
DEPENDENCY SATISFACTION IN DATABASES WITH INCOMPLETE INFORMATION

Gijsta Grahne

University of Helsinki, Department of Computer Science

Tukholmankatu 2, SF-00250 Helsinki 25, Finland

Abstract. Two of the major problems raised by
information incompleteness in databases are how
to evaluate queries and how to take data depen-
dencies into account. We give a unified solution
of these two intermingled problems for the rela-
tional model. Formal criteria for the correct-
ness of the relational algebra and dependency
satisfaction are presented. We give a correct
redefinition of the complete relational algebra
and present a method, called a chase, for en-
forcing a set of functional and full join depen-
dencies on a relation with null-values of type
"value exists, but is presently unknown". This
novel chase can also be regarded as a generali-
zation of previously known chase methods. The
title of the paper reflects the emphasis of its
contribution.

1. INTRODUCTION

The research in the field of information

incompleteness has mainly followed three paths.

The vast majority of the papers on the topic have

sought a way to adapt the query language to han-

dle null-values of different kinds (a.o. [Bisl,

Bis2, ILl, IL2, Vasl]), while only a few papers

(i.e. [IL3, Lie, Vas2]) have looked at the prob-

lems pointed at by the handling of data dependen-

cies under information incompleteness. Even less

This work'was supported by the Academy of
Finland

Permission to copy without fee all or part of th& material is granted
provided that the cop&s am not made or d&tributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notke is given that copybtg is by permission of the Very Large
Data Base Endowment. To copy otherwfsc. or to republish, requires a fee
and/or special permission from the Endowment.

Procdlngs of ‘the Tenth Intematlonal
Conference on Very Large Data Baws.

papers have orientated towards a solution to the

problem of updating databases with incomplete in-

formation (i.e. [FUV, Sci]). All these directions

are however only different aspects of the same

problem: how to interpret and accordingly handle

incomplete information. (For an overview of the

field, see [Gral] or [Lip].)

This paper offers a unified treatment of in-

complete information of the type "value exists,

but is presently unknown". Explicit solutions are

given for the‘query problem and the data depen-

dencies in the context of the relational model.

Updates will be treated elsewhere [Gra2].

Following [IL21 and [Bis2] we consider a re-

lation containing null-values of the aforemen-

tioned type as representing a set of relations of

the ordinary kind (i.e. without nulls), one of

which corresponds to the state of the real world.

Since our information is incomplete we only know

the set of possible states, and we store its re-

presentative. The query language should then be

designed so. that only information that holds in

all of the possible states is inferred. In [IL21

it is shown how to extend a relational algebra

consisting of projection, positive selection, un-

ion and join so that it is correct in this sence.
.

A selection is positive if its formula only in-

cludes atomic expressions of the form A=a com-

bined with conjunction and disjunction (A is an

attribute name, a some domain value). This alge-

bra is quite restrictive, since it would for ex-

ample be impossible to ask for a list of all em-
Singaporb August, 1984

ployees earning more than 20000$ in some enter-

prise database. The authors of [IL21 show that

the handling of the complete relational algebra

requires a more complicated representative than

just putting null-values in ordinary relations.

Such a representative, called a c-table, and a

correct redefinition of the complete relational

algebra for these tables is given i.n [IL21.

Some authors have tried to solve the prob-

lem of data dependencies by incorporating the

null-values in the definitions of the data de-

pendencies. The dependencies are however not

statements about the incomplete database, but

statements about the real world. Thus their de-

finitions remain unchanged, and the question of

satisfaction is determined by the set of possi-

ble relations, in which each individual relation

should satisfy the dependencies. But since we on-

ly store the representative relation with null-

values, we need some syntactic method for checlc-

ing dependency satisfaction. This syntactic sat-

isfaction will, in absence of better names, be

called “satisfaction’!.

