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Abstract. In the commonly adopted data models (as 
ins entity-relationship data model 111, for 
example) an attribute is a mapping between an en- 
tity set or a relationship set and a value set. 
The intension of a mapping property is given im- 
plicitly or explicitly in the data models, but 
the extension can be generally represented by the 
set I<entity,value>), as in the relational model. 
We propose an alternative data model for statisti 
cal databases, in which an attribute is represen- 
ted by its analytic properties (the distribution 
function of the values of the attribute). These 
analytic properties are described by a set of pa- 
rameters,which we call the canonica2 coefficients 
of the attribute. The canonical coefficients can 
be used to solve the usual statistical queries 
with no access to the data. In particular, we pre 
sent: 1) the methods for computing and updating 
the canonical coefficients, 2) the use of the ca- 
nonical coefficients for solving the main statis- 
tical queries, also in distributed statistical 
database environments. Besides, an application of 
such parameters to the query decomposition in 
distributed database environments is discussed. 

INTRODUCTION 

Statistical Data Bases (SDB) differ from those 
usually called Data Bases (DB) in: 
- user query level: in SDB user queries are gene- 

rally limited to statistical queries; 
- system level: in SDB security methods and infe- 

rence control mechanisms are very important, 
much more so than in a DB. 

In our opinion another important level must be 
considered: 
- data model level: until a data model for SDB, 

like a data model for DB, is-adopted, security 
problems and execution-time (responsibility) 
problems cannot be satisfactorily overcome. 

In order to clarify these concepts, we must re 
call some definitions. 
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A Data Model (DM) is an intellectual tool used 
for understanding the logical organization of 
data and for modeling the real world of an enter- 
prise (121). 

A Data Base is a collection of stored oper- 
ational data used by application systems of some 
particular enterprise (131). 

On the contrary, a Statistical Data Base is a 
database that contains a large number of indivi- 
dually sensitive records but is intended to sup- 
ply only statistical summary information to its 
users, not information referring to some specific 
individual (j4,5i). 

These last two definitions implicitly outline 
the difference we have called user query level 
and system level. But the above definition of SDB 
also contains explicitly the assumption that an 
SDB is a DB: what changes is its use. Regarding 
this, we find a more explicit definition in 161: 
"An SDB has been defined as one which returns stat 
istical information, such as frequency counts of - 
records satisfying some given criteria, as oppo- 
sed to a database which returns details of an en- 
tity, for example, name and address of an em- 
ployee". 

On the other hand, statistical summary infor- 
mation, i.e. statistical operations such as SUM, 
PERCENT, COUNT, AVERAGE, MAXIMUM and MINIMUM, can 
be defined (171) as data base procedures and call 
ed aggregate functions, because they calculate a 
value which is not stored explicitly in the DB. 

In some data models, aggregate functions (al- 
ways referred to as statistical functions in the 
following) are an integral part of the data lan- 
guage, otherwise they are supported by statisti- 
cal package interfaces (181) or use specialized 
hardware (database machines and their future 
plans 19-111). 

With regard to this, Kobayashi, Futagami and 
Ikeda (1121) say: "The statistical packages en- 
able non-programmers to analyze statistical data 
easily. It is not so easy to maintain the data in 
these packages. We have some statistical packages 
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which use a conventional database management SYS- 

tern (DBMS). But it is still not sufficient to ma- 
nage the whole environment around statistical data. 
A new system or package is required to support 
the statistical environment effectively. Such a 
system is often referred to as a statistical data 
base system". 

This informal definition differs from the pre- 
vious ones because it invokes a nm system to SUP 

port statistical environments. 
Since it is inconceivable that a database some 

times (or for some users) has a database utiliza- 
tion and sometimes a statistical database utiliza 
tion, in our opinion a wide distinction must char 
acterize SDB from DB. 

So we propose these extensive definitions: 
- a statistical data model (SDM) is a description 

of the summary of the real world of an enter- 
prise with, eventually, a description of the 
real world; 

- a statistical data base is a collection of stat- 
istical entities finalized to help specialized 
people to make decisions on the development of 
an enterprise-world. (Another equivalent defini 

- tion is given at the end of section 1.3). 
So the main objective of an SDB is to develop 

decision-support facilities. 
In what terms a so-defined statistical data 

model can be made effective is not a priori defin 
able, depending on the user level types of an SDB. 

In section 1 we introduce three types of user 
level. For two of these it is unnecessary and 
sometimes harmful (to the security and execution- 
time aspects, if statistical query solving is 
based on effectively stored data) to have also a 
description of the real world in the statistical 
data model. 

Then we present our analytic approach proposal 
to statistical databases. The approach is based 
on the knowledge of the distribution function of 
data. Section 2 is devoted to illustrating the 
method for determining data distribution and its 
properties are discussed. 

Applications of the method for solving statis- 
tical queries are presented in section 3, while 
section 4 illustrates an application to optimal 
query processing strategies in database and dis- 
tributed database environments. 

1, THE ANALYTIC APPROACH 

1.1 The statistical database users 

Statistical databases have a wide applicabil - 
ity to several user classes. For example they are 
widely utilized by scientists (in the analysis of 

the phenomena of Nature), by economists (in mar- 
keting analysis and planning), and by the politi- 
cians (in the analysis of social problems). 

These possible SDB users are different from 
each other and they can exemplify the different 
levels of users. So, we distinguish three types 
of user levels for an SDB. 

user level 1 
At the first level (the lowest) we put the 

user who also creates and manages the data in an 
SDB. Such a user also designs the statistical ap- 
plication programs or the statistical package in- 
terfaces and finally analyses the results of its 
applications. 

