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Many modern database appllcatlons must 
preserve a record of the past over and 
above the current state of an applica- 
tion environment. For these applica- 
tions, the concept of time is of central 
importance. Databases that model these 
applications cannot be based on the 
concept of state alone but must replace 
it by the concept of history as a func- 
tion from a temporal domain to some 
value set. Such databases will be refer- 
red to as information preserving databa- 
ses. The paper explores the consequences 
of the hlstory concept mainly from a 
database design point of viev. Firstly, 
the entity-relationship model is exten- 
ded to include histories. Secondly - 
and this is the central topic - the 
paper introduces for it a framevork for 
inferring states of the past that have 
not explicitly been stored in the data- 
base. The framevork is based on the 
notlon of uncertainty, and uses procedu- 
ral means and ground rules for limiting 
uncertainty to a fev veil-defined situa- 
tions. Thirdly, the paper reviews the 
update semantics vhlch become slightly 
more complex than in traditional databa- 
ses. An extensive example illustrates 
the various concepts developed in the 
paper. 

The classical database is a model of 
some real vorld system. At all times 
the contents of a database are -intended 
to represent a snapshot of the state of 

application environment IHM 813 
i!ch a database can best be characteri: 
zed by the effect of its update opera- 
tion: values In the database are replr 
ted by nev values. Furthermore, in 
answering a query the database manage- 
ment system (DBMS) makes an assumption 
of synchronism: the time difference 
betveen a change in the real vorld and 
the corresponding change in the database 
is so small as to be insignificant to 
the application. Jn other vords, queries 
refer to the present state of the real 
vorld. 

The notion of "present" is not vithout 
problems. Suppose a census is taken of 
some section of the population, recor- 
ding a variety of demographic data. 
Then the present really is some fixed 
point in the past. Or consider a databa- 
se for a satellite tracking station 
vith delays in the range of seconds to 
hours, depending on satellite, betveen 
sending a signal and receiving the 
response. Such a database vi11 only 
refer to the position of each satellite 
at some earlier albeit veil-defined 
point in time. Hence there are different 
"presents" in the database depending on 
satellite. 

Furthermore, there are groving numbers 
appllcatlons that must deal with the 

$st as vell as vith the present. Consi- 
der again our satellite tracking databa- 
se from vhich one vould like to infer 
the present position of a satellite by 
computing its orbit from a set of ear- 
lier positions. Other examples: clinical 
patient data for med-ical diagnoses, 
time series for statistical computations 
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and trend analyses, successive measure- 
ments for machine control and diagno- 
stics, ovnershlps of a gun for criminal 
investigations, deposits and vithdravals 
for checking accounts. Jn these appllca- 
tlons, nev data items must not replace 
old ones. Instead, the update operation 
l upnts (completes) the database thus 
preswring the older states of the 
database lSchu 771. Ctearly, in order 
to dlstlngulsh betveen various states 
of the real vorld, each item must recel- 
ve a time-stamp. 

All these different situations can be 
covered by the same concept: generali- 
zing the traditional notion of state to 
the notlon of nistory. Formally, a 
history is a mapping 

h: T ---> v 

from a set T of time representations to 
a set V of values. 

As already Indicated above, not all 
items vithin a database v-ill undergo 
changes at the same time. Moreover, one 
might veil imagine that for some items 
only the current value is of interest, 
vhereas for others only some value in 
the past may be knovn, vhile still 
others require a history of the entire 
past. Consequently, a history should 
not apply to the database as a Whole, 
rather each item should be alloved to 
have its ovn individual history. 

What is to be considered an item? Since 
history Is definitely an application- 
defined phenomenon, the concept of item 
should follow from the appldcation. On 
the other hand, if a DRMS is to provide 
facilities for dealing vith histories, 
the concept of item should follov some 
general rules. The obvious solution is 
to choose a semantic data model as a 
sort of "base model" and to extend it 
by mechanisms for histories. Jn this 
paper the entity-relationship model 
will serve as a base model CChe 761. 

Tradltional databases do not distlnguish 
vhether the real world phenomenon corre- 
sponding to a database item does cur- 
rently exist, existed in the past or is 
expected to exist some time into the 
future. In an information preservlng 
database these distinctions are the 
very essence of its function. In parti- 
cular, if an item had an existence in 
the past but none at present, this fact 
v-i 11 be preserved in its history. Non- 
existence vi11 be expressed vithin this 
history by the "undefined value". 

Consider nov tvo distinctive and succes- 
sive points In tlme vlthin a history 
vhere the values are different. We may 
be interested in values in betveen. 
Hence, one of the mechanisms needed is 
the capability to infer states that 
have not explicltty been stored In the 
database. Take agaln as an example the 
satellite tracking database vhlch may 
be used to predict the current position 
of a satellite, or a checking account 
database vhich may be used to derive 
the balance at all times. Hence, closely 
associated vith e,ach history will be a 
derivation function in case all states 
can be determined with certainity, and 
a - perhaps empty - set of approximation 
functions In cases vhere some uncertain- 
ty is left. Jn the extreme, ve may even 
be unsure vhether there vas a defined 
value at all; ve then describe this 
situation by an "uncertain value". 
Logical propositions on the database, 
as a consequence, cannot always be said 
to be true or false but must be conside- 
red to be "unknovn". Hence, information 
preserv-ing databases introduce a need 
for a ternary logic. 

Surprisingly enough, too little atten- 
tion has been paid In the literature to 
a systemat-ic treatment of information 
preserving databases, even though many 
problems lend themselves very naturally 
to that approach, as shovn above. The 
first one to have raised the issue of 
information preservation seems to have 
been Schueler CSchu 773. On the other 
hand a number of authors have discussed 
the narrover theme 'time in databases' 
by introducing concepts like 'event' 
and 'process'. (see, e.g., T.Fal 74, Bub 
77, HH 78, FK 78, BFM 79, Bub 80, BOl 

79, And al, And 82, Ser 80, Bra 781). 
These can nicely be used to model disc- 
rete and fully recorded real vorld 
behavior. Hovever, most of the approa- 
ches fall vhen it comes to a full time 
perspective of data, l.e. when queries 
about the state of the vorld for any 
given instant rather than just for 
occurence times of events are to be 
ansvered. More general patterns of 
temporal change on the one hand and the 
treatment of incomplete and erroneous 
recording of hlstories on the other 
hand need to be explored. 

