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1. INTRODUCTION

In a distributed databasc system the partitioning and alloca-
tion of the database over the processor nodes of the network
is a eritical aspect of database design effort. A poor distribu-
tion can lead to higher loads and hence higher costs in the
nodes or in the communication network, so that the system
cannot handle the required set of transactions.

We consider here a systern where multiple processors are
clustered at one localion in order to increase the system’s
processing capability. The local network used in such a sys-
tem has typically a high communication bandwidth but any
single processor will have inadequate processing and input-
output capacity to deal with the transaction load. We de-
velop and evaluate algorithms which perform in a computa-
tionally feasible manner the design steps of partitioning and
allocation of a database to the proccessors.

More precisely, we investigate the optimal non-redun-
dant partitioning and allocalion of a database to a number
of processors nodes. Given is a sct of source relations of
the database and their attributes and a set of transactions
which are to be executed during some period of interest.
A transaction performs operations on some subset of the
database. The initial network node, associated with every
transaction, is not prespecified, but Lo be assigned as part of
the design.

This problem differs from the problem in distributed sys-
tems where the processors are remote from each other and,
presumably, close to their users. In those systems a trans-
action enters a known, local processor node, and the final
response is issued from that node as well. The unclustered
model with local transactions has been treated previously in
the literature, for instance in [Ap82] and [CNWS8I1].

We model the conlent of the database as a collection
of relations. The given conceptual relations may be too
large to be effectively assigned to single processors. We will
consider initially how the relations can be fragmer.lted,'and
will then allocate those fragments to the processor nodes.
The possibility that files may be fragmented is not considered
in treatments of the file allocation problem, as surveyed for
instance in [DoFo82].

Once the database is put into operation each transac-
tion will access some subsct of the Luples and Lhe attribules
of each original relation. In order to complete transactions
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which do not find all their data on the same processor, a
scheduling algorithin is invoked which oplimizes the process-
ing over the network. We do not investigale this scheduling
alzorithm itsell, but simply assume that il exists, and that
we can use it in order to oblain the costs for Lhe execution of
a given transaction over a proposcd database allocation for
some specified but fictitious processor network.

In this presentation the lollowing section will formu-
late our problem preciscly. In Scc. 3 we show the intrinsic
complexily of the problem, present the heuristic greedy with
first-fit algorithms we propose, and prove statements about
their behavior. The conclusions we draw from this work are
presented in Scc. 4. Further background material, proofs,
conjectures on the feasibility of the solutions, design algo-
rithms, and evaluations can be found in [SW83].

2. FORMULATION OF THE DATABASE PARTI-
TIONING PROBLEM

2.1 The General Database Partitioning Problem

We investigate the optimal non-redundant parlitioning and
allocation of database in a cluster of processes. Given is
P = {Pi....,P,}, asmall sct of processor nodes of a densely
and reliably interconnected nctwork. Associated with every
processor P of P is the input-output capacity CI;, expressed
in terms of maximum nurber of blocks that can be processed,
and the processor capacity CCy, expressed in terms of maxi-
mum nuinber of cycles of the processor. Furthermore, as-
sociated with each pair of processors (I, ;) is the com-
munication capacity CM,;, expressed in terms of maximum
volume of messages that can be transmitted belween the two
processors.

We also have a set of source relations R = {R,..., R, }.
We denote the sel of attributes of each relation R; of R by
Ai. We can split the relations into fragments for allocation
to processors in order to salisfy the capacily constraints of
those processors.

*This work was performed and supported at the IBM Rescarch Laboratory, San Jose CA, while the authors were
respectively on leave from CRAT and on partial leave from Stanford University.
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Sec. 2

Fragments Tradilional terminology in allocation for
distribuled systems uses the notions of replication, and ver-
tical and horizontal partitioning. Vertical partitioning allo-
cates columns of a relation over distinet nodes. Horizontal
partilioning allocates rows of a relation over distinct nodes.
In this analysis we do not consider replication of rclations,
although tuple-identifiers (TIDs) [Codd80] will be replicated
as a hyproduct of vertical partitioning.

