts department
whose names are not Moe),

3) ug (DEPARTMENT = PARTS,
RANK # MANAGER;

DEPARTMENT = SERVICE, RANK f
MANAGER, SALARY = 20K)

This transfers all employees who are not managers from the parts
department. to the service department. The rank remains
unchanged. The new salary is 20K.

In the following we sometimes omit the subscripts in writ.-
ing elementary transactions. For instance, we write i(C) instead
of i,(C), if X is understood.

We can now formally define the notion of transaction and
its effect on the database:

ProceedInga ol the Tenth International

confemmonVeryLawDataBaaea.
48

A deletion over the schema (U,S) is an expression of the
form dx(C) where X E S and C is a set of conditions. The
effect of dx(C) is the action

elf jdx(C)! : lnst(U,S) + Inst(U,S) defined by

I(Z) ifZ#X

em idx(c)i (1) VI =
(

I(X) - H(X,C) if Z = X .

An update over the schema (U,S) is an expression
ux (C,; C,) where X E S and for each A E X either
C,IA = &IA or A=a E C, for some a E dam(A). For each
tuple t, in H(X,C,), the updated version ux(C,;C+) (11) of tI
under ux(C,;C,) is the tuple 12 E H(X,C2) where

t,(A) if ‘,IA = C21A

t,(A) =

a if A=a isinC,.

The effect of ux(C,;C2) is the action
eff lux(C&,)i : Inst(U,S) + Inrt(U,S) defined by

I(Z) if Z # X

eff lu&;C2)1 (1) W =
(I(X) - W,Ct)) u M’W32) 0-1

t E H(X,CJ II I(X)} if Z = X.

D&&ion. Let (U,S) be a database schema. A tranraetion over
(U,S) is a finite sequence of elementary transactions over (U,S).
(The empty transaction is denoted by c .) The effect of a tran-
saction t = e,... e, (n > 0) is the action eff(t) = eff(el)

0 . . . o eff(e,). (The effect oft is the identity mapping.)

Thus, ‘the effect of a transaction is the composition of the
effects of the elementary transactions that make it up. Two
transactions are equivalent if they have the same effect:

D&diOVI. Two transactions t, and t2 over a given schema are
equivalent, denoted t, w t,, iKeff(t,) = eff(t.J.

Our first result (Proposition S.1) indicates that in the
present context only unirelational schemas need to be considered.
First we need the following:

Noktion. Let t be a transaction over a schema (U,S). For each
X E S, let tlX be the transaction over (X,(X}) obtained by eras-
ing from t all elementary transactions which are not over

ow~)~

9.1. Proporitior. Let tt and t2 be transactions over a schema
(U,S). Then t, w I, if trlX *r t21X for each X E S.

In view of the above, we only consider transactions over
unirelational schemas from here on.

4. Transitions and Realitability.

In this section we introduce a non-procedural method for
describing the effect of a transaction on a database. The effect is
described at the tuple level using the notion of a “transition.”
Transitions can be specified in an intuitively appealing manner
and are useful in several respects. First., they will be used to
measure the power of our transactions. Second, transition specif-
ications will be used to st,udy the equivalence and optimisation of
transactions. Intuitively, the relation between transactions and
transition specifications is.somrwhat similar to that betbeen rela-
tional algebra expressions and tuple calculus expressions.
(Indeed, transition specifications offer a non-procedural, graphical
alternative to transactions which may be more appealing to cer-
tain users.)

Informally, a transition describes at the tuple level I
change in the database state. For each tuple, a transition indi-
cates whether the tuple is deleted or. if not, how it is updated.
In addition, a transition gives a finke set of inserted tuples.
Since there are an infinke number of tuples to be considered,
only certain transitions can be effectively specified. Here, we
only need to consider transitions which can be specified using our
conditions. Thus, a transition will be specified by first partition-
ing the space of tuples into sufficiently many hyperplanes. The
choice of hyperplanes will ensure that all tuples in each hyper-
plane of the partition are either deleted or updated to yield
another hyperplane in the partition. This is specified using a
“transition graph” whose vertices are the hyperplanes in the par-
tition. If H, is updated to H,, there is an edge from H, to H,. tf
H, is deleted there is no edge leaving HI.

The set of inserted tuples cannot be conveniently specified
using the graph, sud is given separately.

We now formally define a transition specification.

Defiition. Let V be a finite set of attributes. A transition
specification over U is a couple (G.lnserc) where Insert is a finite
set of tuples over II and G is a graph (V,.E,). where:

(i) VG is a finite set of disjoint hyperplanes over U

such that (J C = Tup(U),
CE vu

(ii) if C1,C2) E EG then for each A in-U either

C 1 A = dA I or A=aEC+ for some a E dam(A),

(iii) for each C in Vc, ad(C) < 1.

(iv) Insert E V,.

The graph G is called the transition graph of the transition

specification. Insert is called the insert set.

Note that condition (ii) implies that C, can be updated to

Cz (or, in other words, that u(C,;C2) is a legal update). Condi-
tion (iii) follows from the assumption that the result of updating

a hyperplane is a single hyperplane in VG. If ad(C) = 0 then all

tuples in C are deleted.