An integral part of dynamics - and, 
hence, of history - is the concept of 
time. A number of discrete temporal 
systems (sometimes called calendar 
systems) can be found in the literature, 

[St-u 72, BFM 79, And 81 And 823. 
;;&I these one may conclude thit a DBMS 
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should avoid prescribing a single calen- 
dar system; rather it should offer 
faclllties for defining the calendar 
System most suitable to the application. 

This paper will concentrate on applica- 
tion-specific issues in information 
preserving DBMS, 
mentation 

and will neglect imple- 
issues. Ch. 2 will be devoted 

to the extensions needed in the entity- 
relationship model. 
WILL discuss how to 

In particular, it 
include procedural 

elements In the model. Ch. 3 will intro- 
duce the mechanisms for 
uncertainty. 

dealing with 
Questions of database 

updates will be covered by ch. 4. A 
brief outline of a proposal for a schema 
definition language 
example 

illustrated by an 
can be found in ch. 5. For a 

more detailed discussion of the topic, 
the reader is referred to lKLo 831. 

We assume that the reader is familiar 
with the entity-relationship model 
(ERM). Hence, we restrict ourselves to 
the enumeration of the basic aspects of 
the model. The FRM distinguishes between 
two kinds of elements: structured ele- 
ments called mtitlles that are 
thought to model 

usually 
those objects of the 

real world that are of prime interest 
to the modeling process, and atomic 
elements called values that model pro- 
perties that the counterparts of enti- 
ties have in the real world. Values are 
associated with entities via attributes, 
i.e. a property Is modelled as an attri- 
bute/value-pair. Two or more entities 
may enter into a relatlonship in which 
each entity plays a certain role. In 
addltlon, a relationship may be charac- 
terized by a set of values associated 
with it via attributes. 

Correspondingly, an ERM schema consists 
of a set of entjty types and a set of 
relatlonshlp types. Entity types are 
declared by name and a set of attribute/ 
value-set-pairs. Relatlonship types are 
given by a name, a set of rolelentity- 
type-pairs, and a set of attribute/value 
-set-pairs. Binary relationship types 
may be declared to represent functional 
dependencies: such a type may be l:l, 
1:N to N:l, where the functionality is 

true in the set of relationships of the 
type for each database state (in place 
of functional dependencies, more general 
cardinalities IISO 821 could also be 
used). Further, a relationship type may 
be declared to be total in one or more 
of the associated entity types, 
that all entities of each of 

meaning 
the tvoes 

currently in the database must part;'ci- 
pate in a relationship of the type 
considered. 

In the remainder we shall sometimes 
refer to both an entity and a relatlons- 
hip as 
role as a 

an object, to an attribute or a 
c ompmnt, and correspondingly 

to object types and component types. 

As pointed out in the introduction, 
histories should be associated wlth 
individual items in the database rather 
than the database as a whole. In the 
ERM, the most natural candidate for the 
item Level is the component and not the 
object, as the following example will 
demonstrate. 

Consider an entity type person. A person 
has properties that never change over 
its Lifetime, such as birth-date and 
birth-place. The corresponding compo- 
nents have no history, that is, in the 
attribute/value-pair the value, once 
assigned, will never change. We shall 
call this a (temporally) constant compo- 
nent. Otherwise we refer to the compo- 
nent as (temporally) variable. Address, 
employer, last name (for female persons 
and - in "progressive" countries - for 
male persons) are examples of variable 
components. Variable components are 
represented by an attributelvalue-histo- 
ry-pair or a role/entity-history-pair, 
where a value-history is a set of disc- 
rete time/value-pairs and an entity- 
hlstory a set of discrete timelentity- 
pairs (or, technically more precise, 
time/entity-reference-pairs). 

Values of constants or within pairs in 
histories may be undefined tnll), uncer- 
tsln or unlnoun. Consider the property 
of social-security-no. A person is 
normally not assigned one until she or 
he leaves school. Once assigned, the 
number does not change any more. Uhile 
intuitively one might consider social- 
security-no to be a constant, it is in 
this case a variable with a history 
consisting of two values, a value of 
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undefined- (nil) unti 1 the number has 
been assigned, and the number from the 
time of assignment on. 

Hence, constant components are restrlc- 
ted to components that remain the same 
over the entire life span of the object. 
nil 18 a Legitimate value for a constant 
component, e.g. date-of-first-childbirth 
for a (male) person. If a constant 
value Is initially not knovn, the con- 
stant u1LL be assigned uncertain, deno- 
tlng the fact that the constant may 
have a nil or non-nil value. Once the 
value becomes known, it will replace 
uncertdn. 

The value of unknoun may be considered 
a restriction on uncmtrln, meanlng 
'uncertain but not nit", or "not yet 
known but definitely not nil". 

Note, incidentally, that a representa- 
tion with two pairs is sufficient for 
the social-security-no history. That 
the value at any arbitrary time may be 
computed, and how this is to be done 
tnll for all times before asslgnment, 
and the number for all times thereafter) 
must be expressed as an additional 
property of the component. We shall 
return to this point in chs. 2.4 and 
3.1. 

In the preceding section reference was 
made to the Life span of an object. In 
fact, it would have been more appropria- 
te to refer to the life span of the 
real world counterpart, since the object 
is to be maintained in the database 
over the entire life span of the databa- 
se. Consequently, there is indeed a 
situation where a history must be asso- 
ciated with the object as a whole, 
namely the existence of its real world 
counterpart. Technically, we solve the 
problem by augmenting the object II{~; 
mandatory existence attribute, 
truth values as values. The existence 
component may again be constant 
varlable; in the latter case the:: 
exists an existence history. 

More formally, the existence of 
object is true during all times f:F 
which at least one of the remaining 
components has a defined value. Conver- 
rely, a constant component has the same 
Invariant value only during those times 
for which the object existence is true, 
otherwise it is considered undefined. 

The existence of an object izffa;;z 
during all times for which all 
remaining components have the undefined 
value nil. Conversely, if a component 
history Is not given over the entire 
time domain (is not a total function), 
its value is considered undefined during 
the time the object existence is false. 
It follows that the existence hlstory 
of an object must be defined as a total 
function. Objects w-ith a constant exi- 
stence exist either at all times or 
never. 

Sin1 lar to constant components, assign- 
ment of a truth value to the constant 
existence attribute may be deferred; in 
this case the value of unknovn ("unknown 
whether true or false") is initially 
assigned. 

