
An Approach to Object Sharing in Distributed Data base Systems’ 

Peter Lyngbaek 
Dennis McLeod 

Computer Science Department 
University of Southern California 

Los Angeles, CA 9W89-0782 

ABSTRACT 

This paper describes DODM, a simple model for object 
sharing in distributed database systems. The model provides a 
small set of operations for object definition, manipulation, and 
retrieval in a distributed environment. Relationships among 
oojects can be established across database boundarres, 
objects are relocatable within the distributed environment, and 
mechanisms are provided for object sharing among individual 
databases. An object naming convention supports location 
transparent object references; that is, objects can be 
referenced by user-defined names rather than by address. The 
primitive operations introduced can be used as the basis for the 
specification and stepwise development of database models 
and database systems of increasing complexity. An example is 
provided to illustrate the use of DODM in the design of a 
distributed database system supporting a semantically 
expressive database model. 

1. Int reduction 
Distributed computing systems are becoming increasingly 

common. This trend is largely caused by the decreasing cost of 
hardware: not only are powerful personal computers becoming 
so Inexpensive today that individuals can afford them for 
personal use, but the cost of computer networks that enable 
computer systems to exchange information at a very high rate is 
decreasing drastically. Decentralization overcomes many of the 
limitations and deficiencies of centralized systems. A network 

‘This research was supported, in part, by the Joint Sewlees Electronics 
Program through the Air Force Office of ScientWic Research under contract 
F49820-El-C.0070. 

of computers simply provides a higher level of performance, 
availability, reliability, fault tolerance, and security than a 
centralized computer system. In addition to the technical 
advantages that make decentralized systems feasible, social 
attitudes tend to indicate that a collection of smaller, 
autonomous computer systems are preferable to large central 
systems. 

The growing popularity of distributed computing establishes 
a need for mechanisms that allow individual users to 
communicate with each other and share both hardware and 
software resources. Individual users also need access to the 
growing number of “public” databases, which contain a variety 
of information such as grocery prices, the values of stocks, and 
the histories of bank accounts. Of course, sharing mechanisms 
decrease the autonomy of the components of the distributed 
environment, and affect the performance, availability, reliability, 
fault tolerance, and security of the total system. Sharing and 
communication mechanisms alsc introduce data transmission 
and naming problems. 

Most current approaches to distributed database 
management system design fail to adequately address issues 
concerning location transparency (the ability to reference data 
by name rather than by address), logical decentralization, 
catalog management, and the uniform handling of meta-data 
and user-data. Logically centralized database systems [Rothnie 
80, Stonebraker 77, Andler 821 provide the users with a single 
integrated database schema describing all the data in the 
physically centralized or distributed environment. Recent 
research has also resulted in approaches to support the 
integration of heterogeneous as well as homogeneous (pre- 
existing) databases [Motro 81, Smith 81, Litwin 81, Kimbleton 
791. However, a critical remaining problem is accommodating 
informalion sharing among individual, autonomous databases. 
Finally, existing distributed database system architectures that 
emphasize the autonomy of the individual databases 
[Heimbigner 82, Williams 81, Tsichritzis 821 require centralized 
or complex catalog management. 

The aim of the research described in this paper is to define a 
simple model for object sharing in distributed database 
systems. This is done by stepwise development of a series of 
object-oriented models. First, a simple model called ODM (for 
object-orienfed databsse model) is defined. ODM provides a 

364 



user with the basic primitives for object definition, manipulation, 
and retrieval; it is straightforward to implement, but it lacks 
semantic expressiveness as well as mechanisms for integrity 
control and protection. Next, ODM is extended to provide 
object definition, manipulation, and retrieval facilities for a 
distributed environment: The distributed version of ODM, called 
DOOM, supports object sharing among individual databases, 
and allows relationships to be established between objects in 
different databases. Moreover, DOOM provides location 
transparency, and can be implemented without introducing any 
central data structures or authorities. 

The next logical step is the introduction of semantic database 
models for centralized and distributed databases. These high- 
level models, based on the primitives of ODM and DODM, 
support types/subtypes for object classification [Smith 771 
(generalization hierarchies) and inter-object mappings 
(attributes). 

The framework for the research described in this paper is a 
personal information management environment called 
lNFOBASE[McLeod 83a], currently being developed in the 
Computer Science Department of the University of Southern 
California. INFOBASE is intended to provide information 
management facilities to support a wide range of personal 
workstation applications, including data management activities 
of a professional, manager, or home computer user. INFOBASE 
is also intended to support the information management needs 
of engineering applications, including software engineering, 
and CAD/VLSI design [McLeod B3b]. 

A collection of INFOBASE workstations is modelled as a 
logical network of components called stations [Lyngbaek 821. 
Each station has a unique station name, and is operated and 
owned by a single user. This convention is adopted to allow all 
resource sharing to be defined at the same level. A user is 
simply identified with the station he/she owns. In this way, 
resource sharing between two users can be treated as sharing 
oatw*en their two stations. Several INFOBASE stations may be 
grouped together at the same physical node in a computer 
network, but that is not reflected in this model, which describes 
the distributed environment as a logical network of identical 
stations. The stations in the network need not implement the 
same database model; they are only required to be identical 
from a network point of view, i.e., they must all provide the same 
network interface. Thus, existing databases and information 
systems may be part of the network, if they are accommodated 
as virtual INFOBASE stations. 

This paper focuses exclusively on ODM and DODM. Current 
research is in progress to explore object sharing in distributed 
databases that are modelled by higher-level semantic database 
models. Section 2 defines ODM by describing its primitive 
operations and its implementation, Section 3 extends ODM to 
cover distributed database modelling. A naming convention is 
introduced for DODM, its operations are described, and the 
implementation is discussed. Section 4 contains a distributed 
database example; a simple distributed database system based 
on a semantic database model is implemented on top of DODM. 
Finally, in Section 5 some concluding remarks are provided. 

2. :3k,An Object-Oriented Database 

ODM is a very simple object-oriented database model with a 
straightforward implementation. The main purpose of ODM is to 
provide a basic framework for object-oriented database models 
and database systems. ODM is based on a small number of 
simple concepts, that can be used as a tool for stepwise 
development of database models of increasing complexity and 
levels of abstraction. 

