
A MODAL SYSTEM OF ALGEBRAS FOR DATABASE SPECIFICATION

AND QUERY/UPDATE LANGUAGE SUPPORT

F Golshani, T S E Maibaum, M R Sadler

Department of Computing, Imperial College

Abastraot

Rather than iormaliaing general properties or
database systems and derining abstract languages
ror databases, in this paper we provide a formal
system for reasoning about spdric properties
of eaoh application and the speeiiioation or
query/update functions whioh are particular to
that application. We regard a database as a
dynamic! object and use a system of modal logia
similar to Hoare-style program logic ror its
specification. The possible worlds in our modal
system are the (correct) database instanoes.
Each database instanoe is defined as a many-
sorted algebra where the signature of the
algebra oonstitutes the basis for the database
schema. Concepts related to database instances
such aa queries and (static) integrity
constraints are simply well-formed expressions
on the signature. Similarly , at the dynamic
level, we define notions suah as transition
constraints and update operations as expressions
or the modal system. The wper Includes a
section on the areas where further work has been
done.

1. Introduetlon

To remain faithful to the real world, databases
are continuously modified. To maintain the
correctness of’ the database system tbrougb
modifications, oertain rules and criteria called
consistency aonstraints must be observed at all
times. Depending upon the

%iod.ifioation/retrieval ratio” 0r the
particular database system (that is the number
oi’ times that a typloal item is queried before
being updated to something else CSoh 711) and
the wlire timea of data objeots in the database,
the importanoe of’ these constraints beoomes
more (or less) obvious. In a banking
environment, for example, where the database has
a relatively long life time, the rate of
modlfloations to personal acaounts is high; the
database is fbrerore moFe prone to
inconsistency and rigorous rules are introduoed
to (at least partly) avoid errors.
Two different classes of oonsistenoy constraints
OWl be identified: static (integrity)
constraints which restrict eaoh database
instance to (ranges of’) correot values, and
dynamia oonstraints which guard the database
through updates. Within the first group one can
again reoognise two slightly different types.
The first type, which we oall “simple data
oonatraintsn, are those whiah restrict the
values of the individual data objeots, eg: %ge
of no employee can be less than 16’, or “all
salaries are more than 15P. The second type
which will be called “aggregate data
oonstrsintsn, are those nhioh state oertain
restriotions on the values ior a oolleotion of
data objects; eg: “the total or all salaries in
a oertain department is less than a given
number”, or “the number of tiokets sold for any
partioular flight must not be greater than the
number of seats in the aircraft assigned to it”.
A oomon example for rules governing updates
(oalled %ransition oonstraintsw [CaFu 821) is
“salaries must not deareaae”.

In this paper we intend to provide a setting for
the speoifiaation of’ databases in a formal
system which lends itseli’ easily to the
speoifiaation of individual applications as well
as to the design of general purpose query and
update languages suitable for aw appliaation
speoiried. Below is an outline of our approaah.

We olearly distinguish between query faOilitie8
and update operations. Update operations ohange
the state of the database; thus at update level

331

databases are dynamic. On the other hand, at
query level we deal with only one instance of
the dynamic database; we therefore, in turn,
formally define what we mean by a ‘database
Instance’. The alms of this work will thus be:

la - to provide a speciricatlon language for
specifying the database schema which
determines the properties of Individual
instances in a particular application;

lb - to indicate how a general purpose query
language can be based on the formalism
used for the specification of database
instances;

2a - to speoiiy the database applioation, ie
the dynamio object;

2b - to design a general purpose update
languwe for the database based
on the formalism used for speoifylng
particular applications.

