Modelling Information Preserving Databases:
Consequences of the Concept of Time

Manfred R. Klopprogge
Peter C. Lockemann

Fakultdt fir Informatik, Universitit Karlsruhe
Postfach 6380, D-7500 Karlsruhe

Abstract

Many modern database applications must
preserve a record of the past over and
above the current state of an applica-
tion environment. For these applica-
tions, the concept of time is of central

importance. Databases that model these
applLications cannot be based on the
concept of state alone but must replace

it by the concept of history as a func-
tion from a temporal domain to some
value set. Such databases will be refer-
red to as information preserving databa-
ses. The paper explores the consequences
of the history concept mainly from a
database design point of view. Firstly,
the entity-reLationship model is exten-
ded to include histories. Secondly -
and this is8 the central topic - the
paper introduces for it a framework for
inferring states of the past that have
not explicitiy been stored in the data-
base. The framework 1is based on the
notion of uncertainty, and uses procedu—
ral means and ground rutes for Limiting
uncertainty to a few well-defined situa—
tions. Thirdly, the paper reviews the
update semantics which become slightly
more complex than in traditional databa-

ses. An extensive example illustrates
the various concepts developed 1in the
paper.

399

1_Iniroduction

The <classical database 1s a model of
some real wvorld system. At all times
the contents of a database are intended
to represent a snapshot of the state of
an application environment ([HM 81].
Such a database can best be characteri-
zed by the effect of +its update opera-

tion: values in the database are repla—
ced by new values. Furthermore, in
answering a query the database manage-
ment system (DBMS8) makes an assumption
of synchronism: the time difference
between a change in the real wortd and
the corresponding change in the database
is so smail as to be insignificant to
the application. In other words, queries

refer to the present state of the real
wortd.

The notion of "present® is not without
problems. Suppose a census is taken of
some section of the population, recor-
ding a variety of demographic data.
Then the present really is some fixed

point in the past. Or consider a databa-
se for a satellite tracking station
with detays in the range of seconds to
hours, depending on satellite, between
sending a signal and receiving the
response. Such a database will only
refer to the position of each satellite
at some earlier albeit well-defined
point 1in time. Hence there are different
“presents” in the database depending on
satellite.

Furthermore, there are growving numbers
of applications that must deal with the
past as well as with the present. Consi-
der again our satellite tracking databa-
se from which one would Llike to infer
the present position of a satellite by
computing its orbit from a set of ear-
Lier positions. Other examples: clinical
patient data for medical diagnoses,
time series for statistical computations

and trend analyses, successive measure-
ments for machine control and diagno-
stics, ownerships of a gun for criminal
invegtigations, depositg and vithdravals
for checking accounts. In these applica-
tions, new data items must not replace
old ones. Instead, the update operation
sugments (completes) the database thus
preserving the oltder states of the
database [Schu 77]). Clearly, 1in order
to various states

A& AL o =2

ve a time-stamp.

All these different situations can be
covered by the same concept: generali-
zing the traditional notion of state to
the notion of history. Formally, a
history is a mapping

h: T-—-->¥

from a set T of time representations to
a set ¥ of values.

As already ‘indicated above, not all
items within a database will wundergo
changes at the same time. Moreover, one
might well 1imagine that for some items
only the current value is of 1interest,
whereas for others only some valLue in
the past may be known, while still
others require a history of the entire
past. Consequently, a history should
not apply to the database as a whole,
rather each 1item should be alloved to
have 1ts own individual history.

What 1is to be considered an item? S8ince
history 1is definitely an application-
defined phenomenon, the concept of item
should fotlow from the application. On
the other hand, if a DBMS 1is to provide
facilities for dealing with histories,
the concept of item should follow some
general rules. The obvious solution s
to choose a semantic data model as a
sort of “"base model" and to extend it
by mechanisms for histories. In this
paper the entity-relationship model
witl serve as a base model [Che 74]1.

Traditional databases do not distinguish
vhether the real worild phenomenon corre-
sponding to a database item does cur-
rently exist, existed in the past or s
expected to exist some time into the
future. In an dinformation preserving
database these distinctions are the
very essence of 1its function. In parti-
cutar, if an item had an existence 1in
the past but none at present, this fact
will be preserved in its history. Non-
existence vill be expressed within this
history by the "undefined value".

400

Consider now two distinctive and succes~
gsive points 1in time within a history
vhere the values are different. We may
ha 1nteregtaed +in valuas 1in betwaen,

Hence, one of the mechanisms needed 1is
the capability to infer states that
have not explicitly been stored in the
database. Take again as an example the
satetlite tracking database which may
be used to predict the current position
of a satellite, or a checking account
database which may be used to derive
the balance at atl times. Hence, closely
associated with each history will be a
derivation function 1in case all states
can be determined with certainity, and
a — perhaps empty - set of approximation
functions 1in cases where some uncertain-
ty 1is left. In the extreme, wve may aven
be wunsure whether there was a defined
value at all; we then describe this
situation by an “uncertain vatue".
Logicat propositions on the database,

as a consequence, cannot always be said
to be true or false but must be conside-
red to be "unknown". Hence, 1information
preserving databases introduce a need
for a ternary togic.