By combining vertical and horizontal partitioning, we
can associate to any relation R; of R a set of fragments
F(R;) = {F,,...,F.,}. Given a set of fragments F(R;)
for all /; in R, we denote by F = {Fy,...,F;} a set of
fragments such that

.Since we may define several different fragmentations of any
relation R; in R (for instance, by choosing different subsets
of A; for the vertical partitioning, or by providing different
predicate expressions on some attribute of A; for horizontal
partitioning) there could be several sets of fragments F as-
sociated with R.

Transactions A set of transactions T = {T,...,T;}
perform some operations on R (or on F if we refer to a set of
fragments of R). Each transaction T; of T is executed dur-
ing some period of interest with frequency g¢; and performs
operations op; on some subset X; of R (or F). In general,
a transaction T; in T will access only some rows and some
columns of each relation (or fragment) X, in X, thus it
performs operation only on a fragment of X;,. Associated
with cach transaction Ty in T is an initial network node Py,
which is not prespecified, but to be assigned as part of the
design.

Allocation Given the set of transactions T and a some
set of fragments F, let O = T{JF be the set of objecls to
be allocated on the network. Furthermore, given a set of
fictitious processor nodes N = {Ny,..., N, }, where N not
necessarily equals P, an allocation of O to N, denoted by
L{O, N}, is a mapping of O into N. In the case that N = P,
the allocation L(O, N) represents a possible real allocation
of the objects (fragments and transaclions) to the processors
P of the network.

Objective The objective of this analysis is to find an
allocation design L for the set of fragments F and the set
of transaction T, so that an aggregate cost function is min-
imized, while the capacity constraints {C;, CC;, CM;,i =
1,...,p} are observed. The elements of the cost are the load
parameters produced at exccution time by a transaction op-
timizer as part of its planning. The analysis modcl is limited
by Lhe capability of the optimizer, that is no design should
be produced which implies a transaction processing strategy
which will not be generated by the optimizer.

Cost evaluation In order to evaluate the cost function
of some processor conliguration we invoke at design Lime Lhe
program which is eventually Lo be used lfor the oplimization
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of transaction execution. Such a program delermines the
exccution load components once for each transaction 75 in
T.

The cost evaluation function Cef is a mapping defined
as follows: Given a set F of fragments of R, a set N of
nodes (not necessarily equal to P), the set of objects O =
T{JF, and an allocation L(O, N}, Cef(L{O, N)) is the triple
< vi,ve,vm >, where

i) vi = {viy,...,vi,} and vi; is the load in terms of the
number of block accesses required in the node N;.

ii) ve = {wey,...,vcn} and ve; is the load in terms of the
number of processor cycles consumed by the node
N;.

iii) vin = {vm;;|1 < 4,5 < n} and vm, ; is the load due to

the message traffic generated between the nodes N

and N; or, more generally, the communication cost

between the two nodes.

Notice that vi,ve,vm represent the costs necessary to ex-
ecute the transactions in T on the fictitious network of nodes
N. Such costs can be determined analytically from the gene-
rated allocation and knowledge of the available access stra-
tegies and the transactions [W83]. Estimates of such costs
are produced for one transaction at a time by a transac-
tion execution optimizer (like the optimizer in System Rx
[WSAS81]) as part of its planning.