In our approach la and lb are developed hand in
hand as are 2a and 2b. At the static level a
database instance is regarded as a colleotlon of
sets together with a collection of funotions on
these sets. The database instance is therefore
seen as a ‘many-sorted algebra’. There are
names associated with every set and every
function. These symbols are contained in a
wsignaturen (see eg [ADJ-781). The signature
also gives the typing rules for the database
mappings. Thus, the signature is the
speoification for the %ype checker” and the
“syntax checker” of the language. We will see
that r type errors’ in queries can therefore be
detected statically. We extend the ordinary
notion of functions in two ways. Firstly,
functions which return sets of data objects are
permitted. Secondly, we Introduce a new object
0 standing for the value uinapplloablew or
“domain error” for those mappings which are not
everywhere defined !eg: the function grade-of
which when given a student and a course as
arguments may return a number as the mark, is
not defined for all combinations of students and
courses; not sll students take all courses); see
[Go1 82al for details. Full oomputation power
is provided in the query language by Including a
wide range of operations which are fixed across
all applications. Queries are simply expressions
whioh are built up out of the symbols in the
signature of the algebra together with the
operation symbols and which comply with the
formation rules given by the query/speoifioation
language. The semantlos of a query is the value
whioh is assigned to it by the algebra
representing a database instance. ‘Stati
constraints’ are simply expressions of type
boolean which are oonstruoted in the same way as
queries and must hold in all algebras. These
issues are disoussed in seotion 3.1.

At this point we should mention that although
the above development Is somewhat non-standard
it does not disagree with previous developments.
For example, a set-valued function may more
conveniently be thought OS as a relation (as may
a boolean valued function). Static constraints
can also be thought of as formulae in the sense
of first order logic. Thus we note that an
equivalent formalism may be developed based on
many-sorted logic rather than universal algebra.

For the specification of 2a and 2b we develop a
system based on a special kind of modal logic.
Modal loglo, which began as an extension to
predicate logic, Is the logic of necessity and
possibility: a proposition is “necessary” if It
holds in all reachable worlds, and wpasslblew if
it holds in some reachable world. Modal logic
is partloularly suited for reasoning about
dynamio systems such as databases. In this
work, our modal system has similarities to
Mare-style program loglo [Gold 821. The
admissable worlds of our modal system are the
database instances (ie: many-sorted algebras).
Transition constraints then can naturally be
viewed as modal expressions built up from the
modal operators (yet to be defined) and the
symbols In the (common) signature OS the
algebra. These issues are disscussed In section
3.2.

2. Capmrison with extent work

Attempts to provide formal settings for the
specification and desfgn of databases and
database languages date back several years.
Similarities between concepts in mathematical
semantics and in database modelling were
analysed in [Mai 773. Based on.ideas taken from
abstract data types and the notion of higher
order functions a primitive formalisatlon of our
present ideas was provided. The concept of
database instance (static) was later formalised
in [Mai 81:. In [CaDe 801 a language based on a
variant of dynamic logic was defined which
inoorporated the aggregation operators. using
this language, various concepts such as database
schema, transactions, database states and
integrity constraints were developed. The use
of an extended form of logic enabled them to
express *aggregate consistency constraints* in a
natural manner.

In [CaFu 821 a family of languages are defined
whioh are based on an extension of temporal
logic. (Temporal loglo is a spscial kind of
modal logic, see eg [MaPn 791.) Although this
extension does not seem to inorease the
expressive power of the language, it is claimed
that it facilitates the description of
transition constraints. This work is based on
Wolper’s extended temporal logic [Wol 821 and
contains proofs about deoidabillty and
solvability problems. The constraint nsalaries
never decrease”, for example, is expressed as:

332

-+A3 (0 (EMP(n,s); 3s’ (EMP(Il,S’)AS>S’)))

where EMP(x, y) indicates that employee x has the
salary y. A technical defect in this paper is
that it is not clear over which range the
variables are quantified. For example’ while
being in a particular database Instance, how aan
we talk about the objects which may exist in a

,future database instance? [Nit 831. sf in the
above expression is an example of
this phenomenon.

In contrast to our work which clearly
distinguishes between queries and updates, in
[MSF 803 a database is defined as a set of
axioms of many-sorted first order predioate
logic which specify all the valid states.
Queries and updates are considered uniformly as
theorems which must be proved by a theorem-
proving process with respect to the database
state.

On the algebraic specification of databases, the
work presented in [DMW 821 stands out. In this
rigorous study, precise specifications are given
for many aspects of databases. After defining
notions such as conceptual models and external
views, they present abs%ract def?.nitions of
query and update operations.

Our work differs from above because we design
conorete query/update laxguages in addition to
talking about general (and abstract) properties
of such languages. Hany other research reports
are related to th!.s topic. See [Web 761, [Tad
771, 1NiYa 781’ [&Be SO] and [Nit 821 for the
study of integrity constraints, and [DaBe 821,
[FVU 831 and iSeFu 781 for reasoning about
correct updates.

