
Supporting a Semantic Data Model
in a Distributed Database System

Arvola Chan
Umeshwar Dayal

Stephen Fox
Daniel Ries

Computer Corporation of America
4 Cambridge Center

Cambridge, Massachusetts 02142

Abstract

Existing distributed database systems are
based mostly on the relational model. Further-
more, it has been argued that the relational
model is the model best suited for distributed
databases. This paper describes an implementa-
tion approach for supporting logical pointers
between distributed entities. This apprdach is
being employed in a distributed database system
that supports a semantically rich data model and
that currently is under implementation. The
access structures used to support entity-to-
entity pointers in this data model facilitate the
maintenance of referential integrity across
sites. At the same time, they provide efficient
access paths for distributed query processing.
To make use of these access structures the exten-
sions required of existing query processing tech-
niques are quite straightforward.

The research reported in this paper is support-
ed jointly by the Advanced Research Projects
Agency of the Department of Defense (DARPA) and
the Naval Electronics Systems Command (NAVELEX)
unaer contract NO0039-82-C-0226. The views and
conclusions contained in this paper are those
of the authors and should not be interpreted as
necessarily representing the official policies,
either expressed or implied, of DARPA, NAVELEX,
or the U.S. Government.

1. Introduction

Existing distributed database systems for
the most part have been based on the relational
data moael tSN771 tRBFG801 1WDBL821. Further-
more, it has been argued that the relational
model is the model best suited for distribution
[CODD821. There are two properties of the rela-
tional model that facilitate its support for dis-
tribution. First, all of the relationships
between records or types of objects are value-
based; there is no need to support logical
pointers across sites. Second, a high level
language is available for specifying processing
on sets or data; there is no need to follow
record-at-a-time navigational links across sites.

This paper describes an implementation
approach for supporting logical pointers across
sites. This approach is currently being used in
the implementation of the Distributed Database
Manager (DDM) lCDFG83al [CDFG83bl, a distributed
database system that supports the semantically
rich Daplex data model [SHIP81 I. Similar
approaches could be used for distributed systems
that support high level access based on the
entity-relationship model [CHEN~~I and the net-
work model [MP821, or in relational systems that
support physical links between tuples stored at
different sites.

In order to extend effectively the rela-
tional distributed database technology to these
models, three important problems should be
addressed. First, it should be possible to con-
trol the placement of data that is based on rela-
tionships between data objects. Assume, for
example, that information about university
departments is distributed according to the
building in which each department is housed. Now
suppose we want to store information about each
of the courses with information about the depart-
ment that is offering the course. In relational
systems such as distributed INGRES 1SN771, SDD-1
[RBFG801, and R* [WDliL821, the course relation
must include redundant information about the
building that is housing the department offering
the course, and the distribution criteria for the
course relation would have to be based on the

354

redundant building information. In the DDM, it
is possible to fragment courses by department,
and to group together related courses and depart-
ments.

The second problem is the maintenance of
reterential integrity across sites. If there is
an integrity constraint that requires every
tour se to nave an offering department (i.e., the
offering function from course to department is
total), then even if course and department infor-
mation are stored at different sites, the DDM
will prevent the insertion of information for a
new course tor which there is no corresponding
department. Similarly, the DDM will prevent the
deletion of a department that is still referenced
by an existing course. Furthermore, the DDM
maintains this integrity constraint without
requiring cross-site checking on each insertion
or deletion. In a relational system, such
integrity requirements would have to be specified
by general integrity constraints [EC751 [HS781
[BCC~~I [~~811. The efficient support of such
constraints for distributed relational databases
remains an open problem.

The key to etficient distributed query pro-
cessing in relational systems is the provision
for set-at-a-time operations on distributed data.
Thus, the third problem is how to use links that
relate data across sites effectively. These
links can augment physical access paths as in a
single-site relational system like System R, or
they can represent logical relationships. The
DDM uses pointers across sites(l) to provide fas-
ter access to sets of records and to reduce data
movement from one site to another during distrib-
uted query processing. These intersite pointers
identify the logical entities and their residing
sites only. Thus, they are unaffected by the
relocation of physical records (representing
entities) within a site. Furthermore, they are
used by high level set-at-a-time. operations.
Hence, a network message is not incurred for fol-
lowing each such pointer.