The problem of database allocation to the nodes in a
cluster of processors is the following:

The DBNCP-Problem over Relations:

Let R be a set of relations, T be a set of transactions, P be
a set of p processors, and Cef be a cost evaluation function.
Find a set F of fragments of R and an allocation L(O,P),
where O = T JF, such that the cost

P p -1
E(m} + veg) + E E umy; is minimum

i=1 i=2 j=1
subject to
Dvi; < Cl forall P in P
ii} ve; < CC; for all P; in P
iii) vmi; < CM,, for all P;, Pj in P.

where < vi, ve,vm >= (ef(L(O, P)). I

We note that this problem is different from the dalabase
partitioning problems treated in literalure {sce, for instance
[Ap82,CNWSL]). In particular, in this case the inilial net-
work node of each transaction is not predefincd. This means
that we cannot neglect the capacity construct as it is assumed
in previous works, because otherwise we would find a trivial
solution, thal is allocating all transactions and relations in
only one processor.
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2.2 The database partitioning problem with a defined
set of fragments

We note that the DBNCP-problem considers any possible
fragmentation of the relations in R. If we assumec that a set
F of fragments is given, a variant of the DBNCP-problem is
the lollowing:

The DBNCP-Problem over fragments

Let F be a set of fragments of a given set of relations R.
Lel T be a set of transactions, P be a set of p processors,
and Cef be an cost evaluation function. Find an allocation
L(O,P), where O = T UF, such that

P p i-1
Z(vi.- + veg) + E vmg; is minimum
i=1 §=2j5—1
subject to

constraints i), ii), iii) of the DBNCP-problem over rela-
tions. 1

We note that, in general, the solution of this second
problem is not a solulion of the general problem. However,
if the initial set of fragments contains units of allocation, i.e.,
eleinentary objects of allocation that cannot be further frag-
menied, then the solution of the DBNCP-problem over a set
of predefined fragments is also the solution of the DBNCP-
problem over relations.

This means that, since the transactions cannol be frag-
mented, we have to find an initial set F of fragments such
that cach fragment in F will not be further partitioned but
only, eventually, combined. In [SW83] a method, following
[Ap82], is proposed to oblain the initial units of allocation.

I'rorn now on, we will consider as input of the DBNCP-
problem over fragments either a set of functional elementary
objects or whatever set of fragments has been predefined by
the databasc designer. The size of the set of fragments is
polynomially bound by the size of the input of the DBNCP-
problem over relations. Our conjecture is thal such an ap-
proach gives a good suboptimal solution of the DBNCP-
problem over relations. Furthermore, since the optimal solu-
tion of both problems cannot be found in a reasonable time,
as we shall prove in the next section, the above assurnption is
the only one suitable to provide polynominal-time heuristic
algorithms.

Before concluding with the formulation of the database
partitioning problems we point out that, after the solution
of the problem is found, a postanalysis will recombine any
fragments of the same source relations which arc allocated
inlo the same processor.
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3. HEURISTIC ALGORITHMS FOR THE PARTI-
TIONING PROBLEM

3.1 Complexity of the Problem

The solution of the two databasc partitioning problems in-
troduced in the previous section is strongly dependent on the
cost evalualion lunction Cef. 1t is obvious that, il the com-
putation of such a function requires exponential time in the
size of the relations in R and the transactions in T, we do
not have any hope to find a solution, even suboptimal, in a
reasonable amount of time.

In this paper, we suppose that the evaluator computes
the costs in polynomial time. This is not a strong assump-
tion since the optimizer must compute, in order to be practi-
cal, the cost of transactions in a reasonable amount of time..
However, we have to point out that such a computation can-
not be considered as an clementary computer operation. This
means that in our complexity analysis we will evaluate how
many times the optimizer cost function is invoked separately
from the evaluation of the number of simple operations. This
analysis is found in Sec. 3.3.

Despite the above simplifying assumption, the complexi-
ty of the two partitioning problems is still hard. In fact,
we have proven not only that there is no polynomial-time
algorithm to solve the problem, unless » = NP [GJ79], but
also that no polynomial-time algorithm is able to find a
feasible solution of the problems.

THEOREM 1. Finding a feasible or optimal solution
of the DBNCP-problem over relations or over fragments is
NP-hard.

The proof of Theorem 1 can be found in [SW83].

