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Rather than iormaliaing general properties or 
database systems and derining abstract languages 
ror databases, in this paper we provide a formal 
system for reasoning about spdric properties 
of eaoh application and the speeiiioation or 
query/update functions whioh are particular to 
that application. We regard a database as a 
dynamic! object and use a system of modal logia 
similar to Hoare-style program logic ror its 
specification. The possible worlds in our modal 
system are the (correct) database instanoes. 
Each database instanoe is defined as a many- 
sorted algebra where the signature of the 
algebra oonstitutes the basis for the database 
schema. Concepts related to database instances 
such aa queries and (static) integrity 
constraints are simply well-formed expressions 
on the signature. Similarly , at the dynamic 
level, we define notions suah as transition 
constraints and update operations as expressions 
or the modal system. The wper Includes a 
section on the areas where further work has been 
done. 

1. Introduetlon 

To remain faithful to the real world, databases 
are continuously modified. To maintain the 
correctness of’ the database system tbrougb 
modifications, oertain rules and criteria called 
consistency aonstraints must be observed at all 
times. Depending upon the 

%iod.ifioation/retrieval ratio” 0r the 
particular database system (that is the number 
oi’ times that a typloal item is queried before 
being updated to something else CSoh 711 ) and 
the wlire timea of data objeots in the database, 
the importanoe of’ these constraints beoomes 
more (or less) obvious. In a banking 
environment, for example, where the database has 
a relatively long life time, the rate of 
modlfloations to personal acaounts is high; the 
database is fbrerore moFe prone to 
inconsistency and rigorous rules are introduoed 
to (at least partly) avoid errors. 
Two different classes of oonsistenoy constraints 
OWl be identified: static (integrity) 
constraints which restrict eaoh database 
instance to (ranges of’) correot values, and 
dynamia oonstraints which guard the database 
through updates. Within the first group one can 
again reoognise two slightly different types. 
The first type, which we oall “simple data 
oonatraintsn, are those whiah restrict the 
values of the individual data objeots, eg: %ge 
of no employee can be less than 16’, or “all 
salaries are more than 15P. The second type 
which will be called “aggregate data 
oonstrsintsn, are those nhioh state oertain 
restriotions on the values ior a oolleotion of 
data objects; eg: “the total or all salaries in 
a oertain department is less than a given 
number”, or “the number of tiokets sold for any 
partioular flight must not be greater than the 
number of seats in the aircraft assigned to it”. 
A oomon example for rules governing updates 
(oalled %ransition oonstraintsw [CaFu 821) is 
“salaries must not deareaae”. 

In this paper we intend to provide a setting for 
the speoifiaation of’ databases in a formal 
system which lends itseli’ easily to the 
speoifiaation of individual applications as well 
as to the design of general purpose query and 
update languages suitable for aw appliaation 
speoiried. Below is an outline of our approaah. 

We olearly distinguish between query faOilitie8 
and update operations. Update operations ohange 
the state of the database; thus at update level 
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databases are dynamic. On the other hand, at 
query level we deal with only one instance of 
the dynamic database; we therefore, in turn, 
formally define what we mean by a ‘database 
Instance’. The alms of this work will thus be: 

la - to provide a speciricatlon language for 
specifying the database schema which 
determines the properties of Individual 
instances in a particular application; 

lb - to indicate how a general purpose query 
language can be based on the formalism 
used for the specification of database 
instances; 

2a - to speoiiy the database applioation, ie 
the dynamio object; 

2b - to design a general purpose update 
languwe for the database based 
on the formalism used for speoifylng 
particular applications. 