Section 2 provides an overview of the seman-
tic data model, Daplex, that is supported by the
DDM. Section 3 addresses the first of the three
problems stated above by describing the database
fragmentation facilities of the DDM. Section 4
addres se8 the second problem by presenting the
auxiliary data structures that are used to
enforce reterential integrity and to provide fas-
ter multi-site query processing. Section 5
addresses the third problem by discussing query
processing operations that can make use of the
presented structures. Finally, Section 6
summarizes our conclusions about data models and
distributed databases.

(1) These pointers identify only the logical
entity and the site where the entity is to be
found . They do not have to be updated when an
entity is relocated within a site.

2. The Danlex Data Model

The Daplex data model that is supported by
the DDM originally was described in [SEIP811.
Its basic constructs are entities and functions.
Entities are intended to represent conceptual
objects and functions correspond to the proper-
ties of conceptual objects. Entities that have
the same set of generic properties are grouped
together into entity sets. Each function, when
applied to an entity of an appropriate entity
set, returns a specific property of that entity.
Each property is represented either by a single
value or a set of values. Such values can be
drawn from scalar data types and character
strings, or they can refer to other entities
stored in the database as values.

Consider a university database modelling
students, instructors, departments, and courses.
Pigure 2.1 is a graphical representation of the
logical definition for such a database in Daplex.
The big rectangles depict entity types and the
small rectangles indicate scalar data types and
character strings. The single- and double-headed
arrows represent respectively single-valued and
set-valued functions that map entities from their
domain types into their corresponding range
types.

One notable difference between the Daplex
data model and the relational data model is that
reterential constraints [DATE81 I, which are
extremely fundamental in database applications
(but not easily specifiable in relational con-
texts), are directly support ed in Dap lex . For
example, in the above database, the database sys-
tem will ensure that students are assigned valid
instructors as advisors. Likewise, the database
system will allow an update action that removes
an instructor from the database to go through,
but only if this will not result in dangling
reterences from student entities that remain in
the database. (Unlike general integrity con-
straints that are enforced only at the end of
transactions, reterential integrity is enforced
at the data manipulation language statement level
since it is considered an integral part of the
data model.)

Another important semantic concept related
to distribution is the notion of a generalization
hierarchy of overlapping entity types. In rela-
tional systems, a real-world entity that plays
several roles in an application environment typi-
cally is represented by tuples in a number of
relations. In the university database, we might
have an instructor named John Doe and a student
also named John Doe, who are in fact the same
person in real life. In this case, we might want
to impose the constraint that the age of John Doe
as an instructor should agree with the age of
John Doe as a student. This constraint can be
more succinctly expressed in Daplex by declaring
a new entity type called person and indicating
that student and instructor are subtypes of per-

355

r

.

I

Figure 2.1 A Daplex Database

J

J
1”““’ I

J

Figure 2.2 A Daplex Database with Type Overlap

son, and that age is a function applicable to
person. The functron inheritance semantics of
Daplex automatically guarantee the consistency of
age information on student and age information on
instructor, since age is a function inherited
from the supertype person. At the same time,
inherited functions can be applied directly to an
entity in data manipulation constructs in Daplex,
without the need for tedious explicit joining
operations. Figure 2.2 is a graphical repreeen-
tation of the revised database definition. The
double-edged arrows represent is-a relationships
(P*8., each student is-a person). The entity
types person, student, and instructor are said to
form a generalization hierarchy. Since every
entity in this generalization hierarchy also must
be a person, the type person is referred to as
the root of the generalization hierarchy.

The implications of the need to efficiently
enforce referential integrity and type overlap

,constrainte on storage and access structures, for
a centralized environment, have been discussed in
[GDPL~~ 1. In this paper, we focus on the impli-
cations of these fundamental integrity
constraints for distributed database design.

3. Fragmentation & Grouping

The DDM provides complete physical data
independence to end users. A separate interface
is provided for database administrators
for the purpose of specifying physical %:a * ’
parameters. An important design option available
to DBAe is the allocation and replication of data
to different sites in the network.(2) This sec-
tion discusses the choice of allocation units in
the DDM.

The database fragmentation options supported
in, the DDM are somewhat different from those
found in previous systems like distributed INGRES
[SN77J, SDD-1 [RBFG80], and R* [WDHL821, which
are based on the relational data model.(3) This

(2) The purpose of distributing and replicating
data over different sites is to maximize local-
ity of reterence (i.e., to ensure that most
transactions can be run using local data) and
to provide resiliency against site failures.

(3) The typical unit for allocation in these
systems is a fragment of a relation (i.e., a
logically subset defined by a local predicate).