Users of this kind are very frequent in scien- 
tific environments and generally use statistical 
packages (for a good survey, see 181). The differ- 
ence between this kind of user and the more com- 
monly known SDB users is that a user at level 1 
can have access to individual information (in 
physics experiments, for example). 

We refer to user level type 1 as the user who 
performs the statistical analysis of data in a 
database. 

User level 1 usually works on static SDB's (i. 
e. those SDB's in which the data are not frequent 
ly updated). For this user level, an SDB does not 
come up against any security problems. Instead, 
and this has to be considered for all the users 
of an SDB, the SDB come up against execution-time 
problems. 

user level 2 
At the second level (the intermediate one) we 

put the users of dynamic SDB's. 
These users can only obtain statistical results 

from their queries. (Here the dynamism of an SDB 
is intended to include the re-definition of the 
relevant data to be stored in the SDB). 

It is at this level that the user utilizes a 
decision-support object. 

Here, the Statistical Data Base Administrator 
(SDBA) can decide to use a data model or a statis- 
tical data model for the SDB. The choice depends 
on the following considerations: 
a)if maximum information and accurate responses 

(precise knowledge of the properties of data) 
must be provided for the users, then a data 
model must be selected; 

b)if a good approximate knowledge of the proper- 
ties of data is sufficient (i.e. small relative 
errors can be tolerated in query responsesl) 

1 Note, however, that precise query responses are 
not always produced by inference control methods. 
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and the responsibility problem is an important 
one, the SDBA can use a statistical data model 
for SDB. 
We call the user of level 2a a user who uses a 

DB in a statistical way, the user of level 2b one 
who uses a statistical database. 

user level 3 
At the third level (the highest) we put the 

user of a Distributed Statistical Data Base (DSDB) 
that is, the user who avails himself of all the 
decision-support facilities of the SDB's. 

We say that this user uses statistical data 
bases in a statistical way. 

At this level, the data model must be a (dis- 
tributed) statistical data model. 

We point out that each level needs its lower 
level. 

1.2 Security and responsibility problems 

Secure inference control mechanisms are requi- 
red, thus making an SDB non-compromising. But, as 
is pointed out in 161, "there is no such thing as 
absolute security because there are many unknowns 
in the system, e.g. users' knowledge. Absolute se 
curity is defined formally that no individual in- 
formation can be inferred soZeZy from the history 
of the answered queries". 

Regarding this, however, it must be noted that 
for almost any SDB a general tracker predicate' 
can always be found (j13() and that the problem 
of maximizing the amount of information to the 
users without compromising the SDB is NP-complete 
(161). 

There are six approaches to the inference con- 
trol problem: 1) partitioning the SDB 1141; 2) rng 
difying the results by query modification 1151, 
output perturbation :16/, data distortion 1171 or 
random sampling 1181; 3) controlling the query set 
(number of tuples satisfying a query) 119,2Oj; 4) 
controlling the overlap between query sets 1211; 
5) allowing security constraints in the data model 
definition (7,221; and auditing (61. Methods 1 to 
5 are suitable for large SDB's; method 6 works on 
small ones. 

The responsibility property is the response- 
time independence from the quantity of data invol- 
ved. Data compression 1231, random sampling 1241, 
and derived files (HSDB system) 1121 approaches 

' A general tracker is a predicate that permits 
one to find the answer to any inadmissible query, - 
as opposed to an individual tracker that is a 
specific inadmissible query. 

are examples of improvements in responsibility, 
but they have some disadvantages. For example, 
multistage and stratified sampling have some stra 
tegic parameters, so unreliable results can be - 
produced if parameter specification is at fault. 

Using the above-mentioned derived files of 
HSDB, responsibility improves, but security prob- 
lems are partially solved. An HSDB user can obtain 
statistical information of an attribute in real 
time, due to the use of expanded data diction- 
aries3, whereas interactive statistical analyses 
are performed on derived files, while more detail- 
ed analyses process the original files. No infer- 
ence control is contained in this methodology: 
the 'degree' of security depends only on how the 
derived files are defined. 

In general, these approaches do not have an 
easy maintenance in dynamic SDB's. 

1.3 Advantages of an analytic approach 

The analysis of the statistical information 
contained in an SDB is mainly that of the statis- 
tical properties of the stored data. These statis 
tical properties of the data must be expressed in 
terms of general properties and can be represented 
by several forms, for example by synthesis data 
(i.e. normalized summary data) or by analytic 
data derived from the stored data (i.e. statisti- 
cal quantities of data; see those mentioned in 
footnote 3). In the following, we shall refer to 
the statistical information contained in the data 
as the statistical data properties. 

In some cases a precise knowledge of the stat- 
istical data properties is required. For example, 
in marketing analysis, the retail mean prices of 
some goods can be required on pre-established 
days. This information is obtainable only by an 
effective access to the stored individual prices. 

In other cases it is sufficient to have a good 
approximate knowledge of the statistical data prop 
erties. These latter cases generally arise for 
large and very large SDB's, for which small rela- 
tive errors can be tolerated. In the previous may 
keting analysis example, the curve of the state 
of the prices can be required twice a year. This 
information is obtainable only if synthesis data 
representation is effectively stored. 

3 The expansion consists of adding the following 
attributes: established data, missing values, 
unit, precision, discrete or continuous domain, 
the number of actual records within a presented 
field, theoretical distribution, max, min, medium, 
mode, mean, variance, skewness, kurtosis and per- 
cent points. 
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So, three situations are possible: an SDB which 
contains only the individual data, one which also 
contains the statistical data properties, or one 
containing only the statistical data properties. 

