
Modelling Information Preserving Databases:

Consequences of the Concept of Time

Manfred R. Klopprogge
Peter C. Lockemann

Fakult;it fiir Informatik, UniversitBt Karlsruhe

Post.fach 6380, D-7500 Karlsruhe

!N?fitCiKf

Many modern database appllcatlons must
preserve a record of the past over and
above the current state of an applica-
tion environment. For these applica-
tions, the concept of time is of central
importance. Databases that model these
applications cannot be based on the
concept of state alone but must replace
it by the concept of history as a func-
tion from a temporal domain to some
value set. Such databases will be refer-
red to as information preserving databa-
ses. The paper explores the consequences
of the hlstory concept mainly from a
database design point of viev. Firstly,
the entity-relationship model is exten-
ded to include histories. Secondly -
and this is the central topic - the
paper introduces for it a framevork for
inferring states of the past that have
not explicitly been stored in the data-
base. The framevork is based on the
notlon of uncertainty, and uses procedu-
ral means and ground rules for limiting
uncertainty to a fev veil-defined situa-
tions. Thirdly, the paper reviews the
update semantics vhlch become slightly
more complex than in traditional databa-
ses. An extensive example illustrates
the various concepts developed in the
paper.

The classical database is a model of
some real vorld system. At all times
the contents of a database are -intended
to represent a snapshot of the state of

application environment IHM 813
i!ch a database can best be characteri:
zed by the effect of its update opera-
tion: values In the database are replr
ted by nev values. Furthermore, in
answering a query the database manage-
ment system (DBMS) makes an assumption
of synchronism: the time difference
betveen a change in the real vorld and
the corresponding change in the database
is so small as to be insignificant to
the application. Jn other vords, queries
refer to the present state of the real
vorld.

The notion of "present" is not vithout
problems. Suppose a census is taken of
some section of the population, recor-
ding a variety of demographic data.
Then the present really is some fixed
point in the past. Or consider a databa-
se for a satellite tracking station
vith delays in the range of seconds to
hours, depending on satellite, betveen
sending a signal and receiving the
response. Such a database vi11 only
refer to the position of each satellite
at some earlier albeit veil-defined
point in time. Hence there are different
"presents" in the database depending on
satellite.

Furthermore, there are groving numbers
appllcatlons that must deal with the

$st as vell as vith the present. Consi-
der again our satellite tracking databa-
se from vhich one vould like to infer
the present position of a satellite by
computing its orbit from a set of ear-
lier positions. Other examples: clinical
patient data for med-ical diagnoses,
time series for statistical computations

399

and trend analyses, successive measure-
ments for machine control and diagno-
stics, ovnershlps of a gun for criminal
investigations, deposits and vithdravals
for checking accounts. Jn these appllca-
tlons, nev data items must not replace
old ones. Instead, the update operation
l upnts (completes) the database thus
preswring the older states of the
database lSchu 771. Ctearly, in order
to dlstlngulsh betveen various states
of the real vorld, each item must recel-
ve a time-stamp.

All these different situations can be
covered by the same concept: generali-
zing the traditional notion of state to
the notlon of nistory. Formally, a
history is a mapping

h: T ---> v

from a set T of time representations to
a set V of values.

As already Indicated above, not all
items vithin a database v-ill undergo
changes at the same time. Moreover, one
might veil imagine that for some items
only the current value is of interest,
vhereas for others only some value in
the past may be knovn, vhile still
others require a history of the entire
past. Consequently, a history should
not apply to the database as a Whole,
rather each item should be alloved to
have its ovn individual history.

What is to be considered an item? Since
history Is definitely an application-
defined phenomenon, the concept of item
should follow from the appldcation. On
the other hand, if a DRMS is to provide
facilities for dealing vith histories,
the concept of item should follov some
general rules. The obvious solution is
to choose a semantic data model as a
sort of "base model" and to extend it
by mechanisms for histories. Jn this
paper the entity-relationship model
will serve as a base model CChe 761.

Tradltional databases do not distlnguish
vhether the real world phenomenon corre-
sponding to a database item does cur-
rently exist, existed in the past or is
expected to exist some time into the
future. In an information preservlng
database these distinctions are the
very essence of its function. In parti-
cular, if an item had an existence in
the past but none at present, this fact
v-i 11 be preserved in its history. Non-
existence vi11 be expressed vithin this
history by the "undefined value".

Consider nov tvo distinctive and succes-
sive points In tlme vlthin a history
vhere the values are different. We may
be interested in values in betveen.
Hence, one of the mechanisms needed is
the capability to infer states that
have not explicltty been stored In the
database. Take agaln as an example the
satellite tracking database vhlch may
be used to predict the current position
of a satellite, or a checking account
database vhich may be used to derive
the balance at all times. Hence, closely
associated vith e,ach history will be a
derivation function in case all states
can be determined with certainity, and
a - perhaps empty - set of approximation
functions In cases vhere some uncertain-
ty is left. Jn the extreme, ve may even
be unsure vhether there vas a defined
value at all; ve then describe this
situation by an "uncertain value".
Logical propositions on the database,
as a consequence, cannot always be said
to be true or false but must be conside-
red to be "unknovn". Hence, information
preserv-ing databases introduce a need
for a ternary logic.

Surprisingly enough, too little atten-
tion has been paid In the literature to
a systemat-ic treatment of information
preserving databases, even though many
problems lend themselves very naturally
to that approach, as shovn above. The
first one to have raised the issue of
information preservation seems to have
been Schueler CSchu 773. On the other
hand a number of authors have discussed
the narrover theme 'time in databases'
by introducing concepts like 'event'
and 'process'. (see, e.g., T.Fal 74, Bub
77, HH 78, FK 78, BFM 79, Bub 80, BOl

79, And al, And 82, Ser 80, Bra 781).
These can nicely be used to model disc-
rete and fully recorded real vorld
behavior. Hovever, most of the approa-
ches fall vhen it comes to a full time
perspective of data, l.e. when queries
about the state of the vorld for any
given instant rather than just for
occurence times of events are to be
ansvered. More general patterns of
temporal change on the one hand and the
treatment of incomplete and erroneous
recording of hlstories on the other
hand need to be explored.