From Theorem 1 we decide that we cannot find a solution
of the database partitioning problem, even only a [leasible
and not oplimal solution, in a reasonable amount of time,
without using heuristic procedures. :

In the next scctions we will give heuristic algorithms
for the solution of the DBNCP-problem, based on combin-
ing the greedy method [IIS76] and the First-Fit algorithm
{JDUGG71). Since a feasible solution of the DBNCP-problem
over [ragments is also a fcasible solution of the DBNCP-
problem over relations, and since starting from predefined set
of clementary fragments is more suitable to provide heuris-
tic algorithms, we only consider the DBNCP-problem over
fragments.

3.2 The greedy and the first-fit algorithms.

Our task is to select fragments from a large set of fragments
and allocate them to the processors. Al the same time trans-
actions have to be allocated. Fragments should be combined
with other fragments and transactions should be allocated
with {ragments if placing them together leads to a great
benefit in terms of reduction of communication, CPU, or
10 load. Their allocalion Lo processor nodes is subject Lo
capacily consbraints,



Sec. 3

Greedy selection of fragments The aspect of seleet-
ing fragments suggests a greedy method, i.c., an algorithm
which works in stages, considering one input al a time At
cach stage, an optimal “local” solution is found for a par-
tieular input. Such solutions may or may not lead to the
~optimal solution of the problem. However, most of the time
such a mecthod will result in algorithms that gencrate subop-
timal solutions. In our case, the greedy method reduces to
the following algorithm. '

We start from the set O of o objects (transactions and
relation fragments) and we consider a set of n nodes N such
that n == o—1. For all pairs of objects O;, O;, we consider an
allocation on L{O, N) such that one node Ny of N contains
the combination of two objects Oy, O; and that cach of the
remaining nodes contains only one object of O — {0y, 0,}.
Let tey; be the total cost of this allocation,

n n

i—1
tey; = Z('l}i.‘ + ’Uc.;) + Z ‘Z vmyy

i=1 §=2 =1

where < vi, ve,vm >= (ef(L(O, N)).

We sclect the pair of nodes O;,0; for which te,; is
minimum and the capacity constraints of the problem are
satisficd. We then modify the set of objects O by replacing
the object Oy, O; with the compound object. In further stage,
we repeat the above step by considering the modified set
of objccts O and by reducing the number of nodes by one.
[iventually, the algorithm stops when either n = p or no
two nodes can be further combined. If the algorithm reaches
the stage where n = p the compound objecls in O define the
final allocation of the objects in the processors. The greedy
method fails if it reaches the point where no nodes can be
combined while n > p, although a feasible solution of the
problem may exist.

We note that the same algorithm was proposed in [Ap82]
for the solution of a database partitioning problem without
capacily constraints but with predelined starting point of
cach transaction. In thal paper it was shown that such an ap-
plication gives a good suboptimal solution of the predefined
transaction entry problem.

Let us now analyze the goodness of this greedy algo-
rithm for the solution of the entire problem. Unfortunately,
our conjecture is that this algorithm is very unlikely to give
a feasible solution of the allocation phase of the problem.
Consider, lor simplicily, that the CPU load associated with
the fragments is independent from their allocation. In this
case, finding a feasible solution corresponds to finding a solu-
tion of the Bin-Packing problem, where the fragments are the
items Lo be inserted in the bins, represented by the proces-
sors. L is known in the literature (for instance, see [GJ79,
JDUGGT74]) that any algorithm that start a new bin before all
the non-empty bins are [ull, gives a poor solution Lo the bin-
packing problem. In other words, any “good” approximate
allocation algorithm must be at least a “First-fit” algorithm,

First-fit allocation Reconsider the basie greedy algo-

rithin. Any lime il combines two objecls, which were never |
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combined before, it starls whal amounts to a new bin al-
. though there are bins not, yet full. Hence, we have to modily
“the allocation phase of the greedy algorithm in order to meet
the above-mentioned property of First-fit algorithms.

We could use some other belter algorithm for the bin-
packing problem, like the “First-fit Decreasing” algorithm in
[J74]). However, in thesc approaches the sclection phase is
also driven by the allocation algorithm. Since allocation is
based on the capacity constraints of the processors we loose
the optimality objective used for sclection.

