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Abstract 

Existing distributed database systems are 
based mostly on the relational model. Further- 
more, it has been argued that the relational 
model is the model best suited for distributed 
databases. This paper describes an implementa- 
tion approach for supporting logical pointers 
between distributed entities. This apprdach is 
being employed in a distributed database system 
that supports a semantically rich data model and 
that currently is under implementation. The 
access structures used to support entity-to- 
entity pointers in this data model facilitate the 
maintenance of referential integrity across 
sites. At the same time, they provide efficient 
access paths for distributed query processing. 
To make use of these access structures the exten- 
sions required of existing query processing tech- 
niques are quite straightforward. 

The research reported in this paper is support- 
ed jointly by the Advanced Research Projects 
Agency of the Department of Defense (DARPA) and 
the Naval Electronics Systems Command (NAVELEX) 
unaer contract NO0039-82-C-0226. The views and 
conclusions contained in this paper are those 
of the authors and should not be interpreted as 
necessarily representing the official policies, 
either expressed or implied, of DARPA, NAVELEX, 
or the U.S. Government. 

1. Introduction 

Existing distributed database systems for 
the most part have been based on the relational 
data moael tSN771 tRBFG801 1WDBL821. Further- 
more, it has been argued that the relational 
model is the model best suited for distribution 
[CODD821. There are two properties of the rela- 
tional model that facilitate its support for dis- 
tribution. First, all of the relationships 
between records or types of objects are value- 
based; there is no need to support logical 
pointers across sites. Second, a high level 
language is available for specifying processing 
on sets or data; there is no need to follow 
record-at-a-time navigational links across sites. 

This paper describes an implementation 
approach for supporting logical pointers across 
sites. This approach is currently being used in 
the implementation of the Distributed Database 
Manager (DDM) lCDFG83al [CDFG83bl, a distributed 
database system that supports the semantically 
rich Daplex data model [ SHIP81 I. Similar 
approaches could be used for distributed systems 
that support high level access based on the 
entity-relationship model [CHEN~~I and the net- 
work model [MP821, or in relational systems that 
support physical links between tuples stored at 
different sites. 

In order to extend effectively the rela- 
tional distributed database technology to these 
models, three important problems should be 
addressed. First, it should be possible to con- 
trol the placement of data that is based on rela- 
tionships between data objects. Assume, for 
example, that information about university 
departments is distributed according to the 
building in which each department is housed. Now 
suppose we want to store information about each 
of the courses with information about the depart- 
ment that is offering the course. In relational 
systems such as distributed INGRES 1SN771, SDD-1 
[RBFG801, and R* [WDliL821, the course relation 
must include redundant information about the 
building that is housing the department offering 
the course, and the distribution criteria for the 
course relation would have to be based on the 
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redundant building information. In the DDM, it 
is possible to fragment courses by department, 
and to group together related courses and depart- 
ments. 

The second problem is the maintenance of 
reterential integrity across sites. If there is 
an integrity constraint that requires every 
tour se to nave an offering department (i.e., the 
offering function from course to department is 
total), then even if course and department infor- 
mation are stored at different sites, the DDM 
will prevent the insertion of information for a 
new course tor which there is no corresponding 
department. Similarly, the DDM will prevent the 
deletion of a department that is still referenced 
by an existing course. Furthermore, the DDM 
maintains this integrity constraint without 
requiring cross-site checking on each insertion 
or deletion. In a relational system, such 
integrity requirements would have to be specified 
by general integrity constraints [EC751 [HS781 
[BCC~~I [~~811. The efficient support of such 
constraints for distributed relational databases 
remains an open problem. 

The key to etficient distributed query pro- 
cessing in relational systems is the provision 
for set-at-a-time operations on distributed data. 
Thus, the third problem is how to use links that 
relate data across sites effectively. These 
links can augment physical access paths as in a 
single-site relational system like System R, or 
they can represent logical relationships. The 
DDM uses pointers across sites(l) to provide fas- 
ter access to sets of records and to reduce data 
movement from one site to another during distrib- 
uted query processing. These intersite pointers 
identify the logical entities and their residing 
sites only. Thus, they are unaffected by the 
relocation of physical records (representing 
entities) within a site. Furthermore, they are 
used by high level set-at-a-time. operations. 
Hence, a network message is not incurred for fol- 
lowing each such pointer. 