3. Database specification and database lamgmage
design

3.1 Given an alphabet A we define the
‘he collection of vocabulary of our langunqe as u

four groups of symbols (a symbol is a sequence
of characters) : “sort symbols”, “variable
symbols”, “function symbols” and “operation
symbols”. We assume that the form of each
symbol determines to which group It belongs.
The operation symbols form an invariant part of
the language (as they are the application
Independent constituent of the
query/specification language) and stand for
various kinds of standard operations such as
arithmetic, boolean, set-theoretic, aggregation,
and more complicated ones such as quantifiers
and the set-building operator. The difference
between operations and functions is that
functions are particular to the database
application and instances thereof. It is
assumed that the two sorts boolean and integer
together with the associated operations are

present in all specifications.

tvne-m are Inductively defined
to be sort symbols or of one of the forms:

QlU3 I (a ta a 1 2 l ***
(Ia J

and P(a ,) where for aome n for l\<i\<n , a i

Is a simple-type-expression.

Given a natural number n, a &U&&L tvne - -
w of arity n has the form

alI a21=e-l a, ---> 8

where for l,<i+ , a i is a simple-
type-expression and i3i.s a aimple-type-
expression. Operation-type-expressions are
defined in a similar manner. For exsmple, the
operation-type-expression for the operation
symbol “+” is int,int --->int.

A A~~&ux Is a function which assigns a
function-type-expression to each function symbol
and a sort symbol to eaah variable symbol.
Thus, the signature is the specifiaatlon for the
type-checker as well as for the syntax-checker
of the language. Notice that the variables are
typed by the signature and not by the user.
There is an unlimited supply of variables of
each sort.

Example : We can specify part of a university
database as follows: sort symbols ‘students’,
‘courses’, ‘lecturers’, ‘Integers’ and
’ boo1 ean ’ ; function symbols ‘courses-off, ‘is-
taking’, ‘enrollera-of’, ‘prerequisites-of’,
‘age-of’, ‘grade-of’ , ‘lecturer-of’, and ao on.
The unique function-type-expresslona for (some
of) these function symbols are given below:

lecturer-of courses ---> lecturers
grade-of students, courses ---> Integers
courses-of students ---> P(courses)
age-of students U lecturers ---> integers
prerequisites-of courses ---> P(courses)

Given a signature, we define the set of &
m ~ on that signature in the usual
inductive way. For example, if R is an
expression of type d , and R 2
expressions of type P(a), then

and ‘n 3 are

R , isin R 2

is an expression of type boolean,

R 2 Is-subset-of R 3

Is an expression of type boolean,

R 2 union fi 3

is an expression of type P(a 1.

333

similarly,

(R , isin G 2) and (;2 2 is-subset-of R 3)

is an expression of type boolean.
(V.sinw, “is-subset-of”, Tmionn and wand” are
all operations of the query language.)

BQunPtifraaooourrenoes of variables in
expressions can be detected syntactically in the
usual way. For instance, given an expression of
the form (2 ! R 2)X , any oocurrenae & X in
Rl or R2 1 s a bound occurrence. The set
building operator ?...l...)X is a variable
binding operator (see [KMM SO!, [Go1 821) In the
same sense that v and 3 are in normal logic.
Of course, the type of the expression G 2 must
be boolean.

Closed expressions are those in nhieh there are
no free occurrences of any variables.

Given a signature 1 , a (static) L&,&&y
oonstraint is any well-formed expression of type
boolean on C . We will use the symbol rc for a
set of integrity constraints on signature1 . A
database schema is a signature together with a
(possibly empty) set of Integrity constraints on
that signature.

Example: Here are some examples of integrity
constraints on our university database.

- No student can be registered for a course
unless she has passed all the prerequisites of
that course.

forall STUDENT f oral1 COURSE
((STUDENT is-taking COURSE) implies

(prerequisites-of(COURSE)
is-subset-of acc*um~~ated-courses-of (STUDENT))

- Maximum number of swollers for any oourse is
50.

f oral1 COURSE
(No-of (enrollers-of(COURSE)) LT 50)

- The fact that the two functions 'oourses-of'
and ‘enrollers-of’ and the relation ‘is-taking’
represent exactly the same information can be
expressed by +Aree constraints of the form:

forall STUDENT f oral1 COURSE
((STUDENT is-taking COURSE) Implies

((STUDENT lsin enrollers-of(COURSE)) and
(COURSE isln oourses-of (STUDENT)))

A m is a closed expression in which any
variable Is bound only once. We oontinue our
Illustration of the university database by
constructing a sample query:

- lecturers of all those courses which must be
taken before taking Maths.