In our approach la and lb are developed hand in 
hand as are 2a and 2b. At the static level a 
database instance is regarded as a colleotlon of 
sets together with a collection of funotions on 
these sets. The database instance is therefore 
seen as a ‘many-sorted algebra’. There are 
names associated with every set and every 
function. These symbols are contained in a 
wsignaturen (see eg [ADJ-781). The signature 
also gives the typing rules for the database 
mappings. Thus, the signature is the 
speoification for the %ype checker” and the 
“syntax checker” of the language. We will see 
that r type errors’ in queries can therefore be 
detected statically. We extend the ordinary 
notion of functions in two ways. Firstly, 
functions which return sets of data objects are 
permitted. Secondly, we Introduce a new object 
0 standing for the value uinapplloablew or 
“domain error” for those mappings which are not 
everywhere defined !eg: the function grade-of 
which when given a student and a course as 
arguments may return a number as the mark, is 
not defined for all combinations of students and 
courses; not sll students take all courses); see 
[Go1 82al for details. Full oomputation power 
is provided in the query language by Including a 
wide range of operations which are fixed across 
all applications. Queries are simply expressions 
whioh are built up out of the symbols in the 
signature of the algebra together with the 
operation symbols and which comply with the 
formation rules given by the query/speoifioation 
language. The semantlos of a query is the value 
whioh is assigned to it by the algebra 
representing a database instance. ‘Stati 
constraints’ are simply expressions of type 
boolean which are oonstruoted in the same way as 
queries and must hold in all algebras. These 
issues are disoussed in seotion 3.1. 

At this point we should mention that although 
the above development Is somewhat non-standard 
it does not disagree with previous developments. 
For example, a set-valued function may more 
conveniently be thought OS as a relation (as may 
a boolean valued function). Static constraints 
can also be thought of as formulae in the sense 
of first order logic. Thus we note that an 
equivalent formalism may be developed based on 
many-sorted logic rather than universal algebra. 

For the specification of 2a and 2b we develop a 
system based on a special kind of modal logic. 
Modal loglo, which began as an extension to 
predicate logic, Is the logic of necessity and 
possibility: a proposition is “necessary” if It 
holds in all reachable worlds, and wpasslblew if 
it holds in some reachable world. Modal logic 
is partloularly suited for reasoning about 
dynamio systems such as databases. In this 
work, our modal system has similarities to 
Mare-style program loglo [Gold 821. The 
admissable worlds of our modal system are the 
database instances (ie: many-sorted algebras). 
Transition constraints then can naturally be 
viewed as modal expressions built up from the 
modal operators (yet to be defined) and the 
symbols In the (common) signature OS the 
algebra. These issues are disscussed In section 
3.2. 

2. Capmrison with extent work 

Attempts to provide formal settings for the 
specification and desfgn of databases and 
database languages date back several years. 
Similarities between concepts in mathematical 
semantics and in database modelling were 
analysed in [Mai 773. Based on.ideas taken from 
abstract data types and the notion of higher 
order functions a primitive formalisatlon of our 
present ideas was provided. The concept of 
database instance (static) was later formalised 
in [Mai 81:. In [CaDe 801 a language based on a 
variant of dynamic logic was defined which 
inoorporated the aggregation operators. using 
this language, various concepts such as database 
schema, transactions, database states and 
integrity constraints were developed. The use 
of an extended form of logic enabled them to 
express *aggregate consistency constraints* in a 
natural manner. 

In [CaFu 821 a family of languages are defined 
whioh are based on an extension of temporal 
logic. (Temporal loglo is a spscial kind of 
modal logic, see eg [MaPn 791.) Although this 
extension does not seem to inorease the 
expressive power of the language, it is claimed 
that it facilitates the description of 
transition constraints. This work is based on 
Wolper’s extended temporal logic [Wol 821 and 
contains proofs about deoidabillty and 
solvability problems. The constraint nsalaries 
never decrease”, for example, is expressed as: 
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-+A3 ( 0 (EMP( n,s); 3s’ (EMP(Il,S’)AS>S’ ))) 

where EMP(x, y) indicates that employee x has the 
salary y. A technical defect in this paper is 
that it is not clear over which range the 
variables are quantified. For example’ while 
being in a particular database Instance, how aan 
we talk about the objects which may exist in a 

,future database instance? [Nit 831. sf in the 
above expression is an example of 
this phenomenon. 