2.1. The Modelllng Elements of ODM 
A database is modellec! in ODM as a collection of oblecrs and 

relationships. Objects correspond to concepts that have an 
associated meaning, e.g., the space shuttle Columbia, the 
Queen of Denmark, and the name “John Smith”. A relationship 
is an association among three objects (say {x, y, z)). 
Relationships are used to define a mapping between two 
objects; that is, object y in the relationship (x, y, z} is a mapping 
from object x to object z. Since relationships can be established 
between any three objects in a database, it is possible to model 
relations that are one-to-one, one-to-many, many-to-one, and 
many-to-many. 

Objects are divided into the three categories: 

. Descriptor objects are atomic strings of characters. 
They are displayable and serve as symbolic 
identifiers in the database. The character string 
that constitutes a given descriptor object is called 
:he object identifier, which is unique (since there is 
a single instance of each descriptor object in ODM). 

- Behavioral objects embody database operations 
[Brodie 81, King 821 and are executable. ODM 

includes behavioral objects to support data 
definition, manipulation, and retrieval; user-defined 
behavioral objects are also supported. Behavioral 
objects are uniquely identified by object identifiers 
(atomic character strings), that are displayable and 
serve to reference and invoke the objects. 

- Abstract objects are objects that are not descriptor 
objects or behavioral objects. They are neither 
displayable nor executable, but can only be 
described in terms of their relationships with other 
objects. 

Abstract objects are introduced to support objects with no 
single meaningful name. For example, a given abstract object 
may represent the person Bill Connors. This abstract object 
does not itself contain any descriptive information about the 
person it denotes, Rather, such information is modelled by 
descriptor objects, e.g., the person name ‘Bill Connors’ and the 
social security number ‘234.54-2397’, which are related to the 
abstract object via appropriate mappings (‘has name’ and ‘has 
social security number’). When referring to an abstract object 
in this paper, an unquoted mnemonic name is used, e.g., Queen 
of Denmark; descriptor and behavioral objects are referenced 
by their object identifier (e.g., ‘Ridge Zinfandel’). 

365 



2.2. The CDM Data Definition and Manipulation Language 
The ODM data definition and manipulation language is 

described here as a set of primitive operations that are 
embedded into a host programming language. The purpose 
here is not to propose a specific approach to host language 
embedding of data manipulation operations, but rather to define 
a set of primitive building blocks to support (among other 
things) a high-level, interactive user interface through which 
unsophisticated users can communicate with the database. 

The host language must support the data types objectid, 
objecrref, and set of objecfref, and the usual set operations. 
Variables can then be declared (in programs written in the host 
language) to be of these types. Values of variables of type 
objectid are object identifiers. Values of variables of type 
objectref are references to objects; variables of this type are 
used as “handles” on objects in the database. At any given 
time, several variables (in the same or different programs) can 
denote the same object. 

ODM contains eight primitive operations. These allow a user 
to add new descriptor, behavioral, and abstract objects to a 
database, to remove existing objects from a database, to test 
whether or not a given object reference denotes an existing 
database object, to create and delete relationships between 
existing database objects, to retrieve objects from the database, 
and to return (print) their unique object identifiers. A detailed 
description of the operations together with examples of their 
usage is given below. A Pascal-like language is used here to 
illustrate the use of the operations. 

2.2.1. CREATE([id: objectid]): objectref 
The CREATE operation creates a new object, adds it to the 

database, and returns a reference to it. If no identifier is 
specified, the new object is an abstract object, which can only 
be accessed via the reference returned. If an identifier is given 
that is not the object identifier of an existing database object, 
the new object is a descriptor object with the specified object 
identifier. An execution error occurs if the specified identifier 
denotes an existing database object. 

Suppose that john, mary, mail, memo, person!, and person2 
are all variables of type objectref; then the following operations 
create seven new objects: 

john : = CREATE(‘John Smith’); 
mary:= CREATE(‘Mary Brown’): 
mail : = CREATE(‘lncoming mail’); 
;-,amo : = 

CREATE(‘The committee is meeting at 3 p.m.‘) 
has-name : = CREATE(‘Has name’) 
person1 : = CREATE(); 
Person2 : = CREATE(); 

The objects denoted by person1 and person2 are abstract 
objects, while the other objects are descriptors. 

2.2.2. ISOBJECT(o: objectref): boolean 
The ISOBJECT operation returns the value true if the 

specified object reference denotes an existing object; otherwise 
it returns the value false. After the execution of the CREATE 

OPeratione listed above, the operations ISOBJECT(‘Has name’) 
and ISOBJECT(person1) would return the value true, but the 
operation ISOBJECT(‘7’) would return the value false. 

2.2.3. DELETE(o: objectref) 
The DELETE operation simply removes a given object from 

the database. If the specified object Participates in 
relationships, those relationships are deleted (sea the DETACH 
operation below). After the execution of the CREATE operations 
listed above, the operation DELETE(john) would remove the 
cbiect ‘John Smith’ from the database. 

2.2.4. RELATE(d, m, r: objectref) 
The RELATE operation relates the three objects specified. 

The first parameter, d, is called the domain object; the second 
parameter, m, is called the map object; and the third parameter, 
r, is called the range object. Here, d is related to r via m, d is in 
the domain of m, and r is in the range of m. In ODM, any three 
objects can be related in this way. Thus, it is the user’s 
responsibility to avoid the creation of meaningless relationships 
(this problem is further discussed below). 

The following example illustrates the use of the RELATE 
operation (assuming that the CREATE operations listed above 
have been executed): 

RELATE(person1, has-name, john) 
RELATE(person2, has-name, mary) 
RELATE(person1, mail, memo): 
RELATE(person2, mail, memo); 

The expression x(y) = z is a boolean expression associated 
with three objects denoted by x. y. and z. If y is related to z via x. 
then x(y) = z is true: otherwise x(y) = z is false. Note that the 
RELAY operation se!s the :‘&a of m(d) = r :o :rtc. 