I lecturer-of(COURSE) I
COURSE isln prerequisites-of (Maths)) COURSE

The type of the object returned by this

expression is P(leoturers) tmoause the function
lecturer-of has the function-type-expression
oouraes --->leoturers. COURSE is a variable
of type -0 (The appearance of COURSE on
the very right indiaates the variable which is
being bound by the set-building operator).

So far we have only discussed syntactic issues,
we shall use the notion of algebra to reason
about the semantios. A Ipapy-sort& alasbra Is a
funotlon which assigns a set (called oarrier
to each sort symbol and a function to each
fun&ion symbol. For a simple-type-expressiona
the set of all objects of type in an algebra A
denoted by IAI, is defined as follows:

- if c1 is a sort symbol then IAi, = A(a)

- if a is a , U” 2 then IAl, = IA!,, U IAl,,

- If c1 is (a *a 2s....+an) then
I Al cL =lAlal A....filA;

%
- if C(Is P(cl) then IA1 + P(IAI cL 1

a
The evaluation in A of queries is carried out
in the usual way.

Deffning a database scheme S=(c , r) to be a
signature and some constraints on It,’ an algebra
A is an S-algebra iff:

1. for each function symbol $ in the domain
of A, if c ($) is
q**.**a n ---> g
then A($ 1 returns an element of IAl when
given an element of !A’ ‘CL1 , B
an element of IAl , a2,.. and an element of

2.
IA!%.

A evaluates all the expressions of rT as
true.

We are now ready to define database instances.
Adatabase- over a schema S =(c 1
is the ordered pair (S,A) where A Is ‘& S-
algebra.

Notation: Given an expression P of type
boolean, for a database instance i, we write
II= F iii i evaluates P as true.

Readers interested in details of the above are
referred to (Go1 821 and [Go1 831.

3.2 Databases as dynamic objects

We begin this se&ion by giving our main
definitions (la and lb below were presented in
3.1). A speoifioation of a database is:

la - A schema S= (c ,rc) , where c is a
many-sorted signature and rc is a
oollection of well formed boo1 ean

334

expressions over c.

lb - A collection of domains {Da) of values,
one for each sort a OS I .
The colleotion
(database instances)D%eroiDa).

g-algebras

2a - An extension LX1 of z1 to include update
symbols u and the modal
construct P’ I?‘“” and to include Sunotions
‘in-Cc’, one for each sort d , of
type a ---> bool.
And an extension I’l : of r to include
transition constrain S. E I

2b - A collection U OS update Sunotions *,
11 ,.... where each y is a
mapping from DD to DB, and suah that
these functions satisfy rip
(We shall define what is meant b;
satisfaction below. We underline
the names of update functions, as in y,,
to avoid confusiqn with the corresponding
symbol u, in I .)

The rest OS this section is concerned with
explaining and illustrating 2a and 2b above.
Note that la and 2a are syntactic aomponents of
the definition, and that lb and 2b are related
to semantic concepts. Essentially it is the
syntactic components that are used in conmotion
with proving correctness of implementations and
reasoning about database properties whereas the
semantic components are used in connection with
evaluation of expressions denoting queries. We
shall indicate how both these functions are
supported by our definition. We assume the
presence of a deductive system for the language,
although here we omit any such detail.

At the dynamic level we want to be able to talk
about objects which are not necessarily present
in a given database instance - that is, we want
to reason about potential objects as well as
about the “concrete” ones of any given instanoe.
To facilitate this we define each S-algebra over
the same collections of objects (the Da’s), and
pi& out those objects which are +ealw,
nactualw or “concrete” in each algebra by use OS
the in- LX functions.

Quantifiers non range over all potential
objects; but we could also introduce local
quantification by use of the construot:

Sorall x (In-cl(x) implies...

See [HuCr 683 for a detailed treatment OS the
problems associated with the range of
quantifiers in a modal logic setting. And see
also [Man 811 where a distinction is made
between loaal and global symbols (in particular
variables) Sor an alternative way of handling
the potential/actual distinotion.