In contrast to our work which clearly 
distinguishes between queries and updates, in 
[MSF 803 a database is defined as a set of 
axioms of many-sorted first order predioate 
logic which specify all the valid states. 
Queries and updates are considered uniformly as 
theorems which must be proved by a theorem- 
proving process with respect to the database 
state. 

On the algebraic specification of databases, the 
work presented in [DMW 821 stands out. In this 
rigorous study, precise specifications are given 
for many aspects of databases. After defining 
notions such as conceptual models and external 
views, they present abs%ract def?.nitions of 
query and update operations. 

Our work differs from above because we design 
conorete query/update laxguages in addition to 
talking about general (and abstract) properties 
of such languages. Hany other research reports 
are related to th!.s topic. See [Web 761, [Tad 
771, 1NiYa 781’ [&Be SO] and [Nit 821 for the 
study of integrity constraints, and [DaBe 821, 
[FVU 831 and iSeFu 781 for reasoning about 
correct updates. 

3. Database specification and database lamgmage 
design 

3.1 Given an alphabet A we define the 
‘he collection of vocabulary of our langunqe as u 

four groups of symbols (a symbol is a sequence 
of characters) : “sort symbols”, “variable 
symbols”, “function symbols” and “operation 
symbols”. We assume that the form of each 
symbol determines to which group It belongs. 
The operation symbols form an invariant part of 
the language (as they are the application 
Independent constituent of the 
query/specification language) and stand for 
various kinds of standard operations such as 
arithmetic, boolean, set-theoretic, aggregation, 
and more complicated ones such as quantifiers 
and the set-building operator. The difference 
between operations and functions is that 
functions are particular to the database 
application and instances thereof. It is 
assumed that the two sorts boolean and integer 
together with the associated operations are 

present in all specifications. 

tvne-m are Inductively defined 
to be sort symbols or of one of the forms: 

QlU3 I (a ta a 1 2 l *** 
(Ia J 

and P( a , ) where for aome n for l\<i\<n , a i 

Is a simple-type-expression. 

Given a natural number n, a &U&&L tvne - - 
w of arity n has the form 

alI a21=e-l a, ---> 8 

where for l,<i+ , a i is a simple- 
type-expression and i3i.s a aimple-type- 
expression. Operation-type-expressions are 
defined in a similar manner. For exsmple, the 
operation-type-expression for the operation 
symbol “+” is int,int --->int. 

A A~~&ux Is a function which assigns a 
function-type-expression to each function symbol 
and a sort symbol to eaah variable symbol. 
Thus, the signature is the specifiaatlon for the 
type-checker as well as for the syntax-checker 
of the language. Notice that the variables are 
typed by the signature and not by the user. 
There is an unlimited supply of variables of 
each sort. 

Example : We can specify part of a university 
database as follows: sort symbols ‘students’, 
‘courses’, ‘lecturers’, ‘Integers’ and 
’ boo1 ean ’ ; function symbols ‘courses-off, ‘is- 
taking’, ‘enrollera-of’, ‘prerequisites-of’, 
‘age-of’, ‘grade-of’ , ‘lecturer-of’, and ao on. 
The unique function-type-expresslona for (some 
of) these function symbols are given below: 

lecturer-of courses ---> lecturers 
grade-of students, courses ---> Integers 
courses-of students ---> P(courses) 
age-of students U lecturers ---> integers 
prerequisites-of courses ---> P(courses) 

Given a signature, we define the set of & 
m ~ on that signature in the usual 
inductive way. For example, if R is an 
expression of type d , and R 2 
expressions of type P( a ), then 

and ‘n 3 are 

R , isin R 2 

is an expression of type boolean, 

R 2 Is-subset-of R 3 

Is an expression of type boolean, 

R 2 union fi 3 

is an expression of type P(a 1. 
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similarly, 

( R , isin G 2) and ( ;2 2 is-subset-of R 3) 

is an expression of type boolean. 
( V.sinw, “is-subset-of”, Tmionn and wand” are 
all operations of the query language.) 