Surprisingty enough, too lLittie atten~—
tion has been paid in the Literature to
a systematic treatment of information
preserving databases, even though many
problems Lend themselves very naturally
to that approach, as shown above. The
first one to have raised the issue of
information preservation seems to have
been Schueler [8chu 771. On the other
hand a number of authors have discussed
the narrower theme "time 1in databases’
by introducing concepts Llike ‘event’
and ‘process’. (see, e.g., [Fal 74, Bub
77, HM 78, FK 78, BFM 79, Bub 80, Bol
79, And 81, And 82, Ser 80, Bra 781).
These can nicely be used to model disc-
rete and fully recorded real vorld
behavior. However, most of the approa-
ches fall when it comes to a full time
perspective of data, i.e. when queries
about the stats of the world for any
given dinstant rather than just for
occurence times of events are to be
answvered. More general patterns of
temporal change on the one hand and the
treatment of incomplete and erroneous
recording of histories on the other
hand need to be explored.

dynamics - and,
the concept of

An 1integral part of
hence, of history - is
time. A number of discrete temporal
systems (sometimes calted calendar
systems) can be found in the l-iterature,
e.g. [Bru 72, BFM 79, And 81, And 82].
From these one may conclude that a DBMS

should avoid prescribing a single calen-
dar system; rather it should offer
facilities for defining the calendar
system most suitable to the application.

This paper will concentrate on applica-
tion-specific 1ssues in information
preserving DBMS, and will neglect imple-

mentation issues. Ch. 2 will be devoted
to the extensions needed in the entity-
reLationship model. 1In particular, it

vill discuss how to dinclude procedurat

elements in the model. Ch. 3 will intro-
duce the mechanisms for dealing with
uncertainty. Questions of database
updates willt be covered by ch. 4. A

brief outline of a proposal for a schema

definition Llanguage iJtlustrated by an
exampte can be found 1in ch. 5. For a
more detailed discussion of the topic,

the reader is referred to [Klo 8321.

We assume that the reader +is familiar
with the entity-relationship model
(ERM). Hence, we restrict ourselves to

the enumeration of the basic aspects of
the model. The ERM distinguishes between
two kinds of elements: structured ele-
ments called emtities that are wusually
thought to model those objects of the
real world that are of prime interest
to the modeling process, and atomic
elements called vatues that model pro-
perties that the counterparts of enti-
ties have in the real wvorid. VYalues are
associated with entities via attributes,
1.e. a property 1s modelled as an attri-
bute/vatue-pair. Two or more entities
may enter 1into a retationship in which
each entity plays a certain role. In
addition, a relationship may be charac~-
terized by a set of values associated
with it via attributes.

Correspondingly, an ERM schema consists
of a set of entity types and a set of
relationship types. Entity types are

declared by name and a set of attribute/
value_set-pairs. Relationship types are
given by a name, a set of role/entity_
type-pairs, and a set of attribute/value
_set-pairs, Binary relationship types
may be declared to represent functional
dependencies: such a type may be 1:1,
1:N to N:1, vwhere the functionality 1is

401

true in the set of relationships of the
type for weach database state (in place
of functional dependencies, more general
cardinalities [IS0 821 could also be
used). Further, a retationship type may
be declared to be total in one or more

of the associated entity types, meaning
that all entities of each of the types
currently in the database must partici-
natna 4n a mal ndad amoind e nL +ho runa
MELT (1) -] retalivnsinipy vi e Lype
cons-idered.

In the remainder we shall sometimes

refer to both an entity and a relations-
hip as an object, to an attribute or a
role as a ¢ t, and correspondingty
to object types and component types.

introduction,

with
rather
In the

As pointed out in the
histories shoutd be associated
individual ditems in the database
than the database as a whole.

ERM, the most natural candidate for the
item tevel is the component and not the
object, as the following example will

demonstrate.

Consider an entity type person. A person
has properties that never change over
its Lifetime, such as birth_date and
birth_pltace. The corresponding compo-
nents have no history, that is, in the
attribute/value-pair the value, once
assigned, will never change. HWe shall
call this a (temporally) constant compo-
nent. Otherwise we refer to the compo-
nent as (temporally) variable. Address,
employer, Last name (for female persons

and - 1in "progressive" countries - for
mate persons) are examples of variable
components. VYariable components are

represented by an attribute/value_histo-
ry-pair or a role/entity_history-pair,
where a value_history 1is a set of disc-
rete time/value-pairs and an entity_
history a set of discrete time/entity-
pairs (or, technically more precise,
time/entity_reference-pairs).

Yalues of constants or within pairs in
histories may be undefined (nil), uncer-
tain or unknown. Consider the property
of social _security_no. A person 1is
normally not assigned one until she or
he Leaves s8chool. Once assigned, the
number does not change any more. HWhile
intuitively one might consider social _
security_no to be a constant, it 1is in
this case a variabite with a history
consisting of two vatues, a value of

undefined (mil) untit the number has
been assigned, and the number from the
time of assignment on.

Hence, constant components are restric-
ted to components that remain the same
over the entire Life span of the object.
nil is a Legitimate value for a constant
component, e.g. date_of_first_chitdbirth
for a (male) person. If a constant
value 1is initially not known, the con-
stant will be assigned uncertain, deno-
ting the fact that the constant may
have a mil or non-mil value. Once the
value becomes known, it will replace
uncertain.
The value of umknown may be considered
8 restriction on umcertaim, meaning
*uncertain but not nil”, or "not yet
known but definitely not nil".

Note, incidentatly, that a representa-
tion with two pairs is sufficient for
the social_security_no history. That
the value at any arbitrary time may be
computed, and how this 1is to be done
(nil for all times before assignment,
and the number for atl times thereafter)

must be expressed as anh additionat
property of the component. HWe shall
return to this point 1in <chs. 2.4 and
3.1.

