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Abstract 

The abstraction mechanisms of Semantic Data 
Models - aggregation, classification and general- 
ization - are considered the basic features to be 
supported by conceptual languages, i.e., program- 
ming languages with high-level constructs for 
database applications. This paper shows that 
conceptual languages should also provide a 
modularization mechanism as another feature to 
achieve a more adequate database modeling capa- 
bility. Such a mechanism is required to organize 
structural and procedural aspects of a complex 
schema in smaller, interrelates units. A proposal 
is presented in the framework of Galileo, a 
strongly-typed, interactive, conceptual language 
designed specifically for database applications. 

1. INTRODUCTION 

Recently, database research workers have been 
paying attention to the design of conceptual 
languages, i.e., programming languages for data- 
base applications that support the abstraction 
mechanisms of Semantic Data Models, besides the 
traditional abstraction mechanisms for temporary 
data. 

A Semantic Data Model is a set of abstraction 
mechanisms to describe the structure of databa- 
ses: the data abstractions, together with the 
implicit constraints and the associated opera- 

tions, are explicitly intended to represent 
naturally and directly certain types of real- 
world information. A survey and analysis of the 
motivations for this new generation of data 
models is reported in (McLeod 82). Well known 
examples of conceptual languages are TAXIS 
(Mylopoulos 801, DIAL (Hammer 80), and ADAPLEX 
(Smith 81). 

Still, an important open problem in conceptual 
language design is which features should be 
integrated into a programming language to achieve 
adequate database modeling capabilities. For 
instance, different opinions exist on the use of 
data types and on which features a programming 
language should have to support the basic 
abstraction mechanisms of Semantic Data Models, 
i.e., aggregation, classification and generaliza- 
tion (Albano 83c, Brodie 80, 81). Examples of 
these different trends are: TAXIS, a programming 
language based on a procedural semantic network 
formalism; DIAL, which has evolved from SDM 
(Hammer 81), and ADAPLEX, based on programming 
languages with data types extended by a class 
construct; RM/T (Codd 79) and SHM (Smith 79), 
proposed to extend the relational model outside 
the framework of a specific programming language. 

There is, however, another issue that deserves 
more attention (Wang 77, Mylopoulos 81): which 
features are needed to organize structural and 
procedural aspects of a complex schema in 
smaller, conceptually meaningful, interrelated 
units. This requirement is motivated by the 
following considerations: 
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a. 

b. 

C. 

d. 

A schema should include the definition of 
structural aspects of a database together with 
the procedural aspects. That is to say, a 
database should appear to the user as a module 
allowing access to both data and operations on 
the database. 

One aspect of the schema complexity in the 
large number of details. An effective way of 
mastering this difficulty is "Taxonomic Speci- 
fication", suggested in (Borgida 82). It is a 
stepwise methodology, based on the generali- 
zation abstraction mechanism, which suggests 
organizing the definitions of a complex schema 
into hierarchies by a controlled introduction 
of details. To support this methodology, it is 
useful to have a construct in the language to 
organize the schema in distinct, but related, 
units corresponding to the different levels of 
refinements. In this way the units can also be 
used to give zoomed versions of the applica- 
ti& model. 

Another reason to have a schema organized in 
units relies on the need of modeling complex 
applications involving different enterprise 
sectors. Instead of having a single schema 
which does not favor the recognition of the 
relationships among its parts, a database 
description organized in terms of interrelated 
units makes its structure explicit, and 
therefore the description results in a more 
natural model of the application. In general, 
different units do nc't model independent 
aspects of the application, but they can share 
common data and operations. This notion of a 
schema organized in parts is more related to 
the problem of mastering complex software by 
modular decomposition, than to the view 
modeling in DBMSs. 

A view modeling capability is another require- 
ment for conceptual languages. A view mecha- 
nism should be widely variant in capability: 
it might only allow access to a subset of the 
schema definitions (data and operations), or 
it might allow the specification of more 
complex mappings among the objects in the view 
and those in the schema. In both the cases, 
the user of a view would operate on the 
accessible objects as if they were those of a 
schema, except for the operations explicitly 
excluded. A view mechanism should not be 
confused with the capability discussed at the 
previous point; such a mechanism is comple- 
mentary to those available for schema defini- 
tion. 

