
VIEW MANAGEMENT IN DISTRIBUTED DATA BASE SYSTEMS 

E. BERTINO, L.M. HAAS, B.G. LINDSAY 

IBM San Jose Remarch Lab 
5600 Cottk Road 

SAN JOSE, CA95193 USA 

1. Introduction 

The structure of data to be stored by a Data Base Man- 
agement System (DBMS) is usually decided by a database 
administrator. Individual users and applications are generally 
interested in only a subset of the data stored in the database. 
Often, they wish to see this subset structured in a way which 
reflects their particular needs. Since it is not generally possi- 
ble to structure a database so as to please aU of its users, 
some mechanism is needed whereby each user can view the 
data according to his (her) own requirements. The represent- 
ation of the data structure as seen by a user is often referred 
to as an external schema; the view mechanism is a means by 
which a DBMS can support various external schemas. 

Besides providing users with tailored views of the data, 
the view mechanism contributes to [Chamberlin75]: 

- Data independence: giving applications a logical view of 
data, thereby isolating them from data reorganization. 

- Data isolation: giving the application exactly that subset of 
data it needs, thereby minimizing error propagation. 

In a relational DBMS, a view is defined as a “virtual 
table” derived by a specific query on one or more base ta- 
bles. The relational operations join, restrict and project as 
well as statistical summaries of tables may be used to define 
a view. Access rights may be granted and revoked on views 
just as though they were ordinary tables. This allows users to 
selectively share data, preventing unauthorized users from 
reading sensitive information. 

SQL/DS [SQL811 and INGRES [Stonebraker76] are 
examples of relational DBMS’s that provide the view facility. 

In this abstract, the implementation of views in distribut- 
ed relational DBMS’s is discussed. Section 2 briefly reviews 
view management in a single-site DBMS. In section 3, the 
view concept is extended to a distributed DBMS (DDBMS) 
and two types of views are introduced: shorthand views and 
protection views. Finally section 4 outlines view manage- 
ment in a DDBMS. 

2. Views in Single-Site Database Systems 

A DBMS must construct and store an internal represent- 
ation for each view that it supports. This occurs at view 
definition time. In systems such as SQL/DS, this internal 
representation is a parse tree for the view definition state- 
ment. When a view is later referenced in a query, a view 
composition operation is performed to combine the view’s 
parse tree with the query parse tree. The result is a composite 
parse tree which only contains references to real stored ta- 
bles. 

In creating the internal representation of a view, names 
in the view definition statement are bound to the specific 
objects they reference, namely tables and other views. A 
view is therefore logically dependent on the continued exist- 
ence of all objects that it references. If an object is dropped 
or substantially changed (for example, if the columns of a 
table are rearranged or a view is redefined) then the views 
referencing those objects must be invalidated. 

In addition, since at view usage time the operations 
performed on the view will be translated into operations on 
the underlying objects, the view must have the necessary 
privileges on those objects. The privileges are granted to the 
view by the view definer. The view definer must therefore 
have the necessary privileges on the objects referenced in the 
view definition to be able to define the view. This allows 
users who do not have privileges on the underlying objects, 
but who do have privileges on the view, to access those ob- 
jects through the view, according to protection requirements 
expressed by the view. If all privileges on an underlying 
object are revoked from the view definer, the view is no 
longer valid. 

To be certain that a view is valid, the DBMS must keep 
track of dependencies of views upon all objects they refer- 
ence. At view definition time, the system determines the set 
of objects referenced by the view, and the set of authoriza- 
tions needed by the view. Records of the form <view name> 

376 



depends on <object name> and <view name> possesses 
<authorization> on <object name> are stored in special 
system catalogs. If an object is dropped or substantially 
changed, or if an authorization is revoked, the catalogs can 
be searched to find the views affected by the change, and the 
views can be marked invalid. 

The next time the view is used in a query, the system 
notes the invalid state of the view, and drops the view. Alter- 
natively, it could attempt to revalidate the view, by redefin- 
ing the view against the current database. Note that revalida- 
tion will not always succeed: if an object referenced by the 
view has been dropped, the view cannot be defined. If, how- 
ever, the object has merely been changed, and the changes 
are compatible with the view definition, the view can be 
revalidated (for example this might happen if the columns of 
a table have been reordered). 