BQunPtifraaooourrenoes of variables in 
expressions can be detected syntactically in the 
usual way. For instance, given an expression of 
the form (2 ! R 2)X , any oocurrenae & X in 
Rl or R2 1 s a bound occurrence. The set 
building operator ?...l...)X is a variable 
binding operator (see [KMM SO!, [Go1 821) In the 
same sense that v and 3 are in normal logic. 
Of course, the type of the expression G 2 must 
be boolean. 

Closed expressions are those in nhieh there are 
no free occurrences of any variables. 

Given a signature 1 , a (static) L&,&&y 
oonstraint is any well-formed expression of type 
boolean on C . We will use the symbol rc for a 
set of integrity constraints on signature1 . A 
database schema is a signature together with a 
(possibly empty) set of Integrity constraints on 
that signature. 

Example: Here are some examples of integrity 
constraints on our university database. 

- No student can be registered for a course 
unless she has passed all the prerequisites of 
that course. 

forall STUDENT f oral1 COURSE 
((STUDENT is-taking COURSE) implies 

(prerequisites-of(COURSE) 
is-subset-of acc*um~~ated-courses-of ( STUDENT) ) 

- Maximum number of swollers for any oourse is 
50. 

f oral1 COURSE 
(No-of ( enrollers-of(COURSE) ) LT 50) 

- The fact that the two functions 'oourses-of' 
and ‘enrollers-of’ and the relation ‘is-taking’ 
represent exactly the same information can be 
expressed by +Aree constraints of the form: 

forall STUDENT f oral1 COURSE 
((STUDENT is-taking COURSE) Implies 

((STUDENT lsin enrollers-of(COURSE)) and 
(COURSE isln oourses-of (STUDENT) ) ) 

A m is a closed expression in which any 
variable Is bound only once. We oontinue our 
Illustration of the university database by 
constructing a sample query: 

- lecturers of all those courses which must be 
taken before taking Maths. 

I lecturer-of(COURSE) I 
COURSE isln prerequisites-of (Maths) ) COURSE 

The type of the object returned by this 

expression is P(leoturers) tmoause the function 
lecturer-of has the function-type-expression 
oouraes --->leoturers. COURSE is a variable 
of type -0 (The appearance of COURSE on 
the very right indiaates the variable which is 
being bound by the set-building operator). 

So far we have only discussed syntactic issues, 
we shall use the notion of algebra to reason 
about the semantios. A Ipapy-sort& alasbra Is a 
funotlon which assigns a set (called oarrier 
to each sort symbol and a function to each 
fun&ion symbol. For a simple-type-expressiona 
the set of all objects of type in an algebra A 
denoted by IAI, is defined as follows: 

- if c1 is a sort symbol then IAi, = A(a ) 

- if a is a , U” 2 then IAl, = IA!,, U IAl,, 

- If c1 is (a *a 2s....+an) then 
I Al cL =lAlal A....filA; 

% 
- if C( Is P(cl ) then IA1 + P( IAI cL 1 

a 
The evaluation in A of queries is carried out 
in the usual way. 

Deffning a database scheme S=(c , r ) to be a 
signature and some constraints on It,’ an algebra 
A is an S-algebra iff: 

1. for each function symbol $ in the domain 
of A, if c ($ ) is 
q**.**a n ---> g 
then A($ 1 returns an element of IAl when 
given an element of !A’ ‘CL1 , B 
an element of IAl , a2,.. and an element of 

2. 
IA!%. 

A evaluates all the expressions of rT as 
true. 

We are now ready to define database instances. 
Adatabase- over a schema S =( c 1 
is the ordered pair (S,A) where A Is ‘& S- 
algebra. 

Notation: Given an expression P of type 
boolean, for a database instance i, we write 
II= F iii i evaluates P as true. 

Readers interested in details of the above are 
referred to (Go1 821 and [Go1 831. 