356

is necessitated by our support for entity-valued
functions in Daplex. Essentially, Daplex allows
for “direct” pointers that point from one entity
to another. The semantics of Daplex requires
that insertion and deletion of entities to and
from the database do not result in dangling
pointers. In order to simplify the maintenance
of “direct” inter-entity pointers, we introduce
the notion of a frasment m. A fragment group
consist a of a collection of fragments, each of
which is a logically defined subset of a general-
ization hierarchy. Each fragment group is a unit
for allocation and replication. Fragment groups
can be designed to “localize” interentity refer-
ences. This localization simplifies the enforce-
ment of deletion dependencies and improves the
efficiency of query processing. We expect that
moat databases can be designed in such a way that
frequently tollowed interentity references (from
entities within each fragment group) can be
localized. This will eliminate the cumbersome
maintenance of nonlocal pointers. It is impor-
tant to note that we 0 s require fragment
groups to be defined in such a way that all
interentity reterences are localized.

Our support tor generalization hierarchies
in Daplex leads us to forgo vertical partition-
ing,(4) an option that is provided in SDD-1
[RBFG801 and R* [WDBL821. Our decision here has
been influenced mostly by simplicity and effi-
ciency considerations. Ead we supported vertical
fragmentation, we would have the additional prob-
lem of deciding how interentity pointers should
be represented. When accessing an entity of a
given type, Dap lex allows for access to attri-
butes (functions) that are defined from the
viewpoint of any overlapping type. In order to
provide efficient support for such accesses, we
require that all functions/attributes of an
entity, regardless of being primitively defined
or inherited, be accessible from the same site.
Thus, our objects for fragmentation in the DDM
are the generalization hierarchies within data-
bases.

The fragmentation of entities within a gen-
eralization hierarchy may be defined in terms of
function values, subtype memberships, subtype
nonmemberships, and one-to-many relationships
induced by single-valued entity functions. Since
we have ruled out the possibility of vertical
fragmentation of entities within a generalization
hierarchy across sites, we permit the disioint
partitioning of base entity types (i.e., roots of
generalization hierarchies) only. Partitioning
of entities within a subtype can be implicitly
defined by partitioning the corresponding base
entity type. Each fragment of a base entity type
is defined by a conjunction of conditions. The
DBA assigns a unique identifier to each fragment
in order to permit the definition of one fragment

(4) That is, representing individual entities
by multiple distributed records.

to be dependent on that of another fragment.
Each defining condition can be in one of the fol-
lowing forms :

1. e is in “subtype” (where e is an entity in
the base type and “subtype” is contained in
the base type).

2. e not in “subtype” (where e is an entity in
the base type and “subtype” is contained in
the base type).

3. f(e) “comparison operator” “constant” (where
e is an entity in the base type; f is a
single-valued scalar function that is appli-
cable to an entity that satisfies the type
membership conjuncta forming part of the
defining predicate in question; and “com-
parison operator” is one of “=‘I, “/=“, “<=“,
11>111 w<t, 3 , “>“) .

4. f(e) is in F (where e is an entity in the
base type; F is a previously defined frag-
ment; and f is a single valued function that
ranges over entities in F.(5)

Figure 3.1 illustrates one feasible fragmen-
tation and grouping scheme for the example data-
base tram Section 2. Four fragment groups are
defined under this particular scheme. The first
fragment group stores department entities located
on the first-floor, along with the courses
offered by these first-floor departments and the
instructors who work in these first-floor depart-
ments. The second fragment group stores second-
floor departments and the associated courses and
instructors. The third fragment group stores
departments located on ether(6) floors, along
with the associated courses and instructors.
Finally, the fourth fragment group stores only a
single fragment that consists of persons who are
not instructors.

4. Access Structures

In this section, we discuss auxiliary data
structures used in the DDM for supporting the
maintenance of referential integrity constraints,
and for facilitating the processing of transac-
tions that span fragment group boundaries. Our

(5) We do impose the restriction that if frag-
ment A’s definition depends on that of fragment
B, then fragment B must be assigned to the same
fragment group as fragment A.

(6) The predicate “others” in Figure 3.1 is in-
terpreted by the DDM system as a shorthand for
the complement of the disjunction of the other
fragment defining predicates on the generaliza-
tion hierarchy in question.

357

ment groups that contain entities that have
specific values of that function.