We now give a simple example of a transition specification,

followed by a more complex one.

4.1. Ezampics. a) Let U = AB and G be the transition graph

represented below (Figure 4.1)

Figure 4.1

Let Insert = { {A=l,B=l}}. Then (GJnsert) is a transition

specification over AB. The transition specified by (G,Insert)

consists of replacing all tuples t where t(A) = 0 by the tuple

<l,l>. All other tuples remain unchanged. The tuple <l,l> is

inserted.

b) Let U = AB, Insert = 0, and G be the transition graph

represented(*) . m Figure 4.2. Then (G,Insert) is a transition

specification.

(*) We abbreviate the conditions A # al, A f a~, ...I A Z %

by A # al,Bz,...,%.

~dlngs of the Tenth International
conference on Very Large Data Bases.

A#O,l B=O C#O

A#O,l B=O C=O

IA=0 B#O,l C=Ol

A=1 B=l c=O

A#O,l B#OJ C=O

Figure 4.2

We now look at the connection between transition specifi-

cations and actions. Given a transition specification and a data-
base state, one can obtain a new state by applying the transition
to each tuple in the database. Therefore, each transition specifi-

cation generates an action in a natural manner. However, transi-

tion specifications ‘are more “refined” than actions, since they are

tuple oriented rather than global. Indeed, two different transi-

tion specifications can generate the same action. This is illus-

trated by the following:

Example. Let U = AB and G be the transition graph

represented below (Figure 4.3).

cf) A=1 B#l

Figure 4.3

Let. Insert = { {A= 1, B=l} }. It is easily seen that the transition
specification (GJnsert) and that of Example 4.1(a) generate the

same action. (Since <l,l> is inserted, the resulting action is the

Singapore, August, 1994

49

same whether the hyperplsne {A=O) is dekted or updated to
<1,1>.)

Following is a characterization of when two transition
specificat ions generate the same action.

4.2. Proporition. Two transition specifications (Cl,lnsertl) and
(G&sertz) over a given set of hyperplanes (*I generate the same
action iff the following conditions hold:

(i) Insert, = Insert*

(ii) For each B, C E Voir and C 4 Inserti (i = 1,2),

(B,C) E Eo, iff (B,C) E I%,+.

Intuitively, Proposition 4.2 shows that two distinct transi-
tion specifications can generate the same action only when their
differences are “masked” by the insert set. In particular, we
have:

4.3. CoroUory. Two transition specifications (($,a) and (G,J)
over the same set of hyperplanes generate the same action iff
G, = G,.

We next investigate the relation between transactions and
transitions. We will show that for each transaction there exists a
corresponding transition which represents the final effect of the
cransaclion. Then we show that, one can specify transitions
which cannot be realized by any transaction. Finally, we charac-
terize those transitions which are realizable. Intuitively, the set
of realizable transitions is a measure of the power of our transac-
tions.

An algorithm is next presented for constructing the transi-
tion specification corresponding to a given transaction. First,
however, it is necersary to perform some “preprocessing” of the
transaction. Specifically, the transaction is modified so that all
hyperplanes corresponding to distinct sets of conditions occurring
in the transaction are disjoint. A transaction having this pro-
perty is said to be in First Normal Form (1NF). The 1NF pro-
pe.rty simplifies considerably our algorithm as well as other
results. We next define 1NF and show how to construct, for
each transaction, an equivalent 1NF transaction. First though,
we need the following:

No-a. Let t be a transaction over U. For each A in U, let
the oetiue domain of A with rcrpcct to t be the set adom(A,t) of
all constants in dom(A).occurring in t. We now ass oc&e;th t
a partition HJJ of Tup(l!) into hyperplanes as follows.

H(t) = 1 u CA for each A E U ,
AEC
C, = {A= a}. a E adom(A,t), or

CA = (AFa aEadom(A.t)}) .

Clearly. H(t) covers Tup(U) and every two distinct hyperplanes
in H(t) are disjoint.

With the above notation, we have

De+ition. A transaction t over U is in Firrt Normal Form
(INF) iff every set. of conditions occurring in t is in H(t).

(a) (GJnsert), where G = (Vc,Eo), is over the set of hyper-
planes Va.

H Here again we blur the distinction between a set of condi-
tions and the hyperplane corresponding to it.

ProceedInga ot the Tenth lntematlonal
Confaranca on Vawy Large Data Bases.

If a transaction t is in lNF, then every two hyperplanea
corresponding to distinct sets of conditions occurring in t are dis-
joint. WC require the first. normal form property, rather than
simply the disjointness condition, since this will simplify the
statements of some results.

The following illustrates the definition of 1NF:

Example. Consider the transaction

t, = d(A=O) u(A#‘I; A=5).

Then H(t,) = { {A=O} {A=7} {A=S} {A#0,5,7}}. Since
{A#7} is not in H(1,), ~1 is not in 1NF. Consider next the tran-
saction

t2 = d(A=O) u(A: 0: A=5) u(A#0,5,7; A=5).