3.2 Databases as dynamic objects 

We begin this se&ion by giving our main 
definitions (la and lb below were presented in 
3.1). A speoifioation of a database is: 

la - A schema S= (c ,rc ) , where c is a 
many-sorted signature and rc is a 
oollection of well formed boo1 ean 
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expressions over c. 

lb - A collection of domains {Da) of values, 
one for each sort a OS I . 
The colleotion 
(database instances)D%eroiDa). 

g-algebras 

2a - An extension LX1 of z1 to include update 
symbols u and the modal 
construct P’ I?‘“” and to include Sunotions 
‘in-Cc’, one for each sort d , of 
type a ---> bool. 
And an extension I’l : of r to include 
transition constrain S. E I 

2b - A collection U OS update Sunotions *, 
11 ,.... where each y is a 
mapping from DD to DB, and suah that 
these functions satisfy rip 
(We shall define what is meant b; 
satisfaction below. We underline 
the names of update functions, as in y,, 
to avoid confusiqn with the corresponding 
symbol u, in I . ) 

The rest OS this section is concerned with 
explaining and illustrating 2a and 2b above. 
Note that la and 2a are syntactic aomponents of 
the definition, and that lb and 2b are related 
to semantic concepts. Essentially it is the 
syntactic components that are used in conmotion 
with proving correctness of implementations and 
reasoning about database properties whereas the 
semantic components are used in connection with 
evaluation of expressions denoting queries. We 
shall indicate how both these functions are 
supported by our definition. We assume the 
presence of a deductive system for the language, 
although here we omit any such detail. 

At the dynamic level we want to be able to talk 
about objects which are not necessarily present 
in a given database instance - that is, we want 
to reason about potential objects as well as 
about the “concrete” ones of any given instanoe. 
To facilitate this we define each S-algebra over 
the same collections of objects (the Da’s), and 
pi& out those objects which are +ealw, 
nactualw or “concrete” in each algebra by use OS 
the in- LX functions. 

Quantifiers non range over all potential 
objects; but we could also introduce local 
quantification by use of the construot: 

Sorall x ( In-cl(x) implies... 

See [HuCr 683 for a detailed treatment OS the 
problems associated with the range of 
quantifiers in a modal logic setting. And see 
also [Man 811 where a distinction is made 
between loaal and global symbols (in particular 
variables) Sor an alternative way of handling 
the potential/actual distinotion. 

We turn now to the more interesting parts of the 
definition, those dealing with updates. We 
explain our syntactic treatment first. Although 
there are strong similarities with program logic 
[Gold 821 the material is probably unismiliar to 
most readers. go we proceed more oarefully 
(and when neaessary, formally). 

The definition OS well-formed expressions over 
I is extended to well-formed expressions over 
1’ by including the construct: 

[y&J 

as an expression OS type boolean, where P is an 
expression 
symbol. 

of type boolean and um Is an update 
The constructs [t+J have no effect on 

whether or not variables are bound and we use 
the square brackets to exploit the analogy with 
[Gold 821. Intuitively the expression EplP is 
read as ‘after the update s is periormed, P 
will be true’; that is, the [u ] act as 
operators In a similar way to the, pesaps, more 
familiar modal operators 0 , 0 and Ikxt. 

The logic used Sor deriving consequences Srom 
the schema can now be extended by adding the 
following axiom schemata: 

Distribution: 
lul(P implies Q) iSS ([u]P implies [u]Q) 

Negation: 
not [ul P iSf [u] not P 

Quantifiaation: 
(forall x [ul P(x) ) ISS lIul( Sorall x P(x)) 

and the rule: P 

[UIP 

ie if P is a theorem, then so is [u]P. 

In the above P and Q are expressions of type 
boolean overC1 ,that is, they themselves may 
include modal symbols; P(x) is an expression of 
type boolean 0verCl with at most the variable x 
free; and u Is an update symbol oSI1 , that is, 
we are using u as a metavariable over the um. 