Section 2 provides an overview of the seman- 
tic data model, Daplex, that is supported by the 
DDM. Section 3 addresses the first of the three 
problems stated above by describing the database 
fragmentation facilities of the DDM. Section 4 
addres se8 the second problem by presenting the 
auxiliary data structures that are used to 
enforce reterential integrity and to provide fas- 
ter multi-site query processing. Section 5 
addresses the third problem by discussing query 
processing operations that can make use of the 
presented structures. Finally, Section 6 
summarizes our conclusions about data models and 
distributed databases. 

(1) These pointers identify only the logical 
entity and the site where the entity is to be 
found . They do not have to be updated when an 
entity is relocated within a site. 

2. The Danlex Data Model 

The Daplex data model that is supported by 
the DDM originally was described in [SEIP811. 
Its basic constructs are entities and functions. 
Entities are intended to represent conceptual 
objects and functions correspond to the proper- 
ties of conceptual objects. Entities that have 
the same set of generic properties are grouped 
together into entity sets. Each function, when 
applied to an entity of an appropriate entity 
set, returns a specific property of that entity. 
Each property is represented either by a single 
value or a set of values. Such values can be 
drawn from scalar data types and character 
strings, or they can refer to other entities 
stored in the database as values. 

Consider a university database modelling 
students, instructors, departments, and courses. 
Pigure 2.1 is a graphical representation of the 
logical definition for such a database in Daplex. 
The big rectangles depict entity types and the 
small rectangles indicate scalar data types and 
character strings. The single- and double-headed 
arrows represent respectively single-valued and 
set-valued functions that map entities from their 
domain types into their corresponding range 
types. 

One notable difference between the Daplex 
data model and the relational data model is that 
reterential constraints [DATE81 I, which are 
extremely fundamental in database applications 
(but not easily specifiable in relational con- 
texts), are directly support ed in Dap lex . For 
example, in the above database, the database sys- 
tem will ensure that students are assigned valid 
instructors as advisors. Likewise, the database 
system will allow an update action that removes 
an instructor from the database to go through, 
but only if this will not result in dangling 
reterences from student entities that remain in 
the database. (Unlike general integrity con- 
straints that are enforced only at the end of 
transactions, reterential integrity is enforced 
at the data manipulation language statement level 
since it is considered an integral part of the 
data model.) 

Another important semantic concept related 
to distribution is the notion of a generalization 
hierarchy of overlapping entity types. In rela- 
tional systems, a real-world entity that plays 
several roles in an application environment typi- 
cally is represented by tuples in a number of 
relations. In the university database, we might 
have an instructor named John Doe and a student 
also named John Doe, who are in fact the same 
person in real life. In this case, we might want 
to impose the constraint that the age of John Doe 
as an instructor should agree with the age of 
John Doe as a student. This constraint can be 
more succinctly expressed in Daplex by declaring 
a new entity type called person and indicating 
that student and instructor are subtypes of per- 
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Figure 2.1 A Daplex Database 
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Figure 2.2 A Daplex Database with Type Overlap 

son, and that age is a function applicable to 
person. The functron inheritance semantics of 
Daplex automatically guarantee the consistency of 
age information on student and age information on 
instructor, since age is a function inherited 
from the supertype person. At the same time, 
inherited functions can be applied directly to an 
entity in data manipulation constructs in Daplex, 
without the need for tedious explicit joining 
operations. Figure 2.2 is a graphical repreeen- 
tation of the revised database definition. The 
double-edged arrows represent is-a relationships 
(P*8., each student is-a person). The entity 
types person, student, and instructor are said to 
form a generalization hierarchy. Since every 
entity in this generalization hierarchy also must 
be a person, the type person is referred to as 
the root of the generalization hierarchy. 

The implications of the need to efficiently 
enforce referential integrity and type overlap 

,constrainte on storage and access structures, for 
a centralized environment, have been discussed in 
[ GDPL~~ 1. In this paper, we focus on the impli- 
cations of these fundamental integrity 
constraints for distributed database design. 