Then H(t,) = H(L,),~ Go is equivalent to L,, and tz is in INF.

Each transaction can be transformed into an equivalent
1NF transaction by “splitting” each hyperplane occurring in it
into sufficiently small hyperplanes. For instance, consider tran-
saction tl and ts from the previous exqple. One can obtain t0
from tl by splitting the hyperplane {A#?} into {A=O}, {A=S),
{A#0,5,7}. The update u(A#7; A=5) is split accordingly and
becomes u(A=O; A=5) u(A=S; A=5) u(A#0,5,7; A=5) (the
second update leaves the hyperplane {A=S} unchanged and can
be ignored). Thus, ts is obtained. We next show how each tran-
saction can be transformed into an equivalent 1NF transaction
using two simple transformation rules, called “SPLIT” axioms.

Dejindion. Let U be a set of attributes. The following two rules
are the SPLIT ozioms for transactions over U, where A E U.
a E dam(A), and C is a condition over U such that A#a $ C
and A=b $ C for all b:

SPLITI.
d(C) m d(C U {A it a)) d(cl,- A u {A= 4).

SPLIT%
u(C;C’) m u(C u {A # a}; C,)

u(CIU-A~{A=a};CI), where C1 = C1 = C’ if
A=bE C’forsome b,andC,= C’U {A#.},

cZ = c’jU-A u {A=a} otherwise.

Intuitively, hyperplane H(U,C) is split into the hyperplanes
H(U,C) n H(U,{A=a}) and H(U,C) n H(U,{A#a}). The update
and deletion operations are then applied to the resulting hyper-
planes. (Note that all resulting sets of conditions are meaning-
ful.)

It can be easily seen that the SPLIT axioms are sound.
Furthermore, they can be used to bring any transaction to First
Normal Form. Formally, we have:

4.4. Theorem. For any transaction t there exists an equivalent

1NF transaction t’, such that
h tmt’.

We are now ready to outline the algorithm to construct
from a given transaction t a corresponding transition specifica-
tion TS(t) = (G,Insert). Let t = e,...e,, n 2 1, be a 1NF tran-
saction over U, where each ei (1 < i Q n) is an elementary tran-
saction. Let Insert = t(0). We next define the transition graph
G = (Vo,Ec). Let Vc = H(t). It is left to construct E&. For
each elementary transaction e occurring in t, let E(e) be the set
of edges defined as follows: If e = d,, (C), let

Singapore, August, 1984

50

E(e) = {<H,H>) H E H(t), H # C}. If e = uu (C,;C,), let

E(e) = {<H,H> (H E H(t), H # C,} u {<C,,Cs>}. Finally, if

If e = iu (C), let E(e) = {<H,H> 1 H g H(t)}. Now let

EG = E(e,) 0 . . . 0 E(e,). The transaction spec’fication

TS(t) = (G,Insert) is now completely defined. (*f The transaction

t and the transition specification TS(t) define the same transition
and therefore the same action.

Ezample. Consider the following transaction over A :

Definition. A transition specification (GJnsert) is realizable if

there exists a transaction defining the same action as (GJnsert).

As shown by the next example, not all transition specifica-

tions are realizable.

Ezamplc. Let (Glnsert) be the transition specification over A,

where Insert = 0 and G is represented by:

t = i(A=5) u(A=O; A=5)

u(A= 5; A= 7) u(A#O,5,7; A= 5) d(A= 5). It can be shown that (G-Insert) is not realizable.

Note first that t is in lNF, and H(t) =

{ {A=O} {A=5} {A=7} {A+O,5,7)}. We now construct

TS(t) = (GJnsert), where G = (Vo,E,). Now
Insert = t(0) = {<7>}. The set Vo is H(t), and

Eo = El 0 Er 0 Es 0 E, 0 Es, where:

It is useful to distinguish between realieable transition

specifications and those that can be obtained directly from some

transaction via the algorithm TS. This motivates the following.

Definition. A transition specification (G,Insert) is directly

realizable if (G,Insert) = TS(t) for some 1NF transaction t.

(i) E, = E(i(A=5)) is represented by: Some transaction specifications are realizable without being

directly realizable. For instance, it can be shown that the transi-

tion specification (G,,0), where Gi is represented in Figure 4.4 is

realizable but not directly realizable.

(ii) Es = E(u(A=O; A=5)) is represented by:

(iii) Es = E(u(A=5; A=7)) is represented by:

(iv) El = E(u(A#0,5,7; A=5)) is represented by:

Q@Jtpzy]

(v) Es = E(d(A=S)) is represented by:

@ipq~&ki-~
Finally, E. = E, 0 Es 0 Es 0 EI 0 Es is represented by:

With the above algorithm and, in view of Proposition 4.2,

we now have:

4.5. Theorem. It is decidable whether two transactions are

equivalent.
0

It can be shown that transact,ion equivalence can be

decided in polynomial time (in the size of the transactions).

We have shown earlier how to obtain from each transaction

t a transition specification TS(t) which defines the same transi-

tion as t. Consider now the converse. If the action defined by
the transition specification (G,Insert) can be implemented by

some transaction, then (G,Insert) is called “realieable.” Thus,

we have:

(e) Note that TS(t) is undefined for t = c .