The argumentation above also shows that the

data dependencies af feet query evaluation: the in-

complete relation determines a set of possible

relations, and this set is further restricted by

the data dependencies. Since query evaluation is

based on the set of possible relations, we must,

if we want to maintain the correctness of the

query language, restrict the set of possible re-

lations to those relations that satisfy the data

dependencies. In [IL31 it is shown how to take

into account data dependencies in the system

where only positive selections are allowed. Since

we feel that this system is too restrictive, we

present a system that supports the complete re-

lational algebra and functional and full join

dependencies. Chapter 2 of this paper contains

the necessary preliminaries and our model that is

based on so called tables, and Chapter 3 contains

a formal criteria for the correctness of a rela-

tional algebra on tables, along with the correct

Pmceedlngo of the Tenth International

Conference on Very Large Data Bases.
38

redefinition of the complete relational algebra.

In Chapter 4 we give a formal criteria for depen-

dency satisfaction in tables, and we present a

method for transforming a table so that the cor-

responding set of relations will be restricted to

those satifying a given set of functional and

full join dependencies. The transformation proce-

dure is called a chase, and it can also be re-

garded as a generalization of previously known

chase methods.

2. PRELIMINARIES

For the definitions of the basics of the re-

lational model we refer to [Mai, Ull]. Relation

schemes will be denoted by Rl, R2, and their

instances or relations by rl, r2, . . . , where ri

is a relation over R i. The set of all relations

over R, is Rel(R,). For notational convenience
l.

we assti one

D. A tuple is

primed, and t(

attributes X.

by n and the i

(iifinite) camson attribute domain

denoted by t, possibly indexed or

X) is the restriction of t to the

The projection operator is denoted

&r operator by *. By a relational

expression f we mean a well formed expression

built up from projection, selection, union, join

and difference. ,A PJ-expression is a relational

expression involving only projection and join,
.

for instance nAB 1 (R)*rtBC(R2). In general, if f

is performed on relations r 1, r2, rn we can

write f(r1, r2, . . . , rn) . The result of perform-

ing f is always ‘a single relation of appropriate

type.

X->A denotes that X functionally determines

A, where A is a single attribute. The join depen-

dency for the set R = {Rl, R2, . . . , Rp] is de- 1

noted by *[RI or *[Rl, R2, .*.,

pendency *[RI is

Rpl. The joi; de-

for the scheme R, if iUlRi=

R. A set of functional dependencies (FDs) and

full join dependencies (JDs) is denoted by I. The

set of JDs in I is denoted by IJD. It is assumed

that I is defined for some scheme R. Sat(X) is

Singapore, August, 1984

then the set of relations over R that satisfy

the dependencies in I.

The device for representing a set of rela-

tions is called a table. Our tables are essenti-

ally extensions of so called c-tables of [IL2].

A table T consists of two parts, a set of c-tu-

pies and a set of general conditions, denoted TC

and TC. For building up a table we need a set G

of all expressions with atoms of the form (x=a),

(x=y), true and false combined by A, v, 7 and

* (conjunction, disjunction, negation and impli-

cation). In the atoms x and y are variables from

a countably infinite set V, and a is a value

from the domain D. The domain values will be

called constants. The variables are used to ex-

press the null-values, and we assume that VllD=$.

A c-tuple t over R is a mapping from RU{Con] to

VUDUG, such that t(A)EV or t(A)ED for AER, and

t(Con)EG. A c-table TC over R is a finite set of

c-tuples over R. TC is a finite set of general

conditions {glgEG). By definition, true is al-

ways a member of TC. The set of all tables over

R is denoted by Tab(R). A multitable T is a se-

quence (rl, T2, Tn> of tables TiETab(

such that all tables have the same set of gener-

al conditions T C. Tab(R) is the set of all multi-

tables over R.

A valuation v is a mapping from VUD to D,

such that for xEV, v(x) = a for some aED, and

v(a) = a for all aED. Valuations are extended to

c-tuples by defining (v(t))(A) = v(t(A)) for AER

and (v(t))(Con) = true if t(Con) comes to true

when all variables x in t(Con) are substituted

by v(x). Else (v(t))(Con) is false. The valua-

tion v applies to the general conditions in T G
in the same way, and v(TG) = true if v(g) = true

for all &TG,

The set of relations that a table T repre-

sents is denoted by Rep(T) and it is defined in

the following way:

Proceedings of the Tenth International
Conference on Very Large Data Bases.