3. Fragmentation & Grouping 

The DDM provides complete physical data 
independence to end users. A separate interface 
is provided for database administrators 
for the purpose of specifying physical %:a * ’ 
parameters. An important design option available 
to DBAe is the allocation and replication of data 
to different sites in the network.(2) This sec- 
tion discusses the choice of allocation units in 
the DDM. 

The database fragmentation options supported 
in, the DDM are somewhat different from those 
found in previous systems like distributed INGRES 
[SN77J, SDD-1 [RBFG80], and R* [WDHL821, which 
are based on the relational data model.(3) This 

(2) The purpose of distributing and replicating 
data over different sites is to maximize local- 
ity of reterence (i.e., to ensure that most 
transactions can be run using local data) and 
to provide resiliency against site failures. 

(3) The typical unit for allocation in these 
systems is a fragment of a relation (i.e., a 
logically subset defined by a local predicate). 
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is necessitated by our support for entity-valued 
functions in Daplex. Essentially, Daplex allows 
for “direct” pointers that point from one entity 
to another. The semantics of Daplex requires 
that insertion and deletion of entities to and 
from the database do not result in dangling 
pointers. In order to simplify the maintenance 
of “direct” inter-entity pointers, we introduce 
the notion of a frasment m. A fragment group 
consist a of a collection of fragments, each of 
which is a logically defined subset of a general- 
ization hierarchy. Each fragment group is a unit 
for allocation and replication. Fragment groups 
can be designed to “localize” interentity refer- 
ences. This localization simplifies the enforce- 
ment of deletion dependencies and improves the 
efficiency of query processing. We expect that 
moat databases can be designed in such a way that 
frequently tollowed interentity references (from 
entities within each fragment group) can be 
localized. This will eliminate the cumbersome 
maintenance of nonlocal pointers. It is impor- 
tant to note that we 0 s require fragment 
groups to be defined in such a way that all 
interentity reterences are localized. 

Our support tor generalization hierarchies 
in Daplex leads us to forgo vertical partition- 
ing,(4) an option that is provided in SDD-1 
[RBFG801 and R* [WDBL821. Our decision here has 
been influenced mostly by simplicity and effi- 
ciency considerations. Ead we supported vertical 
fragmentation, we would have the additional prob- 
lem of deciding how interentity pointers should 
be represented. When accessing an entity of a 
given type, Dap lex allows for access to attri- 
butes (functions) that are defined from the 
viewpoint of any overlapping type. In order to 
provide efficient support for such accesses, we 
require that all functions/attributes of an 
entity, regardless of being primitively defined 
or inherited, be accessible from the same site. 
Thus, our objects for fragmentation in the DDM 
are the generalization hierarchies within data- 
bases. 

The fragmentation of entities within a gen- 
eralization hierarchy may be defined in terms of 
function values, subtype memberships, subtype 
nonmemberships, and one-to-many relationships 
induced by single-valued entity functions. Since 
we have ruled out the possibility of vertical 
fragmentation of entities within a generalization 
hierarchy across sites, we permit the disioint 
partitioning of base entity types (i.e., roots of 
generalization hierarchies) only. Partitioning 
of entities within a subtype can be implicitly 
defined by partitioning the corresponding base 
entity type. Each fragment of a base entity type 
is defined by a conjunction of conditions. The 
DBA assigns a unique identifier to each fragment 
in order to permit the definition of one fragment 

(4) That is, representing individual entities 
by multiple distributed records. 

to be dependent on that of another fragment. 
Each defining condition can be in one of the fol- 
lowing forms : 

1. e is in “subtype” (where e is an entity in 
the base type and “subtype” is contained in 
the base type). 

2. e not in “subtype” (where e is an entity in 
the base type and “subtype” is contained in 
the base type). 

3. f(e) “comparison operator” “constant” (where 
e is an entity in the base type; f is a 
single-valued scalar function that is appli- 
cable to an entity that satisfies the type 
membership conjuncta forming part of the 
defining predicate in question; and “com- 
parison operator” is one of “=‘I, “/=“, “<=“, 
11>111 w<t, 3 , “>“) . 