2.3 _0bject existence

In the preceding section reference was

made to the Life span of an object. In
fact, it would have been more appropria-
te to refer to the Life span of the
real world counterpart, since the object
is to be maintained 1in the database
over the entire Life span of the databa-
se. Consequently, there 1s 1indeed a
situation where a history must be asso-
ciated with the object as a whole,
namely the existence of its real world
counterpart. Technically, we solve the
problem by augmenting the object by a
mandatory existence attribute, with
truth values as values. The existence
component may again be constant or
variable; 1in the Llatter case there
exists an existence history.

the existence of an
alt times for

More formally,
object 1is true during
vhich at Least one of the remaining
components has a defined vatue. Conver-
sely, a constant component has the same
invariant value only during those times
for which the object existence is true,
otherwise 1t 1is considered undefined.

402

The existence of an object 1is false
during alt times for which att of the
remaining components have the undefined
value nil. Conversely, if a component
history d1s not given over the entire
time domain (is not a total function),
its value is considered undefined during
the time the object existence is false.
It follows that the existence history
of an object must be defined as a total
function. Objects with a constant exi-
stence exist either at all times or
never.

similar to constant components, assign-
ment of a truth value to the constant
existence attribute may be deferred;, 1in
this case the value of unknown ("unknown
vhether true or false*) is dinitially

assigned.

following restric-
wilt arise (aside
from dnitializing constant components
and existence) because history, while
being a continuous phenomenon, is recor-—
ded only at discrete times. In order to
define uncertainty we must first state
vwhat i1s certain. Hence we rule that
recorded component histories must not
contain uncertain as a value, and recor-
ded existence histories must not contain
unknown as a value.

We finally note the
tion. Uncertainty

We noted before (ch. 2.2) that computing
the non-recorded portions of a component
history must follow rules that are
idiosyncratic to that component. He
also observed (ch. 1) that calendar
systems may vary from application to
application. Hence it will, in general,
be wunavoidable to include with each
component its own procedures for compu-
ting non-recorded values. In turn,
these procedures will have to rely on
procedures defined on time, e.g., to
determine into which dinterval betwveen
recorded times the desired time will
falt, or to compute the date following
a given date. Both problems may basical-
ty be solved by a mechanism akin to
abstract data types. This mechanism may
then be apptied towards other value
sets as well. -

consequently, an extended ERM schema 1is

dectared in the following steps.

of component value sets
ones (such

(1) Declaration
other than the standard

as Bootean, real, dinteger). FEach
value set is defined in the form of
a structure consisting of a name, a
value set in the form {x & BIP(X))

vith B a base set and P(x) a predi-
cate (if P(x) 1is missing, P(x) =
true 1s assumed), a List of rela-
tions (Boolean functions) and a
tist of operations (functions with

non-Boolean range).

Declaration of histories.

Each history is also defined in the
form of a structure and consists of
a name, a time structure and a
value structure (which were pre-
viously defined according to (1)),
perhaps a predicate for further
restricting the set of pairs forming
a history, and a set of retations
and operations. Note that the same
history structure may be wused 1in
different components.

(2>

(3) bectaration of patterns

A pattern 1s a value
structure together with
one assertion, at most one deriva-
tion function, and zero, one or
more approximation functions. Pat-
terns are unique within the schema,
j.e., they may be associated with
exactly one object type. Assertions
are formulated in order to enforce
constraints

or history
at least

certain consistency
update (see ch. 4.2).

on

(4) beclaration of objects.

Each entity type is introduced by a
name followed by a list of compo-
nents. A component 1s given by an
attribute name (among them existen-
ce), by an indication whether the
component 1is constant or variable,
in case of a constant by the name
of a value structure or value pat-
tern, or in case of a variable by
the name of a history structure or
history pattern. For a relationship
type, role components are given by
role name, by an ‘indication of
their functionality and totality,
by an indication of whether they
are constant or variablte, 1n case
of a constant by a reference to an
entity type, or in case of a variab-
ie by a history structure or history
pattern where the value part is a
reference to an entity type.

example that +itlustrates
the form of a schema may be found 1in
the appendix. The schema definition
Language, TERM, in discussed 1in detail
in {(Klo 81, Klo 83].

An extensive

403

In the simplest case, queries to an
information preserving database are of
the kind [KlLo 833 "which value (of some
component) was effective 1in the real
vorld at time tq?"

{More complex query kinds are conceivab-
Le that take recording time into ac-
count; note, however, that these require
a more extensive concept of history.)

The answer appears trivial if the compo-
nent is constant or there is an explici-
tely recorded state for time tq. Other-

wise the system must try to compute a

value for t_from the recorded fragments
of the history. If this can be done
with certainty, we call the correspon-
ding procedure a derivation, and each
element in the history a characteristic
state of the component. (More precisely,
the characteristic states are just

those elements that are needed to compu-

te the states for all times t_.) As a
rute, whenever tq is identical to some
recorded t, the history value at t is
chosen as an answer. O0Otherwise the
derivation function is executed and its
result is returned.

If the value at tq cannot always be
computed with certainty, we call the
corresponding procedure an approxima—
tion. There may be a number of reasons:

the times for which the history was
recorded may be spaced too far apart
¢(in the sense of derivation, the history
may onty represent a subset of the set
of characteristic states), or the recor-
ded values may themselves be dinaccurate

as 1in case of estimates or physical
measurements. More than one approxima-
tion function may be supplied, e.g.,

both a Linear interpolation and a iteast-

squares method. As a rute, because of
reduced confidence in the recorded
vatues, the answer to the query will
always be obtained by executing the

specified approximation function.

If an approximation function is to be
appLied, it must explicitly been selec—
ted. Otherwise the derivation function
is chosen by default. If no derivation
functions exists, and no approximation
function has been selected, the value
is uncertain for atl t_ for which there

is no recorded state.

Three kinds of derivations or approxima—
tions are possible:

- component-local: computation is solely
based on component history.
object-local: computation is also
based on other components of the same
object (perhaps using their derivation
or approximation functions).
global: computation makes
other objects as well.

use of

that a derivation or
approximation function may also be
associated with a constant component,
computing its (fixed) value. By necessi-
ty, the function 1is object-local or
global.