(Definition 1. For TETab(R), Rep(T) = {r]rfRel(R)

and there exists a valuation v such that r =

v(TC) and v(TG) = e], where v(TC) = {v(t(R))]

tETC and v(t(Con)) - = true]. For a multitable T =

+=+ l *., T,>, TiETab Rep(T) = {<rl,rn>]-

riERel(Ri) and there exists a valuation v such

that ri = v(T.
k

) and v(TG> = z].

Choosing r = v(TC) means that we make the closed

world assumption [Rei]. The open world assumption

would correspond to r 2 v(TC).

The next example shows a table and two of

the relations that it represents. Note that the

set Rep(T) in this and most other cases is infi-

nite.

Example 1. TETab(SWPLIER PART PROJECT)

TC(SWPLIER PART PROJECT Con)

Jones x steel x=boltvx=nut
Smith y z true

TG= {z, x=y, z=concrete]

{r 1, r2} 5 Rep(T)

rl(SWPLIER PART PROJECT)

Jones bolt steel
Smith bolt concrete

r2(SlJPp~IER PART PROJECT)

Smith nail concrete

Given two tables Tl and T2 over the same

scheme, we say that T2 contains Tl, den. Tl c T2,

if Rep(T1) 5 Rep(T2), and that Tl is equivalent

to T 2, denT1 = T2, if Tl r T2 and T2 E Tl. The

equivalence of two tables means that they define

the same set of relations, since we clearly have

Tl = T2 if Rep(T1) = Rep(T2). Also, v(T1) =
C

v(T
2C

) and v(T
lG

) = u(T
2G

) for all valuations v

necessitates Tl = T2.

A condition g (or a set of conditions TG)

implies a condition g', den. g * g', if v(g) =
Singapore, Augwt, 1994

39

true implies v(g’) = E (or v(TG) = true im-

plies v(g’) = true) for all valuations v. Mutual

implication is denoted by e (equivalence). The

following normalization rules can now be applied

to tables.

(1) If for some tETC, ‘r(TG At(Con)), then TC

is replaced by TC -It}.

(2) If there exists c-tuples tl, . . . , tkcTC,

TETab(R), such that tl(R) = . . . = tk(R),

then TC is replaced by TC-{tl, . . . , t,)U{t),

where t(R)=tl(R) and t(Con)=iil, ti(Con).

A table T is said to be normalized, den. To, if

none of these normalization rules can be applied

to T. (There are also other normalization rules,

but these two are sufficient for our purposes.)

Normalization of T does not affect Rep(T). We

have T E To. Replacing conditions in c-tuples or

in TG by equivalent ones also preserves equiva-

lence.

For some purposes we need a form of set in-

clusion for tables. This modified inclusion is

defined followingly:

Definition 2. Let Tl and T2 be two tables .from

Tab(R). Tl 5 T2, T2 m-includes Tl if

(1) for each &Tl there exists a g’ET2 such
G G

that g=g’, and

(2) for each tlETlC there exists a t2ET2C such

that tl(R) = t2(R) and tl(Con) st2(Con).

If both Tl $ T2 and T2 2 Tl, we say that Tl is

nrequal to T2 and denote it T 1 rT 2. Clearly m-

equality implies equivalence, i.e. Tl c T2 im-

plies Tl sT2, but note that Tl $ T2 does not im-

ply Tl c T2.

3. EXTENSION OF THE RELATIONAL ALGEBRA

As mentioned in the introduction the cor-

rectness criteria for an extension of the alge-

bra to a table T is that we only conclude infor-

mation that holds in every possible state of the
real world, i.e. in every relation in Rep(T). If

we denote the extension of a relational expres-

sion f by ? we can formalize the correctness cri-

teria as

f(Rw(T)) - Rep(*(T) 1

for all relational expressions f and multitables

T. The lefthand side of the equality stands for

{f(rl, . . . , rr,)l<rl, ..,, m>ERep(T)), and the

multitable T is taken as <Tl, . . . , Tn> of the

tables Ti that 1 is applied on. The result '1(T)

is a table of appropriate type. Our notation re-

veals that we perform non-unary operations only

between tables with the same set of general con-

ditions, i.e. between individual tables of a

multitable.

Imielinski and Lipski [IL21 have given a

correct extension of the relational algebra for

c-tables. The same extension can with a slight

modification be used for tables also. Since we in

the sequel only will need PJ-expressions we will

be contended with giving only the definitions for

the extension of the project and join operators.