An integral part of dynamics - and,
hence, of history - is the concept of
time. A number of discrete temporal
systems (sometimes called calendar
systems) can be found in the literature,

[St-u 72, BFM 79, And 81 And 823.
;;&I these one may conclude thit a DBMS

400

should avoid prescribing a single calen-
dar system; rather it should offer
faclllties for defining the calendar
System most suitable to the application.

This paper will concentrate on applica-
tion-specific issues in information
preserving DBMS,
mentation

and will neglect imple-
issues. Ch. 2 will be devoted

to the extensions needed in the entity-
relationship model.
WILL discuss how to

In particular, it
include procedural

elements In the model. Ch. 3 will intro-
duce the mechanisms for
uncertainty.

dealing with
Questions of database

updates will be covered by ch. 4. A
brief outline of a proposal for a schema
definition language
example

illustrated by an
can be found in ch. 5. For a

more detailed discussion of the topic,
the reader is referred to lKLo 831.

We assume that the reader is familiar
with the entity-relationship model
(ERM). Hence, we restrict ourselves to
the enumeration of the basic aspects of
the model. The FRM distinguishes between
two kinds of elements: structured ele-
ments called mtitlles that are
thought to model

usually
those objects of the

real world that are of prime interest
to the modeling process, and atomic
elements called values that model pro-
perties that the counterparts of enti-
ties have in the real world. Values are
associated with entities via attributes,
i.e. a property Is modelled as an attri-
bute/value-pair. Two or more entities
may enter into a relatlonship in which
each entity plays a certain role. In
addltlon, a relationship may be charac-
terized by a set of values associated
with it via attributes.

Correspondingly, an ERM schema consists
of a set of entjty types and a set of
relatlonshlp types. Entity types are
declared by name and a set of attribute/
value-set-pairs. Relatlonship types are
given by a name, a set of rolelentity-
type-pairs, and a set of attribute/value
-set-pairs. Binary relationship types
may be declared to represent functional
dependencies: such a type may be l:l,
1:N to N:l, where the functionality is

true in the set of relationships of the
type for each database state (in place
of functional dependencies, more general
cardinalities IISO 821 could also be
used). Further, a relationship type may
be declared to be total in one or more
of the associated entity types,
that all entities of each of

meaning
the tvoes

currently in the database must part;'ci-
pate in a relationship of the type
considered.

In the remainder we shall sometimes
refer to both an entity and a relatlons-
hip as
role as a

an object, to an attribute or a
c ompmnt, and correspondingly

to object types and component types.

As pointed out in the introduction,
histories should be associated wlth
individual items in the database rather
than the database as a whole. In the
ERM, the most natural candidate for the
item Level is the component and not the
object, as the following example will
demonstrate.

Consider an entity type person. A person
has properties that never change over
its Lifetime, such as birth-date and
birth-place. The corresponding compo-
nents have no history, that is, in the
attribute/value-pair the value, once
assigned, will never change. We shall
call this a (temporally) constant compo-
nent. Otherwise we refer to the compo-
nent as (temporally) variable. Address,
employer, last name (for female persons
and - in "progressive" countries - for
male persons) are examples of variable
components. Variable components are
represented by an attributelvalue-histo-
ry-pair or a role/entity-history-pair,
where a value-history is a set of disc-
rete time/value-pairs and an entity-
hlstory a set of discrete timelentity-
pairs (or, technically more precise,
time/entity-reference-pairs).

Values of constants or within pairs in
histories may be undefined tnll), uncer-
tsln or unlnoun. Consider the property
of social-security-no. A person is
normally not assigned one until she or
he leaves school. Once assigned, the
number does not change any more. Uhile
intuitively one might consider social-
security-no to be a constant, it is in
this case a variable with a history
consisting of two values, a value of

401

undefined- (nil) unti 1 the number has
been assigned, and the number from the
time of assignment on.

Hence, constant components are restrlc-
ted to components that remain the same
over the entire life span of the object.
nil 18 a Legitimate value for a constant
component, e.g. date-of-first-childbirth
for a (male) person. If a constant
value Is initially not knovn, the con-
stant u1LL be assigned uncertain, deno-
tlng the fact that the constant may
have a nil or non-nil value. Once the
value becomes known, it will replace
uncertdn.

The value of unknoun may be considered
a restriction on uncmtrln, meanlng
'uncertain but not nit", or "not yet
known but definitely not nil".

Note, incidentally, that a representa-
tion with two pairs is sufficient for
the social-security-no history. That
the value at any arbitrary time may be
computed, and how this is to be done
tnll for all times before asslgnment,
and the number for all times thereafter)
must be expressed as an additional
property of the component. We shall
return to this point in chs. 2.4 and
3.1.

In the preceding section reference was
made to the Life span of an object. In
fact, it would have been more appropria-
te to refer to the life span of the
real world counterpart, since the object
is to be maintained in the database
over the entire life span of the databa-
se. Consequently, there is indeed a
situation where a history must be asso-
ciated with the object as a whole,
namely the existence of its real world
counterpart. Technically, we solve the
problem by augmenting the object II{~;
mandatory existence attribute,
truth values as values. The existence
component may again be constant
varlable; in the latter case the::
exists an existence history.

More formally, the existence of
object is true during all times f:F
which at least one of the remaining
components has a defined value. Conver-
rely, a constant component has the same
Invariant value only during those times
for which the object existence is true,
otherwise it is considered undefined.

The existence of an object izffa;;z
during all times for which all
remaining components have the undefined
value nil. Conversely, if a component
history Is not given over the entire
time domain (is not a total function),
its value is considered undefined during
the time the object existence is false.
It follows that the existence hlstory
of an object must be defined as a total
function. Objects w-ith a constant exi-
stence exist either at all times or
never.