2.2.5. DETACH(d, m, r: objectrefj 
If the object denoted by d is related to the object denoted by r 

via the object denoted by m, the DETACH operation deletes that 
relationship; i.e., after the execution of the DETACH operation, 
the object denoted by d is no longer related to the object 
denoted by r via the object denoted by m. The DETACH 
operation has no effect if the specified objects are not related. 
Note that the DETACH operation sets the value of m(d) = r to 
false, but it does not effect the following expressions: m(r) = d, 
d(m) = r, d(r) = m, r(d) = m. and r(m) = d. 

After the example CREATE and RELATE operations above 
have been executed, the operation DETACH(person1, mail, 
memo) would cause the abstract object modelling John Smith 
not to be related to the object ‘The committee is meeting at 3 
0.m.’ via the (mapping) object ‘Incoming mail’. The operation 
DETACH(memo, personl, mail) would have no effect, since the 
object ‘The committee is meeting at 3 p.m.’ is not related to the 
object ‘Incoming mail’ via John Smith. 

2.2.6. FIND(d, m, r: objectref): set of objectref 
The parameters to the FIND operation specifies a query. The 

FIND operation returns the set of objects satisfying that query. 
Each parameter is either a question mark “?” or an object 

366 



reference. The Question mark denotes the objects in question. 
The first parameter corresponds to domain objects, the second 
to map objects, and the third to range objects. Thus, if the first 
parameter is a question mark and the two other parameters are 
object references, the query asks for all the domain objects that 
have been related to the specified range object via the specified 
map object. 

The don’t care symbol “*” is a special object reference. 
When used as a parameter to the FIND operation, it means that 
the corresponding object is unspecified. In other words, it may 
be replaced by any object in the database. Therefore, if the first 
parameter is a question mark, the second a don’t care symbol, 
and the third an object reference, the query asks for all the 
domain objects that have been related to the specified range 
object via some map object. In the following examples 
describing the FIND operation, OBJECTS denotes the set of all 
obiects in an ODM database: 

. FIND(?, m, r) returns all the objects that have been 
related to r via m: FIND(?, m, r) = {d in OBJECTS1 
n(d) = r}. 

-:::D(d, l , ?) im~rns 27 C-2 objaciz 551 d has b6tn 
related to via some map object: FIND(d, *, ?) = {r 
in OBJECTS1 m(d) = r for some m in OBJECTS}. 

- FIND(*, l , ?) returns all the range objects in the 
database: FIND( *, l , ?) = {r in OBJECTS1 m(d) = r 
for some d and m in OBJECTS}. 

. FlND(?, m, ?) returns all the objects in the domain of 
m and all the objects in the range of m: FIND(?, m, 
?) = UNION(FIND(?, m, l ), FlND(*, m, ?)). 

. FiND(?, ?, ?) returns all the objects that participate 
‘1 a relationship, that is, a!! !he domain objects, map 
objects, and range objects in the database: FIND(?, 
?,?) = UNION(FIND(?. l , l ), FlND(‘, ?, l ), FIND(*, l , 
w. 

‘I:‘? that at least one ques?ion mark must be specified in an 
invocation of the FIND operation. 

After the execution of the CREATE and RELATE operations 
listed above, the operation FIND(person1, *, ?) would return the 
set {‘John Smith’, ‘The committee is meeting at 3 p.m.‘}, viz., 
the set of all objects to which the object modelling John Smith is 
related via some map object. 

2.2.7. PRINT(o: objectret) 
The PRINT operation prints the unique object identifier for 

the specified object, which must be either a descriptor or a 
behavioral object. An execution error occurs if the specified 
object is an abstract object. For example, the operation 
PRINT(memo) outputs the string ‘The Committee is meeting at 3 
p.m.‘, and the operation PRINT(‘Johr-0 outputs the string 
‘John’. 

2.2.8. DEFINE(operation definition) 
The DEFINE operation creates a new behavioral object. The 

new operation is defined in the host programming language in 
terms of previously defined operations, as a procedure or 
function is defined in a Pascal program. The name of the new 
operation is the object identifier of the behavioral object and 
must therefore be unique. While the specification of behavior is 
a very important issue [Brodie 81, King 331, it is beyond the 
scope of this paper to directly address it. However, figure 
2-1 illustrates the definition of a new operation called RENAME, 
the purpose of which is to change the object identifier of a given 
object. 

DEFINE( 

RENAME(oldname: objectref: newname: objectid) 
var d, n, m, r: objectref; 

domains, maps, ranges: set of objectref 
begin 

if ISOBJECT(oldname) and 
not ISOBJECT(newname) then 

begin 
n := CREATE(newname); 
maps := FIND(oldname. ?, l ): 
for each m in maps do 

ranges := FIND(oldname, m, ?); 
for each r in ranges do 

RELATE( newname, m. r) 
end 

end: 
domains := FIND(?, oldname, l ): 
for each d in domains do 

ranges := FIND(d, oldname, ?); 
for each r in ranges do 

RELATE( d, newname, r) 
end 

end: 
domains := FIND(?, *, oldname): 
for each d in domains do 

maps := FIND(d, ?, oldname); 
for each m in maps do 

RELATE(d. m, newname) 
end 

end 
DELETE(oldname) 

end 
end 

1 

Figure 2-l : Definition of the RENAME operation 

2.3. Graphical Representation 
Objects and their relationships can be illustrated in a graph. A 

descriptor or behavioral object is shown as a box labeled with 
its unique object identifier, and an abstract object is shown as 
an empty box. A relationship is shown as a labeled edge 
connecting two objects. Suppose object x is related to object z 
via object y. Then an edge labeled y originates in the box 
labeled x and terminates in the box labeled z. Figure 
2.2 specifies a sequence of operations and the corresponding 
graph. 