Proceedings of the Tenth International

Conferencs on Very Large Dats Bases.
51

Intuitively, the set of realizable transition specifications

constitutes a measure for the power of our transactions. The
main results of the section characteriee realizable and directly

realizable transition specifications. Before presenting them, we

need two definitions, a lemma, and some notation.

Figure 4.4

Definition. Let C be a set of conditions over U. The support of

C is the set Supp(C) = {A E U I A = a E C for some

a E dam(A)).

It is easy to verify the following:

4.0. Lemma. Let (GJnsert) be a transition specification over

U. If C, and C, are nodes of G which belong to the same cycle

of G, then Supp(C,) = Supp(Cs).

In view of Lemma 4.6, we can extend the definition of sup-

port to a cycle:

Definition. Let (G,lnsert) be a transition specification and c a

cycle of G. Then the support of c is Supp(c) = Supp(C) for

some node C belonging to c. (Supp(c) is well-defined, by the

above lemma.)

Notation. For each transition specification (GJnsert), let

2-Cycles(G) = {c 1 c is a cycle of G of length at least 2).

With the above, we now have the following characteriea-

tion of directly realizable transition specifications.

4.7. Theorem. A transition specification (GJnsert) is directly
realizable iff for each cycle c E P-Cycles(G) there exists a vertex
v(c) of G which does not belong to any cycle of G, such that

Supp(c) = Supp(v(c))

As we have seen earlier, a transition specification (G,Insert)

can be realizable without being directly realizable. In such a

case, however, (G,lnserb) can be easily transformed into an

equivalent, directly realizable transition specification. There are

Singapore, August, 1994

two types of transformations involved. The tlrst consists 01
%plitting” G, i.e. splitting some of the vertices of G into smaller
hyperplanes (the new edges are those induced by the old edges,
by rules analogous to the SPLIT rules). For instance, consider
again the transition specification (G,,B) (Figure 4.4) which is
realisable but not directly realirable. The transition specification
(Gs,0) (Figure 4.5) is directly realieable and G, is obtained from
G, by splitting the vertex {A#O,l} into {A=2} and {A#0,1,2}.

Figure 4.5

The second type of transformation involves the elimination
from G of all edges made unnecessary by the insertions.. For
example, consider the transition specification (G,,lnsert), where
Insert = {A=l} and G, is represented in Figure 4.6(a). Now
(G,,lnsert) is realisable but not directly real&able. Since the
tuple <l> is inserted, the tuple <O> can be deleted rather than
updated to cl>, without changing the final effect. Thus, the’
edge ({A=O}, {A=l}) can be deleted from Gi yielding Gs,
represented in Figure U(b). Clearly (Gs,Insert) is directly real-
&able.

Figure 4.6(a) Figure 4.6(b)

The previous discussion is summarized by the following
result characterizing realieable transition specifications.

4.8. Theorem.(*) A transition specification (GJnsert) is realis-
able # there exists a directly realizable transition specification

(GsJnsert) obtained by splitting G and by removing all edges of
the form (C,,C,) where C, E Insert.

Consider again the characterisation of directly realirable -
transition specifications. Intuitively, the role of the node v(c)
associated with cycle c is that of a temporary storage variable.
This is needed in order bo permute the content of two or more
hyperplanes. The need for temporary storage would disappear if
one could perform two updates u(C&s) and u(Cs;C,) simultane-
ously. Thus, suppose we added to the set of elementary transac-
tions the instruction i’switch (C,;Cr)“, whose effect would be the
same as performing u(Ci;Cr) and u(Cr;C,) simultaneously. Then
it can be shown t at every transition specification would be
directly realirable. 64

5. Transaction optimitation.

In this section we focus on the problem of transaction
optimization. We propose three int.uitively appealing optimisa-
tion criteria for transactions over a given set of hyperplanes, and
show that they can be satisfied simultaneously. Then we show

(zore formal statement of this theorem is given in the full

paper.

(r9 This observation is due to W. Lipski

Proceadw ot the Tenth InternatIonal
Conforenoa on Vety Lam Data Beaes.

how an equivalent optimal transaction can be obtained from each
given transaction. Furthermore, we show that optimal transac-
tions can be obtained which have a certain desirable form that
we call Second Normal Form.

We now discuss the three factors we will cons’der when
optimising a transaction. The fvst factor is the length t* 1 of the
transaction (e.g., d(A=O) is preferred over d(A=O) d(A=O)).
The second factor is the maximum number of times a tuple is
modified by the transaction (e.g., d(A=O) d(A=l) is preferred
over u(A=O; A=l) d(A=l) since in the second transaction <O>
js unnecessarily updated to <l> before being deleted). Finally,
the third factor is the complexity of the elementary transactions
composing the transaction. We propose the following increasing
order of complexity among elementary transactions:

(0) u(W) (C remains unchanged)

(1) i(C)
(2) d(C)
(3) UGCZ), where Ci # Cr.