Definition 3. For a table Taab(R) the projection
A
nX(T) on a set X c R is a table T”ETab(X) such

that Th * { t(XUCon) 1 tETC} and Th = TG.

Definition 4. For tables TlETab(R1) and T2 E

Tab(R2) with the same set of general conditions

the join T 1 *T2 of Tl and T2 is a table T” E

Tab(RlUR2) such that Tk = Tl and Tb = {tlQ t2 I

tlETlc
G4 and t2ET2C , where tl t2 is the c-tuple

over RlUR2 with

(5 * t2HA) = tlW, if AERl

t2 (A) , if AER2-Rl

Procsedings of the Tenth International
Contersnce on Very Large Data Sases.

Singapore, August, 1984

40

(5 o t2) (Con) = tl(Con) A t,(Con) A

A
AERlnR2

(tl(A)=t2W.

As an illustration, consider

Example 2. Tl (A B C Con)
C

T2 (C D E Con)
C

a x c -(x-b) c d e true
a'b y true z d' e' 1(z=c")

c'd'e true

={true, -1(y=c)1 TlC=T2C -

(T~~T~)~(A B C D E Con)

a x c d e l(x=b)AtrueAc=c
a x c d'e'~(x=b)A~(z=C)')Ac?z
a' b y d' e' trueA~(z=c")Ay=z
a'b y d' e trueAtrueAy=c' --

(Tl - ST2)G={true, l(y=c>)

The conditions of the first and last c-tuples of

CT1 “T21C can be replaced by ~(x=b) and y=c.

Also, the un-normalized join of Tl and T2 con-

tains the c-tuple <a’ ,b,y,d,e, trUeAtrUeAy=C>,
--

but since (-~(y=c)Ay=c) =false the tuple is re-

moved. For a similar reason the c-tuple

<a,x,c,d' ,e, l(x=b)AtrueAc=c'>does not belong to

the normalized result.

The rest of the relational operators:can":be

extended to operate on tables along the same

lines as the project and join operators, and the

following theorem follows easily from Theorem

9.2 of IIL21.

Theorem 1. For any well formed expression f built

up from projection, selection, union, join and

difference, and multitables T, we have

f(RepU)) = Rep(~U)

In the ordinary relational algebra a rela-

tion r is always included in the result of cer-

tain PJ-expressions on r. A similar property

will be needed for the extended algebra.

ProceedInga of the Tenth International

&nfwenca on Very Large Data Baser.

P
Lemma 1. Let R = RI, R

P'
&Ri=R and T E

Tab(R), Then T 5 A,
1

(T)*... 'A, (T).
P

Proof. Property (1) of Definition 2 is immediate

since TC is not changed. For property (2), take

an arbitrary tETC. By Definition 3 t(R;UCon) E

A, (T), for ill,..., p. By inductive use of Defi-

niiion 4 ^n
R1

(T) a . . . QfiR (T) will include a c-
P

tuple t' with t' (R) = t(R) and t' (Con) =

(t(Con)At(Con) A (t(A)%(A)) A . . .
AERlllR2

A t(Con) A t(A)=t(A))). Now t' (Con) is clearly
AER p-lnRp

equivalent to t(Con), so the result fol1ows.m

4. EXTENSION OF DEPENDENCY SATISFACTION

A set X of dependencies restricts the rela-

tions that model the real world to those in

Sat(X). For a table T we make the natural inter-

pretation that T "satisfies" X if

Rep(T) 5 Sat(X).

Thus we need a method for transforming T in or-

der to cut down Rep(T) to Rep(T)flSat(X) for any

table T and set X of FDs and JDs. This cutting

down is necessary, since the extended algebra

operates on the basis of Rep(T), and the set 1

implies that not necessarily all members of

Rep(T) are possible states of the real world.