Cle finally note the following restric- 
tion. Uncertainty will arise taslde 
from init-iali7ing constant components 
and existence) because history, while 
being a continuous phenomenon, is recor- 
ded only at discrete times. In order to 
define uncertainty we must first state 
what Is certain. Hence we rule that 
recorded component histories must not 
contain uncertain as a value, and recor- 
ded existence histories MJSt not contain 
unknoun as a value. 

7 4 Procedural asggg&-pUg,general form -l,--,,,,,,-------L -c--------- 
ef-thQ_schQan 

ble noted before tch. 2.2) that computing 
the non-recorded portions of a component 
history must follow rules that are 
idiosyncratic to that component. We 
also observed (ch. 1) that calendar 
systems may vary from application to 
application. Hence It ~411, in general, 
be unavoidable to include with each 
component Its own procedures for compu- 
ting non-recorded values. In turn, 
these procedures will have to rely on 
procedures defined on time, e.g., to 
determine into Which interval between 
recorded times the desired time will 
fall, or to compute the date following 
a given date. Both problems may basical- 
ly be solved by a mechanism akin to 
abstract data types. This mechanism may 
then be applied towards other value 
sets as well. 

Consequently, an extended ERM schema Is 
declared In the fOllOWing Steps. 

(1) Declaration of component value sets 
other than the standard ones (such 
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as Boolean, real, integer). Each 
value Set is defined in the form Of 
a structure consisting of a name, a 
Value set in the form Cx 6 BIP(X)J 
vith B a base set and P(x) a predi- 
cate (if P(x) Is missing, P(x) = 
true 1s assumed), a List of rela- 
tions (Boolean functions) and a 
list of operations (functions with 
non-Boolean range). 

(2) Declaration of histories. 
Each history is also defined in the 
form of a structure and consists of 
a name, a time structure and a 
value structure (which vere pre- 
viously defined according to cl)), 
perhaps a predicate for further 
restricting the set of pairs forming 
a history, and a set of relations 
and operations. Note that the same 
history structure may be used in 
different components. 

(3) Declaration of patterns 
A pattern is a value or history 
structure together with at least 
one assertion, at most one derlva- 
tion function, and zero, one or 
more approximation functions. Pat- 
terns are unique within the schema, 
i.e., they may be associated with 
exactly one object type. Assertions 
are formulated in order to enforce 
certain consistency constraints on 
update (see ch. 4.2). 

(4) Declaration of objects. 
Each entity type is introduced by a 
name followed by a list of compo- 
nents. A component is given by an 
attribute name (among them existen- 
ce), by an indication whether the 
component is constant or variable, 
in case of a constant by the name 
of a value structure or value pat- 
tern, or In case of a variable by 
the name of a history structure or 
hIStOry pattern. For a relatlonshlp 
typeN role components are given by 
role name, by an indication of 
their functionality and totality, 
by an indication of whether they 
are constant or variable, in case 
of a constant by a reference to an 
entity type, or in case of a variab- 
le by a history structure or history 
pattern where the value part is a 
reference to an entity type. 

An extensive example that illustrates 
the form of a schema may be found in 
the appendix. The schema deflnition 
language, TERM, in discussed in detail 
in CKLo 81, Klo 831. 

Jn the simplest case, queries to an 
information preserving database are of 
the kind CKLo 833 "which value (of some 
component) vas effective in the real 
vorld at time t ?" 

q 
(More complex query kinds are conceivab- 
le that take recording time into ac- 
Count; note, hovever, that these require 
a more extensive concept of history.) 

The answer appears trivial if the compo- 
nent iS constant or there is an explici- 
tely recorded state for time t . Other- 

wise the system must try to cimpute a 
value for t 

q 
from the recorded fragments 

of the history. If this can be done 
vith certainty, we call the correspon- 
ding procedure a deriirrtlon, and each 
element in the history a characteristic 
state of the component. (More precisely, 
the characteristic states are just 
those elements that are needed to compu- 
te the states for all times t 

(4' 
) As a 

rule, whenever tq Is identical to some 

recorded t, the history value at t is 
chosen as an answer. Otherwise the 
derivation function is executed and its 
result is returned. 

If the value at t 
4 

cannot always be 

computed with certainty, we call the 
corresponding procedure an approx i l * 
tion. There may be a number of reasons: 
the times for wh-ich the history was 
recorded may be spaced too far apart 
(in the sense of derivatlon, the history 
may only represent a subset of the set 
of characteristic states), or the recor- 
ded values may themselves be inaccurate 
as in case of estimates or physical 
measurements. More than one approxima- 
tlon funct-ion may be supplied, e.g., 
both a linear interpolation and a Least- 
squares method. As a rule, because of 
reduced confidence in the recorded 
vat ues, the answer to the query will 
always be obtained by executing the 
specified approximation function. 

If an approximation function is to be 
applied, it must explicitly been sel. ec- 
ted. Othervlse the derlvation function 
is chosen by default. If no derivation 
functions exists, and no approximation 
function has been selected, the value 
is uncertain for all t for which there 

9 
is no recorded state. 
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Three ktnds of derivations or approxima- 
tions are possible: 
- component-local : computation is solely 

based on component history. 
- object-local : computation is also 

based on other components of the same 
object (perhaps using their derlvation 
or approximation functions). 

- global: computation makes use of 
other objects as uell. 

Note, finally, that a derlvatlon or 
approximation function may also be 
associated vlth a constant component, 
computing its (fixed) value. By necessi- 

the function is object-local or 
i!ibal. 

Llhat was said in ch. 3.1 holds for the 
existence attribute as veil (although, 
obvlously, only derivations are neaning- 
ful). Because existence is a total 
functton (ch. 2.3), existence is elther 
true or false, and uncertainty is ex- 
pressed as “unknown vhether true or 
false”. In consequence of ch. 2.3, the 
follovlng strategles are used In order 
to determine the existence value of an 
object. 

Object existence plays a central role 
In determining the component values of 
an object tch. 3.3). In addition, object 
existence may enter into assertjons, 
global derlvatjons and global i+pprOXima- 
tlons In the form of logical expres- 
slons. Consequently, the need to deal 
vlth uncertainty introduces a need for 
a ternary logic tch. 3.4). Hovever, 
once such a logic has been introduced 
there Is no reason to restrict compo- 
nents vith truth values to just the set 
Ctrue,false); rather shall also 
permit the set Ctrue,fali: unknovn). Ue 
shall refer to the former vglue set as 
Boolean and to the latter as Kleenean. 