Since each fragment group entity directory
iS associated with a single fragment group, it is
actually considered part of the representation
for entities in that fragment group. When speci-
fying a distribution index for maintenance, a DBA
can specify its placement in any previously
defined fragment groups or in a new fragment
group of its own. The replication of a distribu-
tion index is thus governed by the replication of
the fragment group in which it is placed. The
maintenance of these two types of structures are
further explained below.

Figure 3.1 A Feasible Fragmentation and Grouping
Scheme

principal objectives in designing these struc-
tures are:

1. To enforce reterential integrity constraints
that apply to entities stored across multi-
ple sites without requiring updates across
eitee each time a reference is added or
removed .

2. To provide fast access paths for traversals
based on entity-valued functions.

3. To support efficient associative access to
entities based on selection criteria that
are orthogonal to those used in fragment
def initrons.

4. To facilitate the dynamic addition/removal
of fragment group copies.

We have introduced two new types of access
structures in the DDM. The first type of struc-
ture is a fragment grouo entity directory. One
or more fragment group entity directories are
automatically maintained for each fragment group.
This is required to support semantics of the
Daplex data model. Each directory is associated
with a single fragment group. It ia used to
resolve references to entities stored in the
fragment group and to identify the other fragment
groups that store nonlocal entities referenced by
entities in the fragment group. The second type
of structure is a distribution index. Its
maintenance is optional, and its applicability is
not restricted to the Daplex data model. Each
distribution index, whose maintenance is speci-
fied DY the DBA, is associated with a single
entity type and function. It pinpoints the frag-

4.1 Fragment Grouo Entity Ditectorv

Like the Local Database Manager [CFlDIll
1~~~~821 which supports centralized Daplex data-
bases, we maintain entity directories in the DDM
in order to facilitate the resolution of interen-
tity references and the enforcement of referen-
tial and type overlap constraints. In general,
for a given fragment group we maintain a fragment
group entity directory for each generalization
hierarchy that is either stored in the fragment
group or potentially referenced (as specified in
the logical schema) by entities stored within the
fragment group.

Two kinds of entries may be stored in a
fragment group entity directory. A primary entry
is one that pertains to an entity that is stored
in the tragmeot group. A secondarv entry is for
an entity that is referenced but not stored in
the fragment group.

A primary entry for an entity contains typ-
ing information, local reference count(s), physi-
cal record pointer(s), and one or more sets of
nonlocal fragment group identifiers. A fragment
group’s identifier is in one set if it contains
entities that reference the given entity from the
viewpoint of a specific entity type in the gen-
eralization hierarchy. The local reference
counts keep track of local references from within
the fragment group, one for each entity type to
which the entity belongs. A secondary entry con-
tains typing information and a reference count
for each entity type to which the nonlocally
stored (but referenced) entity belongs. This
reference count indicates the number of times the
designated entity is being referenced (from the
viewpoint of a specific type) from entities
stored within this fragment group.

Figure 4.1 illustrates a fragmentation and
grouping scheme tar the course and person entity
types. Note that the entity to entity references
are not completely localized. In this scheme,
unoergraduate courses are grouped with undergra-
duate students in FGl, and graduate courses are
grouped with graduate students in FG2. However,

358

C0UXS.Z P.rson/Studcnt/Inatructor
t 1 I I

Fl
1evcl~c) -
undergraduate

F2
level(c) -
graduate

F4

p is in student
and level(p)

and level (p)
- graduate

I I
t

F5 others I

fragment qroup 1 =

1

Fl. F
3)

fraqment qroup 2 = F2. F4

fP5 3

f
fragment qroup 3

Figure 4.1 A Course/Person Fragmentation Schema

undergraduates can take graduate courses and gra-
duates can take undergraduate courses. Figure
4.2 shows the set of courses taken by each stu-
dent in the database. Figure 4.3 shows the
corresponding fragment group entity directories
for the (degenerate) tour se generalization

Sl, a**, S4 - undergrad students
S5, . . . , SS = graduate students

‘1 (cl, C2, C5, Cfj) S5 CC,, C(j, cl, C,)

‘2 (Cl, C2, C5, c(j) S6 (C5, Cg, cls c2)

S3 (Cl, C2, C3, C4) ST (C5, C6, C7, cS)

S4 (Cl, C2, C3, C4) SS (C5, C(jr C7, Cg)

Figure 4.2 Enrollment of Students in Courses

hierarchy.
ate

Courses Cl through C4 are undergradu-
courses

directory for
and have primary entries in FGl’s

course entities. For these
courses, the directory maintains local reference
counts, local physical pointers, and indicates
that some entities in
(i.e., graduate students

FG2 point to Cl and C2
are taking these

courses>. Graduate courses c5
stored in FG1 but are referenced

and C6 are not
(twice) by enti-

ties stored within FGl.