In an analytic approach we deem that the stati? 
tical data properties of data must be themselves 
be stored (see fig.1). 

1 DM yes yes/no 
I 

I 
a! DM / yes yes/no 

2 I 

b j SDM / no/yes yes 
I I 

3 / SDM j no / yes 
I 

Figure 1. Situations for an SDB 

The major advantage in doing this is the maxi- 
mum responsibility obtainable. Answers to user 
queries only require accesses to the stored repre 
sentations of statistical data properties and not 
to the stored data. 

A second, but no less important advantage, is 
that new inference control methods can be approa- 
ched. They work directly on statistical data prop 
erties or on their representations. 

The analytic approach we oropose has some other 
specific advantages (in the following we identify 
statistical data properties with their representa - 
tions): 
1) statistical data property evaluation requires 

only one read-in per relation (at the storing- 
time, for example). 

2) Statistical data property representations re- 
quire a small amount of storage. For example, 
as we show in the following, for a single at- 
tribute, statistical data properties consist 
of min, max, and an n-tuple of real numbers in 
(-l,+l) (this n-tuple represents the data dis- 
tribution). 

3) Statistical data properties are not oriented 
to any particular class of applications: they 
can handle the usual statistical queries such 
as PERCENT, COUNT, AVERAGE, and so on, as well 
as compute other statistical quantities such 
as the moments of the data distribution (up to 

a degree 'n', see the previous point), or they 
can plot or tabulate the data distribution and 
make histograms of the data. 

4) Statistical data properties are scale-indepen- 
dent (e.g. a histogram classifies the data re- 

= 

gardless of any particular scale of the range 
of data). 

5) Statistical data properties are independent 
from the units of measure of stored data and 
this supports the integration of the queries 
in distributed environments. (For another ap- 
proach, based on a data definition language 
extension, see 1251). 

6) Data updating induces a simple inediate stat- 
istical data property updating. 

7) Finally, statistical data properties can be 
made known with a high level of accuracy. From 
this aspect, our experiments have always given 
satisfactory results. Up to now the tests have 
concerned predicates on one or two domains. 

The analytic approach can be used at every 
user level, although at user level 1 the stored 
data must be accessible. 

So, we can give an equivalent definition of an 
SDB as a collection of data consisting of statis- 
tical information derived from time-varying data 
not (necessarily) stored in the database. 

2. THE DATA DISTRIBUTION FUNCTION 

In this section,we describe the analytic method 
we utilize to determine the statistical informa- 
tion contained in an SDB. The statistical data 
properties consist in the knowledge of the dis- 
tribution function of the data. 

At first, in section 2.1, we consider the prob- 
lem of how to represent the distribution of a ran- 
dom variable (representing the values of a single 
attribute) and in section 2.2 we discuss the prop- 
erties of the method. 

After that, in section 2.3 we extend the method 
in order to evaluate the distribution of two ran- 
dom variables (representing the values of two at- 
tributes) and discuss it in section 2.4. This ex- 
tension can be generalized to three or more vari- 
ables. 

In the following we assume that the values of 
an attribute are numerical values in any range of 
variability (a,b). That is because any value of an 
alphanumerical attribute can be mapped into a nu- 
merical range by an opportune isomorphic mapping. 

We shall call: 
R and s generic relations of cardinalities N and M 
D a generic domain of R defined on a real and 

bounded range (a,b) 
x,3x,, ..- some homogeneous attributes on D with 

cardinalities N,, N,, . . . 
X,Y, . . . Z some generic attributes of R with 

ranges (ax,bx),(ay,by), . . . (az,bz) re- 
spectively and the same cardinality N 
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x1,x2, . . . XN the value occurrences of X, at a 
certain time. 

The problem of determining the analytic dis- 
tribution function of an attribute X has several 
solutions. 

The first solution consists in determining the 
frequency histogram of X. This solution has a rel 
evant disadvantage: the distribution is determined 
in a static way, i.e. is based on an a priori 
classification of the range (a,b). So, this method 
clashes with the requirement in point 4) of the 
section 1.3. 

All the other methods are based on the numeri- 
cal approximation of the real distribution of X. 

The interpolation and least squares methods 
are often utilized, but it is well known that they 
are not efficient regarding the data updating 
problem. If polynomials are used, these methods 
are conveniently used on digital computers only 
for small values of the approximation polynomial 
degree. In our opinion, however, the use of poly- 
nomial approximation is better than the other 
functional approximations, such as the trigonom- 
etric and exponential approximations, due to the 
fact that these latter functions are more time- 
consumingly computable than polynomials. Further- 
more, some statistical quantities, such as the mo- 
ments of data, are more easily derived from poly- 
nomial representation of the distribution function. 

2.1 The distribution function of an attribute 

The method we use approximates the data dis- 
tribution by orthogonal polynomials and is an al- 
ternative method to determining a least squares 
polynomial approximation. 

Here we present the formulae to compute the 
distribution function of the values of an attri- 
bute X on (a,b), by means of a polynomial approxi- 
mation up to a degree 'n'. Details of their deri- 
vations are given in Appendix. 

The probability distribution function 
Let g(x) be the distribution function (prob- 

ability density function, pdf) approximation of X. 
Then we have 126,271: 

(1) pdf(X) z g(x) = y (2i+I)*ci*pi(x) 
i=O 

where 

(2) c A-2. 
i b-a N r Pi(Xj) 

.i=l 
i=O,I,..n 

and the pi's are the Legendre polynomials, com- 
putable by the recursive relations: 

(3) PO(X) 3 I , Pi(X) = x 
(i+l)*p. 