3. Views in Distributed Database Systems 

Within the last few years, distributed database manage- 
ment systems (DDBMS) have become a rapidly growing field 
of investigation and a number of implementations have been 
reported [Williams8l,Rothnie80,Stonebraker77]. Among the 
numerous goals of a DDBMS, two have been recognized as 
key objectives: site autonomy and data distribution transpar- 
ency. 

Site autonomy means that each site can operate on its 
own data as a stand-alone, single-site DBMS, and that each 
site retains local control of its own data, even if the site 
participates in the execution of a distributed query. This 
guarantees better resiliency to failures of sites and communi- 
cation lines, since there are no centralized functions or serv- 
ices, such as a global dictionary or centralized deadlock de- 
tector. Further, each site performs all operations on its own 
local data, including authorization checking and, of course, 
database accesses and updates. 

The second objective, distribution transparency, means 
that users are shielded from the physical distribution and 
redundancy of data and are able to interact with the distrib- 
uted system as easily as with a conventional centralized one. 
This ensures logical independence of applications. 

Any extension of views to a DDBMS must preserve the 
appearance of views as virtual tables. This presents many 
problems due to the fact that views in a DDBMS may be 
defined using tables which are not local to the view definition 
site and/or using other views defined at remote sites. Views 
defined using non-local objects are themselves distributed 
objects, which requires that the operations of creating, drop- 
ping and using a view be distributed operations. 

The issue of authorization on views also has major impli- 
cations for the implementation. When a view is used in a 
query, view composition must take place in order to derive an 
execution strategy for the query. If views are not objects of 
authorization, this composition can take place at any site. If 
views are objects of authorization, site autonomy considera- 
tions require that the view definition site maintain control 
over the materialization of the view. In particular, view 
composition must take place at the view definition site. 
(Actually any “trusted” site will do, but the “trusted” set 
should default to the view definition site). If view compos- 

ition is allowed to occur at any site, a malicious site could 
pervert the view definition by dropping restrictions or projec- 
tions in the view definition. 

Forcing view composition at the view definition site can 
have negative effects on performance. If the definition site 
of a view ls not the site at which a query using the view is 
submitted (the query master site), then it may not be possible 
for a single site to produce a complete execution strategy for 
the query, because the view definition may only be composed 
into the query at the view definition site. Further, in systems 
which separate planning a query from its execution, the exec- 
ution strategy must include accessing the view definition site 
to check that the user is still authorized to use the view. This 
must be done at execution time even if no tables referenced 
in the fully composed query are stored at the view definition 
site. 

For these reasons, the execution strategy for a query 
referencing a remotely defined view is unlikely to be optimal, 
and a performance penalty may be incurred. If views were 
not objects of authorization the query site could produce a 
complete execution strategy, which would not require access- 
ing the view definition site unless some table were actually 
stored there. 

Hence, two types of views are recognized. Shorthand 
views provide the data hiding, data conversion, typing elimi- 
nation and renaming functions associated with views, but are 
not objects of authorization. The user posing queries against 
a shorthand view must be authorized to access the objects 
referenced by the view. Protection views provide the same 
semantics as shorthand views and in addition are objects of 
authorization. Authorization to access the objects referenced 
by the protection view belongs to the view and the user of 
the view only needs the privilege to use the protection view. 
Queries referencing remotely defined shorthand views will in 
general execute more efficiently than identical queries with 
shorthand views replaced by protection views. 

4. Distributed View Management 

As mentioned in the previous section, views are defined 
in terms of queries which may reference local and non-local 
tables and views. Queries may be imbedded in programs, 
which are precompiled by (D)DBMS’s such as System R 
[Astrahan76] and R* [Wiliamslll]. The result of precompila- 
tion is a set of access modules, defining the execution plan 
for the query, which are stored in the (distributed) database. 
Precompilation also creates dependencies (as described in 
section 2) for the program on the tables and views referenced 
in the program. Thus, if a table is dropped or a view rede- 
fined, the program must be invalidated. At execution time of 
a program, the system checks whether the program is valid. If 
the program is still valid, the system loads and executes the 
necessary access modules. If the program has been invalidat- 
ed, the system may try to recompile the program; if recompi- 
lation succeeds, the program is executed, otherwise an error 
is reported [Ng82]. 

Since distribution transparency requires that the system 
have the same behavior with respect to users as a centralized 
DBMS, a correct implementation of views in DDBMS must 
ensure that views are dependent on the objects they refer- 
ence, and that programs referencing views are dependent on 

377 



those views. These requirements ensure a consistent usage of 
views by users. 