The method is called a chase, and its idea

will.be clarifyed by concidering the algebraic

counterparts of FDs and JDs. These counterparts

are special cases of so called algebraic depen-

dencies of [YP] (see also [Abi]). Stated with a

momentary simplification, an algebraic dependen-

cy is a statement of the form f(R) c R, where f

is a PJ-expression. A relation r over R satis-

fies such a dependency if f(r) 5 r. Since we de-

mand the inclusion to hold for all members of

Rep(T), where TETab(R), we can using the defini-

tion of containment and Theorem 1 write the fol-

lowing deduction chain:
Singapore, August, 1984

41

T “satisfies” f(R) 5 R if and only if

f&p(T)) 5 Rep(T) if and only if

Rep&T)) $ Rep(T) if and only if

Our chase is essentially a method for en-

forcing the containment (*) by applying the ex-

pression 1 on T. The enforcement will always be

possible, even if Rep (T) f&at (E) ~0. There are two

reasons for the intersection to be empty. First,

it might be that every relation in Rep(T) vio-

lates a FD in E. Then we must make Rep(T) equal

to the empty set. Second, the relations in

Rep(T) might violate some JDs of E. In this case

we will add the necessary c-tuples to T, and thus

we have in fact done more than just cutting down

Rep(T) to Rep(T)nSat (I). We shall be more precise

after introducing some necessary definitions.

First we concider completions of relations:

Let rERel(R). The completion of r with respect to

t is CornpI = s, such that s 3 r and &Sat (EJD),

and there is no relation s’E Sat(EJD) with

“?
s’ z 1:. CompE(Rep(T)) = {CompE(r> I &Rep(T)).

The completion means that the tuples that are

necessary for making r satisfy TJD are added in

s. The completion always exists and it is unique

(see [Mai, exercise 8.411). We are alsofree to

choose any cover for I, i.e. if Sat(E) = Sat(E”)

then Compz(Rep CT) 1 = Compyt (Rep 0) > l

For the definition of algebraic dependen-

cies we need the notions of extended schemes and

relations. An extended relation scheme P of R

has two copies of every attribute. For instance,

if R = ABCD then z = ABCDABCD. An extended rela-

tion 7 of r over R is accordingly I<t,t>ltEr).

The two different copies of an attribute will be

distinguished by the subscripts 1 and 2. We make

the same kind of extensions to tables also,

except that the conditions are not repeated.

Thus an extended table for TETab(R) is a table

%Tab a) with T, = {<t(R),t(R),t(Con)>ltcTc} and

% = TC. An example will clarify the point.

Example 3. TC(A B C Con) TG = {true, ~(y=c>)

a x c l(x=b)

TC(AlBlClA2B2C2Con) TC - {true,
1(y-cl I

a x c a x c 1(x-b)
a b y a b y true

An algebraic dependency [YP] is a statement

f<Q 5 f 61, where f and f are PJ-expressions.

We will however only need the counterparts of

FDs and JDs. The FD E->A for relations over R

corresponds to the algebraic dependency

‘AlA $A1 tx) *nXlA2 c?i>> 5 ‘Al% (‘1 l

The JD *[R~,...,R~], &Ri = R, corresponds to

to the algebraic dependency

mR
1

(R)*...*nR (R) c, R.
P

Rere correspondence means that the sets 1 of FDs

and JDs and E’ of the corresponding algebraic

dependencies express the same constraints, i.e.

that Sat (1) = Sat (I’). The algebraic counterpart

of a JD should not raise anyones eyebrows. For

the counterpart of a FD we give the following

example of a relation that does not satisfy the

dependency A->B.

Example 4. r(A B) r(A1B1A2B2)

ab abab
a b’ a b’ a b’

RB B fis> (BlB2)
12 -

bb
b’ b’

bb
b b’
b’ b’
b’ b

ProcodIng of the Tenth Intwnational
Conference on Wry Lotgo Data Baaas.

shqppon, August, 1984

42

The chase procedure can now be described with

the following algorithm.

Algorithm Chase

Input: A Table TETab(R) and a set 1 of FDs and

JDs for R

Output: A table T' such that

Rep(T') = Compz(Rep(T)) flSat(1)

Method: T' <- T

repeat foreach *[R~,...,R~~ ET do

T' <- ?I
R1

(?)?..4fiR (e
P

until the number of c-tuples in T'
C

no longer increases

foreach X->A Et do begin

T"<- 9
A1A2

(A
XIAl

<-+fi
X1A2

CT)>

foreach t E Ti do

if t(A1) 4t (A2) then

if t(A1) and t(A2) both

are constants

end

then TL <- ThU{~t(Con))

ehe Th <- ThU {t(Con) *

t(A1) =t(A2))

end of algorithm chase.