1+1 
(x) = (2i+l)*x*pi(x) - imp i-j(') 

(The Legendre polynomials are defined on the in- 
terval (-I,+l). So, for computing pi(X) (irl) by 
formulae (3), each XEX must previously be mapped 
from (a,b) into (-,,+I) by a trivial isomorphism). 

The cumulative distribution function 
The knowledge of the cumulative distribution 

function (cumulative density function, cdf) of at- 
tributes is very important in DB and SDB environ- 
ments (see sections 3 - 4). The cdf of X is suit- 
ably derivable from the pdf of X (formula (I)) as 

(4) cdf(X) = G(x) E ,; g(y) dy 

x+1 b-a =-+-. 
2 2 i 

i=l 
Cio(Pi+I(X)-pi_I(X)) 

2.2 The analytic properties of the method 
The canonical coefficients 
The calculation of the co,cl,..cn coefficients 

(formula (2)) occurs only once at the creation of 
the database or, if the data are already stored, 
it requires only one sequential read-in of each 
attribute X. 

Furthermore, the algorithmic procedure that 
computes the Ci's consists of few instructions,be- 
cause it is based on the recurrence relations (3). 

Also the computation of the distribution func- 
tion g (formula (I)) or of the cumulative function 
G (formula (4)) requires a simple procedure based 
on formulae (3). 

Since the Ci’S contain all the information on 
the distribution of an attribute X, we call them 
the canonical coefficients of the attribute X. 

The additive property 
If an attribute X is updated, its Ci’ updating 

does not require a re-read-in of X, but it is im- 
mediately performed by the additive property: 

c. =+ 
1 

N1, l (N*ci*pi(x)/(b-a)) i=O,l,..n 

('+I sign holds for insertion of a datum x, 
'-' sign holds for deletion of x). 

In general the additive property can also be 
applied to determine the global distribution (i.e. 
the canonical coefficient ICi)) of two or more ho- 
mogeneous attributes X1,X,, . ..X., if the respect- 
ive canonical coefficients Icy 1 p=I,..r;i=O,..nl 
are known: 

‘i = ( lp Np’CP 1 / Ip Np i=O,l,..n 

This latter application of the additive prop- 
erty will be discussed later: its main peculiarity 
shows up in distributed DB and SDB environments. 
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The performance of the approximation method 
The method has been experimented on several 

attribute samples and in many real cases. It has 
given a very good performance both for large or 
very large attributes and for small attributes. 

The accuracy of the approximation function de- 
pends /28/ upon some factors such as: 
- the approximation polynomial degree: our tests 

have indicated a small value (always less than 
20, generally 9+15). The use of higher values 
is not profitably practicable: it can cause a 
rounding error propagation increase. 

- The rounding error propagation in formula (2): 
for large values of N, the finite machine pre- 
cision affects the value of the sum. A relative 
error damping is obtainable if negative and 
positive values are separately added. 

2.3 The joint distribution function of attributes 

Let us call X,Y, . ..Z a set of attributes. 
If there are not any functional or multivalued 

dependencies among X,Y,... and Z (i.e. they are 
mutually independent), the distribution function 

9X,Y,. .z (XYY,... z) and the cumulative function 

GX,Y,. .z (X,Y,... z) are directly derivable from 

gxw, gy(YL . . . and gz(z), as in theory of prob- 

ability for independent variables: 

SX,Y,..Z (X-Y,. .z) = gx(xbgy(Yb...-gz(z) 

GX,Y,..Z (X,Y,.. z) = G,(x)*G,(y)-...*G,(z) 

So, the problem of the calculation of the multi- 
dimensional distribution of two or more attributes 
regards only those domains that are mutually de- 
pendent. 

First we discuss the case of the 2-dimensional 
distribution of X and Y. 

Let us suppose X + Y. Then we can fix a base B 
of classification of X (or, equivalently, the 
range (a,,b,)) into s intervals B~,B~, . ..6B (in 
the following denoted as B-intervals) not necess- 
arily of the same length. 

The classification of X, based on a, is chosen 
so that the following is reasonable: 
Assumption. For each &.-interval, if Xi~ B, and 

XjE B,, then g 
ylxi ?r 'YlXj* 

So, it is possible to compute the 6 distribu- 
tions of Y vs each B-interval. The distribution 
gx y(x,y) is obtained from the conditional dis- 
trllbution gyix(y]x) (represented by the (n+l x a) 
matrix Cy;X of the canonical coefficients of 
the a distributions) and from the distribution 
function 9,(x) of the independent domain. 

The distribution gy(y) can either be computed at 
the same time as gx(x) and gYlX(ylx) computations, 
or directly derived from gYlX,: that is its ca- 
nonical coefficients are the sum of the values on 
the rows of Cy 

4 
x. 

We point ou that gX, gY and gylx computations 
require only one read-in of (X,Y). 

In a similar way, the method can be generalized 
to more than two attributes. For example, for 
three attributes, X,Y and Z, the distribution 
function gx,y,z is obtainable from: 

9X’ 9Y Ix and 9ZlX,Y 
if X+Y+Z and from 

9X' 9Y and SZIX,Y 
if (X,Y) + Z. 