We turn now to the more interesting parts of the
definition, those dealing with updates. We
explain our syntactic treatment first. Although
there are strong similarities with program logic
[Gold 821 the material is probably unismiliar to
most readers. go we proceed more oarefully
(and when neaessary, formally).

The definition OS well-formed expressions over
I is extended to well-formed expressions over
1’ by including the construct:

[y&J

as an expression OS type boolean, where P is an
expression
symbol.

of type boolean and um Is an update
The constructs [t+J have no effect on

whether or not variables are bound and we use
the square brackets to exploit the analogy with
[Gold 821. Intuitively the expression EplP is
read as ‘after the update s is periormed, P
will be true’; that is, the [u] act as
operators In a similar way to the, pesaps, more
familiar modal operators 0 , 0 and Ikxt.

The logic used Sor deriving consequences Srom
the schema can now be extended by adding the
following axiom schemata:

Distribution:
lul(P implies Q) iSS ([u]P implies [u]Q)

Negation:
not [ul P iSf [u] not P

Quantifiaation:
(forall x [ul P(x)) ISS lIul(Sorall x P(x))

and the rule: P

[UIP

ie if P is a theorem, then so is [u]P.

In the above P and Q are expressions of type
boolean overC1 ,that is, they themselves may
include modal symbols; P(x) is an expression of
type boolean 0verCl with at most the variable x
free; and u Is an update symbol oSI1 , that is,
we are using u as a metavariable over the um.

The quantification axiom might seem strange, but
note that we are quantifling over all potential
objects. It is worth noting that expressions
such as:
“forall x [u]P(x)” and “[ul Sorall x P(x)”
should not be confused with the SimilW
expressions using vlooal quantification”, for
which the quantifioation axiom does not hold.

One important feature OS this system Is that our
modal operators aan be “pushed around” quite
Sreely within our logic. The statia constraints
and the transition constraints act independently
and our logic reflects this. The behaviour of

335

ug,***r +p*-- is governed only by the
transition constraints.

The notion of satisfaation is easily extended to
oope with the modal operators. Given a database
instance i,
expression P :

an update symbol us, and a boolean

I I= [um,lP iii y,(i) I= P.

It is straightforward to check that the axioms
(distribution, negation and quantification) and
the rule presented previously are sound. What we
are doing here is replacing the more
oonventlonal relational semantics for modal
logic by a functional semantics.

Examples: Let us look at some examples of
transition constraints for our university
database :

- ages cannot be reduced:

forall x forall y ((age-of(x) is y)
implies ([ul (age-of(x) GE Y)))

This expression reads as follows: for any
student x and any age y, if the age of x at
present is y then after performing any update
the age of x will be at least y.

- certain course, say EE1, once inserted to
the database can never be deleted.

in-course(EE1) fmplies [u](ln-course(EE1))

Both these examples can, of course, be captured
by the general operator 0 . Literally, these
two examples only talk about a “next” state, but
a simple application of the rule and schemata
presented above allow the modal constructs to be
Iterated to any length. (See 4.7 below). The
specific operators come into their own when we
wish to make assertions about particular
updates:

not in-student (Jaok)
implies [u,] in-student (Jack)

for example, asserts that
YQ

involves entering
“Jack” into the database. (,n practice we would
write ‘add-Jack* instead of *uG*.)

It should be noted that the [p]‘s are speolfio
and are not parameterized with respect to the
data being manipulated. For example in the aase
of adding a new student to the database: add-
Jim, add-Jack, add-Carol, etc., all have to be
included in the list u ,..., u ,.. This
situation is clearly not i eal. 8 Neiber do we
want to have to specify a separate update for
each change that we might like to make to a
funotion value. We therefore introduce
parsmeterixed updates. Syntaotioally we need to
modify 2a of our basic definition by requiring

that each update symbol be typed (to piok out
those expressions which can be used as
parameters). For example:

‘add-student’ would be of type ‘students’
and we can make assertions about the adding of
*Jaok” by using

[add-student(Jaok)]

or about the adding of arbitrary students by

[add-student(x)]

where x is any expression of type ‘students’.
Or if ‘increase-Sal@ is of type ‘person l nat’

forall x forall y forall 2 (Sal-of(x) is y
Implies [increase-sal(x,z)] Sal-of(x) is (y+z))

would be a suitable transition aonstraint about
the inorease of salaries.