Sin1 lar to constant components, assign-
ment of a truth value to the constant
existence attribute may be deferred; in
this case the value of unknovn ("unknown
whether true or false") is initially
assigned.

Cle finally note the following restric-
tion. Uncertainty will arise taslde
from init-iali7ing constant components
and existence) because history, while
being a continuous phenomenon, is recor-
ded only at discrete times. In order to
define uncertainty we must first state
what Is certain. Hence we rule that
recorded component histories must not
contain uncertain as a value, and recor-
ded existence histories MJSt not contain
unknoun as a value.

7 4 Procedural asggg&-pUg,general form -l,--,,,,,,-------L -c---------
ef-thQ_schQan

ble noted before tch. 2.2) that computing
the non-recorded portions of a component
history must follow rules that are
idiosyncratic to that component. We
also observed (ch. 1) that calendar
systems may vary from application to
application. Hence It ~411, in general,
be unavoidable to include with each
component Its own procedures for compu-
ting non-recorded values. In turn,
these procedures will have to rely on
procedures defined on time, e.g., to
determine into Which interval between
recorded times the desired time will
fall, or to compute the date following
a given date. Both problems may basical-
ly be solved by a mechanism akin to
abstract data types. This mechanism may
then be applied towards other value
sets as well.

Consequently, an extended ERM schema Is
declared In the fOllOWing Steps.

(1) Declaration of component value sets
other than the standard ones (such

402

as Boolean, real, integer). Each
value Set is defined in the form Of
a structure consisting of a name, a
Value set in the form Cx 6 BIP(X)J
vith B a base set and P(x) a predi-
cate (if P(x) Is missing, P(x) =
true 1s assumed), a List of rela-
tions (Boolean functions) and a
list of operations (functions with
non-Boolean range).

(2) Declaration of histories.
Each history is also defined in the
form of a structure and consists of
a name, a time structure and a
value structure (which vere pre-
viously defined according to cl)),
perhaps a predicate for further
restricting the set of pairs forming
a history, and a set of relations
and operations. Note that the same
history structure may be used in
different components.

(3) Declaration of patterns
A pattern is a value or history
structure together with at least
one assertion, at most one derlva-
tion function, and zero, one or
more approximation functions. Pat-
terns are unique within the schema,
i.e., they may be associated with
exactly one object type. Assertions
are formulated in order to enforce
certain consistency constraints on
update (see ch. 4.2).

(4) Declaration of objects.
Each entity type is introduced by a
name followed by a list of compo-
nents. A component is given by an
attribute name (among them existen-
ce), by an indication whether the
component is constant or variable,
in case of a constant by the name
of a value structure or value pat-
tern, or In case of a variable by
the name of a history structure or
hIStOry pattern. For a relatlonshlp
typeN role components are given by
role name, by an indication of
their functionality and totality,
by an indication of whether they
are constant or variable, in case
of a constant by a reference to an
entity type, or in case of a variab-
le by a history structure or history
pattern where the value part is a
reference to an entity type.

An extensive example that illustrates
the form of a schema may be found in
the appendix. The schema deflnition
language, TERM, in discussed in detail
in CKLo 81, Klo 831.

Jn the simplest case, queries to an
information preserving database are of
the kind CKLo 833 "which value (of some
component) vas effective in the real
vorld at time t ?"

q
(More complex query kinds are conceivab-
le that take recording time into ac-
Count; note, hovever, that these require
a more extensive concept of history.)

The answer appears trivial if the compo-
nent iS constant or there is an explici-
tely recorded state for time t . Other-

wise the system must try to cimpute a
value for t

q
from the recorded fragments

of the history. If this can be done
vith certainty, we call the correspon-
ding procedure a deriirrtlon, and each
element in the history a characteristic
state of the component. (More precisely,
the characteristic states are just
those elements that are needed to compu-
te the states for all times t

(4'
) As a

rule, whenever tq Is identical to some

recorded t, the history value at t is
chosen as an answer. Otherwise the
derivation function is executed and its
result is returned.

If the value at t
4

cannot always be

computed with certainty, we call the
corresponding procedure an approx i l *
tion. There may be a number of reasons:
the times for wh-ich the history was
recorded may be spaced too far apart
(in the sense of derivatlon, the history
may only represent a subset of the set
of characteristic states), or the recor-
ded values may themselves be inaccurate
as in case of estimates or physical
measurements. More than one approxima-
tlon funct-ion may be supplied, e.g.,
both a linear interpolation and a Least-
squares method. As a rule, because of
reduced confidence in the recorded
vat ues, the answer to the query will
always be obtained by executing the
specified approximation function.

If an approximation function is to be
applied, it must explicitly been sel. ec-
ted. Othervlse the derlvation function
is chosen by default. If no derivation
functions exists, and no approximation
function has been selected, the value
is uncertain for all t for which there

9
is no recorded state.

403

Three ktnds of derivations or approxima-
tions are possible:
- component-local : computation is solely

based on component history.
- object-local : computation is also

based on other components of the same
object (perhaps using their derlvation
or approximation functions).

- global: computation makes use of
other objects as uell.

Note, finally, that a derlvatlon or
approximation function may also be
associated vlth a constant component,
computing its (fixed) value. By necessi-

the function is object-local or
i!ibal.

Llhat was said in ch. 3.1 holds for the
existence attribute as veil (although,
obvlously, only derivations are neaning-
ful). Because existence is a total
functton (ch. 2.3), existence is elther
true or false, and uncertainty is ex-
pressed as “unknown vhether true or
false”. In consequence of ch. 2.3, the
follovlng strategles are used In order
to determine the existence value of an
object.