Example. Let EMPLOYEE be a relation defined on do- 
mains E* (employee number), NAME (employee name), 
AGE (employee age), SALARY (employee salary) and 
CT (contract type). If we assume a dependence of 
SALARY attribute on AGE and CT attributes, the 
distribution of SALARY values, conditioned by 
(AGE,CT) values, can be obtained by partitioning 
the ranges of the AGE and CT values into kxl sub- 
ranges C(ai'AGE<ai+i ; CTj) 1 i=l,..k; j=l,..l> 
and by computing the 6 SALARY distributions, where 
B=kxl. In this case, the conditional matrix 

is a three-dimensional (kxlxn+l) 
'SALARYIAGEJT matrix 

. 

2.4 Remarks on the multi-dimensional distribution 

The method for determining the distribution 
function of two or more non mutually independent 
domains needs some clarifications on: 
1) the large amount of storage required for a con- 

ditional matrix of canonical coefficients; 
2) the arbitrariness (or uncertainty) of the clas- 

sification B. 
These points are not real disadvantages, in 

fact: 
1) Large SDB's require a very large amount of 
storage to memorize the data, in any case. Since 
the proposed method consists of an analytic ap- 
proach for solving the user queries (satisfied 
only by means of canonical coefficients, see the 
next section), then no storage is required for 
data. So the storing of the canonical coefficients 
of the data is largely compensated by the unnec- 
essariness of storing the data. 

Additionally, this safeguards further the data 
base from snooper-inspections: solving queries by 
statistical methods while guaranteeing statistic- 
ally accurate responses. On the other hand it im- 
pedes the deduction of confidential information 
by inference, because it is based on the analytic 
properties of data and not on the data themselves. 
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2) Regarding the arbitrariness of the choice of a 
classification 3, our tests on large experimental 
samples of data have indicated that, even for 
small values of B (10+20), a good performance is 
obtainable in a statistical sense. So the assump- 
tion made in the previous section is not a re- 
strictive one. (We note that the analysis of a 
conditional matrix of canonical coefficients can 
furnish some a posteriori indications to the SDBA 
on the dependency existing among the attributes, 
by comparing the canonical coefficients of each 
B-interval by means of an opportune norm). 

Moreover, for the user queries based on a clas- 
sification 6' different from 6, it is easy to 
adapt B to B'. The adaption is performed by oppor- 
tunely weighing the canonical coefficients of the 
B-conditional matrix t)s B', by means of the dis- 
tribution functions of the independent domains 
(that are exact functions). 

Finally, the SDBA is not advised to use a finer 
classification as the basis of the conditional ma- 
trix: not only due to storage considerations, but 
mainly because it could allow a higher degree of 
accuracy, so that some individual or general 
tracker predicates could be profitably found and 
the deduction of information by inference could 
not be avoided. 

3. APPLICATIONS 

In this chapter we show how the statistical 
functions are comoutable in SDB environments using 
the canonical coefficient knowledge. 

We deal with statistical queries on a single 
domain (section 3.1) and on two domains (section 
3.2), whose generalization on more than two do- 
mains can be similarly obtainable. In section 3.3 
other applications based on canonical coefficients 
such as the calculus of data distribution moments 
and data report (plotting, tabulating and making 
histograms of data) are described. Finally, we 
present some experimental tests of the analytic 
approach proposed in section 3.4 while the appli- 
cation to distributed statistical databases is 
discussed in section 3.5. 

3.1 Statistical queries on the domain X 

Let us indicate with I~(Xi,Xi+l) a generic sub- 
interval of values of X referred to by a query. 
(Computable formulae are given in Appendix). 

PERCENT(X;I)Z~(X~XEI) =G(X;I) sG(Xi+l)-G(Xi) 
COUNT(x;I) = N*PERCENT(x;I) 
AVERAGE(x.1) = [ /I x-g(x) dx ) / G(x;I) , 

SUM(x;I) = AVERAGE(x;I)*COUNT(x;I) 

Let US indicate with J-(yj,yj+,) a generic sub- 
interval of values of Y. 
Case 1. X and Y are independent domains. 

PERCENT(x,y;I,J) = PERCENT(x;I).PERCENT(y;J) 
COUNT(x,y;I ,J) = N*PERCENT(x,y;I,J) 

Case 2. X and Y are not independent domains (X+Y). 
In this case we utilize the conditional matrix 

C of the canonical coefficients of Y us X in 
basis 6: 

I C(O,l) C(O,2) . . . C(O,B) I 
C(1,1) C(1,2) . . . C(1,B) 
. i 
. 

C(n,l) C(n,2) . . . C(n,B) 

In order to compute a PERCENT function on in- 
tervals I and J, we must evaluate the canonical 
coefficients {ck(yjx;I) 1 x~1; k=O,l,..n) of the 
distribution g(ylx) on the interval I and then 
integrate it on the interval J. 

By comparing I with the B-intervals it is pass 
ible to determine the inferior (inf) and superior 
(sup) limits of the B-intervals overlapping I. 

There are two possible cases: 
a) sup-inf=l; i.e. I is entirely contained in one 

B-interval; 
b) sup-infr2; i.e. I crosses two or more B-inter- 

vals. In this case there are exactly two @-in- 
tervals partially overlapping I: we denote XI 
and xF the extremu;? of these two B-intervals 
such that: inf<xisxI < . ..xF"xi+l"sup 
(if sup-inf=2, then xI'xF) and Call ~-(Xi,Xr) 

and is(xF,xi+j). 
In either case the canonical coefficients of 

g(yjx) on I are defined as the sum of the canoni- 
cal coefficients of eventual B-intervals entirely 
contained in I by adding the quota-part of the 
canonical coefficients (corresponding to the par- 
tial intervals: I for case a, 1 and j for case b) 
weighed with respect to the distribution of X on 
these sub-intervals. 