367 



var john, daughter, linda. ssl. ss2, personl. 
person2: objectref 

john := CREATE(‘JOHN’): 
linda := CREATE(‘LINDA’): 
ssl := CREATE(‘21890-8148’); 
ss2 := CREATE(‘738-84-9373’); 
person1 := CREATE(): 
person2 := CREATE(); 
has-name := CREATE(‘HAS NAME’): 
has-ss :* CREATE(‘HAS SS#‘): 
has-child := CREATE(‘HAS CHILD’): 

These operations create the objects shown below: 

III [HAS IHASCHILOl 

RELATE(person1. has-name, john); 
PELATF(perscn1, has-ss. ssl); 
RELATE(person2. has-name, linda): 
RELATE(person2. has-ss, ss2); 
RELATE( personl, has-child, person2): 

These operations create the relationships shown 
below: 

-HAS CHILD-> x x 
HAS SSX HAS NAME HAS SSk HAS NAME 

Figure 2-2: Graphical Representation 

2.4. Implementation of ODM 
A straightforward implementation of ODM is possible using 

existing database technology. This section describes a simple 
prototype that has been built using the INGRES relational 
Uatabaae management system [Stonebraker 761, running the 
UNIX2 operating system. 

Associated with each object is a system-dependent unique 
object key, which is implicitly assigned when the object is 
created. Object keys are internal references to the objects in the 
database; they are neither displayable nor modifiable. Object 
identifiers of descriptor and behavioral objects are already 
unique, but using them as keys directly would cause a problem, 
since they can be of arbitrary length. One approach to solve this 
problem is to convert the object identifiers to object keys via a 
table (possibly implemented via a hash function, BWe, etc.). 

The prototype uses an OBJECTS relation and a 
RELATIONSHIPS relation. Each object in the database is 
described by a tuple in the OBJECTS relation. An object is 
described by the following information: 

- The unique object key, if the object is an abStraCt 
object. 

-The unique object key together with the unique 
object identifier, if the object is a descriptor object. 

. The unique object key together with the unique 
object identifier and the executable code, if the 
object is a behavioral object. 

The OBJECTS relation has the three attributes: KEY, 
IDENTIFIER, and OPERATION. Note that the object identifier of 
a given object is only stored once. 

Each relationship in the database is described by a tuple in 
the RELATIONSHIPS relation. The RELATIONSHIPS relation 
has three attributes: one attribute (DOMAIN) for the domain 
object keys, one (MAP) for the map object keys, and one 
(RANGE) for the range object keys. 

The ODM operations are implemented as a collection of 
separately compiled EQUEL/C programs. A user-friendly 
interface to the ODM system is provided by a command 
interpreter that guides the user through the process of 
selecting, specifying, and invoking ODM operations. In the 
implementation of ODM, the CREATE and RELATE operations 
become tuple insertions in the OBJECTS and RELATIONSHIPS 
relations, respectively. The DELETE and DETACH operations 
become tuple deletions from the OBJECTS and 
RELATIONSHIPS relations, respectiveiy. The Flf:D and 
ISOBJECT operations become tuple selections followed by 
projections. 

The DEFINE operation is not implemented by the current 
prototype. It is a major task to integrate the proposed primitives 
with a host programming language on top of a relational 
database system. Furthermore, due to limitations of UNIX, run- 
time invocations of the user-defined ODM operations is a 
nontrivial feature to implement. 

If a relational database management system were not 
available, a simple ad-hoc implementation can be built on top of 
a file system. Such an implementation would typically maintain 
two files, an OBJECTS file describing the objects in the 
database and a RELATIONSHIPS file describing the 
relationships in the database. In order to provide fast access to 
the information in the OBJECTS and RELATIONSHIPS files, 
four B-tree indices would suffice. One of the Btrees maintains 
an index, based on object keys, to the OBJECTS file. The other 
three B-trees describe the RELATIONSHIPS file by providing 
indices on the key values of the domain objects, the map 
objects, and range objects, respectively. 

‘UNIX is a trademark ol Bell Laboratories. 

368 



2.5. Limitations of ODM 
ODM is based on the two essential concepts of objects and 

relationships. All data in an ODM database is treated uniformly 
as objects, and relationships between these objects allow 
semantic properties to be modelled3. In addition, the 
implementation of ODM is straightforward. However, such a 
simple database model is not appropriate for a non-expert 
database user. It is too easy to create meaningless relationships 
and operations, and no built-in mechanisms for data protection 
and integrity control are provided. However, the primitive 
operations of ODM can be used as the basic building blocks in 
the design and implementation of higher-level database 
systems based on semantic database models. 

3. DODM: An Object-Oriented Database 
Model for Distributed Databases 

DODM is a simple exteosion of ODM, which provides object 
definition, manipulation, and retrieval capabilities in an 
environment of distributed databases. The distributed 
databases can be thought of as a logical network of 
comniun8zating databases. In DOaM, relationships among 
objects can be established across database boundaries, 
objects may be copied or moved from one database to another, 
and mechanisms are provided for object sharing among 
individual databases. 

3.1. Objects in a Distributed Environment 
The single object instance rule of DODM states that in a 

network of databases, there is exactly one instance of a given 
object. However. objects stored in different databases may be 
identical; that is, they may have the same content even though 
they are considered to be instances of different objects, Such 
objects are said to be equivalent. When an object in a given 
database is copied to another database, the copy will be a 
completely new object owned by the database to which it is 
copied, but the copy and the original object are equivalent. 

In the distributed environment, a distinction is made between 
local objects and global objects. An object is said to be local to 
the database containing the object, and an object is said to be 
global to those databases that may access the object. Since a 
given database may access all its local objects, an object is 
always global to the database to which it is local. 

Objects may be relocated from one database to another. 
Therefore, it is important to distinguish between the creator of 
the object and the owner of the object. The creator of a given 
object is the database creating the object; the owner of an 
object is the database currently containing the object. At object 
creation time the owner and the creator of the object are 
identical. The creator of an object remains unchanged 
throughout the life-!ime of the object, whereas the owner of the 
object change every time the object is relocated. 

% the current implementation of ODM. relationships are not objects in the 
sense that they cannot be related to other objects. 

3.2. Database and Object Naming 
Each database in the distributed environment is uniquely 

identified by its database identifier, which is an atomic string of 
characters. A database can be referenced either by its database 
identifier or by a don’t care symbol *‘*“. A don’t care symbol, 
when used as a database reference, denotes every database in 
the system. 