And, of course, we oan form more complioated
expressions by using constructs like:

[inorease-sal(employee-of(Jack),y/lO]

We can manipulate the Cu(, ,...)I In the same
wey as the [u]. Note that ooourenoes of
variables in suoh parameterised update
constructs are free. And the semantios extends
straightforwardly by modifying 2b so that each

3
isamapplngfromDBx (Dax . . .) to DB,

wereu,isof type ae... .

4. Scmerelatetdaspects

In this seotion we will address two further
issues : how our modal system relates to others,
and how transaotlons oan be speoified using our
modal system.

4.1 Sinoe we have the specific modal operators

3!19
the other modal operators 0 and 0 are
essential for the expression of

transition constraints. (0 is to be read, as
‘all reachable database instances’, and 0 is to
be read as ‘some reachable database instance’.)
We aan provide semantics as follows:

i I=clP iff &nCun-l...~(l)...) I= P
for all sequences %, u,,..., un of updates,

and

i lPOP iff *or, -1”. U()(i)...) I= P
for some sequenoe q), Ml,..., u, of updates.

Given a partioular sequenoe of updates, Mext and
Until can be given semantics in the usual way
[Man 791.

Syntactloally we can regard Oas an abbreviation

336

for not a not, and add the axiom schema:

UP implies P ;

0 (P implies Q) implies (0 P implies OQ) ;

UP impllesO UP;

and the rule Opp to reason about q and 0.

This system is usually referred to as SQ, and it
is easy to oheck that these axlom schemata (and
rule) are sound, as long as the u update is
included in the collection U of update
functions. That is, m: DB --> DB is suah
that m(l) = i.

4.2 By a transaction we mean a sequence of
update operations. For a sequence of updates

“n
?Pl’ l **yp* we can use the construot [uO;u,;

g ven a database instance i and a boolean
expression P we have:

As each J$, has been defined as a mapping from DB
to DB (le. from instances to instances) this
amounts only to the composition of updates.

[Ilo; . . . unl Is equivalent to Cunl...[uIl~uOl

However we could weaken our definition of the j+a
so that they are mappings from the collection
of algebras to the colleotlon of algebras over
the language. Thus integrity constraints need
not be satisfied during the transaction, only at
the end (algebras need not satisfy the integrity
constraints). We are currently Investigating
this area.

5. COIWlU8i0n

One of the main contributions of the theory of
abstract datatypes to progrsmming has been the
introduction of application dependent objects
and operations to be manipulated direotly at a
logical level by programs (and programmers).
This has eased the burden of program design
because analysis can be performed at the
abstract, logical level by both the designers
and users of the program. We feel that database
designers and users should benefit from the same
approach.

constraints (eg: various kinds of dependencies).
The use of these languages in partioular
applioations was unstructured in the same sense
that data representation and manipulation was
before the use of abstraot data types. Users
have to formulate queries in terms of the
representation (eg: relations and types) and its
associated operations (eg: join. nroieotion,
etc., in the case of relational algebra) instead
of the concepts which might be more familiar.
Updates were even lass formalized as none of the
traditional models addressed this problem
direotly. Typically, the only update operations
available were again primitive, implementation
dependent ones (eg: insert a tuple in a
relation).

Recently efforts have been made to apply the
teohniques of abstract data types to data base
specification. Thus application dependent
objects and operations are becoming more
acceptable. However, these presentations have
of updates and database instances and have
tended to concentrate on static constraints.

We have attempted above to provide a theory of
databases which allows designers and users to
deal with the objects and operations logically
relevant to the application both for queries and
updates.

Designers can specify the properties of the
primitive (application dependent) query
operations, ie: static constraints, using what
Is essentially first order logic augmented with
general query forming operators thought to be
suitable for database specification. The
dynamic properties of databases are again
defined using application dependent primitive
update operations by means of a modal logic.
These general operators, first order logic and
the modal system, are a fixed specifioation
language for database applications. They have
the further advantage that a user can formulate
queries and updates using this formal system.
Thus the speaification language is also a
general purpose query and update language.

Moreover, such specifications offer the same
advantages as abs*sact data type specifications.
One can decide on an optimal implementation
method and then prove its correctness with
respect to the specification.