Again in accordance vlth ch. 2.3, ve 
are nov in a posltion to give a precise 
outline of the strategies for determi- 
ning the values of an object component. 
We note that nil refers to the undefined 
value, vhereas unwrtaln indicates that 
the value may either be an element of 
the value set considered, or nil. In 
particular, a truth value component may 
be determined to have an uncertain 
value meaning it could be one of nil, 
true, false and (in case of Kleenean) 
unknown. 

a) Constant existence. 
Note first that the value may have been initialized to unknovn 
tch. 2.3). 

If existence-value $ unknovn 
fh~n return recorded value 
QLQQ it there exists at least one variable object-component 

vith a non-empty history containing at least one 
value 3: n31 

fheC return true 
Q&Q If derivation function Is specified 

b&r! return result of derjvation function 
Q&Q return unknovn. 

b) variable existence. 
W;e that the hlstory may have been Initlallzed to the empty 

. 

If an exlstence,value has been recorded for time tq 

fh~o return existence-value for time tq 

Q&Q If there exlsts at least one variable object-component 
vlth a non-empty history containing a value 9 mlL for 
time t 

fhgn retu:n true 
Q~QQ If. derlvatlon function Is specified 

Z~QQ return result of derlvatjon function 
Q~QQ return unknovn. 
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a) Constant component. 
Note that the value may have been initialized to uncertain. 

EQQQ object-existence Qt t Qf 

true: jf component-value'* nil 
ffj~n return recorded value 
Q~QQ If derivation fUnCtlOn iS specified 

WQD return result of derivation function 
QlQQ return nil; 

false: return nil; 
unknovn: return uncertdn 

ena - 

vhere object-existence at t 
q 

is determined according to stra- 

tegy a) or b) in ch. 3.2. 

In case an approximation is requested, the strategy is instead 

if object-existence Qt t 
q 

+' false 

$DQD return result of approximation function 
QLQQ return nil. 

b) Variable component. 
Note that the value may have been initialized to the empty 
set. 

If a component-value $ nil1 has been recorded for time t 
q 

IhQn return component-value for time t 
q 

QCQQ QQQQ object-existence Qf t 
9 

gf 

true: .If derivation function is specified 
WJQD return result of derivation function 
QLQQ return uncertain; 

false: return nil; 
unknovn: return uncertoln 

end. 

The latter strategy is due to strategy a) or b) in ch. 3.2 
vhich state that if a component value :: nil has been recorded 
for time t 

q' 
then object-existence = true. 

In case an approximation is requested, the strategy is the 
same as for a constant component. 

As mentioned before, Logical expressions 
may arise in the course of querying an 
information preserving database whose 
evaluation vould have to follow the 
rules of ternary logic. Depending on 
the interpretation of the third truth 
value, a number of ternary logic calculi 
have been proposed CRes 691. The one 
vhose interpretation matches the one 
introduced above for unknovn is due to 
Kleena. In this chapter ve just list 
some basic properties and Lavs; for 
details the reader is referred to CKLo 
833. (The reader may also find a very 

general and comprehensive treatment of 
information incompleteness in databases 
in Clip 793). 

l.et I stand for unknovn, T for true and 
F for false. Then the folloving table 
defines the KLeenean logic. 

P 1-p e-B---- 
Tf F 
I1 I 
F: T 
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Ct = lCX6B :Ptx) = true): 

Cf = IcxaB IP(x) = false11 

c, = ltx6B IP(x) = unknown31 

c = IBI = et + Cf + c i 

I p&qlpvqIp=>qlp<=>q 
::: TIFlTIFITIFIT I F 

---_--------------------------------- 
TITIFlTTTITIF:T I F 
IlIIFITIIlTIIII 1 I 
FIFFFITIFITTTIF I r 

Note that 

(P => q) <=> (Mp v q, 
cp <=> q) <=> ccp => q> L (q => p)) 

are tautologies as In the binary Logic, but 

1 (-a <=> a) 
a => a 
a <=> a 

are not. Ne-lther are 

p <=> <p = true) 
(7~) <=> Cp = false) 

as may eas-lly be checked by means of truth tables. 

For the Loglcal expressions mentloned In ch. 3.2, the following 
deflnltlons are of Importance. Let B be some base set. 
The extension of a pred-lcate P, Cx6BlPtx)l ls defined as <xBBIP 
(x)=truel. Consequently, Cx6BI~P(x)l = Cx6BlPtx)=falsel. In 
general, CxeBlPtx13 u CxflBl P(x)) * 8. 

The quantlflers are defined as follovs CRes 693. Consider the 
cardinallties 

l true for : false for I unknovn for 
------------------_-------------------------------------- 

YxGB:Ptx)=true : Ct=C l Cf>O I cf=oIc,>o 

4xeB:Ptx)=false I cf=c I Ct>O : Ct=O&C,>O 

YxeB:Ptx)=unknovn l C$=C l c,<c I - 
--------------------------------------------------------- 

3xGB:Ptx)=true I Ct>O I cf=c I ct=oq>o 

3x0B:Ptx)=false I Cf>O I Ct=C : cf=oIc,>o 

3xW:Ptx)=unknovn I c,>o I c*=o I - 
--------------------------------------------------------- 

3,xGB:Ptx)=true lCt=laCI=O l Ct>lvCf=C l C,~lSC,>O 

3,xBB:Ptx)=false lCf=laC~=O l Cf>lvCt=C : C,~lSC,>O 

3,xBB:Ptx)=unknovnl C,=l l c,*1 I - 
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Notice the rules 

(3x6B:P(x)=true) <==>-r(Yx6B:P(x)=faLse) 
(3x6B:P(x)=false) <==>?(YxGB:P(x)=true) 
(4x6B:P(x)=true) < ==>-r(3x6B:Ptx)=false) 
(4xGB:P(x)=false) < ==>y(3x6B:Ptx)=true) 

but not 

(3x6B:P(x)=unknoun) <==>i(4x6B:+P(x)=unknoun)) 
(3x6B:Ptx)=unknovn) <== > (4x6B:+Ptx)=unknovn)) 

Selection of elements from a set B is governed by the conventions 

sgge z frgn CxGBlPtx)l defined as 

bake (3x6B:Ptx)=true) gf 
true: z:= an arbitrary element of the set; 
false: z:= nil; 
unknovn: z : = uncertain. 

t&t Z frgIj.I Cx6BIPtx)l defined as 

cage (3,xBB:Ptx) = true) of 

true: z:= the unique element of the set; 
false: z:= nil; 
unknovn: z : = uncertain. 