Descriptor and behavioral objects can be denoted by three 
different kinds of object identifiers: local, global, and 
Zansparent object identifiers. As noi%i aoove, the object 
identifier of a descriptor object is the value of the string that 
constitutes the object, and the object identifier of a behavioral 
object is the atomic string denoting the object4. A local object 
identifier is an object identifier as introduced in ODM. It 
uniquely identifies an object within the database that is local to 
the reference. Each database in the network may contain an 
object denoted by the same local object identifier, but there can 
at most be one such object per database. Objects with identical 
local object identifiers are equivalent. A global object identifier 
uniquely identifies an object within the entire network of 
databases. It is composed of a local object identifier, an “@‘I, 
and a database identifier: 

<object identifier>@<database identifier> 

Note that the global object identifier of a given object depends 
on the owner of the object and not the creator (as it is the case 
in R* [Lindsay 801). If an object is relocated from one database 
!? aTother, its global object identifier is changed accordingly. 

The presence of distribution-dependent information in a 
global object identifier may seem inconvenient, but location 
transparency can by attained by using transparent object 
identifiers. A transparent cbjec! identifier denotes every object 
in the entire database network that has the same local object 
identifier (at most one per database). A transparent object 
identifier is composed of a local object identifier, an “@‘I, and a 
don’t care symbol (“‘“): 

<object identifier>@ * 

If there is only one object in the global system with a given local 
object identifier, that object may be uniquely referenced with its 
transparent object identifier, i.e., the object reference is 
completely location transparent. 

Suppose that a database network consists of the three 
databases (DBl, DB2, and DB3), and that each database 
contains the two objects ‘Employees’ and ‘Has-instances’. Then 
the operation FIND(‘Employees’, ‘Has-instances’, ?) returns 
references to every object in the network that has been related 
locally to the local objects ‘Employees’ and ‘Has-instances’. The 
operation 9ND@DBP(‘Employees’, ‘Has-instances’, ?) returns 
references to every object in the network that has been related 
in DB2 to the two local (with respect to DB2) objects 
‘Employees’ and ‘Has-instances’. The operation 
FIND@DB3(‘Employees’@DBl, ‘Hasinstances’, ?) returns 
references to every object in the rietw~-~ 1)C ,I :),a! has been related 
in DB3 to the object ‘Employees’ in DBl and the local (with 

4As stated above. abstract obleck do not have object identifiers; they can be 
referenced only by their relationshtps with other objects. 

369 



respect to 083) object ‘Hasinstances’. The operation 
FIND@‘(‘Employees’, ‘Hasinstances’@ l , ?) returns 
references to every object in the network that has been related 
in some database to the local object ‘Employees’ and the object 
‘Has-instances’ in some database. 

3.3. The Primltlve Operatlons of DODM 
DOOM supports the primitive operations as ODM. The 

CREATE operation creates a local object, and the DELETE 
operation deletes a local object. The ISOBJECT operation tests 
if sn object reference denotes an existing global object. The 
RELATE operation creates a local relationship between three 
global objects, and the DETACH operation deletes a local 
relationship. The FIND operation returns a set of global object 
references denoting objects that have been related locally. The 
PFINT operation prints the object identifier of a global object. 
Finally, the DEFINE operation creates a new local behavioral 
object. 

In addition to the primitive operations of ODM, DODM has 
primitive operations for object sharing, and for copying and 
moving objects from database to database: 

3.3.1. EXPORT(o: objectref, d: dbref [, oi: objectid]) 
Object sharing among individual databases is specified by 

EXPORT operations. After the execution of an EXPORT 
operation, the referenced object is known and accessible to the 
specified database(s). If an object identifier is given, the 
exported object becomes known to the importing database only 
by that name. Unless a given object explicitly has been 
exported to a certain database, the object is not known to that 
database and cannot be accessed by that database. The 
renaming facility allows the same object to be exported to 
different databases under different names. If an object is 
renamed upon export, the new identifier need only be unique 
with respect to other objects exported from the same database 
to the same importing database. The EXPORT operation results 
in an execution error if the referenced object is not a local 
object. 

The following examples illustrate the use of the EXPORT 
operation. The operation: EXPORT(‘Ron’, Payroll, 
‘25817-3513’) causes the local object ‘Ron’ to be known to the 
Payroll database as the object ‘258.17-8513’. The operation 
EXPOG(‘FIND’, IRS) makes the FIND operation known to the 
IRS database. The operation EXPORT(‘EXPORT’, Smith) allows 
the Smith database hence forward to perform EXPORT 
operations in the exporting database. 

3.3.2. REVOKEto: objectref, d: dbref) 
The REVOKE operation causes the referenced object no 

longer to be known to the specified database(s). For example, 
REVOKE(‘EXPORT’, Smith) revokes the expon right granted 
above to the Smith database. 

3.3.3. EQUIVALENCE(os: set of objectref): boolean 
The EQUIVALENCE operation returns the value true if the set 

of objects specified are equivalent; otherwise it returns the 

value false. Suppose the two databases DBl and DE2 each 
contain the two objects ‘employee’ and ‘salary’; then, the 
operation EQUIVALENCE({‘employee’, ‘employee’@DBP)) 
;s!zna the value true, whereas the operation 
EQUIVALENCE({‘employee’, ‘salary’}) returns the value false. 

3.3.4. COPY(o: objectref): objectret 
The COPY operation creates a copy of the referenced object 

in the local database where it is considered a new object. The 
original object and the copy have the same content and are 
therefore equivalent. The COPY operation returns a reference 
to the new local object. The COPY operation has no effect if the 
referenced object is a local object. The examples shown below 
illustrate the use of the COPY operation. First, the book entitled 
“Rabbit, Run” by John Updike is copied from the Library 
database to the local database. Then, the telephone number 
(213) 7435501 is copied from the Payroll database to the 
Carpool database: 

var book. mybook: objectref: 
books: set of objectref 

books := FIND@Library(‘John Updike’, 
‘Rabbit, Run’. ?): 

for each book in books do 
mybook := COPY(book): 

COPYgCarpool(‘(Zl3) 743-5501’3Payroll) 

Notice that the Library database is not responsible for the new 
copy of the book “Rabbit, Run” once it has been created in the 
importing database; the importer is the owner of the book copy 
and may modify it as desired. 