Object existence plays a central role
In determining the component values of
an object tch. 3.3). In addition, object
existence may enter into assertjons,
global derlvatjons and global i+pprOXima-
tlons In the form of logical expres-
slons. Consequently, the need to deal
vlth uncertainty introduces a need for
a ternary logic tch. 3.4). Hovever,
once such a logic has been introduced
there Is no reason to restrict compo-
nents vith truth values to just the set
Ctrue,false); rather shall also
permit the set Ctrue,fali: unknovn). Ue
shall refer to the former vglue set as
Boolean and to the latter as Kleenean.

Again in accordance vlth ch. 2.3, ve
are nov in a posltion to give a precise
outline of the strategies for determi-
ning the values of an object component.
We note that nil refers to the undefined
value, vhereas unwrtaln indicates that
the value may either be an element of
the value set considered, or nil. In
particular, a truth value component may
be determined to have an uncertain
value meaning it could be one of nil,
true, false and (in case of Kleenean)
unknown.

a) Constant existence.
Note first that the value may have been initialized to unknovn
tch. 2.3).

If existence-value $ unknovn
fh~n return recorded value
QLQQ it there exists at least one variable object-component

vith a non-empty history containing at least one
value 3: n31

fheC return true
Q&Q If derivation function Is specified

b&r! return result of derjvation function
Q&Q return unknovn.

b) variable existence.
W;e that the hlstory may have been Initlallzed to the empty

.

If an exlstence,value has been recorded for time tq

fh~o return existence-value for time tq

Q&Q If there exlsts at least one variable object-component
vlth a non-empty history containing a value 9 mlL for
time t

fhgn retu:n true
Q~QQ If. derlvatlon function Is specified

Z~QQ return result of derlvatjon function
Q~QQ return unknovn.

404

a) Constant component.
Note that the value may have been initialized to uncertain.

EQQQ object-existence Qt t Qf

true: jf component-value'* nil
ffj~n return recorded value
Q~QQ If derivation fUnCtlOn iS specified

WQD return result of derivation function
QlQQ return nil;

false: return nil;
unknovn: return uncertdn

ena -

vhere object-existence at t
q

is determined according to stra-

tegy a) or b) in ch. 3.2.

In case an approximation is requested, the strategy is instead

if object-existence Qt t
q

+' false

$DQD return result of approximation function
QLQQ return nil.

b) Variable component.
Note that the value may have been initialized to the empty
set.

If a component-value $ nil1 has been recorded for time t
q

IhQn return component-value for time t
q

QCQQ QQQQ object-existence Qf t
9

gf

true: .If derivation function is specified
WJQD return result of derivation function
QLQQ return uncertain;

false: return nil;
unknovn: return uncertoln

end.

The latter strategy is due to strategy a) or b) in ch. 3.2
vhich state that if a component value :: nil has been recorded
for time t

q'
then object-existence = true.

In case an approximation is requested, the strategy is the
same as for a constant component.

As mentioned before, Logical expressions
may arise in the course of querying an
information preserving database whose
evaluation vould have to follow the
rules of ternary logic. Depending on
the interpretation of the third truth
value, a number of ternary logic calculi
have been proposed CRes 691. The one
vhose interpretation matches the one
introduced above for unknovn is due to
Kleena. In this chapter ve just list
some basic properties and Lavs; for
details the reader is referred to CKLo
833. (The reader may also find a very

general and comprehensive treatment of
information incompleteness in databases
in Clip 793).

l.et I stand for unknovn, T for true and
F for false. Then the folloving table
defines the KLeenean logic.

P 1-p e-B----
Tf F
I1 I
F: T

405

Ct = lCX6B :Ptx) = true):

Cf = IcxaB IP(x) = false11

c, = ltx6B IP(x) = unknown31

c = IBI = et + Cf + c i

I p&qlpvqIp=>qlp<=>q
::: TIFlTIFITIFIT I F

---_---------------------------------
TITIFlTTTITIF:T I F
IlIIFITIIlTIIII 1 I
FIFFFITIFITTTIF I r

Note that

(P => q) <=> (Mp v q,
cp <=> q) <=> ccp => q> L (q => p))

are tautologies as In the binary Logic, but

1 (-a <=> a)
a => a
a <=> a

are not. Ne-lther are

p <=> <p = true)
(7~) <=> Cp = false)

as may eas-lly be checked by means of truth tables.

For the Loglcal expressions mentloned In ch. 3.2, the following
deflnltlons are of Importance. Let B be some base set.
The extension of a pred-lcate P, Cx6BlPtx)l ls defined as <xBBIP
(x)=truel. Consequently, Cx6BI~P(x)l = Cx6BlPtx)=falsel. In
general, CxeBlPtx13 u CxflBl P(x)) * 8.

The quantlflers are defined as follovs CRes 693. Consider the
cardinallties

l true for : false for I unknovn for
------------------_--------------------------------------

YxGB:Ptx)=true : Ct=C l Cf>O I cf=oIc,>o

4xeB:Ptx)=false I cf=c I Ct>O : Ct=O&C,>O

YxeB:Ptx)=unknovn l C$=C l c,<c I -

3xGB:Ptx)=true I Ct>O I cf=c I ct=oq>o

3x0B:Ptx)=false I Cf>O I Ct=C : cf=oIc,>o

3xW:Ptx)=unknovn I c,>o I c*=o I -

3,xGB:Ptx)=true lCt=laCI=O l Ct>lvCf=C l C,~lSC,>O

3,xBB:Ptx)=false lCf=laC~=O l Cf>lvCt=C : C,~lSC,>O

3,xBB:Ptx)=unknovnl C,=l l c,*1 I -

406

Notice the rules

(3x6B:P(x)=true) <==>-r(Yx6B:P(x)=faLse)
(3x6B:P(x)=false) <==>?(YxGB:P(x)=true)
(4x6B:P(x)=true) < ==>-r(3x6B:Ptx)=false)
(4xGB:P(x)=false) < ==>y(3x6B:Ptx)=true)

but not

(3x6B:P(x)=unknoun) <==>i(4x6B:+P(x)=unknoun))
(3x6B:Ptx)=unknovn) <== > (4x6B:+Ptx)=unknovn))

Selection of elements from a set B is governed by the conventions

sgge z frgn CxGBlPtx)l defined as

bake (3x6B:Ptx)=true) gf
true: z:= an arbitrary element of the set;
false: z:= nil;
unknovn: z : = uncertain.

t&t Z frgIj.I Cx6BIPtx)l defined as

cage (3,xBB:Ptx) = true) of

true: z:= the unique element of the set;
false: z:= nil;
unknovn: z : = uncertain.