4. f(e) is in F (where e is an entity in the 
base type; F is a previously defined frag- 
ment; and f is a single valued function that 
ranges over entities in F.(5) 

Figure 3.1 illustrates one feasible fragmen- 
tation and grouping scheme for the example data- 
base tram Section 2. Four fragment groups are 
defined under this particular scheme. The first 
fragment group stores department entities located 
on the first-floor, along with the courses 
offered by these first-floor departments and the 
instructors who work in these first-floor depart- 
ments. The second fragment group stores second- 
floor departments and the associated courses and 
instructors. The third fragment group stores 
departments located on ether(6) floors, along 
with the associated courses and instructors. 
Finally, the fourth fragment group stores only a 
single fragment that consists of persons who are 
not instructors. 

4. Access Structures 

In this section, we discuss auxiliary data 
structures used in the DDM for supporting the 
maintenance of referential integrity constraints, 
and for facilitating the processing of transac- 
tions that span fragment group boundaries. Our 

(5) We do impose the restriction that if frag- 
ment A’s definition depends on that of fragment 
B, then fragment B must be assigned to the same 
fragment group as fragment A. 

(6) The predicate “others” in Figure 3.1 is in- 
terpreted by the DDM system as a shorthand for 
the complement of the disjunction of the other 
fragment defining predicates on the generaliza- 
tion hierarchy in question. 
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ment groups that contain entities that have 
specific values of that function. 

Since each fragment group entity directory 
iS associated with a single fragment group, it is 
actually considered part of the representation 
for entities in that fragment group. When speci- 
fying a distribution index for maintenance, a DBA 
can specify its placement in any previously 
defined fragment groups or in a new fragment 
group of its own. The replication of a distribu- 
tion index is thus governed by the replication of 
the fragment group in which it is placed. The 
maintenance of these two types of structures are 
further explained below. 

Figure 3.1 A Feasible Fragmentation and Grouping 
Scheme 

principal objectives in designing these struc- 
tures are: 

1. To enforce reterential integrity constraints 
that apply to entities stored across multi- 
ple sites without requiring updates across 
eitee each time a reference is added or 
removed . 

2. To provide fast access paths for traversals 
based on entity-valued functions. 

3. To support efficient associative access to 
entities based on selection criteria that 
are orthogonal to those used in fragment 
def initrons. 

4. To facilitate the dynamic addition/removal 
of fragment group copies. 

We have introduced two new types of access 
structures in the DDM. The first type of struc- 
ture is a fragment grouo entity directory. One 
or more fragment group entity directories are 
automatically maintained for each fragment group. 
This is required to support semantics of the 
Daplex data model. Each directory is associated 
with a single fragment group. It ia used to 
resolve references to entities stored in the 
fragment group and to identify the other fragment 
groups that store nonlocal entities referenced by 
entities in the fragment group. The second type 
of structure is a distribution index. Its 
maintenance is optional, and its applicability is 
not restricted to the Daplex data model. Each 
distribution index, whose maintenance is speci- 
fied DY the DBA, is associated with a single 
entity type and function. It pinpoints the frag- 

4.1 Fragment Grouo Entity Ditectorv 

Like the Local Database Manager [CFlDIll 
1~~~~821 which supports centralized Daplex data- 
bases, we maintain entity directories in the DDM 
in order to facilitate the resolution of interen- 
tity references and the enforcement of referen- 
tial and type overlap constraints. In general, 
for a given fragment group we maintain a fragment 
group entity directory for each generalization 
hierarchy that is either stored in the fragment 
group or potentially referenced (as specified in 
the logical schema) by entities stored within the 
fragment group. 

Two kinds of entries may be stored in a 
fragment group entity directory. A primary entry 
is one that pertains to an entity that is stored 
in the tragmeot group. A secondarv entry is for 
an entity that is referenced but not stored in 
the fragment group. 