While the proposed ordering is intuitively appealing, it may
clearly be invalid for certain specific implementations of the ele-
mentary transactions. However, it is likely that the ordering will
be compatible with most reasonable implementations.

Not&m. For every elementary transactions e and f, e c f
denotes that e is of lesser or equal complexity than f according to
the above ordering.

We now formally define optimal transactions with respect
to the criteria discussed above.

Definition. A transaction t = ei...e,, n 2 0, over the set of
hyperplanes H(t) is optimal (with respect to H(t)) if for every
transaction t’ over H(t) which is equivalent to t, the following
hold:

(4 t ’ is at least as long as t,

(ii) the maximum number of times t’ modif=s a
tuple is at least the maximum number of times
t modifies a tuple, and

(iii) if t ’ and t have the same length then there
exists a permutation e ;...ek of t ’ such that (**I

Ci < ei, 1 Q i (n.

We next outline an algorithm that constructs, for each
given transaction, an equivalent, optimal transaction over the
same set of hyperplanes. First though, we need two definitions,
one technical lemma, and some notation.

Dcjinition. Let G be a transition graph. A storage assignment
for G is a mapping v : 2-Cycles(G) + Vo such that for each
c E 2-Cycles(G), Supp(c) = Supp(v(c)) and v(c) does not belong
to any cycle of G.

By Theorem 4.7, (GJnsert) is directly realizable if and only
if there exists a storage assignment for G. A storage assignment
is “safe” if it does not give rise to deadlock. Formally, we have:

Definition. A storage assignment v for a transition graph G is
rafe if there exists an enumeration Ci,...,Cs of all connected

(*) A transaction t = e l...enr n) 0, has length n (ei, 1 < i < n,
are elementary transactions).

(**) The transaction e ;...ek is not necessarily equivalent
to t’.

Singapore, August, 1994

52

components of G with at least two nodes, such that for each i

(1 < i Q n) and c in P-Cycles (Ci),

(i) v(c) 4 Cj for any j, i < j < n, and

(ii) if v(c) is in Ci, then it is adjacent to c

(i.e., (v(c),C) E Eo for some vertex C of c).

The following shows that a safe storage assignment can bc
found for each directly realisable transition specification.

5.1. Lcmmo. If (GJnsert) is a directly realizable transition
specification then there exists a safe storage assignment for G.

Finally, we need the following:

No~afion. If T is a finite set of transactions, let t FT t and

@ T denote a transaction t,...t,,, where t, ,..., t, is some

enumeration of the elements of T. (If T = 0, let @ T = c .)

We now outline the optimiration algorithm for transac-

tions.

Algorithm OPT.

Input:
output:

1.

2.

3.

4.

7.

8.

9.

10.

11.

a transaction t in 1NF.
a transaction OPT(t).

Construct TS(t) = (G,lnsert) (G = (Vo,Eo)).

Eo := Eo - {(C,,Cr) / Ci E Vo, Cs E Insert).

D := {C E Vo j od(C)=O} n Insert.

If there is c in 2-Cycles(G) with Supp(c) = U

then

5. If there is no C E Vo - D such that
Supp(C) = U and C does not belong to

any cycle of G then

6. Remove one vertex from D.

Eo := Eo i-1 {(CC) C E D).

Compute a safe storage assignment v for G.

Construct(*) an enumeration C,...C, of all con-
nected components of G with at least two ver-
t,ices, such that for each Ci and cycle c in 2-

CYCleS(Ci), V(C) $ Cj (1 < i <j < n).

Let td = @ {d(C)) C E Vo, od(C)=O},

ti = @ {i(C) 1 C E Insert).

For each cycle

c = {(CI~CZ),...~(G-I~ G),(G,Cd) of G(n (2 2)
let

t, = u(C,;v(c)) UP%-,;Cn)
. . . u(C,;CJ u(v(c);C,) , where

(vk)tG) E- EG if v(c) is adjacent to c.

12. Let to = td @ {tc) od(v(c)) = 0, id(v(c)) = 0).

13. Remove all cycles from Ci,...,Cs (only edges are

removed).

14. For i := 1 to n do

15. MAX := {C E Ci 1 od(C)=O, id(C) > O}.

16. While there are edges left in Ci do

17. t,: = to@ {tc (v(c) E MAX

@ {u(C’;C) 1 C E MAX, (C’,C) E Ci,
C’ is not v(c’) for

c’ E 2-Cycles(C9)

@ {t,, 1 (V(C’),C) E Ci for

some C E MAX, and id(v(c’))

= 0).

18. Remove from Ci all edges

(C’,C) where C E MAX.

19. MAX: = {C E Ci 1 od (C) =

0, id(C) > 0).

20. to := toti.

21. output to.

The following can now be shown:

5.2. Theorem. For each t,ransact.ion t in lNF, the tran-

saction OPT(t) constructed by Algorithm OPT is

equivalent to t, and optimal (wit.h respect to H(t)). Furth-

ermore, the algorithm is polynomial in the length oft.