Much of the effort in database design in the
past has concentrated on the Implementation
oriented approach exemplified by the various
traditional models: relational, hierarohical,
etc. These models provided general purposes
tools for query, formation, information
representation, and the definition of static

337

6. Beferem

[ADJ 781 Goguen J A , Thatcher J W , Wagner E G
*An Initial algebra approach to the
specifiaation, correotnesa, and implementation
of abstract data types"
In "Current trends in progrsnuning methodologyw,
vol. IV , pp 81-149 , Prentice Hall 1978.

[CaBe 803 Casanova M A , Bernstein P A
“A formal system for reasoning about programs
accessing a relational database"
ACM TOFLAS , Vol. 2 , No. 3 , pp 386-414 , July
1980.

[CaFu 821 Casanova M A , Furtado A L
"A family of temporsl languages for the
description of transition oonstralntsw
Workshop on logical bases for data bases,
Toulouse 82.

[DaBe 821 Dayal U , Bernstein P A
"On the correct translation of update
operations on relational viewsw
ACM TODS , Vol. 8 , No. 3 , pp 381-416 , Sept
1982.

[DMS 821 Dosch W , Mascari G , Wirslng M
*On the algebraic specification of databases"
Proc. of 8th VLDB Conf. Mexico City , Sept
1982.

[Gold 821 Goldblatt R
"Atiomatising the logic of oomputer
programming"
Lecture Notes in Computer Soience 130 ,
Springer-Verlog 1982.

[Go1 821 Golshani F
"Varqa, a functional query language based on an
algebraic approaoh and conventional
mathematical notation"
PhD thesis, Theory of Computation Report No. 43
Warwick University , UK.

[Go1 82al Golsbani F
"Growing certainty with null values"
Research Report DOC 82/22 , Imperial College ,
UK.

[Go1 831 Golshani F
"A mathematically designed query language"
Research Report DOC 83/l , Imperial College ,
UK.

[HuCr 683 Hughes G E , Cresswell M J
"An introduction to modal loglow
Methuen and Co. Ltd , London , 1968.

[KMM 801 Kalish D , Montague R , Mar G
wLogic, techniques of formal reasoning"
Harcourt Brace Jovanovlch inc. , 2nd ed., 1980.

IHai 771 Maibaum Liantics and a wMathematical model for
databases"
Proc. IFIP 77 , (Gilchrist ed.) pp 133-138.

[Mai 811 Maibaum T S E
"Database instances, abstract data types and
database specificationw
To appear in the Journal of Computing.

[MSF 801 Maibaum T S E , dos Santos C S ,
Furtado A L
"A uniform logioal treatment of queries and
updates"
Research Report CS-80-11 , university of
Waterloo , Canada.

[Man 811 Manna Z
"Verifioation of sequential programs: Temporal
Axiomatizationw
Report No. STAN-(X-81-877 , Stanford University
1981.

[MaPn 791 Manna Z , Pnueli A
*The modal logio of programs"
Report STAN-CS-79-751 , Stanford University ,
1979.

[Nit 821 Nlcolas J-M
"Logic for Improving integrity checking in
relational databases"
Acta Informatica 18 , pp 227-253 , 1982.

[Nit 831 Nicolas J-M
Private communication.

[NiYa 783 Nioolas J-M , Yasdanian K
"Integrity checking in deductive databases"
in "Logic and databases" (Gallaire, Nicolas
eds.) , PP 325-344,
Plenum Press , New York , 1978.

[Sob 711 Schwartz J T
"Abstract and concrete problems in the theory
of files"
in "Database systems" Courant Computer Scienoe
Symp. 6 t (Rustln ed.), Prentice Hall , 1971.

[SeFu 783 Sevlck K C , Furtado A L
"Complete and compatlbale sets of update
operat%onsw
In Int. Conf. on Management of data (ICHDD) ,
Milan Italy , June 1978.

[Tad 771 Todd S
"Automatic Constraint maintenence and updating
defined relations"
Proo. IFIP 77 , (Gilchrist ed.) North-Holland ,
1977.

[Web 761 Webber H
*A semantic model of integrity constraints on a
relational database"
Modelling in database management systems,
North-Holland , 1976.

338

lWo1 811 Wolper P
nTemporal logia aan be mure expressive”
PX-OC. of 22nd Symp. on Foundation of Canputer
Science , Nashville, TN,
October 1981.

339