The appendix gives numerous examples for predicates and set
selections, almost all of them within function declarations. (4
Is written as all, 3 as exists, 3, as unique, => as impr, CX6Bf P
(x)3 as B where P(x);
element of the structure.)

this refers to the currently considered

4-Qgdate semantics ---&--------AL

The traditional database cannot distin-
guish between an update that is due to
a change of state in the real vorld,
and an update that is caused by an
improved perception of the same state.
Not only is this distinction paramount
to the proper functioning of an informa-
tion preserving database, such a databa-
se is the only one in which the distinc-
tion is meaningful. Almost naturally,
therefore, one vii! distinguish betveen
two user roles with respect to update
operations, namely: recorder and refe-
ree.

The recorder may install new
suppLant an

objects,
uncer taln

nent,
constant compo-

or add a new time/value-pair to a
component
observe

history. In doing so, he must
all

order
consistency constraints in

to ensure
updates

that only plausible
are performed. The referee is a

specially authorized person, and knov-

Ledgeable enough to recognize inaccura-
cies or errors. He is permitted to
change the value of a constant component
or in a time/value-pair of the recorded
history of a variable component. In
particular, he may do so regardless of
whether the consistency constraints are
violated or not. The premise here is
that a constraint mirrors an assumed
Law in the real world, and that the
referee is in a position to determine
whether the law needs some modification.
We observe, though, that violating a
constraint may have as a consequence
that the constraint will never be satis-
fied during subsequent updates, hence a
more discriminatory approach to the
rights of a referee may actually be in
order.

As in traditional databases, consistency
Vi11 often be only maintained by a
sequence of recordings. Hence the con-
cept of transaction is essential to
information preserving databases
well. This is mainly a matter of DZ
design, a topic we shall not go into
any further In this paper.

407

There are three kinds of constraints that the DBMS must observe
during recording.

(1) Test on set membership, if a base value set or a base history
Set Is further restricted by predicate (ch. 2.4).

(2) Test vhether assertions on patterns are satisfied (ch. 2.4).
Tvo standard kinds of assertions are provided:
- rssertlon key specifies that the component to vhich the

pattern refers has to have a unique value vithln the asso-
ciated entity set or relationship set.

- wsertfion frLse indicates that an update of the COmpOnent
is never satisfied, i.e. the component is virtual. Conse-
quently, the corresponding pattern must include a deriva-
tion and/or approximation function.

(3) Test on the implicit constraints expressing the rule that
only Values that are certain are recorded tch. 7.3). These
may nov be formulated more precisely:

a) Constant existence.
old this-existence = unknovn

& neu this.existence 6 Ctrue,falseI

b) Variable existence.
rS x 6 new thls.existence: x.value 8 Ctrue,falsel

c) Constant component.
old this. attri bu te = uncerbin

& new thls.attribute :: uncert8ln
neu thls.attribute 6 component-value-set

d) Variable component.
(old thls.attribute = 0 v new this.attrlbute + nil)
L old thls.attriute $ nil
& new this.attribute $ uncertain
& 4 x 6 neu thls.attrlbute:

(x.tlme $ nilk & x.time * uncertrln I x.value $
uncertain)

I4 uhole thls.attribute 6 history-value-set

Notation: old refers to the previously recorded component,
nw to the elements nevly to be added, and uhole to the
result after update. thlis.attribute denotes the component
value or history associated with attribute of the object of
interest.

The appendix contains an extensive
example of a TERM (time extended ERM)
schema vhich illustrates some of the
foregolng concepts, and to which ve
already referred several times. The
example has been taken from a banking
application vhich typically must preser-
ve a record of the past. The basic
entity is the individual account. Tran-
sactions that cause changes to an ac-
count are also modelled as entities.
Finally, because interest is credited
to accounts, a third entity type, inte-

rest rate schedule, is added. Tvo rela-
tionship types relate an account to the
rate schedule applying to it, and to
the transactions affecting it. Changes
to the account have to do for one vith
the transactions (deposits or vithdra-
wals), for another with the interest
accruing to it but vhich are credited
to it only after each quarter of the
year.

After all that hase been said in the
paper so far the reader should have no
difficulties in reading the example.
Note that for the sake of completeness
the entire date structure has been

408

included; on first reading one may skip
to the structures for the representation
of histories.

One of the most interesting features of
an information preserving database is
the notion of uncertainty and the secha-
nisms for dealing with it. The paper
could be viewed as a somewhat formalized
approach to that subject, providing
insights that to the authors' knowledge
have hitherto not been reported. A
second aspect of our work has been
database design: extending the nov
classical entity-relationship model by
additional Concepts that may not only
be useful for designing information
preserving databases but allov sound
decisions with regard to the Structure

Of traditional databases. The schema
definition language TFRM, an extension
of Pascal., was purposely developed as a
programming language. As a third aspect
of our Work, this will permit the use
0 f 1FAM not only as a design tool but
a I. !; 0 as an interface to information
preserving DRMS. To determine the feasi-
bility, a TERM compiler was implemented
mapping the TFRM interface to the inter-
face of a network OBMS [Nun 521. Fourth-
1 Y8 even if not used as an interface,
translators could be built for such
formalized schemas that mechanically
generate netvork and relational interfa-
ces with equivalent behaviour. Develo-
ping appropriate compilers and transla-
tors remains a topic for further
research.