A primary entry for an entity contains typ- 
ing information, local reference count(s), physi- 
cal record pointer(s), and one or more sets of 
nonlocal fragment group identifiers. A fragment 
group’s identifier is in one set if it contains 
entities that reference the given entity from the 
viewpoint of a specific entity type in the gen- 
eralization hierarchy. The local reference 
counts keep track of local references from within 
the fragment group, one for each entity type to 
which the entity belongs. A secondary entry con- 
tains typing information and a reference count 
for each entity type to which the nonlocally 
stored (but referenced) entity belongs. This 
reference count indicates the number of times the 
designated entity is being referenced (from the 
viewpoint of a specific type) from entities 
stored within this fragment group. 

Figure 4.1 illustrates a fragmentation and 
grouping scheme tar the course and person entity 
types. Note that the entity to entity references 
are not completely localized. In this scheme, 
unoergraduate courses are grouped with undergra- 
duate students in FGl, and graduate courses are 
grouped with graduate students in FG2. However, 
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Figure 4.1 A Course/Person Fragmentation Schema 

undergraduates can take graduate courses and gra- 
duates can take undergraduate courses. Figure 
4.2 shows the set of courses taken by each stu- 
dent in the database. Figure 4.3 shows the 
corresponding fragment group entity directories 
for the (degenerate) tour se generalization 

Sl, a**, S4 - undergrad students 
S5, . . . , SS = graduate students 

‘1 (cl, C2, C5, Cfj) S5 CC,, C(j, cl, C,) 

‘2 (Cl, C2, C5, c(j) S6 (C5, Cg, cls c2) 

S3 (Cl, C2, C3, C4) ST (C5, C6, C7, cS) 

S4 (Cl, C2, C3, C4) SS (C5, C(jr C7, Cg) 

Figure 4.2 Enrollment of Students in Courses 

hierarchy. 
ate 

Courses Cl through C4 are undergradu- 
courses 

directory for 
and have primary entries in FGl’s 

course entities. For these 
courses, the directory maintains local reference 
counts, local physical pointers, and indicates 
that some entities in 
(i.e., graduate students 

FG2 point to Cl and C2 
are taking these 

courses>. Graduate courses c5 
stored in FG1 but are referenced 

and C6 are not 
(twice) by enti- 

ties stored within FGl. 

Essentially, we have separated the reference 
counts for an entity from different fragment 
groups and stored the counts with the fragment 
groups where the references are made. Gut 
motivation is to minimize update cost. The pri- 

Figure 4.3 Fragment Group Entity Directories 

-y entry will be affected by nonlocal updates 
(on another fragment group) only if the update 
results in the addition of a “new” secondary 
entry or the removal of an “old” secondary entry 
in the foreign fragment group’s corresponding 
entity directory (i.e., if the nonlocal reference 
count goes from 0 to 1, or from 1 to 0, in a 
secondary entry). 

Similarly, the entity directory for courses 
in FG2 contains primary entries for graduate 
courses C through C and secondary entries for 

$ cand 2. B If ano her graduate student enrolls 
onls the reference count in FG2 

be &remented. 
needs to 

If graduate students were no 
longer enrolled in C, as a result of updates, its 
local rererence count would become zero. Since 
C, is not referenced by entities in any other 
fragment group, 
allowed. 

the deletion of C, would be 
The legality of the deletion can always 

be determined by checking only the appropriate 
primary entry in the local entity directory. 

4.2 Distribution Index 

In distributed databases, it is often neces- 
sary to access all entities with a specific func- 
t ion value : entities that potentially could be 
stored in any fragment group. In order to facil- 
itate such accesses, we introduce the notion of a 
distribution index. Each entry in a distribution 
index identifies the logical fragment groups that 
store entities that have a given indexed value. 
In order to maintain a distribution index effi- 
ciently, we require that corresponding local 
secondary indices be maintained for each fragment 
group where entities of the indexed entity type 
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reside. (A local secondary index contains only 
entries for entities that are locally stored 
vithin a fragment group.) Without such local 
indices, it would be difficult to determine if an 
insertion or deletion operation has any effect on 
the distribution index. With the local indices, 
ve kmv that the distribution index has to be 
updated whenever an update operation causes the 
creation or deletion of an entry in a local 
secondary index. 

Figure 4.4 illustrates a distribution index 
that could be maintained for the students in the 
fragment groups identified in figure 4.1. While 
this example distribution index is based on a 
unique function (i.e., each student has a unique 
student number), distribution indices in general 
can involve nonunique tunctione and combinations 
of functions. 