The appendix gives numerous examples for predicates and set 
selections, almost all of them within function declarations. ( 4 
Is written as all, 3 as exists, 3, as unique, => as impr, CX6Bf P 
(x)3 as B where P(x); 
element of the structure.) 

this refers to the currently considered 

4-Qgdate semantics ---&--------AL 

The traditional database cannot distin- 
guish between an update that is due to 
a change of state in the real vorld, 
and an update that is caused by an 
improved perception of the same state. 
Not only is this distinction paramount 
to the proper functioning of an informa- 
tion preserving database, such a databa- 
se is the only one in which the distinc- 
tion is meaningful. Almost naturally, 
therefore, one vii! distinguish betveen 
two user roles with respect to update 
operations, namely: recorder and refe- 
ree. 

The recorder may install new 
suppLant an 

objects, 
uncer taln 

nent, 
constant compo- 

or add a new time/value-pair to a 
component 
observe 

history. In doing so, he must 
all 

order 
consistency constraints in 

to ensure 
updates 

that only plausible 
are performed. The referee is a 

specially authorized person, and knov- 

Ledgeable enough to recognize inaccura- 
cies or errors. He is permitted to 
change the value of a constant component 
or in a time/value-pair of the recorded 
history of a variable component. In 
particular, he may do so regardless of 
whether the consistency constraints are 
violated or not. The premise here is 
that a constraint mirrors an assumed 
Law in the real world, and that the 
referee is in a position to determine 
whether the law needs some modification. 
We observe, though, that violating a 
constraint may have as a consequence 
that the constraint will never be satis- 
fied during subsequent updates, hence a 
more discriminatory approach to the 
rights of a referee may actually be in 
order. 

As in traditional databases, consistency 
Vi11 often be only maintained by a 
sequence of recordings. Hence the con- 
cept of transaction is essential to 
information preserving databases 
well. This is mainly a matter of DZ 
design, a topic we shall not go into 
any further In this paper. 
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There are three kinds of constraints that the DBMS must observe 
during recording. 

(1) Test on set membership, if a base value set or a base history 
Set Is further restricted by predicate (ch. 2.4). 

(2) Test vhether assertions on patterns are satisfied (ch. 2.4). 
Tvo standard kinds of assertions are provided: 
- rssertlon key specifies that the component to vhich the 

pattern refers has to have a unique value vithln the asso- 
ciated entity set or relationship set. 

- wsertfion frLse indicates that an update of the COmpOnent 
is never satisfied, i.e. the component is virtual. Conse- 
quently, the corresponding pattern must include a deriva- 
tion and/or approximation function. 

(3) Test on the implicit constraints expressing the rule that 
only Values that are certain are recorded tch. 7.3). These 
may nov be formulated more precisely: 

a) Constant existence. 
old this-existence = unknovn 

& neu this.existence 6 Ctrue,falseI 

b) Variable existence. 
rS x 6 new thls.existence: x.value 8 Ctrue,falsel 

c) Constant component. 
old this. attri bu te = uncerbin 

& new thls.attribute :: uncert8ln 
neu thls.attribute 6 component-value-set 

d) Variable component. 
(old thls.attribute = 0 v new this.attrlbute + nil) 
L old thls.attriute $ nil 
& new this.attribute $ uncertain 
& 4 x 6 neu thls.attrlbute: 

(x.tlme $ nilk & x.time * uncertrln I x.value $ 
uncertain) 

I4 uhole thls.attribute 6 history-value-set 

Notation: old refers to the previously recorded component, 
nw to the elements nevly to be added, and uhole to the 
result after update. thlis.attribute denotes the component 
value or history associated with attribute of the object of 
interest. 

The appendix contains an extensive 
example of a TERM (time extended ERM) 
schema vhich illustrates some of the 
foregolng concepts, and to which ve 
already referred several times. The 
example has been taken from a banking 
application vhich typically must preser- 
ve a record of the past. The basic 
entity is the individual account. Tran- 
sactions that cause changes to an ac- 
count are also modelled as entities. 
Finally, because interest is credited 
to accounts, a third entity type, inte- 

rest rate schedule, is added. Tvo rela- 
tionship types relate an account to the 
rate schedule applying to it, and to 
the transactions affecting it. Changes 
to the account have to do for one vith 
the transactions (deposits or vithdra- 
wals), for another with the interest 
accruing to it but vhich are credited 
to it only after each quarter of the 
year. 

After all that hase been said in the 
paper so far the reader should have no 
difficulties in reading the example. 
Note that for the sake of completeness 
the entire date structure has been 
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included; on first reading one may skip 
to the structures for the representation 
of histories. 

One of the most interesting features of 
an information preserving database is 
the notion of uncertainty and the secha- 
nisms for dealing with it. The paper 
could be viewed as a somewhat formalized 
approach to that subject, providing 
insights that to the authors' knowledge 
have hitherto not been reported. A 
second aspect of our work has been 
database design: extending the nov 
classical entity-relationship model by 
additional Concepts that may not only 
be useful for designing information 
preserving databases but allov sound 
decisions with regard to the Structure 

Of traditional databases. The schema 
definition language TFRM, an extension 
of Pascal., was purposely developed as a 
programming language. As a third aspect 
of our Work, this will permit the use 
0 f 1FAM not only as a design tool but 
a I. !; 0 as an interface to information 
preserving DRMS. To determine the feasi- 
bility, a TERM compiler was implemented 
mapping the TFRM interface to the inter- 
face of a network OBMS [Nun 521. Fourth- 
1 Y8 even if not used as an interface, 
translators could be built for such 
formalized schemas that mechanically 
generate netvork and relational interfa- 
ces with equivalent behaviour. Develo- 
ping appropriate compilers and transla- 
tors remains a topic for further 
research. 

rAnd 813 T.L. Anderson: The Database 
Semantics of Tlme. Ph.D.the- 
sis, Univ. Washington, 1981 