Proposals exist in the literature addressing some 
of the previous issues, but none of them casts 
the solution in the context of a specific 
conceptual language. 

The possibility of organizing complex schema in 
parts has been considered for relational databa- 
ses in ASTRAL (Amble 79). ASTRAL's module 
mechanism is used to organize a relational schema 
hierarchically, so that if a module A is below a 
module B, everything exported from B can be 
imported in A. Other proposals have been given in 
the area of Artificial Intelligence, but for 
different purposes. The problem of interest here 
is the modeling of hypothetical worlds and belief 
spaces: "context", or "spaces", are organized 
hierarchically in PLANNER-like languages, as in 
ASTRAL, but data are not shared because contexts 
evolve indipendently (Montangero 78). An intere- 
sting use of these mechanisms appears in (Abrial 
74, Hendrix 75). In Abrial's proposal, a global 
context is provided where data are stored 
permanently. New contexts can then be created 
with the possibility of specifying whether they 
are permanent or temporary. Database updates in a 
context can be reflected in higher contexts 
specified by the user. In (Hendrix 75) spaces 
have been proposed as an extension of contexts, 
in that they can be structured into an acyclic 
graph rather then a tree. 

View mechanisms are usually present in DBMSs. 
Relational systems are more powerful than those 
based on the DBTG proposal because a view is more 
general than a subschema, in that any relation 
derivable by an expression can be queried as if 
it were a relation of a view. This possibility is 
also present in some relational database program- 
ming languages, in which update operations may be 
included in a module definition (Rowe 79, Shopiro 
79, Wasserman 79). Among conceptual languages, a 
similar approach is adopted by ADAPLEX, with 
modules modeling view, while TAXIS and DIAL 
provide, respectively, the "script" and "port" 
mechanisms to model interaction with the user. 
These mechanisms restrict the objects accessible, 
but are not used in modeling views. 

The purpose of this paper is to propose a 
structuring mechanism for conceptual modeling. 
The presentation will be centered around Galileo, 
a strongly typed, interactive, programming lan- 
guage (Albano 85a). In the next section a brief 
overview of the language is given. Section 3 
describes the notion of environment in Galileo 
and Section 4 contains examples showing how 



databases can be described in a structured way. 

2. OVERVIEW OF Galileo 

A complete description of the language is beyond 
the scope of this paper, and may be found in 
(Albano 85a), and, together with the denotational 
semantics, in (Capaccioli 83). A preliminary 
implementation of a subset of Galileo has been 
described in (Albano 83b). Presently, a more 
efficient implementation is in progress on a VAX 
11/780 running the UNIX (*) operating system. 

Galileo is a programming language supporting the 
abstraction mechanisms of Semantic Data Models 
and the data abstractions of programming langua- 
ges. 

The main features of Galileo are: 

a. 

5. 

C. 

d. 

The language is expression oriented. Each 
construct is applied to values and returns a 
value. 

Every denotable value of the language posses- 
ses a type, which defines a set of values 
sharing common characteristics, together with 
the operators which can be applied to these 
values. Besides the usual predefined types of 
programming languages, the type constructors 
available are: tuple (record), sequence, 
discriminated union, function, modifiable 
value (reference), and abstract types. 

Galileo's type system supports the notion of a 
"type hierarchy" (Albano 83~). If a type T is 
a subtype of a type T', then a value of type T 
can be used as argument of any operation 
defined on values of type T', but not vice 
versa. The subtype relation is a partial 
order. 

Every Galileo expression has a type. In 
general, the type of any expression can be 
statically determined. Every type violation 
can be detected by textual inspection (static 
type checking). Type information is only used 
during the static analysis of expressions, and 
is ignored at run-time, when testing is 
required for constraints only. This is made 
possible since Galileo has a secure type 
system: expressions that are syntactically 
well-typed are always semantically well-typed, 
i.e., such expressions do not cause run-time 
type errors and give a value of the expected 

type. 

e. Galileo provides a mechanism, called "clas- 
ses" , to represent real world entities in a 
Galileo database by classification and aggre- 
gation. Class elements possess an abstract 
type and are the only values which can be 
destroyed. Predefined assertions on classes 
are provided, and, if not otherwise specified, 
the operators to add or delete elements from a 
class are implicitly defined. Classes can be 
defined by subsetting, partitioning, and 
restricting other classes. They are used to 
model alternative ways of looking at the same 
entities, including the IS-A hierarchy. 