Essentially, we have separated the reference
counts for an entity from different fragment
groups and stored the counts with the fragment
groups where the references are made. Gut
motivation is to minimize update cost. The pri-

Figure 4.3 Fragment Group Entity Directories

-y entry will be affected by nonlocal updates
(on another fragment group) only if the update
results in the addition of a “new” secondary
entry or the removal of an “old” secondary entry
in the foreign fragment group’s corresponding
entity directory (i.e., if the nonlocal reference
count goes from 0 to 1, or from 1 to 0, in a
secondary entry).

Similarly, the entity directory for courses
in FG2 contains primary entries for graduate
courses C through C and secondary entries for

$ cand 2. B If ano her graduate student enrolls
onls the reference count in FG2

be &remented.
needs to

If graduate students were no
longer enrolled in C, as a result of updates, its
local rererence count would become zero. Since
C, is not referenced by entities in any other
fragment group,
allowed.

the deletion of C, would be
The legality of the deletion can always

be determined by checking only the appropriate
primary entry in the local entity directory.

4.2 Distribution Index

In distributed databases, it is often neces-
sary to access all entities with a specific func-
t ion value : entities that potentially could be
stored in any fragment group. In order to facil-
itate such accesses, we introduce the notion of a
distribution index. Each entry in a distribution
index identifies the logical fragment groups that
store entities that have a given indexed value.
In order to maintain a distribution index effi-
ciently, we require that corresponding local
secondary indices be maintained for each fragment
group where entities of the indexed entity type

359

reside. (A local secondary index contains only
entries for entities that are locally stored
vithin a fragment group.) Without such local
indices, it would be difficult to determine if an
insertion or deletion operation has any effect on
the distribution index. With the local indices,
ve kmv that the distribution index has to be
updated whenever an update operation causes the
creation or deletion of an entry in a local
secondary index.

Figure 4.4 illustrates a distribution index
that could be maintained for the students in the
fragment groups identified in figure 4.1. While
this example distribution index is based on a
unique function (i.e., each student has a unique
student number), distribution indices in general
can involve nonunique tunctione and combinations
of functions.

Student No. F G

/I

78550

Student No. Index

Figure 4.4 A Distribution Index

The distribution index on student number can
be used to locate a specific student regardless
of whether the student is a graduate or an under-
graduate. That index is updated only when etu-
dents enter or leave the university or change
undergraduate/graduate status. No specific phy-
sical location information is maintained in the
distribution index to shield it from changes of
the student record within a fragment group.

In systems such as SDD-1, B*, and Distrib-
uted IWGBES, both fragments would have to be
searched based on student number. Alternately,
these systems would allow a fragmentation cri-
terion based on student number. However, the
specification of ranges of student numbers as
fragmentation criteria violates the important
principle of separating logical and physical
database designs: student numbers would have to
be assigned based on where the records should be
stored. On the other hand, the specification of

an individual distribution criterion for each
student number is cumbersome and would require
updates to the distribution criteria (vhich nor-
mally can be performed only by a DEA) for each
change in student status. The distribution index
seems like a more natural extension to siugle-
site secondary indices for locating data.

4.3 Imulicatione & Replication

The DDM supports data replication ICDFG83al
(CDFG83b1, and fragment groups are used as the
units for allocation to sites in the system.
However, it is important to note that all nonlo-
cal references used in the representation of
entity functions, in entity directories, and in
distribution indices, refer to logical fragment
groups ana not to sites that stores copies of
those fragment groups. This serves to simplify
pointer maintenance significantly. At the same
time, it facilitates our compilation approach to
the generation of access plans for repetitive
transactions. The same plan vould be usable,
regardless of which copy of a given fragment
group is dynamically selected for executing the
transaction. At run time, each logical fragment
group must be bound to a physically available
site for reading purposes. (That is, for each
logical fragment group that must be read during
the execution of the transaction, a site that
stores a copy of the fragment group must be
used. 1

In fact, our implementation scheme for frag-
ment group entity directories has been influenced
strongly by the desire for the capability to add
and remove fragment group copies dynamically.
The allocation and replication parameters of a
fragment group can be changed without requiring
update operations on entity directories. For
example, a new fragment group copy can be added
simply by obtaining an image of an existing copy.
Conceivably, we could have chosen a more compact
representation for the fragment group entity
directories by collapsing the directories for
different fragment group copies if they happened
to be stored at the same site. Hovever, this
would have brought major upheavals when the allo-
cation and replication parameters of fragment
groups have to be changed for performance rea-
sons.