Formally, we have, for k=O,l,...n,: 

case a ck(yix;I) = C(k,inf)*PERCENT(x;I) 

case b ck(y]x;I) = C(k,inf)*PERCENT(x;i) + 
sup-l 

C(k,sup).PERCENT(x;f) + 1 C(k,l) 
l=inf+l 

So, if we call G(ylx;I) the cdf of g(ylx;I), 
we have: 

PERCENT(x,y;I,J) B G(ylx;I,J) = I3 g(ylx;I) dx 

COUNT(x,y;I,J) = N*PERCENT(x,y;I,J) 

(Computable formulae are given in Appendix). 
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3.3 Other statistical applications 

1) The moments of the data distribution are eas- 
ily calculable as linear functions of the canoni- 
cal coefficients. For example: for an attribute X 
on range (a,b), we have: 

M, = (b-a)*c, 
p(X) = M, = (b-a)*c,/3 

M, = (b-a)*(2c,+5c0)/15 
cl 2 - - M, - M: 

M, = (b-a)*(2c,+7c1)/35 
M, = (b-a)=(8c,+36c,+63c0)/315 
and so on. 

2) The histograms of attribute values can be ob- 
tained with a high degree of accuracy by their 
cumulative distribution functions, by applying 
the COUNT function recursively to all the inter- 
vals of a required classification of the ranges 
of the attributes. 

3) The distribution function of an attribute can 
be plotted or tabulated by applying formulae (3) 
to: 

g(x) for monodimensional distribution 
g(x)-g(ylx) if X+Y 
g(x)*g(ylx)*g(z/x,y) if X+Y+Z 
and so on. 
We point out these dynamic facilities in obtain 

ing histograms and tabulations of data. In fact, - 
parameters of a COUNT function are definable at 
run-time and scaling can use a variable step. 
Moreover, regarding the plotting or the tabulation 
of the distribution of data, it is possible to 
choose a sub-division of the data range by means 
of any scale function. For example, a logarithmic 
sequence s.is definable, for m points in (a,b), 
as Si=k*lO' (i=1,2,.. m), where k is such that 
a<lO*k and b>lOm*k. So, the tabulation is based 
on g(sl) . . . g(s,). 

3.4 Tests on the performance of the analytic 
approach 

As examples of the performance of the presented 
formulae in the applications to experimental and 
real data, we show some results referring to the 
COUNT function, as all the other statistical func - 
tions are based on it. 

Figure 2 illustrates, for a single attribute X, 
the mean relative error E obtained in applying 
the COUNT function while varying the cardinality 
N of X. 

Table 1 illustrates an experimental example of 
the application of the COUNT function used to ob- 
tain a bi-dimensional statistical histogram of 
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attributes X and Y (X+Y) that can be compared with 
the real histogram of (X,Y) shown in table 2 (the 
values refer to a ratio 8/8'=0.286). The first 
row and the last column for each table report the 
partial sums on the columns and the rows respect- 
ively. (Eventual discordancies of partial sum 
values with the respective row or column values 
in table 1, are due to the fact that the reported 
values have been rounded to integer values). 

3.5 Distributed statistical databases 

A peculiarity of distributed statistical data- 
bases with respect to distributed databases is 
that almost all the user statistical queries can 
be solved with no transmission of data in the net 
work. In fact, almost all the statistical func- - 
tions (except the linear correlation between two 
(distributed) domains, for example) are linear 
functions of their parameters. 

So, in the horizontal fragmentations of data, 
the analytic approach proposed does not require 
the analysis (read-in) of the data. It is suffi- 
cient to apply the additive property to the ca- 
nonical coefficients of the attributes involved 
in order to solve the COUNT, PERCENT, .,., SUM 
queries and to make histograms or to plot the dir 
tributions of distributed data. 

Also in the cases of vertical fragmentations 
of data, it is sufficient to transmit the canoni- 
cal coefficients of those attributes involved in 

a query, if the query regards only remote local 
data and does not require any relationship among 
data belonging to different nodes. 

4. FURTHER APPLICATIONS 

In this section we indicate another application 
based on the knowledge of the canonical coeffi- 
cients of opportune domains of a database. 
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Table 1. Statistical histogram of a gaussian data distribution US an exponential one 
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Table 2. Real histogram of data referred to by table 1 
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The suggestions which follow are referred to 
the database and distributed database management, 
regarding an application to query decomposition 
and optimization. 

The problem of query decomposition and optimal 
processing strategies in distributed database en- 
vironments 1291 is strictly related to a selected 
cost function. A cost function defines the dis- 
tributed database system cost and is generally 
obtained by opportunely weighing: 
a) time-based cost factors: total time, response 

time, network traffic, I/O operations and par- 
allel computing; 

b) dollar-based cost factors: I/O operations, 
CPU utilization and lease of communication 
lines. 
Of course these factors are not independent, 

that is, any factor cannot be minimized separate- 
ly from the others. SO the definition of a query 
processing strategy requires, first of all, the 
choice of appropriate ratios for the weighing fag 
tors. Optimizing algorithms (cf. 130-361) have 
been generally produced on the basis of the time- 
based cost factors. In 1371 algorithms for mini- 
mizing response time and total time are presented. 

But the network traffic is almost always con- 
sidered be the bottle-neck of the systems and it 
weighs the most. 