3. ENVIRONMENTS 

To understand the modularization feature we will 
illustrate, it is useful to first understand what 
are Galileo's environments. 

For any expression, the meaning of identifiers in 
use is given with respect to the current 
environment. An environment is composed of two 
parts: a "type component" and a "value compo- 
nent". 

The type component of an environment is a set of 
associations (identifier, type), and it is used 
to establish which type a type identifier 
denotes. The value component of an environment is 
a set of associations (identifier, value) and it 
is used to establish uhich value an identifier 
denotes. 

Environments are defined using the following 
operators, which work on both the components. 
Only those properties of the operators necessary 
to understand how modularization is supported in 
Galileo are presented. Examples will be presented 
in the next section. 

( ) 

denotes the empty environment, in which there are 
no associations. 

Identifier := Expression 

denotes the environment in which the only 
association is between Identifier and the value 
denoted by Expression, which can be of any kind, 
including functions or environments. 

Identifier := derived Expression 

(*) UiYIX is a Trademark of Bell Laboratories. 
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denotes the environment in which the only 
associaticn is between Identifier and a virtual 
value, which is obtained by evaluating Expression 
every time the value of Identifier is requested. 
Since Galileo has a discipline of static scope 
binding, Expression is always evaluated in the 
definition environment. 

In the previous cases the created environment had 
an empty type component. In fact, no definition 
of types appeared there. 

type TypeIdentifier := TypeExpression 

denotes the environment in which the only 
association is between TypeIdentifier and the 
type denoted by TypeExpression. With this form a 
concrete type, i.e., non abstract, is defined; 
TypeIdentifier is only an abbreviation for the 
structure it represents. 

type TypeIdentifier c==> 
TypeExpressicn 
assert BocleanExpression 

denotes an environment where: 

a. TypeIdentifier is bound to a new abstract 
Wef with a domain isomorphic to the domain 
of the representation type, given by TypeEx- 
pression, possibly restricted by the asser- 
tion. 

5. The identifier mkTypeIdentifier and repType- 
Identifier are bound to two primitive func- 
tions that map values, respectively, of the 
representation type into the abstract type and 
vice versa. In the assert clause, BooleanEx- 
pression is a condition on values of the 
reoresenta+ion II type. The assertion is a 
dynamic constraint and is controlled by the 
ccnstructor mkTypeIdentifier. When an asser- 
tion is violated the operation that caused it 
fails. 

type TypeIdentifier C--> 
TypeExpression 
assert BooleanExpression 

If Opi, . . . . Opn are predefined operators on 
values of the concrete type TypeExpression, this 
expression denotes an environment containing all 
the bindings constructed by <=> and, in addition, 
Opi, . . . . Opn redefined to operate on values of 
TypeIdentifier. 

Identifier class AbstractType 

denotes an environment constituted by the bin- 
dings exported by AbstracTyse, and, in addition, 
the binding (Identifier, empty sequence of 
elements of the abstract type). The constructor 
of the abstract type values has the additional 
property that a constructed value also becomes an 
element of the class. 

We now show the operators used to define 
environments in terms of others. In the follow- 
ing, A and B stand for expressions denoting 
environments. 

A and B 

denotes an environment with all the bindings of A 
and of B. Both A and B are evaluated independen- 
tly in the current environment and must not have 
common identifiers. 

A ext B 

denotes an environment with all the bindings of B 
and those of A not redefined in B. A is evaluated 
in the current environment, while B is evaluated 
in the current envircnment extended with the 
bindings of A. 

ret A 

denotes an environment with bindings of A, 
evaluated in the current environment extended by 
the bindings of A. This operator is required for 
mutually dependent definitions. 

A drop Identifier 

denotes an environment containing all the bin- 
dings of A except the one with binder Identifier. 

A rename Identifier in NewIdentifier 

denotes an environment with the bindings of A but 
the binder Identifier is renamed as NewIdenti- 
fier. 

An environment A can be used in the evaluation of 
an expression, extending the current environment 
with the bindings of A: 

use A in Expression 

4. STRUCTURING DATABASES WITH ENVIRONMENTS 

Using the analogy of software design, the 
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structuring mechanisms for conceptual languages 
hitherto proposed can be called mechanisms for 
"designing databases in the small". They help to 
structure a schema as a single unit, but do not 
help to solve the problem of "designing in the 
large',, where complex applications are involved. 
In the software engineering area this need has 
been considered, and nowdays programming langua- 
ges provide features to deccmpose large software 
projects into smaller units. 