rAnd 813 T.L. Anderson: The Database
Semantics of Tlme. Ph.D.the-
sis, Univ. Washington, 1981

[And 873 T.L. Anderson: Modeling Time
at the Conceptual Level.
Proc. Pnd Jnternatl. Conf.
on Databases, Jerusalem,
June 1987

CBFM 793 R. Breutmann, F. Falkenberg,
R. Maurer: CSL: A Language
for Defining Conceptual
Schemas. In G. Bracchi, G.M.
Nijssen teds): Data Base
Architecture, North-Holland
1979, 737-256

409

CR01 793

[Bra 783

TBru 723

TBub 773

CBub 803

lChe 761

[Fat 743

CFK 783

IHM 781

IHM 811

lJS0 873

A. Bolour: The Process Model
of Data. Tech. Rep. 38, Lab.
of Medical Jnfo. Sci., Univ.
California, San Francisco,
1979

J. Rradley: Operations Data
Base. Proc. 4th Internatl.
Conf. on Very Large Databa-
ses, 1978, 164-176

R. Bruce: A Model for Tempo-
ral Reference and its Appli-
cation in a 4uestion Ansve-
ring Program. Artific. Intel-
ligence 3 (1977), No. 1, l-75

J.A. Bubenko: The Temporal
Dimension in Information
Processing. In G.M. Nijssen
(ed): Architecture and ModeLs

Database Management,
i:rth-Holland 1977, 93-118

J.A. Bubenko: Jnformation
Modeling in the Context of
System Development. Jnforma-
tion Processing 80, North-
Holland 1980, 39.5-411

P.P.-s. Chen: The Fntity-
Relationship Model - Toward
a Unified Viev of Data. ACM
Trans. on Database Sys. 1
(1976), 9-36

F. Falkenberg: Time-Handling
in Database Management Sy-
stems. CJS-Rep. 07174, Univ.
Stuttgart 1974

A. Flory, J. Kouloumdjian: A
Model for the Description of
the Jnformation System Dyna-
mics. Lecture Notes on Comp.
Sci. 65, Springer 1978,
307-318

M. Hammer, D.C. McLeod: The
Semantic Data Model: A Model-
Ling Mechanism for Data Rase
Applications. Proc. ACM
SJGMOD Jnternatl. Conf.
1978, 26-36

M. Hammer, D.C. McLeod:
Database Description vith
SDM: A Semantic Database
Model. ACM Trans. on Database
sys. 6(1981), 351-386

JSO TC 97/SC5/WG3 (J.J. v.
Griethuysen, ed.): Concepts
and Terminology for the
Conceptual. Schema and the

tKlo 013

TKlo 853

rLip 793

Jnformation Base. Publ. No.
ISOITC97/SC5-N695, March 1982

M.R. Klopprogge: TERM: An
Approach to Include the Time
Dimension in the Entlty-Rela-
tionship Model. In P.P.4.
Chen ted): Proc. 2nd Jnter-
natl. Conf. on Entity-Rela-
tionship Approach, ER lnstl-
tute 1981, 477-512

M.R. Klopprogge:
Relationship Entity an: Histories:
Concept for Describing and
Managing Time Variant Xnfor-
matlon in Databases. Ph.D.
thesis, Univ. Karlsruhe,
1983 (In German)

w. Lipski jr.: On Semantic
Issues Connected vith Incom-
plete Infornatlon Databases.
ACW Trans. on Database Sys.
4 (1979), 262-296

[Nun 821 H. Nunnenmann: Mapping TERM
Schemas to UDS. Diploma
thesis, Univ. Karlsruhe,
Fak. Informatics, 1982 (In
German)

[Res 693 N. Rescher: Many-Valued
Logic. McGrav-Hill 1969

lSchu 773 B.-M. SchOLer: Update Recon-
sidered. Jn G.M. Nljssen
ted): Architecture and Models
In Database Management,
North-Holland 1977, 149-164

18er aoJ A. Sernadas: Temporal Aspects
of Loglcal Procedure Deflnl-
tlon. Jnformation
(i9arn, 167487

sys. 5

Appmdlx: lEna 8chmM of 8 BMklng lylpClc8tlon

dmflm scheme s-account;

X----- structures for the representation of tiles and values ------

structure
st-iceteg = integer;

structure
st-lnt-rate = real;

structure
st-account-nos = Integer;

structura
st-naae + packad wrryCl..ZOl of char;

structure
St-cur = real;

structure
St-date =

record d.n,y: Integer mod
uhwo

th1s.y >= 1562 8nd
th1s.a >= 1 and tJ~is.n <= 12 8nd
th1s.d >= 1 8nd thW.d <= 31 8lld
(thls.d <> 31

or th1s.a in Cl, 3, 5, 7, 6,10,121) end
(th1s.d <> SO QT th1S.m <> 2) 8nd
(th1s.d <> 29 or thlS.ll <> 2

or thiay mea 4 = 0 mla
(th1s.y mea 100 <> 0

or th1s.y ood 400 = 0);

r*lotlon8
funcWon is-in,lesp(t: St-date): boolean;
bog1 n

Is-in-Leap:= t.y mod 4 f 0 end
ct.y ooa 100 <> 0

or t.y ooa 400 = 0)
em;

X represent8 interest categories

X represents interest rates

X represents account numbers

X represents names

X represents currencies

X represents calendar dates according
X to the Gregorian calendar

t does a dete fall into a leap year?