The quantification axiom might seem strange, but 
note that we are quantifling over all potential 
objects. It is worth noting that expressions 
such as: 
“forall x [u]P(x)” and “[ul Sorall x P(x)” 
should not be confused with the SimilW 
expressions using vlooal quantification”, for 
which the quantifioation axiom does not hold. 

One important feature OS this system Is that our 
modal operators aan be “pushed around” quite 
Sreely within our logic. The statia constraints 
and the transition constraints act independently 
and our logic reflects this. The behaviour of 
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ug,***r +p*-- is governed only by the 
transition constraints. 

The notion of satisfaation is easily extended to 
oope with the modal operators. Given a database 
instance i, 
expression P : 

an update symbol us, and a boolean 

I I= [um,lP iii y,(i) I= P. 

It is straightforward to check that the axioms 
(distribution, negation and quantification) and 
the rule presented previously are sound. What we 
are doing here is replacing the more 
oonventlonal relational semantics for modal 
logic by a functional semantics. 

Examples: Let us look at some examples of 
transition constraints for our university 
database : 

- ages cannot be reduced: 

forall x forall y ((age-of(x) is y) 
implies ([ul (age-of(x) GE Y))) 

This expression reads as follows: for any 
student x and any age y, if the age of x at 
present is y then after performing any update 
the age of x will be at least y. 

- certain course, say EE1, once inserted to 
the database can never be deleted. 

in-course(EE1) fmplies [u](ln-course(EE1)) 

Both these examples can, of course, be captured 
by the general operator 0 . Literally, these 
two examples only talk about a “next” state, but 
a simple application of the rule and schemata 
presented above allow the modal constructs to be 
Iterated to any length. (See 4.7 below). The 
specific operators come into their own when we 
wish to make assertions about particular 
updates: 

not in-student (Jaok) 
implies [u,] in-student (Jack) 

for example, asserts that 
YQ 

involves entering 
“Jack” into the database. (,n practice we would 
write ‘add-Jack* instead of *uG*.) 

It should be noted that the [p]‘s are speolfio 
and are not parameterized with respect to the 
data being manipulated. For example in the aase 
of adding a new student to the database: add- 
Jim, add-Jack, add-Carol, etc., all have to be 
included in the list u ,..., u ,.. This 
situation is clearly not i eal. 8 Neiber do we 
want to have to specify a separate update for 
each change that we might like to make to a 
funotion value. We therefore introduce 
parsmeterixed updates. Syntaotioally we need to 
modify 2a of our basic definition by requiring 

that each update symbol be typed (to piok out 
those expressions which can be used as 
parameters). For example: 

‘add-student’ would be of type ‘students’ 
and we can make assertions about the adding of 
*Jaok” by using 

[add-student(Jaok)] 

or about the adding of arbitrary students by 

[add-student(x)] 

where x is any expression of type ‘students’. 
Or if ‘increase-Sal@ is of type ‘person l nat’ 

forall x forall y forall 2 ( Sal-of(x) is y 
Implies [increase-sal(x,z)] Sal-of(x) is (y+z)) 

would be a suitable transition aonstraint about 
the inorease of salaries. 

And, of course, we oan form more complioated 
expressions by using constructs like: 

[inorease-sal(employee-of(Jack),y/lO] 

We can manipulate the Cu( , ,...)I In the same 
wey as the [u]. Note that ooourenoes of 
variables in suoh parameterised update 
constructs are free. And the semantios extends 
straightforwardly by modifying 2b so that each 

3 
isamapplngfromDBx (Dax . . . ) to DB, 

wereu,isof type ae... . 

4. Scmerelatetdaspects 

In this seotion we will address two further 
issues : how our modal system relates to others, 
and how transaotlons oan be speoified using our 
modal system. 