[And 873 T.L. Anderson: Modeling Time 
at the Conceptual Level. 
Proc. Pnd Jnternatl. Conf. 
on Databases, Jerusalem, 
June 1987 

CBFM 793 R. Breutmann, F. Falkenberg, 
R. Maurer: CSL: A Language 
for Defining Conceptual 
Schemas. In G. Bracchi, G.M. 
Nijssen teds): Data Base 
Architecture, North-Holland 
1979, 737-256 

409 

CR01 793 

[Bra 783 

TBru 723 

TBub 773 

CBub 803 

lChe 761 

[Fat 743 

CFK 783 

IHM 781 

IHM 811 

lJS0 873 

A. Bolour: The Process Model 
of Data. Tech. Rep. 38, Lab. 
of Medical Jnfo. Sci., Univ. 
California, San Francisco, 
1979 

J. Rradley: Operations Data 
Base. Proc. 4th Internatl. 
Conf. on Very Large Databa- 
ses, 1978, 164-176 

R. Bruce: A Model for Tempo- 
ral Reference and its Appli- 
cation in a 4uestion Ansve- 
ring Program. Artific. Intel- 
ligence 3 (1977), No. 1, l-75 

J.A. Bubenko: The Temporal 
Dimension in Information 
Processing. In G.M. Nijssen 
(ed): Architecture and ModeLs 

Database Management, 
i:rth-Holland 1977, 93-118 

J.A. Bubenko: Jnformation 
Modeling in the Context of 
System Development. Jnforma- 
tion Processing 80, North- 
Holland 1980, 39.5-411 

P.P.-s. Chen: The Fntity- 
Relationship Model - Toward 
a Unified Viev of Data. ACM 
Trans. on Database Sys. 1 
(1976), 9-36 

F. Falkenberg: Time-Handling 
in Database Management Sy- 
stems. CJS-Rep. 07174, Univ. 
Stuttgart 1974 

A. Flory, J. Kouloumdjian: A 
Model for the Description of 
the Jnformation System Dyna- 
mics. Lecture Notes on Comp. 
Sci. 65, Springer 1978, 
307-318 

M. Hammer, D.C. McLeod: The 
Semantic Data Model: A Model- 
Ling Mechanism for Data Rase 
Applications. Proc. ACM 
SJGMOD Jnternatl. Conf. 
1978, 26-36 

M. Hammer, D.C. McLeod: 
Database Description vith 
SDM: A Semantic Database 
Model. ACM Trans. on Database 
sys. 6(1981), 351-386 

JSO TC 97/SC5/WG3 (J.J. v. 
Griethuysen, ed.): Concepts 
and Terminology for the 
Conceptual. Schema and the 



tKlo 013 

TKlo 853 

rLip 793 

Jnformation Base. Publ. No. 
ISOITC97/SC5-N695, March 1982 

M.R. Klopprogge: TERM: An 
Approach to Include the Time 
Dimension in the Entlty-Rela- 
tionship Model. In P.P.4. 
Chen ted): Proc. 2nd Jnter- 
natl. Conf. on Entity-Rela- 
tionship Approach, ER lnstl- 
tute 1981, 477-512 

M.R. Klopprogge: 
Relationship Entity an: Histories: 
Concept for Describing and 
Managing Time Variant Xnfor- 
matlon in Databases. Ph.D. 
thesis, Univ. Karlsruhe, 
1983 (In German) 

w. Lipski jr.: On Semantic 
Issues Connected vith Incom- 
plete Infornatlon Databases. 
ACW Trans. on Database Sys. 
4 (1979), 262-296 

[Nun 821 H. Nunnenmann: Mapping TERM 
Schemas to UDS. Diploma 
thesis, Univ. Karlsruhe, 
Fak. Informatics, 1982 (In 
German) 

[Res 693 N. Rescher: Many-Valued 
Logic. McGrav-Hill 1969 

lSchu 773 B.-M. SchOLer: Update Recon- 
sidered. Jn G.M. Nljssen 
ted): Architecture and Models 
In Database Management, 
North-Holland 1977, 149-164 

18er aoJ A. Sernadas: Temporal Aspects 
of Loglcal Procedure Deflnl- 
tlon. Jnformation 
(i9arn, 167487 

sys. 5 

Appmdlx: lEna 8chmM of 8 BMklng lylpClc8tlon 

dmflm scheme s-account; 

X----- structures for the representation of tiles and values ------ 

structure 
st-iceteg = integer; 

structure 
st-lnt-rate = real; 

structure 
st-account-nos = Integer; 

structura 
st-naae + packad wrryCl..ZOl of char; 

structure 
St-cur = real; 

structure 
St-date = 

record d.n,y: Integer mod 
uhwo 

th1s.y >= 1562 8nd 
th1s.a >= 1 and tJ~is.n <= 12 8nd 
th1s.d >= 1 8nd thW.d <= 31 8lld 
(thls.d <> 31 

or th1s.a in Cl, 3, 5, 7, 6,10,121) end 
(th1s.d <> SO QT th1S.m <> 2) 8nd 
(th1s.d <> 29 or thlS.ll <> 2 

or thiay mea 4 = 0 mla 
(th1s.y mea 100 <> 0 

or th1s.y ood 400 = 0); 

r*lotlon8 
funcWon is-in,lesp(t: St-date): boolean; 
bog1 n 

Is-in-Leap:= t.y mod 4 f 0 end 
ct.y ooa 100 <> 0 

or t.y ooa 400 = 0) 
em; 

X represent8 interest categories 

X represents interest rates 

X represents account numbers 

X represents names 

X represents currencies 

X represents calendar dates according 
X to the Gregorian calendar 

t does a dete fall into a leap year? 
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fUlCtioll before-dete(tl, t2: St-dote): boolean; 
Wtln 

before-date:: t1.y < t2.y 
or ti.y=tz.y and t1.n<tz.m 

end; 
or tl.y=t.?.y and tl.m=tZ.nand tl.d<tZ.d 

funct*on contenp-dete(t1, tt: St-date): boolean; 
besln 

contenp-date:= tl.d=tt.d end tl.nst2.a 8nd tl.y=tt.y 
end; 

fImCtlom becon-date(t1, tZ: St-date): boolean; 
beal” 

becon-date:= net before-date(t2, tl) 
end; 

aporatlona 
function ULtlmO-date(z: St-date): St-date; 
var ud: 
begin 

integer; 