Student No. F G 

/I 

78550 

Student No. Index 

Figure 4.4 A Distribution Index 

The distribution index on student number can 
be used to locate a specific student regardless 
of whether the student is a graduate or an under- 
graduate. That index is updated only when etu- 
dents enter or leave the university or change 
undergraduate/graduate status. No specific phy- 
sical location information is maintained in the 
distribution index to shield it from changes of 
the student record within a fragment group. 

In systems such as SDD-1, B*, and Distrib- 
uted IWGBES, both fragments would have to be 
searched based on student number. Alternately, 
these systems would allow a fragmentation cri- 
terion based on student number. However, the 
specification of ranges of student numbers as 
fragmentation criteria violates the important 
principle of separating logical and physical 
database designs: student numbers would have to 
be assigned based on where the records should be 
stored. On the other hand, the specification of 

an individual distribution criterion for each 
student number is cumbersome and would require 
updates to the distribution criteria (vhich nor- 
mally can be performed only by a DEA) for each 
change in student status. The distribution index 
seems like a more natural extension to siugle- 
site secondary indices for locating data. 

4.3 Imulicatione & Replication 

The DDM supports data replication ICDFG83al 
(CDFG83b1, and fragment groups are used as the 
units for allocation to sites in the system. 
However, it is important to note that all nonlo- 
cal references used in the representation of 
entity functions, in entity directories, and in 
distribution indices, refer to logical fragment 
groups ana not to sites that stores copies of 
those fragment groups. This serves to simplify 
pointer maintenance significantly. At the same 
time, it facilitates our compilation approach to 
the generation of access plans for repetitive 
transactions. The same plan vould be usable, 
regardless of which copy of a given fragment 
group is dynamically selected for executing the 
transaction. At run time, each logical fragment 
group must be bound to a physically available 
site for reading purposes. (That is, for each 
logical fragment group that must be read during 
the execution of the transaction, a site that 
stores a copy of the fragment group must be 
used. 1 

In fact, our implementation scheme for frag- 
ment group entity directories has been influenced 
strongly by the desire for the capability to add 
and remove fragment group copies dynamically. 
The allocation and replication parameters of a 
fragment group can be changed without requiring 
update operations on entity directories. For 
example, a new fragment group copy can be added 
simply by obtaining an image of an existing copy. 
Conceivably, we could have chosen a more compact 
representation for the fragment group entity 
directories by collapsing the directories for 
different fragment group copies if they happened 
to be stored at the same site. Hovever, this 
would have brought major upheavals when the allo- 
cation and replication parameters of fragment 
groups have to be changed for performance rea- 
sons. 

5. Distributed Ouerv Processi= 

An overview of our two-stage approach to 
optimizing repetitive transactions has been 
presented in [CDFG83b]. The selection of a pro- 
cessing strategy treats each fragment group as a 
logical site and is performed at comoile time. 
The result of compilation is a plan that 
prescribes the local operations to be performed 
on data stored within individual fragment groups 
and the movement of data resulting from these 
local operations. Optimization at compile time 
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is essentially based on a worst case analysis, 
since it assumes that different fragment groups 
are stored at different sites. At run time, the 
binding of logical fragment groups to physical 
sites 1s performed. That is, a set of sites is 
selected for following the compile time plan. 
The optimization during site selection for each 
fragment group takes into consideration which 
sites are operational (and thus which copies of a 
needed fragment group are accessible), and which 
fragment groups are potentially needed for run- 
ning the transaction. 

The presence of distributed access struc- 
tures discussed in Section 4 affects the set of 
cross-site operations that are included in the 
access plan generated at compile time. At run 
time, they are used to reduce the set of fragment 
groups that potentially contain the desired data 
to the set of fragment groups that are actually 
required. We discuss the uses of fragment group 
entity directories and distribution indices for 
query processing below. 