5. Distributed Ouerv Processi=

An overview of our two-stage approach to
optimizing repetitive transactions has been
presented in [CDFG83b]. The selection of a pro-
cessing strategy treats each fragment group as a
logical site and is performed at comoile time.
The result of compilation is a plan that
prescribes the local operations to be performed
on data stored within individual fragment groups
and the movement of data resulting from these
local operations. Optimization at compile time

360

is essentially based on a worst case analysis,
since it assumes that different fragment groups
are stored at different sites. At run time, the
binding of logical fragment groups to physical
sites 1s performed. That is, a set of sites is
selected for following the compile time plan.
The optimization during site selection for each
fragment group takes into consideration which
sites are operational (and thus which copies of a
needed fragment group are accessible), and which
fragment groups are potentially needed for run-
ning the transaction.

The presence of distributed access struc-
tures discussed in Section 4 affects the set of
cross-site operations that are included in the
access plan generated at compile time. At run
time, they are used to reduce the set of fragment
groups that potentially contain the desired data
to the set of fragment groups that are actually
required. We discuss the uses of fragment group
entity directories and distribution indices for
query processing below.

5.1 Use of Fragment Group Entity Directories

In addition to providing direct support for
referential integrity maintenance, fragment group
entity directories support fast access from indi-
vidual entities to the entities they reference.
Consider the fragmentation and grouping scheme
illustrated in Figure 4.1. The enrollments func-
tion of a given student is represented by a col-
lectlon of pointers to course entities. As
explained in 1~~~~821, either logical pointers or
hybrid pointers can be used for the representa-
tion of entity functions. A logical pointer con-
sists of the entity’s unique identifier that was
assigned at the time of its creation. A hybrid
pointer combines a logical pointer with a physi-
cal pointer. The physical pointer portion of a
hybrid pointer depends on whether the referenced
entity is local or foreign. The physical pointer
to a local entity points to a single local record
representing the entity from a specific viewpoint
(i.e., the range type of the entity-valued func-
tion). The physical pointer to a foreign entity
is represented as an indirection flag only. It
simply indicates that the entity is foreign, and
that an appropriate entry in the local fragment
group entity directory should be consulted to
determine the fragment group that stores the
foreign entity. (See 1~~~~821 for discussions on
hybrid pointer maintenance and validation.) A
request can then be passed on to the site chosen
during site binding for the identified fragment
group in order to access the desired entity. The
fragment group entity directory at this foreign
fragment group is used to obtain the physical
pointer(s) to the record(s) that represent the
referenced entity. Thus, fragment group entity
directories provide efficient support for “small”
transactions that typically access a single
entity of one type, along with related entities

from other types.

At the same time, it is possible to make use
of entity directories to process “large” transac-
tions that perform joining operations on entire
entity types. Consider a joining operation
between student and course types based on the
enrollments function. Assume that students who
are not enrolled in any course, and courses that
are not taken by any student, do not qualify for
output in this transaction.

Now, assume that the database is fragmented
as shown in Figure 4.1, that FGl and FG

e
are

available at different sites, and that the ran-
saction is originated at a third site. The most
straightforward processing strategy is to
transfer all student and course information from
both FGl and FG2 to the transaction’s home site,
reconstruct the student entity type by taking the
union of undergraduate students and graduate stu-
dents, reconstruct the course entity type by tak-
ing the union of undergraduate courses and gradu-
ate courses, and then compute the desired join
between students and courses.

An often used strategy for reducing the
amount of data that have to be transferred to the
transaction’s home site is to make use of semi-
join operations [BGWE811. Typically, this would
involve projecting one of the operands on its
joining field, and transferring this projection
to the site of the second operand in order to
reduce the size of the latter. With fragmented
operands, the semi- join operation becomes more
complicated. (For example, see 1~~~~831 for dis-
cussions on how semi-joins can be performed on
fragmented operands.)

However, with the presence of fragment group
entity directories, a faster processing strategy
is readily available. Let SU and CU represent
undergraduate students and undergraduate courses
in FGL. Let SG and CG represent the graduate
students and graduate courses in FG2. A possible
processing strategy, selected at compile time, is
illustrated in figure 5.1.