If 2.11 In Cl, 3. 5. 7. 8. 10. 121 than 
ud:= 5,; - - - . . - 

else If z.,n In (4, 6, 9, 111 then 
ud:= 30: 

elaa if Z.&Z and is-in-leap(z) thon 
ud:= 29 

else if z.R=~ and not Is-in-leap(z) than 
ud:= 28; 

ultimo date.d:= ud’ 
ultlmo~date.m:= 2.;; 
ultlmo-date-y:= z.y 

end; 

function next-day-datetz: St-date): St-date; 
ver n: St-date; 
Wiln 

If z.d = 51 and z.,n = 12 tRen bngln 
n.d:= 1; n.m:: 1; n.y:= z.y + 1 ond 

else If z = ultino-date(z) thm Eqln 
n.d:= 1; n-m:= z.n t 1; n.y:= z.y ad 

else 
n-d:= z.d + 1; n.m:= z.m; n.y:= z.y; 

next-day-date.d:= n.d; 
next-day-date-m:= n.m; 
next-day-date.y:= n.y; 

end; 

X date tl before date t2? 

X do tl and t2 refer to the sane day? 

X tl before t2 or tl I t2? 

X Last day of a month 

I date of day follovlng z 

X New Year’s Eve 

X Last day of the l onth? 

function prev-day-datetz: St-date): St-date; 
var p: St-date; 
besin 

if z.d = 1 md 1.11 = 1 m z.y = 1582 thorn 
p:: nil 

X date of day preceding z 

% this day has no predecessor, 
X start of Bregor?an calendar 

elan If z.d=l and z.m=l 8nd z.y>i582 thm bogI X New Year' 
p.d:= 31; p.m:= 12; p.y:= z;y - 1 and - 

else If z.d = 1 and ~.a > i thon bogln 
p.cl:: 1; p-m:= .z.m - 1; p.y:= r.y; 
p:= ult,mo-date(p) end 

else bngin 
p.d:= z.d - 1; p.r:= z.n; p.y:= z.y olsd; 

prev-day-date.d:= p.d; 
prev-day-date.m:= p.m; 
prev-day-date.y:= p.y 

end; 

function Least-recent-datetst: not of St-date; 
z: St-date): St-date; 

Least-recent-date:= that x from st W&us 
all v fra st uhero 

X not beglnning of a l onth 

f q ax. date < z in a set of dates 

end; 

b&con-datetx, 2) and 
(before-datecy, x) 

or before-date(z, y)) 
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Z---- structure5 for the representation of hlstofioa ------ 

structure 
hs-date-cur = 

history 
t: St-date; 
v: St-cur end; 

structur l 
hs-date-kleenean = 

mtstory 
t: St-dote; 
v: kleenean md; 

structure 
hs-standard-exist = 

history 
t: St-date; 
v: kleenean md 

utioro 
111 51, 52 from thl8 uhu0 
((51.V = true md 52.~ I false ud before,dete(sl,s2)) 
1qL all s from thlr uhuo 

and 
before-date(s2, 53 I-1 s.v = false) 

((5l.V = false lad 52.~ = true and before,date(sl,s2)) 
lmpl all 5 from thlm uhora 

before-datets, 
and 

51) 1-L 5.v = faire) 

((5l.V = true 8md 52.~ = true end brfore~datetsl,s2)) 
Imp1 811 s from this whore 

before-datefsl, 5) 8nd before-datets, 52) 
Imp1 s.v = true; 

epurtlons 
fumCtlm start~ex~standard(h:iw~standsrd,exlst):st~date; 
var 5: stmtm of hs-standard-exist; 
Win 

s:= that x fra h uhum 
all y from h uhero 

tit y.v or becontx.t, y.t); 
If s 0 nil thm 

start-ex-standard:= s.t 
01 eo 

start-ex-standard:= mcutain 
-; 

function d-standardth: hs-standard-exist; 
z: St-date): kleenean; 

v8r ds: strtm of hs-standard-exist; 
Win 

as:= thmt 51 from h uhore 
61 .t=Least-recent-date(tlmn tx from St-date u)mm 

l xlsts 52 from h uhorm 
52.t = tx, 1); 

If ds <> nil then 
d-standard:= 4s.v 

else 
d-standard:= unknown 

me 

structure 
hs-lnt-rate = 

hlstory 
t: St-date; 
v: st-lnt-rate and; 

oporrtlons 
function d~lnt~rate(h:hs,lnt~rate; 

z:st-date): et-lnt-rate; 
v8r dz: state of hs,lnt,rate 
begin 

dr:= that 51 from h uhmro 
sl.t=least~recent~date~thon tx from et-date uhorm 

alstm 52 from h ubum 
52-t = tx, 2); 

If dz <> nil then 
d-Interate:= dz.v 

etsa 
d-lnt-rate:= uncertmln 

and; 

2 there I5 at sort one time 
t Interval durlng which the 
X exlutonce 15 true 
X (thlr nodols tne life of 
X llvlng befngs etc.) 

X beglnnlng of existence 

X oldest known state ultl! 8.v = true 

X is there one 

f auxlliary function for 
X pattern derivation 

X function is total 

2 auxlllary function 
% derlvatlon 

x all points In tlee of h 

f function is total 
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X----- patterns for the components of 'rate-schedule' ------__ 

pettern 
!nt_ex7st = hs-standard-ex7st; 

dsrlvation 
function derlv-lnt(pz::rate-schedule; z:st-date):kleenean; 
Win X total because of d-standard 

aerlv-lnt:= d~standard~pz:.oxlstenco, 2) 
-; 

pattmrn 
Int-icateg = st-lcateg; 

mssrtlon 
W; 

pattern 
7nt-debit = hs-lnt-rate; 

derirrtlon 
functloe deriv-debit-rate(pz::rate_schedule; 

z:st-date): st-lnt,rate; 

-derlv-debit-rate:= d-int-rate(pz:.deblt_rete, 2) 
and; 

X total because of d-lnt-rate 

pattern 
lnt-credit = ns-lnt-rate; 

derl*atlon 
functlee derlv-credit-rate(pz::rate_schedule; 

z:st-date): st-lnt-rate; 
*In 

derlv-credit-rate:= d-lnt-rate(pzt.credlt_rate, z) 
llnd; 

t total because of d-!nt-rate 

I----- patterns for the components of 'account' ---------_---------_ 

pattern 
account-exist = hs-standard-exlst; 

derivation 
function derlv-ace-ex(pa::account; 