Note, finally,

3.2_Determining the object existence

What wvas said in ch. 3.1 holds for the
existence attribute as wvell (although,
obviousty, only derivations are meaning-
ful). Because exigtence 1is a totatl
function (ch. 2.3), existence is aither

true or false, and uncertainty is ex-
pressed as “unknown whether true or
false”. In consequence of ch. 2.3, the

folloving strategies are used 1in order
to determine the existence value of an
object.

a) Constant existence.

Object existence plays a central role
in determining the component values of
an object (ch. 3.3). In addition, object
existence may enter into assertions,
global derivations and gtobal approxima-
tions 1in the form of Logical expres-
sions. Consequently, the need to deal
with uncertainty introduces a need for
a ternary Llogic <(ch. 3.4). Hovever,
once such a Llogic has been introduced
there 1s no reason to restrict compo-
nents with truth values to just the set
{true,falsel); rather we shall also
permit the set {true,false,unknown). He
shall refer to the former value set as
Boolean and to the lLatter as KlLeenean.

J.3_Determining_a_component value

Again 1in accordance with ch. 2.3, ve
are nov in a position to give a precise
outline of the strategies for determi-
ning the values of an object component.
We note that mil refers to the undefined
value, wvhereas umcertain indicates that
the vatue may either be an element of
the value set considered, or mil. In
particutar, a truth valtue component may
be determined to have an uncertain
value meaning it coutd be one of nil,
true, false and (in case of Kleenean)
unknown.

Note first that the value may have been initialized to unknown

(ch. 2.3).

if existence_value ¥ unknown
then return recorded value
gLse if there exists at
with a non-empty history
valtue ¢ nil
thep return true

teast one variable object_component
containing

at Least one

glse if derivation function 1s specified
then return result of derivation function

glge return unknown,

b) Variable existence.

Note that the history may have been initialized to the empty

set.

if an existence_value has been recorded for time t
then return existence_value for time t
Least one variable object_component

else jf there exists at

with a non-empty history containing a value # nil

time t
then return true

q

for

elsg 1f derivation function is specified
then return result of derivation function

else return unknowvwn.

404

a) Constant component.

Note that the value may have been initialized to uncertain.

€ase object_existence at t of

true: if component_vatue ¥ mil
then return recorded value
else

if derivation function is specified

then return resutt of derivation function

elLse return mil;
false: return mil;
unknown: return uncertain
and.

vhere object_existence at t
tegy a) or b) 1in ch. 3.2.

is determined according to stra-

In case an approximation is requested, the strategy is instead

object_existence at tq ¥ false

if
then return result of approximation function
el

Lse return nil.

b) variablLe component.
Note that the value may have been initialized to the empty
set.
if a component_value % mil has been recorded for time tq
then return component_value for time t
else case object_existence at t_ of
true: .if derivation function is specified
then return result of derivation function
else return uncertain;
false: return ail;
unknown: return uncertain
end.
The Llatter strategy 1s due to strategy a) or b) in ch. 3.2
vhich state that if a component vatue & nil has been recorded
for time tq, then object_existence = true.
In case an approximation is requested, the strategy 1is the
same as for a constant component.
3.4 _Ternary_logic general and comprehensive treatment of

As mentioned before, logical expressions

may arise in the course of querying an
information preserving database whose
evaluation would have to follow the

rules of ternary Ltogic. Depending on
the interpretation of the third truth
value, a number of ternary logic calculi
have been proposed ([Res 49]1. The one
vhose interpretation matches the one
introduced above for unknown is due to
Kleene. In this chapter we just Llist
some basic properties and Lavws; for
details the reader 1s referred to [Klo
831. (The reader may also find a very

405

information incompleteness in databases

in [Lip 793).

Let 1 stand for unknown, T for true and
F for false. Then the following table
defines the Kteenean Logic.

pi=p
T4V F
I 1
Fi T

qipléqglpvglps=dg])p<=g
Q! TIFITIFITIFIT I F
T{TIFITTTYITIFLYT X1 F
IV ITIFITIIITII NI 1 1
FIFFFITIFITTTIFE I T

Note that

(p =>q) <=> (mnp Vv Q
(p <=>q) <=> ((p => Q) & (q => p))

are tautologies as in the binary lLogic, but

are not. Neither are

p <=> (p = true)
(mp) <=> (p = false)

as may easily be checked by means of truth tables.

For the logical expressions mentioned in ch. 3.2, the following
definitions are of importance. Let B be some base set.

The extension of a predicate P, {x6BiP{(x)) 1is defined as (x6B!P
(x)=true). Consequently, {(x8BI=P(x)) = {x6B!P(x)=falgel. 1In
general, {(x8BIP(x)} U (x68B! P(x)} % B.

The quantifiers are defined as follows [Res 6%1. Consider the
cardinatities

ct = I{x8BIP(x) = true)!

cf = 1{x6BIP(x) = false)!
c1 = 1{x6B!P(Xx) = unknownl!
C = IB! = ct + cf + c1

} true for | false for ! unknown for

¥x6B:P(x)=true t ct=c } cf>o } cfzo&c1>o
¥x6B:P(x)=false | cf= ! ct>° t ct=o&c1>o
¥x8B:P(xX)=unknown | c1= H c1<c H -
3x6B:P(x)=true ! ct>o } cf=c ' ct=oac1>o
Ix@B:P(x)=false ! cf>o i ct=c ' cf=o&c1>0
Ix8B:P{(x)=unknown | c1>o ! c1=o H -
§1xGB:P(x)=true lct=1&c1=0 H ct>1vcf=c H ct51ac1>0
}1x68:P(x)=fatse :cf=1&c1=o ! cf>1vct=c ' cfg1&c1>o
1