Therefore, almost all the algorithms take into 
account the network traffic cost expressed in 
terms of amount of transmitted messages (mainly, 
number of tuples to be sent among the computers 
of a DDB). So, the governing cost of a query pro- 
cessing depends on the cardinalities of the rela- 
tions or sub-relations (to be transmitted) result 
ing from the projection, selection, and join oper 
ations. However, in 1381, a distinction is made - 
for join operations in terms of their 'simplicity! 
For 'simple joins' (one tuple to one tuple joins, 
for example) the message transmission factors 
must weigh at least 90% of the total cost function 
(the remaining percent is due to I/O operations). 
Instead, for 'complex joins' (i.e. those requiring 
a high number of pages fetched) the prevalent 
cost is due to CPU utilization and I/O operations 
(more than 80%). So, in 1341 and 1381 the cost 
function is based on local costs (I/O request + 
CPU request) and on communication costs (message 
transmission). However, it must be noted that the 
communication system assumptions, data rate and 
access delay, in 1381 are quite different from 
those in 1291. 

However, as in 1351, the general conclusions 
on the algorithms are: 
- limited search algorithms (i.e. 'greedy' heu- 

ristic algorithms, as in /30,31,33 and 361) do 

not perform very well as global search algo- 
rithms (i.e. exhaustive algorithms, as in 1341 
and 1381); 

- accurate estimates of temporary result sizes 
are crucial; 

- run-time methods (as in 1321 and 1331) are no 
better than compile-time methods (like that of 
System R), if relation sizes are known accu- 
rately. 

Finally, in our opinion, those methods based 
on replicated relations (as in /361), while per- 
miting a reduction of network traffic, do not 
consider the additional cost of the DDB system, 
due to replicated relation storage, their main- 
tenance (updating propagation) and management 
(replication transparency). (For the updating 
propagation problem, see 1391). 

However, the accurate knowledge of cardinali- 
ties of intermediate relations is always regarded 
as an important problem in every case. 

A distributed data dictionary, 1401, that con- 
tains the canonical coefficients of the domains 
of the relations in a DDB, can permit an accurate 
forecast of the selectivity factor for the selec- 
tion and join operations. 

In fact: 
- selectivity of a selection operation is gen- 

erally provided by PERCENT function (as defined 
in sections 3.1 and 3.2, see fig. 2); 

- selectivity of a join operation between two 
relations R (N tuples) and S (M tuples) on at- 
tributes X E R and Y E S, both defined on the 
range (a,b), is provided, with respect to N-M, 
by: 

i 
i=l 

PERCENT(x;I$ l PERCENT(Y;I$ 

where the set of intervals I,,I,, . . . Ik is a 
partition of (a,b). 

Each interval Ii can have a different ampli- 
tude from the others and is defined in such a 
way that all the values in it can be properly 
assumed join-equivalent. This assumption (i.e. 
the definition of an equivalence relation on 
(a,b)) defines the semantics to be assigned to 
a join operation. 
Figure 3 shows the accuracy of the estimate of 

the selectivity of natural join in an experimen- 
tal case, by using canonical coefficients, while 
varying the polynomial approximation degree 'n'. 
(The two considered attributes had 2500 values 
each, and a gaussian and an exponential distribu- 
tion respectively). 
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Fig. 3. Selectivity of join 

CONCLUSIONS 

In the author's opinion a wide distinction 
must be made between a database approach and a 
statistical database approach. This distinction 
does not only regard the differences existing at 
the level of admissible queries and of inference 
control problems, but also at the level of the 
statistical data model definition. 

In fact, in this paper, a methodology has been 
presented, in order to obtain a suitable repre- 
sentation of the statistical information con- 
tained in the data of an SDB. Statistical queries 
can be satisfied only on the basis of (analytic) 
statistical information (which we represent with 
a tuple of values called the caonica2 coeffi- 
cients of data), and no access to stored data is 
necessary. 

So, particularly for large SDB's, it is suit- 
able to furnish a statistical user with a statis- 
tical view of the data, instead of directly with 
a usual schema of the data (as in the ANSI/SPARC 
architecture). The analytic statistical data 
model, which permits the definition of each at- 
tribute in terms of the distribution function of 
its current values, is not alternative to the 
data model definition. Also the storing of the 
canonical coefficients of the attributes can be 
made in addition to the storing of the data. How- 
ever, a detailed description of a statistical 
data model definition is referred to another 
paper. 

An additive property holds for the canonical 
coefficients of an attribute, so, stored data up- 
dating induces a simple canonical coefficient up- 
date. The canonical coefficient updating can be 

performed at the data updating time or by using 
checkpoint methods. In this latter case, in fact, 
it is reasonable to assume that the statistical 
properties of data, for large data, do not vary 
quickly. 

The performance of the method in solving stat- 
istical queries on an attribute is very satis- 
factory: the differences with respect to the re- 
sults obtainable by analyzing the stored data 
are relatively small, and can be considered neg- 
ligible in the statistical sense. Furthermore, 
the response time is extremely low: it is inde- 
pendent of the quantity of the data involved be- 
cause no data is read. However, the method can 
be suitably extended to the analysis of two or 
more attributes. 

Also, in the distributed environments, the 
analytic method is advantageously applicable, 
because the data transmission consists only of 
transmitting the canonical coefficients of the 
data involved. This happens both in the horizon- 
tal and vertical fragmentations of the attribu- 
tes. The only restrictions for the vertical frag 
mentations is that no associations can be requi- 
red among attributes stored in different sites. 

Other applications are possible in the usual 
database and distributed database management: 
1) the prevision of the storage amount required 

for the results of relational operations, 
such as selection and join operations, can be 
made. 

2) The parameters resulting from the previous 
point 1) can be suitably utilized in order to 
determine an optimal decomposition strategy 
of a query in a distributed database environ- 
ment. 

3) A very efficient use of the knowledge of the 
distribution function of an attribute is 
allowed, in order to apply a unique distribu- 
tive method for hashing and sorting. 