At a site that stores FGl, we perform the
join based on enrollments between SU and CU and
store the result in a temporary Tl. By examining
entities in SU and the entity directory for
courses in FG1, we also can determine locally
those undergraduate students who are taking gra-
duate courses (SU semi-joined by CG) and those
undergraduate courses being taken by graduate
students (CU semi-joined by SG). These opera-
tions result in
tively. Similarly,

temporaries T2 and T3 respec-
the temporaries T4, T5, and

ia .
can be formed locally at a site that contains

At step 2, only some of the courses and
stzdents need to be joined,
graduates taking graduate

T, represents under-
courses,

represents graduates taking
and T8

undergraduate
courses. The unions at step 3 thus do not need
to remove duplicates.

361

sit* ?Gl ?G2 sit*
WIr Tl - SU Join CU T4 - 86 Join CC

?2 - SU Sad-Join CO T5- SC Sd-Join C"

t3 - CU S-i-Jo,,, SC +4 - CC S-i-Join MI

site x

e: ?7 - 52 Join 5'6

TO - t) Join Tj

Figure 5.1 Use of Entity Directoriee

We say that this compile time plan specifies
that the join is to be distributed wer the union
operations and that double semi- join reductions
are to be used to reduce the amount of data that
has to be transferred. At run time further
reductions become apparent automatically (T7 (or
TS) would be empty if T
were empty). Note tha P

and T6 (or T5 and Tg)

only af T6 were empty.
T2 would be empty if and

With the above processing strategy, we are
minimis ing the amount of computation cost that
will have to be incurred during step 2. If the
intermediate results obtained during step 1 must
individually be transferred to a different final
site before step 2 is carried out, then it may be
preterrable to perform semi-joins between SU and
CU to form temporaries Tla and Tlb, and between
SG and CG to tons temporaries Tpa and T2b, and
postpone all joining operations until step 2. At
the same trme, since Tla may overlap with T , and
TLb may overlap with T3, it may be preferra i? le to
represent these temporaries with sets
identifiers,

of entity
and to send information concerning

entitles that belong to multiple overlapping tem-
poraries to the final site only once.(7)

5.2 Use of Distribution Indices

As previously mentioned, one obvious use for
distribution indices is processing selection
operations. Assume a distribution index on the
age of students is kept for the previous example
database. Consider a query that asks for all
students who are 17 years old. Without a distri-
bution index, it would be necessary to issue two
subquer ie 8, one on each of the two fragment
groups, in order to retrieve all of the desired

(71 Likewise, T4a
may overlap with

may werlap with T5, and
T6.

T4b

students. Nowever, a distribution index may
indicate that there are no 17 year old students
in Et, thus eliminating the futile access to FG2
that otherwise would have to be made.

Another potential use for distribution
indices is for the processing of valued-based
joining operations. Consider a query that joins
suppliers and projects based on their respective
cities. If we have available distribution
indices on both the city function of suppliers
and on the city function of projects, we can use
the distribution index to identify the fragment
groups that actually have matching entities. For
each supplier fragment we can identify the cities
for which there will be a matching project. We
can then use the list of cities to perform a
semi-join on that supplier fragment. Similarly,
we can collect a list of qualifying cities for
each project fragment. At compile time, the
optimizer will decide to use neither, one, or
both ot the semi-join reductions. At run time,
it may be determined that entire fragments need
not be accessed.

6. Conclusions

The design of the DDM has led us to three
important conclusions. The first conclusion is
that it 1s indeed possible to build distributed
database systems that support a semantically rich
data model like Daplex, the entity-relationship
model, and other models that support explicit
relationships between different types of objects.
The distributed database management system that
supports these models must support a high level,
set-at-a-time data manipulation facility. With
such a facility, the support for distribution
should allow for the placement of data that is
based on the relationships between the types of
data, maintain referential integrity between data
stored at different sites, and use distribution
access paths along with relational like opera-
tions to support query processing.

The second conclusion we have reached is
that in addition to the increased functionality
of the semantically rich data model, a distrib-
uted system like the DDM actually can improve
performance over a distributed relational data-
base system. The distributed access structures
used to maintain referential integrity also can
be used in query processing to locate and limit
the number of fragments that need to be accessed
and to reduce the amount of data that needs to be
shipped between sites. Furthermore, these struc-
tures can be designed so that multiple-site
checking and updating is not required for indivi-
dual entity insertions and deletions.