410

fUlCtioll before-dete(tl, t2: St-dote): boolean;
Wtln

before-date:: t1.y < t2.y
or ti.y=tz.y and t1.n<tz.m

end;
or tl.y=t.?.y and tl.m=tZ.nand tl.d<tZ.d

funct*on contenp-dete(t1, tt: St-date): boolean;
besln

contenp-date:= tl.d=tt.d end tl.nst2.a 8nd tl.y=tt.y
end;

fImCtlom becon-date(t1, tZ: St-date): boolean;
beal”

becon-date:= net before-date(t2, tl)
end;

aporatlona
function ULtlmO-date(z: St-date): St-date;
var ud:
begin

integer;

If 2.11 In Cl, 3. 5. 7. 8. 10. 121 than
ud:= 5,; - - - . . -

else If z.,n In (4, 6, 9, 111 then
ud:= 30:

elaa if Z.&Z and is-in-leap(z) thon
ud:= 29

else if z.R=~ and not Is-in-leap(z) than
ud:= 28;

ultimo date.d:= ud’
ultlmo~date.m:= 2.;;
ultlmo-date-y:= z.y

end;

function next-day-datetz: St-date): St-date;
ver n: St-date;
Wiln

If z.d = 51 and z.,n = 12 tRen bngln
n.d:= 1; n.m:: 1; n.y:= z.y + 1 ond

else If z = ultino-date(z) thm Eqln
n.d:= 1; n-m:= z.n t 1; n.y:= z.y ad

else
n-d:= z.d + 1; n.m:= z.m; n.y:= z.y;

next-day-date.d:= n.d;
next-day-date-m:= n.m;
next-day-date.y:= n.y;

end;

X date tl before date t2?

X do tl and t2 refer to the sane day?

X tl before t2 or tl I t2?

X Last day of a month

I date of day follovlng z

X New Year’s Eve

X Last day of the l onth?

function prev-day-datetz: St-date): St-date;
var p: St-date;
besin

if z.d = 1 md 1.11 = 1 m z.y = 1582 thorn
p:: nil

X date of day preceding z

% this day has no predecessor,
X start of Bregor?an calendar

elan If z.d=l and z.m=l 8nd z.y>i582 thm bogI X New Year'
p.d:= 31; p.m:= 12; p.y:= z;y - 1 and -

else If z.d = 1 and ~.a > i thon bogln
p.cl:: 1; p-m:= .z.m - 1; p.y:= r.y;
p:= ult,mo-date(p) end

else bngin
p.d:= z.d - 1; p.r:= z.n; p.y:= z.y olsd;

prev-day-date.d:= p.d;
prev-day-date.m:= p.m;
prev-day-date.y:= p.y

end;

function Least-recent-datetst: not of St-date;
z: St-date): St-date;

Least-recent-date:= that x from st W&us
all v fra st uhero

X not beglnning of a l onth

f q ax. date < z in a set of dates

end;

b&con-datetx, 2) and
(before-datecy, x)

or before-date(z, y))

411

Z---- structure5 for the representation of hlstofioa ------

structure
hs-date-cur =

history
t: St-date;
v: St-cur end;

structur l
hs-date-kleenean =

mtstory
t: St-dote;
v: kleenean md;

structure
hs-standard-exist =

history
t: St-date;
v: kleenean md

utioro
111 51, 52 from thl8 uhu0
((51.V = true md 52.~ I false ud before,dete(sl,s2))
1qL all s from thlr uhuo

and
before-date(s2, 53 I-1 s.v = false)

((5l.V = false lad 52.~ = true and before,date(sl,s2))
lmpl all 5 from thlm uhora

before-datets,
and

51) 1-L 5.v = faire)

((5l.V = true 8md 52.~ = true end brfore~datetsl,s2))
Imp1 811 s from this whore

before-datefsl, 5) 8nd before-datets, 52)
Imp1 s.v = true;

epurtlons
fumCtlm start~ex~standard(h:iw~standsrd,exlst):st~date;
var 5: stmtm of hs-standard-exist;
Win

s:= that x fra h uhum
all y from h uhero

tit y.v or becontx.t, y.t);
If s 0 nil thm

start-ex-standard:= s.t
01 eo

start-ex-standard:= mcutain
-;

function d-standardth: hs-standard-exist;
z: St-date): kleenean;

v8r ds: strtm of hs-standard-exist;
Win

as:= thmt 51 from h uhore
61 .t=Least-recent-date(tlmn tx from St-date u)mm

l xlsts 52 from h uhorm
52.t = tx, 1);

If ds <> nil then
d-standard:= 4s.v

else
d-standard:= unknown

me

structure
hs-lnt-rate =

hlstory
t: St-date;
v: st-lnt-rate and;

oporrtlons
function d~lnt~rate(h:hs,lnt~rate;

z:st-date): et-lnt-rate;
v8r dz: state of hs,lnt,rate
begin

dr:= that 51 from h uhmro
sl.t=least~recent~date~thon tx from et-date uhorm

alstm 52 from h ubum
52-t = tx, 2);

If dz <> nil then
d-Interate:= dz.v

etsa
d-lnt-rate:= uncertmln

and;

2 there I5 at sort one time
t Interval durlng which the
X exlutonce 15 true
X (thlr nodols tne life of
X llvlng befngs etc.)

X beglnnlng of existence

X oldest known state ultl! 8.v = true

X is there one

f auxlliary function for
X pattern derivation

X function is total

2 auxlllary function
% derlvatlon

x all points In tlee of h

f function is total

412

X----- patterns for the components of 'rate-schedule' ------__

pettern
!nt_ex7st = hs-standard-ex7st;

dsrlvation
function derlv-lnt(pz::rate-schedule; z:st-date):kleenean;
Win X total because of d-standard

aerlv-lnt:= d~standard~pz:.oxlstenco, 2)
-;

pattmrn
Int-icateg = st-lcateg;

mssrtlon
W;

pattern
7nt-debit = hs-lnt-rate;

derirrtlon
functloe deriv-debit-rate(pz::rate_schedule;

z:st-date): st-lnt,rate;

-derlv-debit-rate:= d-int-rate(pz:.deblt_rete, 2)
and;

X total because of d-lnt-rate

pattern
lnt-credit = ns-lnt-rate;

derl*atlon
functlee derlv-credit-rate(pz::rate_schedule;

z:st-date): st-lnt-rate;
*In

derlv-credit-rate:= d-lnt-rate(pzt.credlt_rate, z)
llnd;

t total because of d-!nt-rate

I----- patterns for the components of 'account' ---------_---------_

pattern
account-exist = hs-standard-exlst;

derivation
function derlv-ace-ex(pa::account;