3.3.5. MOVE(o: objectret) 
The MOVE operation moves the referenced object to the 

local database. If the specified reference denotes a local object, 
the operation has no effect. The object reference remains the 
same after the object has been moved. The section describing 
the implementation of DODM explains how location 
transparency in object references can be achieved. The 
operation MOVE(‘Chivas Regal’@lmport) moves the object 
‘Chivas Regal’ from the Import database to the local database. 
The operation MOVE@IRS(‘23BO3B2BO’@BankX) moves the 
account number 238038280 from the BankX database to the 
IRS database. 

3.3.6. ISLOCAL(o: objectref): boolean 
The ISLOCAL operation returns the value true if the specified 

object reference denotes a local object; otherwise it returns the 
value false. Suppose the two databases DBl and DB2 each 
have an object with the local object identifier ‘red’. Then the 
operation ISLOCAL(‘red’@DBP) returns the value false if 
performed in DBl. The operation ISLOCAL(‘red’) returns the 
value true if performed in either DBl or DB2. 

3.4. Implementation of DODM 
Each database in a DODM database network contains its own 

objects.and relationships in a way similar to an ODM database. 
As in ODM, objects are referenced by their unique object keys; 
but in order to be able to distinguish between objects from 

370 



different databases, object keys must be unique within the 
entire network. This is achieved by using object keys that have 
two parts: a key that is unique within a given database (like the 
ODM object key), and the database identifier of that database. 
This key format is similar to the format of a global object 
identifier. There is a difference, however. An object key will 
never change during the lifetime of an object, not even if the 
object is relocated from one database to another. This is not the 
case for a global object identifier which changes every time the 
object is relocated in the network. 

Since object keys are unique within the entire database 
network, a relationship can be described by the keys of the 
three objects in the relationship. Thus, relationships may span 
database boundaries. Furthermore, a relationship is not 
affected by objects being relocated to other databases after the 
relationship has been established. 

In the experimental implementation of DODM currently under 
development, each node in the database network consists of a 
database, a catalog manager, a communication subsystem, and 
a dafabase operation interpreter (see Fig. 3-l). These 
components allow users and application programs at a given 
node to communicate, cooperate, and share objects with users 
and programs at other nodes in the network. The database, of 
course, stores all the objects and relationships. Objects are 
described in the catalogs by their object keys and object 
identifiers. The catalog manager maintains two kinds of 
catalogs that provide access to the objects in the database: 

- The local catalog describes every object in the 
database. It is used for resolution of local object 
references. 

_ Export catalogs are used to describe object sharing 
between individual databases. The catalog 
manager maintains an export catalog for every 
remote database in the network. An export catalog 
describes all the objects in the database that are 
known to a specific remote database, and 
references from that remote database are resolved 
from the export catalog. 

The database operation processor interprets database 
operations. If it is necessary to access remote objects in order 
to process a given operation, the databases containing the 
remote objects are activated via the communication subsystem. 

The communication subsystem provides the following three 
primitives: 

- send(receiver-station-name, message) 

. broadcast(message) 

. receive(sender-station-name, message, type) 

The send primitive sends the message from the sender station 
to the receiver station, where it is queued. The broadcast 
Primitive simply broadcasts the message to all the stations in the 
network. The receive primitive obtains from the queue of 

incoming messages the next message, the address of the 
station that sent it, and the type of the message. The type 
indicates whether the message was sent by a send operation or 
a broadcast operation. 

CSS Communication Vrdium css 

CSS Comunicatlon Subsystem CM Catalog klanagar 

DB Database LC Local cuA1og 

A Appllcatlon Prograa EC Export Catalog 

DOP Datab.se Operation ProcssWr 

Figure 3- 1: System Structure 

Broadcast communication is used to implement location 
transparency. An object reference in the form of an object key, 
does not provide sufficient information to locate the 
corresponding object in the network. In order to resolve such a 
reference the database operation processor broadcasts a 
request to every database in the network via the communication 
subsystem. Every remote database then attempts to resolve the 
object reference from the export catalog corresponding to the 
requesting database. The requesting database tries to resolve 
the object reference from the local catalog. Finally, the 
requesting database is notified of the outcome of the catalog 
lookups. 

In order to provide location transparent object references, 
the communication subsystem must support broadcast 
communication. Ethernet [Metcalfe 761 is a commercially 
available local area network that uses broadcasting as the basic 
communication technique. In fact, the Ethernet hardware 
broadcasts a message, whether it is intended for every node in 



the network or just a smgle node. Therefore, the communication 
subsystem can perform a send and a broadcast operation as 
explained above for the same COSi. If broadcasting is not 
supported directly by the network hardware, it can be 
implemented on networks of both the star and ring 
configurations. 

3.5. Limitations of DOOM 
DOOM is a very simple database model for the modeiiing of 

objects and relationships in a logical network of databases. 
Mechanisms are provided to allow relationships to be 
established across database boundaries, objects are allowed to 
be copied and moved from database to database, and object 
sharing among individual databases is accommodated. Like 
ODM, DODM is not a high-level model appropriate for 
unsophisticated database users; it lacks semantic 
expressiveness, mechanisms for integrity control, high-level 
operations for database integration, etc. However, the main 
purpose of DODM is not to define such a high-level database 
model, but on the contrary, to define a small set of fundamental 
concepts to be used as a vehicle in the design and 
implementation of distributed database systems providing more 
expressive models. 

4. An Example DODM Database 
In this section, an example application of the use of DODM is 

presented; DODM is used here as a tool in the development of a 
distributed database system based on a semantic database 
model. The example application environment is a university, 
wherein students enroll in classes and faculty members instruct 
classes. Each department of the university maintains a local 
database describing its students and faculty members as Well as 
the classes offered by the department. Students are allowed to 
enroll in classes offered by different departments, but faculty 
members are only allowed to instruct classes offered by their 
own department. 