§1xGB:P(x)=unknovn% c1=1 } 61#1

406

Notice the rules
(IxBB:P(x)=true) <==> =~ (¥x8B:P(x)=false)
(IXBB:P(x)=false) <(==>=1(¥x6B:P{(x)=true)

(¥x6B:P(x)=true) <==>=(Ix6B:P(x)=false)
(¥x6B:P(x)=false) <==> m(Ix6B:P(x)=true)

but mot

(3x6B:P{(x)=unknown) <==>"1(¥x6B:(P(X)=unknown))
(3x6B:P(x)=unknown) <==> (¥x6B:-{P(Xx)=unknown))

Selection of elements from a set B is governed by the conventions

some z from {x6BIP(x)) defined as

case (3x6B:P(X)=true) of
true: z:= an arbitrary etement of the set;
false: z:= mit;
unknown: z:= uncertain.

that z from {x6BIP(x)) defined as

case (}1xGB:P(x) = true) of

true: z:= the unique element of the set;
false: z:= nil;
unknown: z:= uncertain.

The appendix gives numerous examples for predicates and set
selections, almost all of them within function dectarations. (¥
is written as att, ¥ as exists, %, as unique, => as impt, (x6BIP

(x>} as B wvhere P(x); this refers to the currently considered
element of the structure.)

4 _Update_semantics ledgeable enough to recognize inaccura-
cies or errors., He s permitted to
change the value of a constant component

4.1 _Recording_and_correction or 1in a time/vatue-pair of the recorded
history of a variable component. In
particular, he may do so regardiess of

The traditional database cannot distin- whether the consistency constraints are
guish between an update that is due to violated or not. The premise here 1is
a change of state in the real world, that a constraint mirrors an assumed
and an update that is caused by an law in the real world, and that the
improved perception of the same state. referee 1is 1in a position to determine
Not only is this distinction paramount vhether the lav needs some modification.
to the proper functioning of an informa- We observe, though, that violating a
tion preserving database, such a databa- constraint may have as a consequence
se is the only one in which the distinc- that the constraint will never be satis-
tion is meaningful. Almost naturally, fied during subsequent updates, hence a
therefore, one will distinguish betwveen more discriminatory approach to the
two wuser roles with respect to update rights of a referee may actually be n
operations, namely: recorder and refe— order.
ree.
As in traditional databases, consistency
The recorder may <install new objects, vwill often be only maintained by a
supplant an uncertainm constant compo- sequence of recordings. Hence the con-
essential to

nent, or add a new time/value-pair cept of transaction is
component history. In doing sg’ hetgusg information preserving databases as
observe all consistency constraints in well. This 1s mainly a matter of DML
order to ensure that only plausible design, a topic we shall not go 1into
updates are performed. The referee is a any further in this paper.

specially authorized person, and know-

407

There are three kinds of constraints that the DBMS must observe
during recording.

(R
(2)

3

3_An_example

Test on set membership, if a base value set or a base history

set is further restricted by predicate (ch. 2.4).

Test whether assertions on patterns are satisfied (ch. 2.4).

Two standard kinds of assertions are provided:

- assertion key specifies that the component to which the
pattern refers has to have a unique value within the asso-
ciated entity set or relationship set.

- assertion false indicates that an update of the component
is never satisfied, i.e. the component is virtual. Conse-
quently, the corresponding pattern must include a deriva-
tion and/or approximation function.

Test on the implicit constraints expressing the rute that

only values that are certain are recorded (ch. 2.3). These

may now be formulated more precisely:

a) Constant existence.
old this.existence = unknown
& nev this.existence & (true, falsel

b) Yariable existence.
¥ x ¢ nev this.existence: x.value & {true,falsel

c) Constant component.
old this.attribute = uncertain
& nev this.attribute & uncertain
new this.attribute 6 component_value_set

d) Yariable component.

(old this.attribute (} v new this.attribute £ nil)

& old this.attriute nit

& new this.attribute % uncertain

& ¥ x 6 nevw this.attribute:
(x.time % aiL & x.time 3+ wuncertain & x.vatue #
uncertain)

& vhole this.attribute 6 history_value_set

b]

Notation: old refers to the previousty recorded component,
nev to the elements newly to be added, and whole to the
resutt after update. this.attribute denotes the component
value or history associated with attribute of the object of
interest.

rest rate schedule, is added. Two rela-
tionship types relate an account to the
rate schedule applying to 1t, and to

The appendix contains an extensive the transactions affecting it. Changes
example of a TERM (time extended ERM) to the account have to do for one with
schema which itlustrates some of the the transactions (deposits or withdra-
foregoing concepts, and to which we wals), for another with the interest
already referred several times. The accruing to it but vhich are credited
example has been taken from a banking to it only after each quarter of the
application which typically must preser- year.

ve a record of the past. The basic

entity is the individual account. Tran- After all that hase been said 1in the
sactions that cause changes to an ac- paper so far the reader should have no
count are also modelled as entities. difficulties 14n reading the example.
Finally, because interest 1is credited Note that for the sake of completeness
to accounts, a third entity type, inte- the entire date structure has been

408

incLuded; on first reading one may skip
to the structures for the representation
of histories.