Some examples of the chase can be found in

the end of this chapter. We now proceed to prove

the correctness and some properties of the chase

Theorem 2. For a given set of FDs and JDs and a

table T, the chase algorithm only requires a

finite number of steps and the resulting table

T' is finite.

Proof. The algorithm does not introduce new var-

iables or constants, so the resulting table T'

is finite. Furthermore, each time we perform

the repeat-until loop the number of c-tuples in

Tb increases with at least one (except of course

during the last loop). The loop is thus per- I'

formed only a finite number of times. Since

each FD is applied only once, the whole algo?

rithm terminates after a finite number of

steps.u

Proceedings ot the Tenth International

Conference on Very Large Data Base%

Different choices of the order for applying the

JDs will result in different tables. In the full

version of this paper we prove that these tables

are m-equal, so the order is of no significance.

Usually we will let T' denote the result of

chasing T with some arbitrary order.

The next lemma gives the relationship be-

tween T and T'.

Lemma 2. Let T' be the result of chasing a table

T with a set of FDs and JDs. Then T c T'. 7
Proof. The repeat-until loop is a repetitive ap-

plication of PJ-expressions fullfilling the condi-

tions for Lemma 1. Thus the result holds at this

stage. The FDs only cause adding of conditions

to T G'
and hence T G c Th and consequently TcT'.n

T

The main theorem states that the resulting table

T' has the desired property. The proof of the

theorem is given in the full version of this

paper.

Theorem 3. Let T' be the result of performing

the chase on a table TETab(R) with a set E of

FDs and JDs. Then Rep(T')=Compz(Rep(T))flSat(E).n

In the chase of [MMS] any cover for the set of

dependencies can be used. The results will be

identical. In our chase we will get equivalent

tables, which is sufficient for our purposes.

Corollary. If T' is the result of performing the

chase with a set E of FDs and JDs on a table T,

and T"is the result when using a set E', where

Sat(Z) = Sat@'), then T' = T" .

Proof. By Theorem 3 and the definition of com-

pletions Rep(T') =Comp,(Rep(T))flSat(E) =

Comp~,(Rep(T))flSat(~') = Rep(T").n

Before closing this section we will give

two small examples of the chase. These examples

show the kind of information that has not been

deducable by previously known chase methods (i.e.

[IL3, MMS, Vas2]). T' will as usual denote the

result of chasing T with Z.

Slngapore, August, 1994

43

Example 5. I = ~A->B)

TC(A B Con)

a b true
x b’true

Th(A B Con)

a b true
x b’true

Example 6. t = (*[AB,AC])

TC(A B C Con)

a b c true
x b’ c’ ttlle

Th(A B C Con)

a b c true
x b’ c’ true
xbc’=
x b’ c x-a

TG -
= {true)

Tk - {true, 1(x-a))

TG = (true)

T;; = {true)

In Example 5 we are able to express the fact

that x cannot equal a. Example 6 is perhaps

more interesting. Any relation in CompI(Rep(T))

n Sat(I) should include two or four tuples, de-

pending on the value of x. The table T’ ex-

presses exactly this and the content and condi-

tions of the extra tuples. The conclusion is

that the expressive power of our tables is re-

quired for properly handling data dependencies.

These two examples can in fact be used to show

that the usual device fur representing null-

values, in [IL2, IL31 called v-tables (ordinary

relations with variables), is not capable of

fully supporting data dependencies. That is,

there are v-tables T and dependencies I such

that there exists no v-table T’ for which

Rep(T’) = CompI(Rep(T)) IlSat (I). The problem is

also noted by [IL3].

5. CONCLUSIONS

We have presented a relational system for

handling null-values of type “value exists, but

is unknown”. The key idea is that a relation with

null-values, here modelled by a so called table,

represents a set of relations, one of which cor-

responds to the incompletely known state of the

real world. The formal criteria for the correct-

ness of an algebra that operates on tables is

that only information that holds in every rela-

tion in the represented set is inferred. We have

correctly extended the complete relational alge-

bra to operate on tables.