This issue has been addressed in Galileo using 
the environment to structure a schema into a set 
of smaller, related parts, sharing common data 
and operations. As shown in the previous section, 
environments can be manipulated by a set of 
operators. To structure databases ard to model 
views, the useful operators are: "and" and "ext" 
to extend or combine environents; "drop" to 
exclude definitions; "rename" to rename identi- 
fiers. In the sequel it will be shown by examples 
the effectiveness of the approach, which has the 
following advantages. Firts, the environment may 

be used to deal with data and operations as a 
single unit, accessible to users. Secondly, it 
may be used to deal with data persistence without 
resorting to specific data types, such as the 
files of programming languages. Thirdly, the 
environment may be used to explicitly establish 
the way in which applications interact when they 
use common data. Finally, the environment may be 

used to define application oriented views of 
data, in a similar way to the view mechanism of 
DBMSs. 

The examples, which are intentionally simple, 
concern the departments of a firm. 

4.1. Data Persistence 

Temporary values exist in the system only during 
the evaluation of the expressions in which they 
are defined. None of Galileo's data types defines 
permanent values. For instance, user programs may 
contain class definitions, if temporary classes 
are to be kept while running an application 
prc,gram. To deal with data persistence, a global 
environment exists in which all values are 
automatically maintained. The globe1 environment 
is managed by the language support system. This 
approach to data persistence has been also 
described in (Albano 81, Atkinson 81). 

'i/hen the user enter the system, he is in the 
global environment. New bindings are added with 

the construct 'use EnvironmentExpression": 

use GeneralManager := :*Ada Byron" 

Instead of having a single set of bindings, the 
user can fruitfully employ the environment 
mechanism to structure the global environment. 
For instance, in the following example the 
environment Personnel is defined modeling a 
database schema containing both classes and 
operations: 

use Personnel := 
(ret Departments class 

Department <--> 
(Name : string 
and Manager : var Employee 
and Budget : var mm) 
key (Name) 

and Emplcyees class 
Employee <-> 

(Name : string 
and Sex:<Male or Female> 
and Salary : var num 
and Dept : var Department) 
key (Name)); 

and ChangeDepartment := 
function (d:Department, 

e:Employee) is 
Dept of e C- d 

and EnrollEmployee := 
function (n:string, 

s:CMale or Female x 
e.al:num, 
d:string): 

Emplcyee is 
mkEaployee 

(Name:=n 
and Sex:=s 
and Salary:=var s 
and Dept:= 

var get Depertments 
with Name=d 

if-fails 
failwith ,:Unknown Dept."); 

Each expression is evaluated inside an environ- 
ment, initially the glcbal one, called the 
current environment. Any envircnment that can be 
accessed from the global one can become the 
current environment with the command "enter 
environment". To return to the global environment 
there is the command "quit". For example, 
assuming that the classes in Personnel have 
already been populated, the following is a simple 
interactive session. 

enter Personnel: 
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the definitions contained in Personnel become 
directly accessible and so, for instance, a new 
employee can be enrolled into the Research 
department with the function EnrollEmployee. 

EnrollEmployee("Sibille Ellis", 
<Female>, 
1000, 
"Research"); 

quit; 

4.2. Encapsulation 

The environment mechanism can be used to model a 
schema as a set of interrelated units. Each unit 
encapsulates data and operations which are 
ciosely related. For instance, let us assume that 
we are interested in describing as distinct units 
data relevant to the Planning and Administration 
sectors of our hypothetical firm, although these 
sectors share data and functions of the environ- 
ment Personnel: 

use Planning := 
(Personnel 
and Projects class 

Project <--> 
(Name : string 
and Budget : var mm) 
key (Name)); 

use Administration := 
(Personnel 
and Suppliers class 

Supplier <--> 
(Name : string 
and Address : var string 
and Credit : var mm) 
key(Name)); 

Note that because of the semantics of the 
environment operators, the Personnel environment 
is shared by Planning and Administration, so that 
any updating of a class from an environment will 
be reflected in the others. 