In fact, the distributive mapping 
x + COUNT(x; a,x), (where x E (a,b)), pro- 
duces a data structure, which is both an or- 
dered data structure and a direct access data 
structure. 

This aoplication is widely discussed in 
the referenced author's bibliography. 

APPENDIX 

The distribution function approximation 
method 

Let g*(x) be the distribution function of the 
values of an attribute X and g(x) its orthonorma2 
polynomial approximation up to a degree 'n': 

270 



g*(x) z g(x) f ; 

i=O 
Ci'Pi(X) 

From the first mean-value theorem, 1411, we have: 

<f,X> = (f,g*) 2 (f,g) E ,; f(x).g(x) dx 

where f(x) is any continuous bounded function on 
the range (a,b) of X, and <f,X> represents the 
mean value of f on (a,b) (or, equivalently, on X). 

In particular, if we choose 1261: 

f(x) = ; Pi(X) 
i=O 

from the linearity property of the inner product 
and the orthonormality of the Pi's, we have: 

<f,X> = <ljPj, x> = (ljPj, liCi'Pi) 

= c- l,j 1 
C..(Pj, Pi) = Ii ci 

In the expansion in orthonormal polynomials 
the coefficients Ci do not change at the varying 
of the approximation degree 'n'. So, by induction 
on 'n', for any coefficient Ci, (i=O,I, . ..). we 
have: 

C. = <p 
1 

i' " 

that is computable as 

c. = - ’ l jiI Pi(Xj) . 
1 N 

But the Gram-Schmidt orthonormalization method 
1421 is not efficient to be implemented on com- 
puter. So, we substitute the orthonormal Pi’s by 
a set of orthogonal polynomials (pi) (we use the 
Legendre polynomials) that are easily computable 
by the recursive relations: 

PO(X) = 1 

Pi(X) z x 

(i+l)*pi+,(x) = (2i+I)*x*pi(x) - i*pi-,(x) 

The Legendre polynomials are defined as 

pi(x) = (i+$)-'=Pi(x) 

on the interval (-I,+'), so we have: 

(pi, piI = (i+3)-' 

and, consequently,: 

2 
2i+l l ci = <pi; -1,+1> 

Because the isomorphism t:(a,b) + (-I,+'), de- 
fined by t(x) = (2x-a-b)/(b-a), allows the repre- 
sentation of orthogonal polynomials over (a,b) 
in terms of orthogonal polynomials on (-I,+l): 

pi(x;a,b) = h/(b-a) l pi(t(x);-I,+') 

then, we have: 

b-a 
2i+l ' 'i = <Pi, x> . 

to 

Note that in this paper we use x for t(x). 
So, we can finally obtain a suitable formula 
determine the distribution function of X on 

(a,b) 1271: 
n 

g*(x) 2 g(x) = 1 (2i+I)*ciopi(x) 
i=O 

where 

1 I lN 
c. = - l <Pi,X> = - l - l 

1 b-a b-a N C Pi(‘j) 
j=I 

is 

The cumulative distribution function 

The cumulative distribution function G(x) of X 
defined as 

G(x) E G(x; a,x) E p(yla5y5x) 

" 1," g(y) dy = 9 l 1 
t(x) 

g(y) dy 
-1 

By using, for brevity, x for t(x) and because 

p;+,(x) = (2i+I )-pi(x) + p;-,(x) irl 

holds (cf. 142/), we have: 

G(x) 2 y  l iio (2i+l)*ci* !: pi(y) dy 

b-a =-. 
2 i 

i=O 
Ci’ [(Pi+,(Y) - Pi-I(Y))]-~ 

Since 

1 
cO=E' P-~(Y) 5 0, and pi(+I) = (?I)i Vi 

271 



we finally have: 

G(x) = F + y  l i ci*(pi+,(x) - pi-,(x)) 
i=l 

In particular, for a generic sub-interval 
= (xk,xj) s (a,b), it results4: 

‘j-‘k G(x;I) = -y-- + 

b-a +-• 
2 

i=l 
ci l [(Pi,,(')-Pi-,("] :: 

Computable formulae for statistical queries 

AVERAGE query 
Let I = (xk,xj) be a sub-interval of (a,b). 

It results: 

AVERAGE(x;I) = 
j, x*g(x) dx 

G(x;I) 

i 
i=O 

ci* II (2i+l)*x*pi(x) dx 

= 

G(x;I) 

If we call uli(x) the indefinite integral 

1 (2i+l)*x*pi( x) dx, then we have4: 

AVERAGE(x;I 
\ 
I = 

G(x;I) 

By using the recurrence relations of Legendre 
polynomials and those of their integrals, we fi- 
nally have, for i=O,l, . ..n.: 

where 
i 

ai=~y 1+1 Bi = t , Yi =a i - Bi . 

In some cases the AVERAGE formula can give un- 
reliable results, due to approximation statistic 
errors. These cases can arise when elements in 
the sub-interval I do not exist or are clustered 

' We recall that xr (resp. yr) stands for t(x,) 
(resp. t(y,) 1. 

and very few with respect to the mean density of 
the elements in the entire range. 

(However, we under-line that, in these cases, 
unreliable results are deliberately obtained by 
using many inference control methods). 

PERCENT query 
Let J = (yk,yj) be a sub-interval of (ay,by). 

t results4: 

PERCENT(x,y;I,J) = iJ g(yjx;I) dy 

b;a l ; ci(Ylx;Ib =- 
i=O 

[Pi+,iY)-Pi-,(Yl] ;", 
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