5.1 Use of Fragment Group Entity Directories 

In addition to providing direct support for 
referential integrity maintenance, fragment group 
entity directories support fast access from indi- 
vidual entities to the entities they reference. 
Consider the fragmentation and grouping scheme 
illustrated in Figure 4.1. The enrollments func- 
tion of a given student is represented by a col- 
lectlon of pointers to course entities. As 
explained in 1~~~~821, either logical pointers or 
hybrid pointers can be used for the representa- 
tion of entity functions. A logical pointer con- 
sists of the entity’s unique identifier that was 
assigned at the time of its creation. A hybrid 
pointer combines a logical pointer with a physi- 
cal pointer. The physical pointer portion of a 
hybrid pointer depends on whether the referenced 
entity is local or foreign. The physical pointer 
to a local entity points to a single local record 
representing the entity from a specific viewpoint 
(i.e., the range type of the entity-valued func- 
tion). The physical pointer to a foreign entity 
is represented as an indirection flag only. It 
simply indicates that the entity is foreign, and 
that an appropriate entry in the local fragment 
group entity directory should be consulted to 
determine the fragment group that stores the 
foreign entity. (See 1~~~~821 for discussions on 
hybrid pointer maintenance and validation.) A 
request can then be passed on to the site chosen 
during site binding for the identified fragment 
group in order to access the desired entity. The 
fragment group entity directory at this foreign 
fragment group is used to obtain the physical 
pointer(s) to the record(s) that represent the 
referenced entity. Thus, fragment group entity 
directories provide efficient support for “small” 
transactions that typically access a single 
entity of one type, along with related entities 

from other types. 

At the same time, it is possible to make use 
of entity directories to process “large” transac- 
tions that perform joining operations on entire 
entity types. Consider a joining operation 
between student and course types based on the 
enrollments function. Assume that students who 
are not enrolled in any course, and courses that 
are not taken by any student, do not qualify for 
output in this transaction. 

Now, assume that the database is fragmented 
as shown in Figure 4.1, that FGl and FG 

e 
are 

available at different sites, and that the ran- 
saction is originated at a third site. The most 
straightforward processing strategy is to 
transfer all student and course information from 
both FGl and FG2 to the transaction’s home site, 
reconstruct the student entity type by taking the 
union of undergraduate students and graduate stu- 
dents, reconstruct the course entity type by tak- 
ing the union of undergraduate courses and gradu- 
ate courses, and then compute the desired join 
between students and courses. 

An often used strategy for reducing the 
amount of data that have to be transferred to the 
transaction’s home site is to make use of semi- 
join operations [BGWE811. Typically, this would 
involve projecting one of the operands on its 
joining field, and transferring this projection 
to the site of the second operand in order to 
reduce the size of the latter. With fragmented 
operands, the semi- join operation becomes more 
complicated. (For example, see 1~~~~831 for dis- 
cussions on how semi-joins can be performed on 
fragmented operands.) 

However, with the presence of fragment group 
entity directories, a faster processing strategy 
is readily available. Let SU and CU represent 
undergraduate students and undergraduate courses 
in FGL. Let SG and CG represent the graduate 
students and graduate courses in FG2. A possible 
processing strategy, selected at compile time, is 
illustrated in figure 5.1. 

At a site that stores FGl, we perform the 
join based on enrollments between SU and CU and 
store the result in a temporary Tl. By examining 
entities in SU and the entity directory for 
courses in FG1, we also can determine locally 
those undergraduate students who are taking gra- 
duate courses (SU semi-joined by CG) and those 
undergraduate courses being taken by graduate 
students (CU semi-joined by SG). These opera- 
tions result in 
tively. Similarly, 

temporaries T2 and T3 respec- 
the temporaries T4, T5, and 

ia . 
can be formed locally at a site that contains 

At step 2, only some of the courses and 
stzdents need to be joined, 
graduates taking graduate 

T, represents under- 
courses, 

represents graduates taking 
and T8 

undergraduate 
courses. The unions at step 3 thus do not need 
to remove duplicates. 
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sit* ?Gl ?G2 sit* 
WIr Tl - SU Join CU T4 - 86 Join CC 