Note that, technically, the optimality of a transaction

was defined with respect to a given partition of the tuple

space into hyperplanes. However, if an optimal transaction

with respect to a given partition is split according to a dif-

ferent partition, the resulting transaction remains optimal

with respect to the new partition. Formally, we have:

5.3. Proporitior Let t be an optimal transaction with

respect to H(t). If 1~ t w t’, where t’ is a 1NF tran-

saction, then t ’ is optimal with respect to H(t ‘).

The following illustrates the effect of Algorithm OPT

on a simple transaction.

5.4. Ezamplc. Consider the transaction over AB:

t = u(AfO,B=l; A#O,B=2) i(<O,l>) i(<8,2>)
u(A=O,B=l; A=o,B=2) u(A#O,B=O; A#O,B=l)

u(A=o,B=O; A=O,B=l) u(A#O,B=2; A+O,B=O)

u(A=O,B=2; A=O,B=O) d(A#O,B=O)

The transition specification of t is TS(t) = (G,Insert), where
Insert = {<O,O>} and G is represented in Figure 5.1.

The transaction output by Algorithm OPT is

OPT(t) = d(A#O,B=l) d(A#O,B=2) u(A=O,B=l; A=O,B=2)
u(A=O,B=O; A=O,B=l) u(A=O,B=2; A=O,B=O)

u(A#O,B=O; A#O,B=l) i(<O,O>)

Figure 5.1

(a) Step (9) is possible by Lemma 5.1.

Proceedinga of the Tenth Intematlonal
Confarancw on V&y Large Data Base%

Singapore, August, 1984

Rmd. In general, a tuple in a database can be modified any
number of times in the course of a transaction. However. it can
be seen that an optimal transactidn does not. modify any tu le in
the database more than twice. Thus, the total number 6) of
tuple updates and deletions performed b r a optimal transaction
is at most twice the size of the database. I4

Consider once more the transactions t and OPT(t) from
Example 5.4 and let I be the instance over AB represent,ed in
Figure 5.2.

A B
1 1
2 2

Figure 5.2

Applying transaction t to I results in the performance o f-t***) g
tuple updaLes, 3 deletions, and 2 insertions. On the other hand.
applying the optimal transaction OP$(t) to the same instance
results in only 0 tuple updates. 2 deletions, and 1 insertion.
Thr fact that OPT(t) is optimal accounts for part of the
difference, but not all. For instance, consider
1, = d(A#O,B=l) d(A#O,B=2)u(A=O,B-I; A=O.B=Z)
u(A=O,B=O; A=O,B=l)i(<0,2>) u(A=O,B=2; A-0,&O)
u(A+O,B=O; A#O,B=l). Then tl wt and t, is also optimal.
However, 1, performs one more update than t when applied on 1.
This is so because t, inserts the tuple <0,2> first and then

updates it to <O,O>, whereas t directly inserts the tuple <O,O>.
Thus, the relative order of updates, deletions and insertions in a
transaction sffccts the total number of operations performed.
Specifically, the example suggests that all insertions should be
performed last. Similarly, all deletions should be performed first
(if not, some tuples may be updated first, and then deleted).
Thus, it is preferable that a transaction consist of deletions, fol-
lowed by updates, followed by insertions. A transaction having
this property is said lo be in “Second Normal Form.” Formally,
we have:

Dcjiinition. A transaction t is in Second Normal Form if it is in
First Normal Form and t = d,...dh uI...u, il...& where the dj are
deletions (I c j f k), the uj are updates (1 (j f m), and the ij
are insertions (1 6 j G n).

Note that the transaction OPT(t) output by Algorithm
OPT is in Second Normal Form. Thus. we have:

5.5. Theorem. For each transaction t there exists an
equivalent. optimal transaction in Second Normal Form.

Rem4rtr. (a) Let us briefly look at an alternative notion of
optimality based on the number of tuple operations performed by
a transaction. For each transaction I. over I’ and relation r over
U, let NOPS(t,r) be the total number of tuple operations (i.e.,
tuple deletions. updates and insrrt.ions) performed when t is

(*) Updates and deletions of newly inserted tuples were not
counted.

(**) Actually, a smaller, more accurate bound can be given.

(***) We include here updates and deletions of tuples inserted by
the transaction.

Procaodlng8 of the Tenth International
Contorenca on Vsy Lsrge Dats &mm.

54

applied to r. It would be appealing to define a notion of %trong”
optimality as follows. A transaction t is strongly optimal if for
each t’, t’ w-t, and relation r over U, NOPS(t,r) 6 NOPS(t’,r)
(i.e., t. does at least as well as any other equivalent transaction
on ON databases). Unfortunately, it can be seen that, in general,
there are no strongly optimal transactions equivalent to a given
transaction. (In fact, a strongly optimal transaction equivalent
to t exists iff the transition graph corresponding to t is 2-a~y-
clic.(*) And, in this case, OPT(t) is strongly optimal.) A weaker
but more promising notion is that of “weak” optimality. A tran-
saction t is weakly optimal if for every equivalent t’,
NOPS(t,r) > NOPS(t ‘,r) for some r implies that
NOPS(t,r’) < NOPS(t ‘.r’) for some r ‘. In other words, if there
is a transaction t’ which does bet.ter than t on some database, it
does worse than 1, on another database. It. can be seen that if t is
optimal and 2NF then t is weakly optimal. In particular,
OPT(t) is weakly optimal for every L.
(b) The optimization criteria considered so far do not take into
account the number of hyperplanes occurring in a transaction.
(Indeed, the way the space is split into hyperplanes does not
sffect the number or type of tuple operations performed by a
transaction.) However, the cost of a transaction may also
depend on the number of hyperplanes involved in the transac-
tion. Given a transaction t, one can use the SPLIT rules to find
an equivalent transaction t ’ with a minimum number of hyper.
planes. Unfortunately, it can be seen that it is not always po&