However, in the case of the simple First-fit algorithm
we have the frcedom to select fragment combinations on
the basis of the greedy method since we the only constraint
is to never introduce too many bins. In particular, there
should never be more bins than the number of available
processors. Since we believe that in reality the capacity
constraints cannnot be too restrictive, a first-fit allocation
approach should permit the design to respect the constraints.

3.3 Analysis of the greedy first-fit algorithm for
various cases of capability.

The greedy first-fit algorithm described above allows for the
solutions of the partitioning problems over fragments to the
capacity limits specified for the processor network. In par-
ticular, as shown in [SW83], the cost evaluation function
which computes Cef is in all cases computed O(o) times,
where o is the initial number of objects to be allocated.
However, the complexily ol the algorithm in terms of elemen-
tary operations (i.e., all operations but calls to cost evalua-
tion function) is different for the various cases of capacity
constraints. We considered all such cases. The algorithm
is modified only in the part which checks the capacity con-
straints. We present the results found in [SW83] in a table.

The Table shows that the proposed First-fit Greedy al-
gorithm runs in all but the most gencral case in 0(o®p%/2)
time. The general case where the algorithm does not ap-
pear to run in polynomial time occurs when the network is
not homogenous. Such networks, having links of unequal
capacity or, more likely, absent links between proccssor pairs
are common in long-haul networks. These are not the type of
nelworks which are addressed in our analysis, since for these
networks the initial assumptlion that the entry point for the
transaction can be assigned arbitrarily is highly unlikely.
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CPU 10 Communication Algorithin
Case Capacity Capacity Capacity Complexity
1 liqual for Unlimited Unlimited 0(o’p)
all processors
2 Differing Unlimited Unlimited O(o®p logp)
3 Differing Equal for Unlimited O(o®plogp)
all processors
4 Differing Diflering Unlimited O(0*p¥/?)
Diflering Diflering Equal for all pairs O(o%p®/%)
of processor nodes
6 Differing Unlimited Unlimited exponential

Recall that o is the number of objects (fragments and transactions) and p is the number of processor nodes.

4. CONCLUSION

We have addressed the problem of distributing a database
over a fixed number of processors. The processors and the
nclwork connecting them have limited processing and trans-
mission capacities. The relations of the database are frag-
mented to provide suitable units of allocation. The entry
point of the query transactions is not constrained. The com-
plexitly of the general problem is shown to be NP-hard so that
an heuristic algorithm is called for. This algorithm should
not only provide a feasible solution but a solution that is
near to optimal as well, these two criteria are related since
without finding a low cost solution no solution which satisfy
the processor constraints may be found.

The database is fragmented prior to the analysis so that
an appropriate granularity for distribution is obtained. The
heuristic algorithm assigns the fragments to processors. It
combines a greedy algorithm for the selection of candidate
fragments to be assigned with a first-fit bin-packing algo-
rithm for the allocation of the selected fragments to the
processor nodes.

We point out that the greedy first-fit algorithm requires
O(03) calls to the cost evaluation functions (o is the number
of initial objects to be allocated), in order to obtain the in-
formation needed to make design decisions. In most cases the
cost evaluation function is the query optimization program of
the database management system over hypothetical defined
network. One invocation of the function has to consider all
specified transactions. This means that in typical cases the
database designer cannot afford to call it a large number of
times. In order to reduce the number of such computations,
three other techniques are presented in [SW83] to drive the
greedy selection of the algorithm. These techniques allow for
a reduced number of calls to the optimizer (namely, O(1),
0O(o) and O(o?) times).
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The faster techniques appear to be applicable in earlier
stages of the selection algorithm. Furthermore, they are
especially atltractive in the early stages when the value of
o > > p. Experimental resulls have been obtained for some
of the techniques and appear in {SW83] in order to verify the
analytical results summarized in this paper.
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