4.1 Sinoe we have the specific modal operators 

3!19 
the other modal operators 0 and 0 are 
essential for the expression of 

transition constraints. ( 0 is to be read, as 
‘all reachable database instances’, and 0 is to 
be read as ‘some reachable database instance’.) 
We aan provide semantics as follows: 

i I=clP iff &nCun-l...~(l)...) I= P 
for all sequences %, u,,..., un of updates, 

and 

i lPOP iff *or, -1”. U()(i)...) I= P 
for some sequenoe q), Ml,..., u, of updates. 

Given a partioular sequenoe of updates, Mext and 
Until can be given semantics in the usual way 
[Man 791. 

Syntactloally we can regard Oas an abbreviation 
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for not a not, and add the axiom schema: 

UP implies P ; 

0 ( P implies Q ) implies (0 P implies OQ) ; 

UP impllesO UP; 

and the rule Opp to reason about q and 0. 

This system is usually referred to as SQ, and it 
is easy to oheck that these axlom schemata (and 
rule) are sound, as long as the u update is 
included in the collection U of update 
functions. That is, m: DB --> DB is suah 
that m(l) = i. 

4.2 By a transaction we mean a sequence of 
update operations. For a sequence of updates 

“n 
?Pl’ l **yp* we can use the construot [uO;u,; 

g ven a database instance i and a boolean 
expression P we have: 

As each J$, has been defined as a mapping from DB 
to DB (le. from instances to instances) this 
amounts only to the composition of updates. 

[Ilo; . . . unl Is equivalent to Cunl...[uIl~uOl 

However we could weaken our definition of the j+a 
so that they are mappings from the collection 
of algebras to the colleotlon of algebras over 
the language. Thus integrity constraints need 
not be satisfied during the transaction, only at 
the end (algebras need not satisfy the integrity 
constraints). We are currently Investigating 
this area. 

5. COIWlU8i0n 

One of the main contributions of the theory of 
abstract datatypes to progrsmming has been the 
introduction of application dependent objects 
and operations to be manipulated direotly at a 
logical level by programs (and programmers). 
This has eased the burden of program design 
because analysis can be performed at the 
abstract, logical level by both the designers 
and users of the program. We feel that database 
designers and users should benefit from the same 
approach. 

constraints (eg: various kinds of dependencies). 
The use of these languages in partioular 
applioations was unstructured in the same sense 
that data representation and manipulation was 
before the use of abstraot data types. Users 
have to formulate queries in terms of the 
representation (eg: relations and types) and its 
associated operations (eg: join. nroieotion, 
etc., in the case of relational algebra) instead 
of the concepts which might be more familiar. 
Updates were even lass formalized as none of the 
traditional models addressed this problem 
direotly. Typically, the only update operations 
available were again primitive, implementation 
dependent ones (eg: insert a tuple in a 
relation). 

Recently efforts have been made to apply the 
teohniques of abstract data types to data base 
specification. Thus application dependent 
objects and operations are becoming more 
acceptable. However, these presentations have 
of updates and database instances and have 
tended to concentrate on static constraints. 

We have attempted above to provide a theory of 
databases which allows designers and users to 
deal with the objects and operations logically 
relevant to the application both for queries and 
updates. 

Designers can specify the properties of the 
primitive (application dependent) query 
operations, ie: static constraints, using what 
Is essentially first order logic augmented with 
general query forming operators thought to be 
suitable for database specification. The 
dynamic properties of databases are again 
defined using application dependent primitive 
update operations by means of a modal logic. 
These general operators, first order logic and 
the modal system, are a fixed specifioation 
language for database applications. They have 
the further advantage that a user can formulate 
queries and updates using this formal system. 
Thus the speaification language is also a 
general purpose query and update language. 

Moreover, such specifications offer the same 
advantages as abs*sact data type specifications. 
One can decide on an optimal implementation 
method and then prove its correctness with 
respect to the specification. 

Much of the effort in database design in the 
past has concentrated on the Implementation 
oriented approach exemplified by the various 
traditional models: relational, hierarohical, 
etc. These models provided general purposes 
tools for query, formation, information 
representation, and the definition of static 
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