4_tonclusions

one of the most interesting features of
an information preserving database is
the notion of uncertainty and the mecha-
nisms for dealing with 1it. The paper
could be vieved as a somewhat formalized
approach to that subject, providing
insights that to the authors' knowledge
have hitherto not bheen reported. A
second aspect of our work has been
database design: extending the now
ctassical entity-retationship model by
additional concepts that may not only
be useful for designing ‘information
preserving databases but allow sound
decisions with regard to the structure
of traditional databases. The schema
definition language TFRM, an extension
of Pascal, was purposely developed as a
programming language. As a third aspect
of our work, this will permit the use
of TFRM not only as a design tool but
also as an interface to information
preserving PBM8. To determine the feasi-
bility, a TERM compiler was implemented
mapping the TFRM interface to the inter-
face of a network 0BMS [Nun 821. Fourth-

ly, even if not used as an interface,
transtators could be built for such
formatized schemas that mechanically

generate network and relational interfa-
ces with equivalent behaviour. Develo-
ping appropriate compilers and transla-
tors remains a topic for further
research.

BibLiography
TAnd 811 T.L. Anderson: The Database
Semantics of Time. Ph.D.the-

sis, Univ. Washington, 1981

[And 821 T.L. Anderson: Modeling Time

at the Conceptual Level.
Proc. ?2nd Jnternatl. Conf.
on Databases, Jerusalem,
June 1987

[BFM 79] R. Breutmann, F. Falkenberg,
R. Maurer: CSL: A Language
for Defining Conceptual
Schemas. In G. Bracchi, G.M.
Nijssen (eds): bata Base

Architecture, North—-Hol lLand

1979, 237-256

409

[Bol 791

[Bra 781

[Bru 723

fBub 772

[Bub 802

[Che

761

[Fal 743

[FK 781

[HM 78]

[HM 811

[IS0 8721

A. Bolour: The Process Model
of Data. Tech. Rep. 38, Lab.
of Medical JInfo. Sci., Univ.
California, San Francisco,
1979

J. Bradley: Operations Data
Base. Proc. 4th Internatl.
Conf. on VYery Large Databa-
ses, 1978, 164-176

B. Bruce: A Model for Tempo-
ral Reference and its Appli-
cation 1in a Question Answve-
ring Program. Artific. Intel-
tigence 3 (1972), No. 1, 1-25

J.A. Bubenko: The Temporal
Dimension in Information
Processing. In G.M. Nijssen

(ed): Architecture and Models
in Database Management,
North-Holland 1977, 93-118

J.A. Bubenko:
Modeling in the
System Development.
tion Processing 80,
Holland 1980, 395-411

Information
Context of
Informa-

Nor th-

P.P.-8§. Chen: The Entity-
Relationship Model - Toward
a Unified Yiev of Data. ACM
Trans. on Database Sys. 1

(1976), 9-36

F. Falkenberg: Time-Handling
in Database Management Sy-
stems. CYS-Rep. 07/74, Univ.
Stuttgart 1974

A. Flory, J. Kouloumdjian: A
Model for the Description of
the Information System Dyna-

mics. l.ecture Notes on Comp.
Sci. 65, Springer 1978,
307-318

M. Hammer, D.C. Mcl.eod: The

Semantic Data Model: A Model-
ting Mechanism for Data BRase

Applications. Proc. ACM
SIGMOD Internatl. Conf.
1978, 246-36

M. Hammer , D.C. Mcl.eod:
Database . Description with
SDM: A Semantic Database
Model. ACM Trans. on Database
Sys. 4(1981), 351-384

I80 TC 97/8CS5/W63 (J.J. v.
Griethuysen, ed.): Concepts
and Terminology for the
Conceptual Schema and the

[Kto &1)

fKto 831

[Lip 793

No.
1982

Information Base. Publ.
I80/TC97/8C5-N695, March

M.R. Ktopprogge: TERM: An
Approach to InclLude the Time
Dimension in the Entity-Rela-

tionship Model. In P.P.-8,
Chen (ed): Proc. 2nd Inter-
natl. Conf. on Entity-Rela-

tionship Approach, ER Ilnsti-

tute 1981, 477-512

M.R. Kitopprogge: Entity and
Retationship Histories: A
Concept for Describing and
Managing Time Yariant Infor-
mation in Databases. Ph.D.
thesis, Univ. Karlsruhe,
1983 (in German)

W. Lipski jr.: On Semantic
Issues Connected with Incom-
plete Information Databases.
ACM Trans. on Database 8ys.
L (1979), 262-296

[Nun 82)

[Res 69)

{Schu 77)

{Ser 80]

H. Nunnenmann: Mapping TERM
Schemas to ups. DiplLoma
thesis, Univ. Karlsruhe,
Fak. Informatics, 1982 (in

German)

N. Rescher: Many-Yalued
Logic. McGraw-HiLl 1949

B.-M. Schiler: Update Recon-
sidered. In G.M. Nijssen
(ed): Architecture and Models
in batabase Management,
North—Holtand 1977, 149-164

A. Sernadas: Temporal Aspects
of Logtcal Procedure Defini-
tion. Information Sys. 5
(1980), 147-187

Appendix: TERA Schena of a Banking Application

define schema s_account;

structure

st_icateg = integer;

structure

st_int_rate =

structure

reat;

st_account_nos = integer;

structure

st_name = packed array(1..203 of char;

structure
st_cur

structure

z real;

st_date =
record d,m,y: intager emd
vhere

this.y >= 1532 and
this.a >= 1 and this.m <= 12 and
this.d >= 1 and this.d <= 31 and

(this.d < 31

or this.a im (1, 3, 5,7, 8,10,12)) and

(this.d <> 30 or this.a <> 2) and
(this.d <> 29 or this.m <> 2
or this.y mod 4 = D0 and
(this.y mod 100 <> 0
or this.y med 400 = 0);

relations
function is_in_Leap(t: st_date): boolean;

begin

t.y mod 4 = 0 and
(t.y mogt 100 <> O
or t.y mod 400 =

is_in_leap:=
[+ M]

end;

410

structures for the representation of times and values ————-==

X represents interest categories

X represents interest rates
X represents account numbers
X represents names

X represents currencies

2 represents calendar dates according
X to the 6Gregorian calendar

does a date fall into a leap yesr?