4.3. Refinements 

New environments can be defined by extending 
other environments with new definitions. This 
possibility can be used both to personalize a 
schema with new data and operations and to refine 
a schema to generate a more detailed description 
of the database. 

In the following example, an environment is 
defined as an extension of Personnel with the 
"PartTimeEmployees" class, which is a specializa- 
tion of Employees. Thus data concerning the same 
application are visible at different levels of 
details. 

use DetailedPersonnel := 
(Personnel 
and Branches class 

Branch c-> 
(Name : string 
and Address : string 
and Other : string) 
key(Name)) 

ext PartTimeEmployees 
subset of Employees class 

PartTimeEmployee C-Z 
is Employee 
and PrivateData : string; 

"PartTimeEmployees" is a class subset of Em- 
ployees which models an IS-A hierarchy; all 
PartTimeEmployees are Employees, but not vice 
versa. PartTimeEmployees must be populated expli- 
citly by elements of the class Employees. 
Moreover PartTimeEmployee is defined as a subtype 
of Employee and so it inherits all the attributes 
of Employee, as well as having the additional 
attribute PrivateData. Consequently, because a 
subtype may be used wherever the supertype may be 
used, PartTimeEmployee can be used in any context 
where an Employee is expected. For example it is 
possible to apply the function EnrollEmployee to 
an element of PartTimeEmployees. 

An important consequence of using environments 
together with the class specialization mechanism 
is that the general environment behaves really 
like a stable model of the application, and it 
can be refined later on when the model must be 
tailored to new requirements. 

Environments can also be defined by combining 
more than one environment. For instance, the 
following ProjectManager environment is defined 
to include all data and operations of Planning 
and Administration, as well as its own data. 

ProjectManager := 
(Planning 
ext Administration 
ext Parts class 

Part +-> 
(Code : int 
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and Price : int 
and UsedBy : seq Project 
and SuppliedBy : Supplier) 
key (Code)); 

4.4. View Modeling 

To provide filtered access to the database, it is 
possible to provide different views of an 
environment by excluding some of its data and 
operations. 

use FemaleEmployees := 
Personnel drop Employees; 

In OnlyDepartments the Class Employees is not 
accessible. In the following environment, only 
female employees can be accessed and modified: 

use FemaleEmployees := 
(use Personnel 
in Women restriction of Employees 

with Sex is Female class 
Woman <-> is Employee); 

In the previous example the class Women is a 
restriction of the class Employees contained in 

Personnel. Another way of modeling views is shown 
in the following example. 

use MaleEmployees := 
(use Personnel 
in Men := 

derived 
for Employees with Sex is Male 

loop (Name:= Name 
and Salary:= Salary 
and Dept := Name of Dept)); 

Unlike the previous case, the sequence of 
elements bound to Men is calculated every time 
the identifier Men is used and cannot be updated. 
This way of modeling views is similar to virtual 
relations of relational DBMSs, in that the same 
set of operators is available to access virtual 
and real data. 

In modeling views, it is also possible to change 
only the names of the objects in the schema: 

use AnotherPlanning := 
Planning rename Projects in ResearchProjects; 

5. CONCLUSIONS 

The problem of structuring complex database 
schemas has been discussed. Conceptual languages 
hitherto proposed support only the abstraction 
mechanisms of Semantic Data Models, which are 
based on the assumption that a data base should 
be modeled in terms of data abstractions explic- 
itly intended to represent, naturally and direct- 

ly, the semantics of the application. The 
abstration mechanisms have been shown to be an 
effective tool in schema design, but they do not 
help to structure a complex schema in smaller, 
related parts. 

A solution has been presented centered around the 
conceptual language Galileo, in which this issue 
has been an important design goal. We believe 
that this paper provides evidence of how the 
environment construct allows a schema to be 
structured. This capability appears also to 
provide the linguistic support necessary to 
incrementally design databases, according to a 
methodology of stepwise refinement by specializa- 
tion, proposed in the TAXIS project. Databases 
can be designed and tested incrementally, while 
preserving the levels of refinement, which can be 
used to give zoomed versions of an application: 
Different classes of users can then access the 
database at different levels of detail. It is 
interesting to point out that, with the proposed 
approach, a database is not seen as a monolithic 
entity, which can be accessed through views, but 
a database is modeled as a set of interrelated 
units. 
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