?:st-data): kteenean;
baaln

-derlv-act-ex:= d-standard(pat.exlstmce, z)
end;

pettern
account-no = st-account-nos;

assertion
key;

pattern
account-lcateg =

history
v: St-date;
t: st-lcateg end;

derivation
function deriv~lcateg~h:account_lcateg;

z:st-date):st-lcateg;
var dz: state of account-icateg;
begin X derlvatlon is total

dz:= that s+ from h uherb
s1.t=Least-recent-date(tRomm tx from et-date uhere

exists SZ from h where

If dz <> ML
s2.t = tx, 2);

deriv-icateg:: d2.v
else

derlv-icateg:= uncertrln
end;

413

pattarn
account-balance = hs-date-cur; X for virtual coeponent

assertion
false;

mrlTatia 1 current balance
functla deriv-account(ps:iaccount;z:st-datey:st-cur;
var ds: St-cur; ~1: St-dats;

Wn
zi:= start~ex~standard~pat.Ul8tm~~;
ds:= 0;
uhllo becon-date(zi,z) dir bogin

dc:= 48 + pat.day-balance at zl;
If z1=ult:mo_date(zl) eml 21.1) md 3~0
then

ds:= ds + pa?.noncred-interest l t 2l:
z1:= next-day-datetzl) and;

derlv account:= ds end

X 0ay of opening an account

X sus of all daily balances

X end of quarter?

X lnterest credited

X defined as tote1
end; -

pattern
account-dbal = hs-date-cur;

user tl on
false;

Qer1vat1on

function derlv-dbal(pa::account; z:st,date): St-cur;
var dt: St-cur; sta: sot of transaction:

pt: ?tFansactlon;

“9::.= 0 . .
sta:= ihosx tr from transaction rrkwo

tr .exlstentm 8t 2 8nd
exists at from act-ta whore

at.acc = pa end at.ta = tr;
tills sta <> Cl do begin

pt:= som 5 from sta;
sta:= sta ulthout Cptl;
dt:= dt + pt?.amount end;

derlv-dbal:= dt end
end;

X balance for the day

X all transactions on
X an account for day 2

X total ancunt of all
X transactlons

pattern
account-noncred-interest = hs-date-cur;

l surt1on
false;

X for virtual attribute

aDr1vat1on X interest accrued from
function deriv-noncred-1ntLpa:taccount; z:st-date):st-cur; X current quarter that

xw do2, db: St-cur; 21: St-date;
I: frate-schedule; If: St-lnt-rate;

win
zi.d:= 1; z+.y:= z-y;
zi.m:= ((2.m - 1) dir 3) * 3 t 1;
if not pat.exlrtmcx at 21 then

zi:= start-ex-standard(pa:.xxlstxnu);
doz:= 0;
while becon-date(zl,z) de begin

db:= pa:.day-Balance at 21;
2:= pat.rs at 21;

If db < 0 then
If:= r-debit-rate

0180
zf:= z.credit-rate;

do2:= do2 + dbrzfIS600 mW;

derlv-noncred-int:= doz md
WWi;

X have not been credited
X yet

X 21:= begin of quarter

X day account openlng

X.rate ScheduLe appll-

X cable to account on
X day 21

X SURI of all daily interests

414

X---- patterns for the components of 'trrnractlon' ------

pttmrn
transaction-exist =

lB1stmry
t: st,drte;
v: tleenean on4

~1st~ s from tblm v*rr s.v

lql mlqmm s fra tlblm uhum 8.v;

dulv~tloa
functlom derlv-ta(pt: ttronrrctlon;

L: St-date): kleenean;
v8r x: st8to of transaction-exist;
-1"

x:= that 9 fra ptt.mxlstmco
war. s.t = 2;

If x <> nll tlua
deriveta:= x.v

l LU If u1sts 0 from pt:. u1stmcm uhmrm s.v thm
deriv-ta:= false

OLSSI

derlv-ta:= unknown
end;

X----- patterns for the coaponents of 'rs,act' --w------

pattorn
rs-act-rs =

history
t: it-date;
v: trate-schedule md;

8msmrtlm
fslse;

dDrivatio#l
functlm deriv-rs(pr::rs-act ; z:st-date):trate-schedule;
W*n

derlv-To:= thxt 2 from rate-schedule uhoro
z.lnt-category=prt.acct.lnt_cotogory at 2

-;

X eech hlrtory has at

X most one state vlth

X s.v=true (point event)

X for virtual role

415

t---- entjty types and relationship types

mtity typo
rate-schrdule;
atlstmc*

rwlablo Int,exist;
8ttrlbrt.s

lnt-category coamtmt lnt,lcrteg;
deblt,rate wul~lm lnt-debit;
credit,rate rwl~lo Int-credit;

mtity typa
account;
a1*tou8

vriable account,exlst;
attributea

no constant account-no;
owner constant at,naae;
Int-category vul*Lm account,lcateg;
balance rwlabLo account-balance;
day,bslance vw1d8.e account,dbrl;
noncred-interest vwl~lo account-noncred-intereet;

nt1ty type
transactton;
n1stalu.

v~rl8blo transactlon~exlst;
8ttrlbutn

amount conot8nt at-cur;

X Intueet category
X current balance
X total for each day
X not yet credlted Intrrost

rel8tloamblp typa
rs-act;
exlstonco

cmstmt kleenean;
roles

rs on0 vrl8blo rs-see,rs;
ICC tota contmt taccount;

rol8tloashlp typm
acc~ta;
l X1stoncm

conotmt kleenean;
roles

act on0 con8tmt taccount;
ta total constut ttrsnsaction;

X currant rate schedule lrs’
X for account ‘act’

X transaction ‘ta’ belonge
X to account *act’

416