4.1. The Example Database Model 
The example semantic database model used here is a 

simplified version of the Event Database Model (EDM) [King 821. 
In EDM, a database is modelied by a database conceptual 
schema, which is a collection of objects. As is ODM, there are 
three kinds of objects: descriptor objects, abstract objects, and 
behavioral objects. Objects are classified into types, based on 
common properties. Relationships among objects are modelled 
by attributes. An attribute is a mapping from one object type 
(the domain type) to another (the range type). Thus, the 
attribute value of a given object in the domain type is a subset of 
!he ;t;scts in the range tips. 

A type may be specified to be a subtype of another (parent) 
type. A subtype contains a subset of the objects in the parent 
type, it inherits ail the attributes of the parent type, and in 
addition it may have attributes that the parent type does not 
have. A type may also be specified to be a public type5. A 

%his feature ia not part of the event database model per se [Kiw 821, but has 
baen tided to handle the distributed case. 

public type is known and accessible to every database in the 
distributed environment, together with ail its instances and 
attributes. 

By default, an attribute is a mapping between objecte in the 
same local (with respect to the attribute) database. However, if 
in azribute is specified to be global, the attribute maps objects 
from the local database to local objects or to objects anywhere 
in the network that are instances of a public type by the same 
name as the range type of the attribute (name equivalence). 

Figure 4-l contains a portion of the database schema for the 
university application. It consists of four types, two of which are 
subtypes. The type Person has attributes Name and id. Both 
attributes are descriptor objects. The types Student and 
Faculty are both subtypes of Person. Every student is a person 
and every faculty member is a person. In addition to the 
attributes defined on the Person type, the Student type has the 
attribute Enrollment and the Faculty type has the attribute 
Teaching. The Class type is a public type. it has the attributes 
Cname and Ciassno. The schema of each departmental 
database contains the type definitions specified in Figure 4.1. 

Type Person 
attributes(Name: String, 

Id: String) 

Subtype Student of Person 
attributes(Enrollment: Class is global) 

Subtype Faculty of Person 
attributes(Teaching: Class) 

Type Class is public 
attributes(Cname: String, 

Classno: String) 

Figure 4-l : Example EDM Database Schema (Partial) 

Figure 4.2 shows how the schema in Figure 4-1 can be 
represented in DODM and an example EDM database is 
i!lustrated by its corresponding DODM representation in Figure 
4-3. Each type and attribute defined in EDM’is represented by 
an object in DODM. The DODM database has a root object 
related to every type object via the object ‘types’, and related to 
every attribute object via the object ‘attributes’. This structure 
allows a user to request all the types defined in the EDM 
schema by the simple query FIND(‘root’, ‘types’, ?), and similarly 
for attributes. Supertype/subtype hierarchies are modelled as 
relationships between the respective type objects via the object 
‘supertype’. A public type is represented by a relationship from 
the corresponding type object to itself via the object ‘public’. 
!nstances of a given type are objects that are related to the 
corresponding type object via the object ‘instances’. An 
attribute is related to the type object of its domain type via the 
object ‘domain’, and it is related to the type object of its range 
type via the object ‘range’. A global attribute is represented by a 
relationship from the corresponding attribute object to itself via 
the object ‘global’. 

312 



attributes 

public 

Figure 4-2: DODM Representation of the EDM Schema 

All the DODM objects introduced to represent the EDM 
schema. (‘root’, ‘types’, ‘attributes’, ‘instances’, ‘super-type’, 
‘domain’, ‘range’, ‘public’, ‘global’, and the type and attribute 
objects) are meta objects: their sole purpose is to describe the 
user data in the EDM database. It is important to note that no 
distinction is made between meta data and user data at the 
DODM level. 

4.2. The Example Database Operators 
The EDM database model supports operators for data 

retrieval and data manipulation, There are two data retrieval 
operators: 

- open(t: type, d: database): cursor 

. apply(a: attribute, o: object): cursor 

The actions of these operators are defined in terms of cursors6 
[Gray 781. The open operator returns a cursor containing all the 
objects in the specified type, and the apply operator returns a 
cursor that contains the objects in the attribute value of the 
specified object with respect to the specified attribute. 

There are four data manipulation operators: 

6 In the above speclications, type. attribute. and object are objectref’s in 
DODM terminology. Similarly. cursor is a set of obiectref. and database is a 
database identiffer. 

. add-instance(t: type [,s: string]): object 

- remove-instance(0: object) 

- add-attribute(d: object, a: attribute, r: object) 

- remove-attribute(d: object, a: attribute, r: object) 

The add-instsnce operator creates a new instance of the 
specified type and returns a reference to the new object. A 
string value must be given if the specified type is a descriptor 
type. The remove-instance operator removes the specified 
instance from the database. The add-attribute operator assigns 
the sps.cified range object to the at!ribute value of the specified 
domain object with respect to the specified attribute, and the 
remove-attribute operator removes the specified range object 
from the attribute value of the specified domain object with 
respect to the specified attribute. 

‘5. Concluding Remarks 
This paper has described a simple model for object sharing in 

distributed database systems. The model provides a small set of 
operations for object definition, manipulation, and retrieval. 
First, the primitive operations and the implementation of ODM, a 
simple object-oriented database model for a single centralized 
databasesystem, were described. A prototype implementation 
of this model was discussed. Then, the operations and the 
implementation of the DODM model, an extended version of 
ODM for the modelling of distributed databases, was described. 
An experimental implementation of DODM (currently under 
a$vsiopment) and the associated support facilities required 
were discussed. Finally, an example was provided to illustrate 
the use of DODM to design a semantically-expressive 
distributed database system. 

Many of the ideas described in this paper are related to 
similar ideas in programming languages and operating systems. 

A database is responsible for data encapsulations very much 
like a module in a programming language, and the concepts of 
data importing and exporting are also common to the two 
research areas. Moreover, the primitive operations for object 
relocation and copying are similar to primitives in existing 
operating systems. However, it is beyond the scope of this 
paper to extensively compare the results obtained with 
significant work in other research areas. 