The main contribution of this paper however

lies in the capability of the system to support

functional and full join dependencies. The formal

criteria for a table to “satisfy” a set of depen-

dencies is that the dependencies are satisfied in

every relation in the set that the table repre-

sents. This strong form of satisfaction is re-

quired for maintaining the correctness of the

algebra in the precence of dependencies. We have

then presented a transformation algorithm, called

a chase, that enforces a given set of dependen-

cies on a table in such a way that the dependen-

cies are satisfied in every relation in the set

represented by the transformed table. This chase

algorithm can also be regarded as a generaliza-

tion of previously known chase methods, and we

have given some examples of the kind of infor-

mation that only our novel chase is able to de-

duce. Our results also show that the expressive

power of our tables is required for fully sup-

porting data dependencies in databases with in-

complete information.

Pmcesdlngs of ths Tenth InternatIonal

Conlerencs on Very Laqp Dab Bases.
sln@apon, August, 1984

44

REFERENCES

Abi

Bisl

Bis2

FUV

Gral

Gra2

IL1

IL2

IL3

Lie

Lip

Mai

S. Abiteboul, Algebraic analogues to fun-
damental notions of query and dependency
theory. Rapports de Recherche 201. Institut
National de Recherche en Informatique et
en Automatique. Roquencourt, April 1983.

J. Biskup, A formal approach to null
values in database relations; In: Ad-
vances in Data Base Theory - Vol. 1
J. Minker & J. M. Nicolas (eds.) Plenum
Press, New York London 1981, 299-341.

J. Biskup, A foundation of Codd's relatio-
nal maybe operations. ACM Transactions on
Database Systems 8,4 (Dec. 1983), 608-636.

R. Fagin, J. D. Ullman & M. Y. Vardi, On
the semantics of updates in databases.
Proc. of the Second ACM SIGACT-SIGMOD Sym-
posium on Principles of Database Systems
1983, 352-365.

G. Grahne, Information incompleteness in
databases. In: Proc. of the Winter School
on Theoretical Computer Science. R. Back
et al (eds.). Finnish Society of Informa-
tion Processing Science, Lammi, January
1984, 65-98.

G. Grahne, Updates in databases with in-
complete information. In preparation.

T. Imielinski & W. Lipski, On representing
incomplete infovation in a relational
database. Proc. of the Sixth International
Conference on Very Large Data Bases 1981,
388-397,

T. Imielinski & W. Lipski, Incomplete in-
formation in relational databases. To ap-
pear in J. ACM.

T. Imielinski & W. Lipski, Incomplete in-
formation and dependencies in relational
databases. Proc. of the ACM SIGMOD Confer-
ence on Management of Data 1983, 178-184.

E. Lien, Multivalued dependencies with
null values in relational databases. Proc.
of the Fifth International Conference on
Very Large Data Bases 1979, 61-66.

W. Lipski, Logical problems related to in-
complete information in databases. Rapport
de Recherche 138. Laboratoire de Recherche
en Informatique, Universite de Paris-Sud,
September 1983.

D. Maier, The Theory of Relational Data-
bases. Pitman, London 1983.

Proceedings of the Tenth Intemiatlonal
Conference on Very Large Data Sases.

MMS

Rei

Sci

Ull

Vasl

Vas2

YP

D. Maier, A. 0. Mendelson & Y. Sagiv,
Testing implications of data dependencies.
ACM Transactions on Database Systems 4,4
(Dec. 1979), 455-469.

R. Reiter, On closed world databases. In:
Logic and Databases, H. Gallaire &
J. Minker (eds.). Plenum Press, New York
1978, 55-76.

E. Sciore. The universal instance and data-
base design. Ph.D. Thesis. Princeton Uni-
versity 1980.

J. D. Ullman, Principles of Database Sys-
tems (Second Edition). Computer Science
Press, Potomac, Md. 1982.

Y. Vassiliou, Null values in database mana-
gement: a denotational semantics approach.
Proc. ACM SIGMOD 1979 Conference on Man-
agement of Data, 162-169.

Y. Vassiliou, Functional dependencies and
incomplete information. Proc. of the Sixth
International Conference on Very Large Data
Bases 1981, 260-269.

M. Yannakakis & C. H. Papadimitriou, Alge-
braic dependencies. Journal of Comp. and
Syst. Sci. 25,l (1982), 2-41.

Slngapore, August, 1994

45