ble to 6nd a transaction with a minimum number of byperplanes
which also satisfies the other optimality criteria. The choice
between minimizing the number of hyperplanes and satisfying
the other optimality criteria has to be made depending on the
particular implementation.

6. Axiomatieation of tran saclion equivalence.

In the previous two sections, we provided algorithms for
deciding whether two transactions are equivalent, and for optim-
ising a given transaction. However, the algorithms do not pro-
vide’ much insight into why two given transactions are

equivalent, or why a given transaction is (or not) optimal. In
this section, we introduce some intuitively suggestive axioms for
proving transaction equivalence. The axioms are based on sim-
ple transformation rules which highlight the interaction between
deletions, updates and insertions. Due to space limitations, we
only present here a brief, informal overview of our results.

We first introduce a system Ax of axioms for proving the
equivalence C two transactions over the same set H of disjoint
hyperplanes. ih Ax consists of nineteen axioms grouped as fol-
lows (Cl,C2C3C4 are hyperplanes in H):

Update-update axioms:

1) u(C1;Cz) u(C&) w u(C&) u(CL;C2)
(C#C@l#Cq, and Cl#CQ),

2) u(ClQj U(CfCS) zs u(C1;CQ) u(czc3)*

3) u(C1;C~ u(c];cg) = u(C&) (Clf CZ).
4) u(C1;C2) u(C&) = u(CI;C.j.

(*) A graph is 2-acyclic if it has no cycles of length at least 2.

(@9 Note that, if two transactions arc over different sets of hy-
perplanes, they can be transformed into equivalent transac-
tions over the same set of disjoint hyperplanes using the
SPLIT axioms of Section 4.

Slngspor$ August, 1984

Delete-delete axioms:

5) d(Cl) d(Q) = d(C2) d(C1):

6) d(C1) d(C1) = d(Q).

Insert,-insert axioms:

7) i(Q) i(C2) m i(Cz) i(C1).

A) i(C1) i(C1) R i(C1).

Updat,e-delet,e axioms:

9) u(C1;Cz) d(C3) f: d(C3) u(C1;Cd (CQicCb C3#C2),

10) uG;C2) WA) - d(G) d(G),

11) d(G) u(‘kC2) = d&3,

12) u(W32) W,) = uKW2) (GfC2).

Update-insert axioms:

13) u(GiC2) i(G) m i(G) uG;C2) (WCS),

14) i(C,) u(C,:C,) w i(C,) u(CI;C2),

15) u(CI;C2) i(C2) B d(C,) i(C,).

Delete-Insert axioms:

16) WJ i(C2) w i(G) V-2 FGfC2),

17) d(G) i(G) FJ i(G),

18) i(C,) d(C,) E=Z d(C,), and

Identity axiom:

19) U(CI,C,) 5% c

l!nfortunately, it turns out that the set of axioms
Ax C) SPLIT is not complete. (In fact, we conjecture that there
is no proper finite axiomat.irat.ion for transaction equivalence.)

Following is an example of two equivalent transart.ions whose

equivalence cannot be proven using Ax c. SPLIT.

Eromple. Consider the trasactions over -4:

tl = d(A=3) u(A=4;A=3) u(A=l:A=4)

u(A=2;A=l) u(A=4;A=2), and

t2 = d(A=S) u(A=l;A=3) u(A=2;.4- 1)
u(A=3;A=2) u(A=4;A=3)

It can be seen that TS(t,) = TS(t2) = (G,B)! where G is the

transition graph represented in Figure 6.1. Thus, t, m t,.

(Intuitively, the only difference between t, and t, is that t, uses
{A=4) to realize the cycle in the transition graph, while t2 uses

{A=3}.) However, it can be shown that the equivalence canno;

be proven using Ax CJ SPLIT.

Figure 6.1

As shown above. the set of axioms Ax u SPLIT is not com-

plete. However. it is easy to see that Ax u SPLIT is complete
within the large subclass of P-acyclic transactions. Furthermore,

Ax is sufficiently powerful to essentially allow the optimiration of
all given 1NF transactions and to bring them to Second Normal
Form. Thus, Ax u SPLIT is sufficient for most practical pur-
poses.