In addition, site autonomy requires that each site be able 
to perform any action on local (non-distributed) objects, such 

as dropping local tables or purely local views, without notify- 
ing any other site. In particular, it should not be necessary to 
contact other sites at which programs or views referencing 
the local objects are stored or defined. 

These two requirements suggest that dependency record- 
ing should be distributed among the sites of those objects on 
which the view (or program) depends. In other words, view 
or program dependencies on remote tables should be record- 
ed at the sites where those tables are stored. This allows 
local invalidation of distributed programs or remotely defined 
views if a local table is dropped or changed. 

Actually the situation is somewhat more complicated. 
Programs and views may depend on remotely defied protec- 
tion and shorthand views, as well as remotely stored tables. 
Dependencies on protection views are recorded at the view 
definition site. In fact this site will be accessed at execution 
time, since the view is materialized at that site. 

If the dependency of a program on a shorthand view is 
recorded at the view definition site, and that view is later 
dropped, it may not be possible to invalidate the program. 
This will happen if no table referenced by either program or 
view is stored at the view definition site. In this situation, the 
program has no need to access the view definition site at 
execution time and hence it will not discover that the view 
has been dropped. 

To invalidate a program in these circumstances, depen- 
dencies on shorthand views are recorded at other sites, cho- 
sen in such a way that any program referencing the view 
must access these sites at execution time. In fact, those sites 
are the sites at which tables referenced by the view are 
stored. 

An obvious consequence of these distributed dependen- 
cies is that view definition and view drop are distributed 
operations. At view definition time, the dependency of a view 
on remote tables must be recorded at the table store sites. 
When dropping a view, remote sites storing view dependen- 
cies must be accessed in order to delete these dependencies 
and, at the same time, invalidate programs and views depend- 
ing upon the dropped view. Note that remote sites are only 
accessed when the view is a distributed object. Local views 
are still dropped locally. 

5. Conclusions 

In this paper, the implementation of views in a DDBMS 
has been discussed. Two kinds of views have been intro- 
duced: shorthand views and protection views. 

ments; thii allows invalidation of views when one of these 
objects is dropped or changed. 

View definition and drop view are distributed opera- 
tions, involving all sites that store objects referenced in the 
view definition statement. Since the actions of defining and 
dropping views are expected to occur relatively infrequently, 
this is not a high price to pay for good query performance 
with these semantics. 

REFERENCES 

[Chamberlin’lS] Chamberlin,D.D., Gray,J.N. and Traig- 
er,I.L. , “Views, Authorization and Locking in a Da- 
tabase System”, Proc. AFIPS NCC, Vol. 44, 1975. 

[NW1 Ng, P., “Distributed Compilation and Recompi- 
lation of Database Queries”, IBM Research Labora- 
tory RJ3375 San Jose, Calif., January 1982. 

[Rothnie80] Rothnie,J.B, Bernstein,P.A., Fox,S.A, 
GoodmanN., Hammer,M.M., Landers, T.A.. 
Reeve,C.L., Shipman,D.W. and Wong,E., “A system 
for distributed database (SDD-1)“. ACM Transac- 
tions on Database System, March 1980. 

[SQL811 IBM Corp., “SQL/Data System: Application 
Programming”, SH24-5018, 1981. 

[Stonebraker76] Stonebraker,M., Wong,E.,Kreps,P., and 
Held, G., “The Design and Implementation of 
INGRES”, ACM Trans. Database Syst. I,3 
(Sept.1976). 

[Stonebraker’l’l] Stonebraker,M., Neuho1d.E.. “A Dis- 
tributed Version of INGRES”, Proc. 2nd Berkeley 
Workshop Distributed Data Management and Com- 
puter Networks, May 1977. 

[Wiliams81] Wiliams,R. et Al, “R+: An Overview of the 
Architecture” Proceedings of the international Con- 
ference on Database Systems, Jerusalem, Israel, June 
1982. Published in Improving Database Usability and 
Responsiveness, P.Scheuermann, ed. Academic Press, 
N.Y. 

The approach chosen for view implementation has many 
advantages. Programs using views depend upon them; thus 
they always correctly incorporate the current semantics of 
any view referenced by the programs. If the views are drop- 
ped or changed, the programs will be invalidated. Views also 
depend on the objects referenced in the view definition state- 

378 