Analysis, testing, and extensions of the research described in 
this paper are currently under study. In particular, the prototype 
DODM implementation will be used to further assess the 
adequacy and completeness of the primitives of the model. 
Another important area concerns the use of broadcast 
communication. Finally, the concurrency and multiple copy 
control issues have been avoided in this paper, by assuming a 
single copy of each object and single-user systems at each 
node in the network, Results of current research in these areas 
~111 be utilized as this research progresses to address these 
limitations. As noted above, the work described in this paper is 
part 01 a current research effort at the University of Southern 
California to design and develop a “personal information 
management environment” and experimental tool called 
INFOBASE. 

373 



i 
types 

- Faculty 

instances instances I 
public 

c Smith Name 

instances 

-m l - 

1 

c 218-90-7765 
Id 

I I 

- Johnson 
Name 

1 
-t- -7 

Id 
- 900-45-5835 

-*- 
- 

L 396-37-9727 

j instances instant es 

‘c Lson Name Carl 
I 

830-71-2206 . 

Teaching 

Calculus - 

to 

other databases 

Enr. is an abbreviation for Enrollment 

Figure 4.3: DODM Representation of the EDM Database 

References [Brodie 811 M. L. Brodie. 

S. Andler, I. Ding, K. Eswaran, C. Hauser, 
W. Kim, J. Mehl, and R. Williams. 
System D: A Distributed System for 

On Modelling Behavioural Semantics of Data. 
In Proceedings of lnternetional Conference 

On very Lafge D8tabaSeS. Cannes, 
France, September, 1981. 

[Andler 821 

Availability. 
In Proceedings of lnternationel Conference 

on Very Large Databases. Mexico City, 
Mexico, September, 1982. 

[Gray 781 J. N. Gray. 
Notes on Data Base Operating Systems. 
In Lecture Notes in Computer Science, pages 

393-481. Springer Verlag, 1978. 

374 



[Heimtigner 821 D. Heimbipner. 
A Federat&l Architecture for Database 

Systems. 

[Kimbleton 791 

[King 321 

[King 831 

[Lindsay 801 

[Litwin 811 

[Lyngbaek 821 

[McLeod 83a] 

[McLeod 83b] 

USC Technical Report TR.114, University of 
Southern California, August, 1962. 

S. R. Kimbleton, P. S. C. Wang, and E. Fong. 
XNDM: An Experimental Network Data 

Manager. 
In Proceedings of Berkeley Workshop on 

Distributed Data Management Systems. 
Berkeley, Ca., August, 1979. 

R. King and D. McLeod. 
The Event Database Specification Model. 
In Proceedings of International Conference 

on Improving Database Usability and 
Responsiveness, pages 299-322. 
Jerusalem, Israel, June, 1982. 

R. King and D. McLeod. 
A Unified Model and Methodology for 

Conceptual Database Design. 
In M. Brodie, J. Mylopoulos, and J. Smith 

(editors), On Conceptual Modeling: 
Perspectives from Artificial Intelligence, 
Database, and Programming Languages. 
Springer-Verlag, 1983. 

(to appear). 

9. Lindsay. 
Object Naming and Catalog Management for 

a Distributed Database Manager. 
IBM Research Report RJ2914, IBM Research 

Laboratory, San Jose, Ca., August, 1980. 

W. Litwin. 
Logical Design of Distributed Databases. 
Technical Report MOD-1943, INRIA, July, 

1981. 

P. Lyngbaek and D. McLeod. 
A Distributed Name Server for Information 

Objects. 
USC Technical Report TR-200, University of 

Southern California, December, 1982. 

D. McLeod. 
INFOBASE: An Environment for Personal 

information Management. 
USC Technical Report, Computer Science 

Department. University of Southern 
California, Los Angeles, Ca., September, 
1983. 

D. McLeod, K. V. Bapa Rao and 
K. Narayanaswamy. 
Information Modelling for CAD/VLSI. 
In Proceedings of the ACM SIGMOD 

International Conference on Management 
of Data. San Jose, California, May, 1983. 

[Metcalfe 761 

[Motro 811 

[Rothnie So] 

[Smith 771 

[Smith 811 

[Stonebraker 781 

[Stonebraker 771 

[Tsichritzis 821 

[Williams 811 

R. M. Metcalfe and D. R. Boggs. 
Ethernet: Distributed Packet Switching for 

Local Computer Networks. 
Communications of the ACM 19(7):395-404, 

July, 1976. 

A. Motro and P. Buneman. 
Constructing Superviews. 
In Proceedings of ACM S/GM00 International 

Conference on Management of Data. 
Ann Arbor, Michigan, April-May, 1981. 

J. 9. Rothnie, Jr., P. A. Bernstein, S. Fox, 
N. Goodman, M. Hammer, T. A. Landers, 
C. Reeve, D. Shipman, and E. Wong. 
Introduction to System for Distributed 

Databases (SDD-1). 
ACM Transactions on Database Systems 5(l), 

March, 1980. 

J. M. Smith and D. C. P. Smith. 
Database Abstractions: Aggregation and 

Generalization. 
ACM Transaction on Database Systems 

2(2):105-133, June, 1977. 

J. M. Smith, P. A. Bernstein, D. Umeshwar, 
N. Goodman, T. Landers, K. W. T. Lin, and 
E. Wong. 
Multibase - Integrating Heterogeneous 

Distributed Database Systems. 
In Proceedings of National Computer 

Conference, pages 487-499. June, 1981. 

M. Stonebraker, G. D. Held, and P. Kreps. 
The Design and Implementation of INGRES. 
ACM Transactions on Database Systems l(3), 

1976. 

M. Stonebraker and E. Neuhold. 
A Distributed Database Version of INGRES. 
In Proceedings of Berkeley Workshop on 

Distributed Data Management Systems. 
Berkeley, Ca., May, 1977. 

D. Tsichritzis, F. A. Rabitti, S. Gibbs, 
0. Nierstrasz, and J. Hogg. 
A System for Managing Structured Messages. 
IEEE Transactions on Communications 

COM-30, January, 1982. 

R. Williams, D. Daniels, L. Haass, G. Lapis, 
9. Lindsay, P. Ng, R. Obermarck, P. Selinger, 
A. Walker, P. Wilms, and R. Yost. 
R*: An Overview of the Architecture. 
IBM Research Report RJ3325, IBM Research 

Laboratory, San Jose, Ca., February, 
1961. 

375 