The third conclusion we have reached is that
the required extension to relational distributed
database technology is straightforward. The
extensions described in this paper do not seem
significantly more difficult than the implementa-

362

tiom required for a diatributed relational sye-
tem. In fact, the extensions, particularly the
query procee6ing extensions, are built on rela-
tional query processing techniques. Furthermore'
these extensions are orthogonal to other aspects
of the DDM implementation such as directory
managsment, (inter-transaction) concurrency con-
trol, reliability, and recovery.

1~~~811

7. References

Bernstein, P.A., B.T. Blauetein, and E.M.
Clarke, "Fast Maintenance of Semantic
Integrity Assertions Using Redundant Aggre-
gate Data," m Conference Proceedinns,
1981.

[BGWR~~]
Bernstein, P.A., N. Goodman, E. Wang, C.
Reeve, and J.B. Rothnie, "Query Processing
in a System for Distributed Databases (SDD-
11," ACM Transactions ,n Database Sveteme,
Vol. 6, No. 4, December 1981.

[CDFG83a]
Chan, A., U. Dayal, S. Fox, 1. Goodman, D.
Ries, and D. Skeen, "DDM: An Ada Compatible
Database Manager," IEEE COMPCON Digest of

1983. Paners,

[CDFG83b]
Chan, A., U. Dayal, S. Fox, N. Goodman, D.
Ries, and D. Skeen, "Overview of an Ada Com-
patible Distributed Database Manager," ACM
SIGMOD Conference Proceedings, 1983.

[CDFL82]
Chan, A., S. Danberg, S. Fox, W.K. Lin, A.
Nori, and D. Riee, "Storage and Access
Structures to Support a Semantic Data
Model," e Conference Proceedings, 1982.

[CHEN76]
Chen, P.P., "The Entity Relationship Model
-- Towards a Unified View of Data," m
Transactions z Database Svstems, Vol. 1,
No. 1, March 1976.

[CFLRBll
Chan, A., S. Fox, W.K. Lin, and D. Ries,
"The Design of an Ada Compatible Local Data-
base Manager (LDM)," Technical Report CCA-
81-09, Computer Corporation of America,
November, 1981.

[CODD821
Codd, E.F., 'Relational Database: A Practi-
cal Foundation for Productivity," ACM Com-
munications, Vol. 25, No. 2, February 1982.

[DATE811
Date, C.J., "Referential Integrity," m
Conference Proceedinns, 1981.

[EC751
Eswaran, K.P., and D.D. Chamberlin, "Func-
tional Specification of a Subsystem for
Database Integrity," m Conference
Proceedinns, 1975.

[ES781
Hammer, M., and S. Sarin, "Efficient Moni-
toring of Database Assertions,' ACM SIGMOD
Conference Proceedinns Suvulement, 1978.

1~~81 I
Koenig, S., and R. Paige, "A Transforma-
tional Framework for the Automatic Control
of Derived Data," m Conference Proceed-
&g, 1981.

[MP821
Manola, F., and A. Pirotte, "CQLF -- A Query
Language for CODASTL-type Databases,' m
SIGMOD Conference Proceedings, 1982.

[RBFG80]
Rothnie, J.B., P.A. Bernstein, S. Fox, N.
Goodman, M. Hammer, T.A. Landers, C. Reeve,
D.W. Shipman, and E. Wang, 'Introduction to
a System for Distributed Databases (SDD-11,"
&l Transactions q~ Database Svatems, Vol.
5, No. 1, March 1980.

[SHIP811
Shipman, D., 'The Functional Data Model and
the Data Language Daplex," e Transactions
z Database Systems, Vol. 6, No. 1, March
1981.

[SN771
Stonebraker, M., and E. Neuhold, "A Distrib-
uted Database Version of INGRES,' Proceed-
&= of the Berkeley Workshoo 9~ Distributed --
Data Management and Comwter Networks, 1977.

[WDHL821
Williams, R., D. Daniels, L. Haas, G. Lapis,
B. Lindsay, P. Ng, R. Obermarck, P. Sel-
inger, A. Walker, P. Wilms, and R. Yost,
"R*. . An Overview of the Architecture,"
Proceedings of the 2nd International Confer-

on Databases: Imorovinr ences
Ret?pOns~eness, 1982.

Usability and

[YCTB~~ I
Vu, C.T., C.C. Chang, M. Templeton, D.
Brill, and E. Lund, "On the Design of a
Query Processing Strategy in a Distributed
Database Environment,' ACM SIGMOD Conference
Proceedings, 1983.

363