Although we do not exhibit a complete set of axioms for

proving transaction equivalence, we present in [AV] a mechanism

Proceedings ot tk Tenth InternatIonal
Contsmnos on Very Larp Daia Ba8es.

axiomatization. Informally, some “imaginary” hyperplanes UC
introduced as temporary storage, and Ax is extended to these

imaginary hyperplanes.(*) Then we show that two transactions tl
and t, are equivalent iff ttl and tt2 can be proved equivalent

using Ax, where t consists of a sequence of deletions of imaginary

hyperplanes.

In addition, a second method is presented in [AV] for prov-

ing transaction equivalence using Ax. Specifically, it is shown
that proving the equivalence of two arbitrary transactions can be

reduced to proving the equivalence of several pairs of 2-acyclic

transactions.

Remork. The results in this and the previous sections have

shown that the large class of 2-acyclic transactions has particu-

larly desirable properties. First, strong optimality can always be

attained for 2-acyclic transactions. (Furthermore, the OPT algo-

rithm always yields a strongly optimal transaction when applied
to a a-acyclic transaction.) Second, the system of axioms

Ax u SPLIT is complete for proving 2-acyclic transaction

equivalence. Therefore the introduction of imaginary hyper-

planes is not required in the 2-acyclic case. (Also, proving the

equivalence of arbitrary transactions can be reduced to proving

the equivalence of 2-acyclic transactions.) Finally, note that all

2-acyclic transition specifications are realizable.

Acknowlc&enwnt. The authors would like to thank
Francois Bancilhon, Richard Hull, and Witold Lipski for their

comments and helpful suggestions.

(*) Intuitively, the imaginary hyperplane corresponding to.hy-
perplane C can be thought of as consisting of “marked” tu-

ples of C, with values outside the domains of the attributes.

Singspors, August, 1994

References

IA*1

lAV1

IBSj

IJW

IJW

ICI

WFI

ICWI

/DeAZ]

IF”“1

WI

Abiteboul, S., R. Hull. IF0 - A formal semantic
database model. In preparation.

Abiteboul, S., V. Vianu. Transactions in relational :Vil]
databases. In preparation.

Bancilhon, F., N. Spyratos. Update semantics in
relational views. ACM Transaction6 on Daiabasc
Systems, Dec. 1981, 557-575.

Bernstein, P., N. Goodman. Concurrency control in
distributed database systems. Computing Surueg6,
Vol. 13, No. 2, June 1981.

;ViZ]

Brodie, M. On modelling behavioral semantics of
databases. Proc. 7th Int. Conf. on Very Lorge
Dotoborcr (1981), 52-42.

Codd, E.F. A relational model for large shared data
banks. Communieotionr of ACM 15:6 (1970), 377-
587.

Castillo, I.M.V., M.A. Casanova, A.L. Furtado. A
temporal framework for database specifications.
Proc. 8th Int. Conf on Very Large Dotoborec (lQ82),
280-291.

Clifford, J., D.S. Warren. Formal semantics for time
in databases. ACM Transactions on Dotobore
Sgrtemr, Vol. 8, No. 2, June 1985, 214-254.

DeAntonellis, V., B. Zonta. Modelling events in
database applications design. Proe. 7th lnt. ConJ on
Very Lorge Dotoborer (1981), 2341.

Fagin, R., J. Ullman, hf. Vardi. On the semantics of
updates in databases. Proc. Second ACM SIGACT-
SIGMOD Symp. on Principles of Datobarc Syrtcmr
(198S), 352-565.

Hecht, M., L. Kerschberg. Update semantics for the
functional data model. Database research report
no. 4, January 1981, Bell Laboratories, Holmdel, New
Jersey.

[INGRES] Woodfill, J., P. Siegal, J. Ranstrom. M. Meyer,

E. Allman. INGRES version 7 reference manual
(April 8, 1981).

WI Maier, D. The theory of relational dotabarcr.
Computer Science Press, 1983.

IPBRl Papadimitriou, C.H., B.A. Bernstein, J.B. Rothnie.
Computational problems related to database
concurrency control. Proc. Conf. on Theoretical
Computer Science, Waterloo, Ontario, Canada (1977).

Pi Rolland, C. Event driven synchronization iu
REMORA. Third Scandinavian Symp. on

lnjormation Modelling, Tampere, Finland, 1984.

!Ull Ullman, J. Principle6 of dotabarc rystcms. Computer
Science Press, 1980.

IUhj Ulrich, S. An abstract introduction to the temporal-
hierarchical data model. Proc. 9th lnt. Con!. on \,‘erg
Large Daiabases (1983), 322-330.

Verroust, A. Characterization of well-behaved
database schemata and their update semantics.
Proc. 91h lnt. Conj. on Very Lorge Dotobores (198s).
512-521.

Vianu, V. Dynamic constraints and database

evolution. Proc. Second ACM SIGACT-SlGMOD
Symp. on Principler of Dotobore Syrtemr (198S), 584
S99.

Vianu, V. Object projection views in the dynamic
relational model. Proc. Third ACM SIGACT-
SIGMOD Symp. on Pn’nciplsr of Dotobore Syrtcnu

(1984).

Pmingr ot the Tenth International
Conbronco on Vary Large Data Baaor.

Slngapon, Augwt, 1964

56