>

function before_date(t1, t2: st_date): boolean; X date t1 before date t2?
in
before_date:= t1.y < t2.y
or ti.y=t2.y and t1.m<t2.m
or t1.y=t2.y and t1.m=t2.mand t1.d<t2.d

oend;
fun$t1on contemp_date(t?, t2: st_date): boolean; Z do t1 and t2 refer to the same day?
n
contemp_date:= t1.d=t2.d and t1.m=t2.m and t1.y=t2.y
end;
function becon_date(t?, t2: st_date): boolean; X t1 before t2 or t1 = t2°?
bagin
becon_date:= mot before_date(tZ, t1)
and;
operations
function ultimo_date(z: st_date): st_date; X Last day of a month
var ud: integer;
begin
ifz.m im (1, 3,5, 7, 8, 10, 12) then
ud:= 3%;
else if z.m in (4, &, 9, 11) then
ud:= 30;
alse if z.m=2 and is_in_Leap(z) then
ud:= 29
olse 1f z.m=2 and not is_in_leap(2) them
ud:= 28;

ultimo_date.d:= ud;
ultimo_date.m:= z.m;
ultimo_date.y:= z.y
end;
function next_day_date(z: st_date): st_date; X date of day folloving 2
var n: st_date;
begin -
if z.d = 31 and z.m = 12 then begin X Nev Year's Eve
n.d:= 1; n.m:= 1; n.y:= 2.y + 1 and
else 1f z = ultimo_date(z) then bagin X Last day of the month?
n.d:= 1; n.m:= z.m + 1; :

else

n.d:z z.d + 1; n.m:= z.m; n.y:= 2.y;
next_day_date.d:= n.d;
next_day_date.m:= n.m;
next_day_date.y:= n.y;
end;
function prev_day _date(z: st_date): st _date; X date of day preceding z
var p: st_date;
begin X this day has no predecessor,
if z.d =1 and z.m = 1 and 2.y = 1582 then X start of 6regorian calendar
R ’
elsﬁ if z.d=1 and z.m=1 and 2.y>1582 them begia X New Year?

p.d:= 31; p.m:i= 12; p.y:= 2.y - 1 end
else if z.d = 1 and z.m > 1 then begin
p.d:= 1, p.m:= z.m - 1; p.y:= z.y;
p:= ultimo_date(p) end
else bagin X not beginning of a month
p.d:= z.d - 1; p.mi= z.m; p.y:= z.y end;
prev_day_date.d:= p.d;
prev_day_date.m:= p.m;
prev_day_date.y:s p.y
end;

function Least_recent_date(st: seat of st_date,
z: st_date): st_date;

»

max. date { z in a set of dates

in
Least_recent_date:= that x from st vhere
all y from st wvhere
becon_date(x, z) and
(beforg_date(y, x)
or before_date(z, y))

end;

411

I-——-= gtructures for the representation of histories —~—————cemcecace-

structure
hs_date_cur =
history
t: st_date;
v: st_cur aend;

structure
hs_date_klLeenean =
history
t: st_date;
v: kleenean end;

structure
hs_standard_exist =
history
t: st_oate;
v: kieensan end
vhere
all s1, sZ from this vhere
((s1.v = true amd 82.v = false amd Defore_date(si,s2))
1spl all s from this vhere
o before_date(sZ, s) impl s.v = false)
an
({(s1.v = false and s2.v = true and before_date(st,s2))
impl all s from this vhere
before _date(s, s1) imptL s.v = false)
and
((st.v = true amd s2.v = true amnd before_date(s1,s2))
1epl all s from this vhere
before_date(si, s) amnd before_date(s, 82)
impl s.v = true;

operations
function start_ax_standard(h:hs_standard_exist):st_date;

var s: state of hs_standard_exist;
begin
s:= that x from h vhers
all y from h vhere
not y.v or becon(x.t, y.t);
1f s < nil then
start_ex_standard:= s.t
el se
start_ex_standard:= uncertain

”

function d_standard(h: hs_standard_exist;
z: st_date): kleenean;
var ds: state of hs_standard_exist;
begin
ds:= that s1 from h vhere
s1.t=least_recent_date(those tx from st_date vhere
exists s2 from h vhere
s2.t =z tx, 2);
1f ds <> nil then
d_standard:=z ds.v
alse
d_standard:= unknown
end;

structure
hs_int_rate =
history
t: st_date;
v:e st_int_rate end;

operations
function d_int_rate(h:hs_int_rate;
z:st_date): st_int_rate;
var dz: state of hs_int_rate

n
dz:= that s1 from h vhere
s1.tzleast_recent_date(those tx from st_date vhere
axists 82 from h vhers
s2.t = tx, 2);
if dz <O nit then
d_int_rate:= dz.v
else
d_int_rate:s uncertain
ond;