?2 - SU Sad-Join CO T5- SC Sd-Join C" 

t3 - CU S-i-Jo,,, SC +4 - CC S-i-Join MI 

site x 

e: ?7 - 52 Join 5'6 

TO - t) Join Tj 

Figure 5.1 Use of Entity Directoriee 

We say that this compile time plan specifies 
that the join is to be distributed wer the union 
operations and that double semi- join reductions 
are to be used to reduce the amount of data that 
has to be transferred. At run time further 
reductions become apparent automatically (T7 (or 
TS) would be empty if T 
were empty). Note tha P 

and T6 (or T5 and Tg) 

only af T6 were empty. 
T2 would be empty if and 

With the above processing strategy, we are 
minimis ing the amount of computation cost that 
will have to be incurred during step 2. If the 
intermediate results obtained during step 1 must 
individually be transferred to a different final 
site before step 2 is carried out, then it may be 
preterrable to perform semi-joins between SU and 
CU to form temporaries Tla and Tlb, and between 
SG and CG to tons temporaries Tpa and T2b, and 
postpone all joining operations until step 2. At 
the same trme, since Tla may overlap with T , and 
TLb may overlap with T3, it may be preferra i? le to 
represent these temporaries with sets 
identifiers, 

of entity 
and to send information concerning 

entitles that belong to multiple overlapping tem- 
poraries to the final site only once.(7) 

5.2 Use of Distribution Indices 

As previously mentioned, one obvious use for 
distribution indices is processing selection 
operations. Assume a distribution index on the 
age of students is kept for the previous example 
database. Consider a query that asks for all 
students who are 17 years old. Without a distri- 
bution index, it would be necessary to issue two 
subquer ie 8, one on each of the two fragment 
groups, in order to retrieve all of the desired 

(71 Likewise, T4a 
may overlap with 

may werlap with T5, and 
T6. 

T4b 

students. Nowever, a distribution index may 
indicate that there are no 17 year old students 
in Et, thus eliminating the futile access to FG2 
that otherwise would have to be made. 

Another potential use for distribution 
indices is for the processing of valued-based 
joining operations. Consider a query that joins 
suppliers and projects based on their respective 
cities. If we have available distribution 
indices on both the city function of suppliers 
and on the city function of projects, we can use 
the distribution index to identify the fragment 
groups that actually have matching entities. For 
each supplier fragment we can identify the cities 
for which there will be a matching project. We 
can then use the list of cities to perform a 
semi-join on that supplier fragment. Similarly, 
we can collect a list of qualifying cities for 
each project fragment. At compile time, the 
optimizer will decide to use neither, one, or 
both ot the semi-join reductions. At run time, 
it may be determined that entire fragments need 
not be accessed. 

6. Conclusions 

The design of the DDM has led us to three 
important conclusions. The first conclusion is 
that it 1s indeed possible to build distributed 
database systems that support a semantically rich 
data model like Daplex, the entity-relationship 
model, and other models that support explicit 
relationships between different types of objects. 
The distributed database management system that 
supports these models must support a high level, 
set-at-a-time data manipulation facility. With 
such a facility, the support for distribution 
should allow for the placement of data that is 
based on the relationships between the types of 
data, maintain referential integrity between data 
stored at different sites, and use distribution 
access paths along with relational like opera- 
tions to support query processing. 

The second conclusion we have reached is 
that in addition to the increased functionality 
of the semantically rich data model, a distrib- 
uted system like the DDM actually can improve 
performance over a distributed relational data- 
base system. The distributed access structures 
used to maintain referential integrity also can 
be used in query processing to locate and limit 
the number of fragments that need to be accessed 
and to reduce the amount of data that needs to be 
shipped between sites. Furthermore, these struc- 
tures can be designed so that multiple-site 
checking and updating is not required for indivi- 
dual entity insertions and deletions. 

The third conclusion we have reached is that 
the required extension to relational distributed 
database technology is straightforward. The 
extensions described in this paper do not seem 
significantly more difficult than the implementa- 
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tiom required for a diatributed relational sye- 
tem. In fact, the extensions, particularly the 
query procee6ing extensions, are built on rela- 
tional query processing techniques. Furthermore' 
these extensions are orthogonal to other aspects 
of the DDM implementation such as directory 
managsment, (inter-transaction) concurrency con- 
trol, reliability, and recovery. 

1~~~811 
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