?:st-data): kteenean; 
baaln 

-derlv-act-ex:= d-standard(pat.exlstmce, z) 
end; 

pettern 
account-no = st-account-nos; 

assertion 
key; 

pattern 
account-lcateg = 

history 
v: St-date; 
t: st-lcateg end; 

derivation 
function deriv~lcateg~h:account_lcateg; 

z:st-date):st-lcateg; 
var dz: state of account-icateg; 
begin X derlvatlon is total 

dz:= that s+ from h uherb 
s1.t=Least-recent-date(tRomm tx from et-date uhere 

exists SZ from h where 

If dz <> ML 
s2.t = tx, 2); 

deriv-icateg:: d2.v 
else 

derlv-icateg:= uncertrln 
end; 
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pattarn 
account-balance = hs-date-cur; X for virtual coeponent 

assertion 
false; 

mrlTatia 1 current balance 
functla deriv-account(ps:iaccount;z:st-datey:st-cur; 
var ds: St-cur; ~1: St-dats; 

Wn 
zi:= start~ex~standard~pat.Ul8tm~~; 
ds:= 0; 
uhllo becon-date(zi,z) dir bogin 

dc:= 48 + pat.day-balance at zl; 
If z1=ult:mo_date(zl) eml 21.1) md 3~0 
then 

ds:= ds + pa?.noncred-interest l t 2l: 
z1:= next-day-datetzl) and; 

derlv account:= ds end 

X 0ay of opening an account 

X sus of all daily balances 

X end of quarter? 

X lnterest credited 

X defined as tote1 
end; - 

pattern 
account-dbal = hs-date-cur; 

user tl on 
false; 

Qer1vat1on 

function derlv-dbal(pa::account; z:st,date): St-cur; 
var dt: St-cur; sta: sot of transaction: 

pt: ?tFansactlon; 

“9::.= 0 . . 
sta:= ihosx tr from transaction rrkwo 

tr .exlstentm 8t 2 8nd 
exists at from act-ta whore 

at.acc = pa end at.ta = tr; 
tills sta <> Cl do begin 

pt:= som 5 from sta; 
sta:= sta ulthout Cptl; 
dt:= dt + pt?.amount end; 

derlv-dbal:= dt end 
end; 

X balance for the day 

X all transactions on 
X an account for day 2 

X total ancunt of all 
X transactlons 

pattern 
account-noncred-interest = hs-date-cur; 

l surt1on 
false; 

X for virtual attribute 

aDr1vat1on X interest accrued from 
function deriv-noncred-1ntLpa:taccount; z:st-date):st-cur; X current quarter that 

xw do2, db: St-cur; 21: St-date; 
I: frate-schedule; If: St-lnt-rate; 

win 
zi.d:= 1; z+.y:= z-y; 
zi.m:= ((2.m - 1) dir 3) * 3 t 1; 
if not pat.exlrtmcx at 21 then 

zi:= start-ex-standard(pa:.xxlstxnu); 
doz:= 0; 
while becon-date(zl,z) de begin 

db:= pa:.day-Balance at 21; 
2:= pat.rs at 21; 

If db < 0 then 
If:= r-debit-rate 

0180 
zf:= z.credit-rate; 

do2:= do2 + dbrzfIS600 mW; 

derlv-noncred-int:= doz md 
WWi; 

X have not been credited 
X yet 

X 21:= begin of quarter 

X day account openlng 

X.rate ScheduLe appll- 

X cable to account on 
X day 21 

X SURI of all daily interests 
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X---- patterns for the components of 'trrnractlon' ------ 

pttmrn 
transaction-exist = 

lB1stmry 
t: st,drte; 
v: tleenean on4 

~1st~ s from tblm v*rr s.v 

lql mlqmm s fra tlblm uhum 8.v; 

dulv~tloa 
functlom derlv-ta(pt: ttronrrctlon; 

L: St-date): kleenean; 
v8r x: st8to of transaction-exist; 
-1" 

x:= that 9 fra ptt.mxlstmco 
war. s.t = 2; 

If x <> nll tlua 
deriveta:= x.v 

l LU If u1sts 0 from pt:. u1stmcm uhmrm s.v thm 
deriv-ta:= false 

OLSSI 

derlv-ta:= unknown 
end; 

X----- patterns for the coaponents of 'rs,act' --w------ 

pattorn 
rs-act-rs = 

history 
t: it-date; 
v: trate-schedule md; 

8msmrtlm 
fslse; 

dDrivatio#l 
functlm deriv-rs(pr::rs-act ; z:st-date):trate-schedule; 
W*n 

derlv-To:= thxt 2 from rate-schedule uhoro 
z.lnt-category=prt.acct.lnt_cotogory at 2 

-; 

X eech hlrtory has at 

X most one state vlth 

X s.v=true (point event) 

X for virtual role 
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t---- entjty types and relationship types 

mtity typo 
rate-schrdule; 
atlstmc* 

rwlablo Int,exist; 
8ttrlbrt.s 

lnt-category coamtmt lnt,lcrteg; 
deblt,rate wul~lm lnt-debit; 
credit,rate rwl~lo Int-credit; 

mtity typa 
account; 
a1*tou8 

vriable account,exlst; 
attributea 

no constant account-no; 
owner constant at,naae; 
Int-category vul*Lm account,lcateg; 
balance rwlabLo account-balance; 
day,bslance vw1d8.e account,dbrl; 
noncred-interest vwl~lo account-noncred-intereet; 

nt1ty type 
transactton; 
n1stalu. 

v~rl8blo transactlon~exlst; 
8ttrlbutn 

amount conot8nt at-cur; 

X Intueet category 
X current balance 
X total for each day 
X not yet credlted Intrrost 

rel8tloamblp typa 
rs-act; 
exlstonco 

cmstmt kleenean; 
roles 

rs on0 vrl8blo rs-see,rs; 
ICC tota contmt taccount; 

rol8tloashlp typm 
acc~ta; 
l X1stoncm 

conotmt kleenean; 
roles 

act on0 con8tmt taccount; 
ta total constut ttrsnsaction; 

X currant rate schedule lrs’ 
X for account ‘act’ 

X transaction ‘ta’ belonge 
X to account *act’ 
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