412

e Yo de e

» e

[S 4

there is at most one time
interval during which the
ex1stence is true

(this models the Life of
Living beings etc.)>

beginning of existence
otdest known state vith s.v = true

is there one

auxiliary function for
pattern derivation

function 1s total

auxitiary function
derivation

all points in time of h

function is total

pattern
int_exist = hs_standard_exist;

derivation
function deriv_int(pz:trate_schedule; z:st_date):kleenean;

begin
deriv_int:= d_standard(pz*.existence, 7)

end;

pattern
int_icateg = st_icateg;

assertion
key;

pattern
int_debit = hs_int_rate;

derivation
function deriv_debit_rate(pz:¢rate_schedute;
z:st_date): st_int_rate;
in
deriv_debit_rate:= d_int_rate(pz*t.debit_rate, 2z)
end;

pattern
int_credit = hs_int_rate;

derivation
function deriv_credit_rate(pz:trate_schedule;
z:st_date): st_int_rate;

degin

----- patterns for the components of 'rate_schedule' ——=——————————

deriv_credit_rate:= d_int_rate(pzt.credit_rate, 2)
end;
Zm———— patterns for the components of ‘account’
pattern

account_exist = hs_standard_exist;

derivation
function deriv_acc_ex(pa:taccount;
7:8t_date): kleensan;
begin
deriv_acc_ex:= d_standard(pat.existence, 2)
end;

pattern
account_no = st_account_nos;

assertion
key;

pattern
account_icateg =
history
v: st_date;
t: st_icateg end;

derivation
function dertv_icateg(h:account_icateg;
Z:st_date):st_icateg;
var dz: state of account_icateg;
begin
dz:= that s' from h vhere
s1.t=least _recent_date(theose tx from st_date vhere
exists s2 from h vhere
s2.t = tx, 2);
if dz < il
deriv_icateg:= dz.v
elLse
deriv_icateg:= uncertain
end;

413

2 total because of d_standard

X total because of d_int_rate

T total because of d_int_rate

X derivation is total

pattern
account_balance = hs_date_cur;

assertion
false;

derivation
functiom deriv_account(pa:taccount;z:st_date):st_cur;

var ds: st_cur; zi1: st_date;

b.g‘lll
zi:= start_ex_standard(pat.existence);
ds:= 0;
while becon_date(z1,z) do bagin
ds:= ds + pat.day_balance at zi;
if zizultimo_date(z1) and 21.m mod 3=0
then
ds:= ds + pat.noncred_interest at 21;
zi:= next_day_date(zi) end;
deriv_account:= ds end
ond;

pattern
account_dbal = hs_date_cur;

assertion
false,

derivation

function deriv_dbal(pa:taccount; z:st_date): st_cur;
var dt: st_cur; sta: set of transaction;
pt: *transaction;
begin
dt:= 0;
sta:= those tr from transaction vhere
tr.existence at z and
exists at from acc_ta vhere
at.acc = pa and at.ta = tr;
vhile sta <> () do begin
pt:= some s from sta;
sta:= sta vithout (pt);
dt:= dt + pti.amount end;
deriv_dbal:= dt end
end;

pattern
account_noncred_tinterest = hs_date_cur;

assertion
false;

derivation
function deriv_noncred_int(pa:taccount; z:st_date):st_cur;

var doz, db: st_cur; zi: st_date;
z: *rate_schedule; zf: st_int_rate;
begin
zi.di= 1; zi.yi= z.y;
zi.mi= ((z.m - 1) div 3) 2 3 + 1;
if not pat.existence at zi then
z1:= start_ex_standard(pa‘t.existences);
doz:= O,
vhile becon_date(zi,z) do begin
db:= pat.day_balance at zi;
z:= pat.rs at 21;

1f db < 0 then

2f:= z.debit_rate
else

zf:= z.credit_rate;
doz:= doz + dbxzf/3400 end;

deriv_noncred_1int:= doz end
end;

414

o W e e

» >

N

ere e

for virtual component

current balance

day of opening an account

sum of all daily balances

and of quarter?
interest credited

defined as total

batance for the day

aLl transactions on
an account for day 2

total amcunt of all
transactions

for virtual aktribute

interest accrued from
current quarter that
have not been credited
yet

21:= begin of quarter

day account opening

-rate schedule appli-

cable to account on
day zi

sum of all daily interests

--~—— patterns for the components of ‘transsction’ ————v———ccec————

pattern
transaction_exist =
history
t: st_date;
v: kieenean and
vhere
exists s from this vhers s.v X esch history has at

fapl unique s froa this vhere s.v; %2 most one state vwith
X s.vztrue (point event)

derivation
function deriv_ta{pt: ttransaction;
Z: st_date): kieenean;
var x: state of transaction_exist;
begin
x:= that s from pt?.existence
vhere s.t = 2,
if x <> nil them
deriv_ta:=z x.v
slse if exists s from pt!.existence vhere s.v then
deriv_ta:= false
else
deriv_ta:= unknovn

end;
Jmmm—— patterns for the components of 'rs_acc’
pattern
rs_acc_rs =
history

t: st_date;
v: frate_schedule end;

assertion X for virtual role
false;

derivation
function deriv_rs(pr:¢rs_acc; z:st_date):trate_schedute;
1n
deriv_rs:= that z from rate_schedule vhere
z.int_category=prt.acct.int_category at z
end;

415

g---~- @ntity types and relationship types

eatity type

rate_schedule;

existence
variable int_exist;

attridbutes
int_category comastaat int_icateg;
debit_rate variable int_debit;
credit_rate vartable int_credit;

oatity type

account;

existence
variable account_exist;

attributes
no constant account_no;
ovner constant st_name;
int_category variable account_icateg;
balance vartable account_balance;
day_balance variable account_dbal;

noncred_interest varisble account_noncred_interest;

sntity type
transaction;
existence
veriable transaction_exist;
attributes
amount comstant st_cur;

relatioaship type
re_acc;
existence
constant kleenean;
roles
rs one vartable rs_acc_rs;
acc total comstamt taccount;

relationship type
acc_ta;
existence
constant kleenean;
roles
acc omne comstamt taccount;
ta total comstamt ttransactton;

416

L R R X]

e

interest category

current balance

totat for each day

not yet credited intersst

current rate schedule ‘rs’
for account ‘acc’

transaction "ta’ belongs
to account ‘acc’

